Artificial neural network–genetic algorithm for estimation of crop evapotranspiration in a semi-arid region of Iran

This study compares the daily potato crop evapotranspiration (ET C ) estimated by artificial neural network (ANN), neural network–genetic algorithm (NNGA) and multivariate nonlinear regression (MNLR) methods. Using a 6-year (2000–2005) daily meteorological data recorded at Tabriz synoptic station an...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 23; no. 5; pp. 1387 - 1393
Main Authors Aghajanloo, Mohammad-Bagher, Sabziparvar, Ali-Akbar, Hosseinzadeh Talaee, P.
Format Journal Article
LanguageEnglish
Published London Springer London 01.10.2013
Springer
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
DOI10.1007/s00521-012-1087-y

Cover

Abstract This study compares the daily potato crop evapotranspiration (ET C ) estimated by artificial neural network (ANN), neural network–genetic algorithm (NNGA) and multivariate nonlinear regression (MNLR) methods. Using a 6-year (2000–2005) daily meteorological data recorded at Tabriz synoptic station and the Penman–Monteith FAO 56 standard approach (PMF-56), the daily ET C was determined during the growing season (April–September). Air temperature, wind speed at 2 m height, net solar radiation, air pressure, relative humidity and crop coefficient for every day of the growing season were selected as the input of ANN models. In this study, the genetic algorithm was applied for optimization of the parameters used in ANN approach. It was found that the optimization of the ANN parameters did not improve the performance of ANN method. The results indicated that MNLR, ANN and NNGA methods were able to predict potato ET C at desirable level of accuracy. However, the MNLR method with highest coefficient of determination ( R 2  > 0.96, P value < 0.05) and minimum errors provided superior performance among the other methods.
AbstractList This study compares the daily potato crop evapotranspiration (ET C ) estimated by artificial neural network (ANN), neural network–genetic algorithm (NNGA) and multivariate nonlinear regression (MNLR) methods. Using a 6-year (2000–2005) daily meteorological data recorded at Tabriz synoptic station and the Penman–Monteith FAO 56 standard approach (PMF-56), the daily ET C was determined during the growing season (April–September). Air temperature, wind speed at 2 m height, net solar radiation, air pressure, relative humidity and crop coefficient for every day of the growing season were selected as the input of ANN models. In this study, the genetic algorithm was applied for optimization of the parameters used in ANN approach. It was found that the optimization of the ANN parameters did not improve the performance of ANN method. The results indicated that MNLR, ANN and NNGA methods were able to predict potato ET C at desirable level of accuracy. However, the MNLR method with highest coefficient of determination ( R 2  > 0.96, P value < 0.05) and minimum errors provided superior performance among the other methods.
Author Aghajanloo, Mohammad-Bagher
Sabziparvar, Ali-Akbar
Hosseinzadeh Talaee, P.
Author_xml – sequence: 1
  givenname: Mohammad-Bagher
  surname: Aghajanloo
  fullname: Aghajanloo, Mohammad-Bagher
  email: mba_aghajan@yahoo.com
  organization: Department of Water Engineering, Zanjan Branch, Islamic Azad University
– sequence: 2
  givenname: Ali-Akbar
  surname: Sabziparvar
  fullname: Sabziparvar, Ali-Akbar
  organization: Department of Irrigation, Faculty of Agriculture, Bu-Ali Sina University
– sequence: 3
  givenname: P.
  surname: Hosseinzadeh Talaee
  fullname: Hosseinzadeh Talaee, P.
  organization: Young Researchers Club, Hamedan Branch, Islamic Azad University
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27774992$$DView record in Pascal Francis
BookMark eNp9kLtOwzAUhi1UJNrCA7B5YQwcX5K4Y1VxqVSJBWbL2E5wSePITkHdeAfekCfBbWBh6HQsnf871v9N0Kj1rUXoksA1AShvIkBOSQaEZgREme1O0JhwxjIGuRihMcx42hacnaFJjGsA4IXIx2g7D72rnHaqwa3dhsPoP3x4-_78qm16O41VU_vg-tcNrnzANvZuo3rnW-wrrIPvsH1Xne-DamPnwrByLVY42o3LVHAGB1v_AssUO0enlWqivfidU_R8d_u0eMhWj_fLxXyVaUZEnwljOORMCKXKVIYbzmllS8tNRYTVxljDcz4zuSgIAUuh0EC4ygv2UgDVgk3R1XC3U1GrpkpfaxdlF1KBsJO0LEs-m9GUK4dcahNjsJXUrj_0SKVcIwnIvWU5WJbJstxblrtEkn_k3_FjDB2YmLJtbYNc-21ok4gj0A_H-pSu
CitedBy_id crossref_primary_10_1007_s00521_012_1240_7
crossref_primary_10_1016_j_agwat_2021_106968
crossref_primary_10_1590_1679_78254378
crossref_primary_10_1002_ird_2699
crossref_primary_10_1007_s00704_017_2120_y
crossref_primary_10_3390_agronomy14030532
crossref_primary_10_3390_w15122294
crossref_primary_10_1007_s00521_015_2024_7
crossref_primary_10_1016_j_agrformet_2020_108308
crossref_primary_10_1007_s11227_019_02965_9
crossref_primary_10_1007_s00704_019_02966_x
crossref_primary_10_1007_s00477_022_02196_0
crossref_primary_10_1016_j_agwat_2021_107317
crossref_primary_10_1007_s10706_015_9970_9
crossref_primary_10_12944_CARJ_12_1_35
crossref_primary_10_1016_j_agwat_2022_107691
crossref_primary_10_1007_s10064_018_1405_4
crossref_primary_10_1007_s00521_014_1636_7
crossref_primary_10_1007_s11831_023_10017_y
crossref_primary_10_1016_j_agwat_2019_105875
crossref_primary_10_1016_j_compag_2022_107338
crossref_primary_10_1007_s00521_020_04800_2
crossref_primary_10_1016_j_compag_2015_04_012
crossref_primary_10_1061__ASCE_IR_1943_4774_0001714
crossref_primary_10_1007_s00704_024_04953_3
crossref_primary_10_1007_s42452_020_04069_z
crossref_primary_10_2478_johr_2023_0033
crossref_primary_10_1007_s12665_015_4983_5
crossref_primary_10_1177_0037549718788955
crossref_primary_10_1007_s11269_017_1857_5
crossref_primary_10_1007_s12145_023_00935_7
crossref_primary_10_32604_cmes_2025_058595
crossref_primary_10_1155_2014_839205
crossref_primary_10_1038_s41598_023_32838_4
crossref_primary_10_1016_j_jhydrol_2016_11_045
crossref_primary_10_1016_j_compag_2014_08_007
crossref_primary_10_1016_j_ecoinf_2023_102133
crossref_primary_10_1016_j_jhydrol_2022_128638
crossref_primary_10_1016_j_compag_2015_02_010
crossref_primary_10_1038_s41598_022_22272_3
crossref_primary_10_1007_s00366_017_0541_y
crossref_primary_10_1021_acsomega_0c02224
Cites_doi 10.1623/hysj.51.6.1092
10.1016/j.eswa.2005.01.006
10.1007/s11269-009-9553-8
10.1007/s11269-010-9689-6
10.1016/j.jaridenv.2012.01.016
10.1016/S0003-2670(03)00726-8
10.1007/s11269-009-9478-2
10.1007/s00703-010-0110-z
10.1007/s00521-009-0320-9
10.1007/s00271-007-0090-z
10.1016/j.agwat.2008.01.009
10.1002/joc.2187
10.1007/s11269-008-9301-5
10.1061/(ASCE)IR.1943-4774.0000242
10.1016/j.agwat.2007.12.011
10.1016/j.energy.2006.05.005
10.1016/j.jhydrol.2007.12.014
10.1016/j.jhydrol.2012.04.007
10.1061/(ASCE)0733-9437(2003)129:6(454)
10.1007/s00703-012-0184-x
10.1016/j.agwat.2006.02.011
10.1016/S0305-0548(00)00096-4
10.1061/(ASCE)0733-9437(2002)128:4(224)
10.1007/s00271-009-0201-0
10.1016/j.agwat.2006.03.014
10.1007/s10333-011-0289-8
ContentType Journal Article
Copyright Springer-Verlag London Limited 2012
2014 INIST-CNRS
Copyright_xml – notice: Springer-Verlag London Limited 2012
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1007/s00521-012-1087-y
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1433-3058
EndPage 1393
ExternalDocumentID 27774992
10_1007_s00521_012_1087_y
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
IQODW
ID FETCH-LOGICAL-c318t-8dd405388aa71434d442fe7e4df18ecdded4549d586110e206c014a563b602c83
IEDL.DBID U2A
ISSN 0941-0643
IngestDate Mon Jul 21 09:13:25 EDT 2025
Wed Oct 01 02:25:37 EDT 2025
Thu Apr 24 22:58:46 EDT 2025
Fri Feb 21 02:34:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Penman–Monteith FAO 56 model
Neural network–genetic algorithm
Nonlinear regression
Cold semi-arid climate
Climate
Atmospheric pressure
Non linear regression
Neural network―genetic algorithm
Regression analysis
Neural network
Penman-Monteith FAO 56 model
Multivariate analysis
Gene expression
Modeling
Optimization
Statistical test
Genetic algorithm
Humidity
Solar radiation
Meteorology
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c318t-8dd405388aa71434d442fe7e4df18ecdded4549d586110e206c014a563b602c83
PageCount 7
ParticipantIDs pascalfrancis_primary_27774992
crossref_citationtrail_10_1007_s00521_012_1087_y
crossref_primary_10_1007_s00521_012_1087_y
springer_journals_10_1007_s00521_012_1087_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-10-01
PublicationDateYYYYMMDD 2013-10-01
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2013
Publisher Springer London
Springer
Publisher_xml – name: Springer London
– name: Springer
References BealeRJacksonTNeural computing: an introduction1991Techno HouseAdam Hilger
TabariHKisiOEzaniAHosseinzadeh TalaeePSVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environmentJ Hydrol2012444–445788910.1016/j.jhydrol.2012.04.007
TabariHMarofiSSabziparvarAAEstimation of daily pan evaporation using artificial neural network and multivariate non-linear regressionIrrig Sci20102839940610.1007/s00271-009-0201-0
Goldberg DE (1989) Genetic algorithm in search, optimization and machine learning. Addison-Wesley, Reading
GaoRChaolunbagenCYuCZhuZChaiJEstimating reference crop evapotranspiration using artificial neural network based on random samplesNongye Gongcheng Xuebao Trans Chin Soc Agric Engin2006224245
Lopez-Urrea R, Martı′n de Santa Olalla F, Fabeiro C, Moratalla A (2006) Testing evapotranspiration equations using lysimeter observations in a semi-arid climate. Agric Water Manag 85:15–26
SabziparvarAATabariHAeiniAGhafouriMEvaluation of class A pan coefficient models for estimation of reference crop evapotranspiration in cold-semi arid and warm arid climatesWater Resour Manage201024590992010.1007/s11269-009-9478-2
LanderasGOrtiz-BarredoALópezJJComparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain)Agric Water Manag20089555356510.1016/j.agwat.2007.12.011
DinpashohYStudy of reference crop evapotranspiration in I.R. of IranAgric Water Manage20068412312910.1016/j.agwat.2006.02.011
KumarMRaghuwanshiNSSinghRWallenderWWPruittWOForecasting evapotranspiration using artificial neural networkJ Irrg Drain Eng200212822423310.1061/(ASCE)0733-9437(2002)128:4(224)
YangHGriffithsPRTateJDComparison of partial least squares regression and multi-layer neural networks for quantification of nonlinear systems and application to gas phase Fourier transform infrared spectraAnal Chim Acta200348912513610.1016/S0003-2670(03)00726-8
TabariHSabziparvarAAAhmadiMComparison of artificial neural network and multivariate linear regression methods for estimation of daily soil temperature in an arid regionMeteor Atmos Phys201111013514210.1007/s00703-010-0110-z
LeeTSNajimMMMAminulMHEstimating evapotranspiration of irrigated rice at the West Coast of the Peninsular of MalaysiaJ Appl Irrig Sci200439103117
CurryBMorganPSilverMNeural networks and non-linear statistical methods: an application to the modeling of price-quality relationshipsComput Oper Res20022995196910.1016/S0305-0548(00)00096-41003.91021
RaziMAAthappillyKA comparative predictive analysis of neural networks (NNs), nonlinear regression and classification and regression tree (CART) modelsExp Syst Appl200529657410.1016/j.eswa.2005.01.006
XuPeng JZZhangSZLiRMNeural network model for reference crop evapotranspiration prediction based on weather forecast. Shuili XuebaoJ Hydraul Eng200637376379
Jensen, ME, Burman RD, Allen RG (1990) Evapotranspiration and irrigation water requirements. ASCE Manuals and Reports on Eng. Practice No. 70. American Society of Civil Engineers (ASCE), NY, USA
KisiÖGeneralized regression neural networks for evapotranspiration modelingHydrolog Sci J2006511092110510.1623/hysj.51.6.1092
TrajkovicSTodorovicBStankovicMForecasting of reference evapotranspiration by artificial neural networksJ Irrig Drain Eng200312945445710.1061/(ASCE)0733-9437(2003)129:6(454)
AlizadehAPrinciples of applied hydrology2005MashhadAstan Ghods Razavi Press(in Persian)
ChauhanSShrivastavaRKPerformance evaluation of reference evapotranspiration estimation using climate based methods and artificial neural networksWater Resour Manage200923582583710.1007/s11269-008-9301-5
TabariHMarofiSZare AbyanehHSharifiMRComparison of artificial neural network and combined models in estimating spatial distribution of snow depth and snow water equivalent in Samsami basin of IranNeural Comput Appl20101962563510.1007/s00521-009-0320-9
TabariHMarofiSChanges of pan evaporation in the west of IranWater Resour Manage2011259711110.1007/s11269-010-9689-6
SabziparvarAAShetaeeHEstimation of global solar radiation in arid and semi-arid climates of East and West IranEnergy (Int J)20073264965510.1016/j.energy.2006.05.005
TabariHHosseinzadeh TalaeePAbghariHUtility of coactive neuro-fuzzy inference system for pan evaporation modeling in comparison with multilayer perceptronMeteor Atmos Phys201211614715410.1007/s00703-012-0184-x
HuoZFengSKangSDaiXArtificial neural network models for reference evapotranspiration in an arid area of northwest ChinaJ Arid Environ201282819010.1016/j.jaridenv.2012.01.016
TabariHEvaluation of reference crop evapotranspiration equations in various climatesWater Resour Manage2010242311233710.1007/s11269-009-9553-8
TabariHMartinezCEzaniAHosseinzadeh TalaeePApplicability of support vector machines and adaptive neurofuzzy inference system for potato crop evapotranspiration forecastingIrrig Sci2012
NeuroDimension, Inc (2005) Developers of NeuroSolutions v5.01: Neural Network Simulator. The World Wide Web address is www.nd.com, Gainesville, FL
TabariHHosseinzadeh TalaeePMultilayer perceptron for reference evapotranspiration estimation in a semiarid regionNeural Comput Appl2012
SabziparvarAATabariHRegional estimation of reference evapotranspiration in arid and semi-arid regionsJ Irrig Drain Eng20101361072473110.1061/(ASCE)IR.1943-4774.0000242
SungwonKHung SooKNeural networks and genetic algorithm approach for non-linear evaporation and evapotranspiration modelingJ Hydrol200835129931710.1016/j.jhydrol.2007.12.014
KuoS-FChenF-WLiaoP-YLiuC-WA comparative study on the estimation of evapotranspiration using backpropagation neural network: Penman-Monteith method versus pan evaporation methodPaddy Water Environ20119441342410.1007/s10333-011-0289-8
AllenRGPerieraLSRaesDSmithMCrop evapotranspiration: guideline for computing crop water requirement. FAO Irrigation and Drainage Paper No. 561998RomeFood and Agriculture Organization of the UN301
Rahimi KhoobAComparative study of Hargreaves’s and artificial neural network’s methodologies in estimating reference evapotranspiration in a semi-arid environmentIrrig Sci20082625325910.1007/s00271-007-0090-z
HuYCFunctional-link nets with genetic-algorithm-based learning for robust nonlinear interval regression analysisNeurocomputing2009791808181610.1016/j.neucom.2008.07.002
JablounMSahliAEvaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data: application to TunisiaAgric Water Manag200895670771510.1016/j.agwat.2008.01.009
SabziparvarAAMirmasoudiSHTabariHNazemosadatMJMaryanajiZENSO teleconnection impacts on reference evapotranspiration variability in some warm climates of IranInt J Climatol20113117101723
S Trajkovic (1087_CR36) 2003; 129
S-F Kuo (1087_CR15) 2011; 9
Ö Kisi (1087_CR13) 2006; 51
AA Sabziparvar (1087_CR23) 2007; 32
M Jabloun (1087_CR11) 2008; 95
A Alizadeh (1087_CR1) 2005
S Chauhan (1087_CR4) 2009; 23
Z Huo (1087_CR10) 2012; 82
TS Lee (1087_CR17) 2004; 39
H Yang (1087_CR38) 2003; 489
G Landeras (1087_CR16) 2008; 95
1087_CR8
H Tabari (1087_CR28) 2012; 116
K Sungwon (1087_CR26) 2008; 351
AA Sabziparvar (1087_CR22) 2011; 31
H Tabari (1087_CR35) 2011; 110
A Rahimi Khoob (1087_CR20) 2008; 26
MA Razi (1087_CR21) 2005; 29
AA Sabziparvar (1087_CR25) 2010; 24
AA Sabziparvar (1087_CR24) 2010; 136
H Tabari (1087_CR31) 2011; 25
B Curry (1087_CR5) 2002; 29
R Beale (1087_CR3) 1991
H Tabari (1087_CR33) 2010; 28
H Tabari (1087_CR27) 2010; 24
H Tabari (1087_CR32) 2010; 19
M Kumar (1087_CR14) 2002; 128
Y Dinpashoh (1087_CR6) 2006; 84
H Tabari (1087_CR30) 2012; 444–445
1087_CR12
1087_CR18
Peng JZ Xu (1087_CR37) 2006; 37
H Tabari (1087_CR34) 2012
YC Hu (1087_CR9) 2009; 79
R Gao (1087_CR7) 2006; 22
H Tabari (1087_CR29) 2012
RG Allen (1087_CR2) 1998
1087_CR19
References_xml – reference: KumarMRaghuwanshiNSSinghRWallenderWWPruittWOForecasting evapotranspiration using artificial neural networkJ Irrg Drain Eng200212822423310.1061/(ASCE)0733-9437(2002)128:4(224)
– reference: JablounMSahliAEvaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data: application to TunisiaAgric Water Manag200895670771510.1016/j.agwat.2008.01.009
– reference: SabziparvarAAMirmasoudiSHTabariHNazemosadatMJMaryanajiZENSO teleconnection impacts on reference evapotranspiration variability in some warm climates of IranInt J Climatol20113117101723
– reference: NeuroDimension, Inc (2005) Developers of NeuroSolutions v5.01: Neural Network Simulator. The World Wide Web address is www.nd.com, Gainesville, FL
– reference: CurryBMorganPSilverMNeural networks and non-linear statistical methods: an application to the modeling of price-quality relationshipsComput Oper Res20022995196910.1016/S0305-0548(00)00096-41003.91021
– reference: TabariHHosseinzadeh TalaeePAbghariHUtility of coactive neuro-fuzzy inference system for pan evaporation modeling in comparison with multilayer perceptronMeteor Atmos Phys201211614715410.1007/s00703-012-0184-x
– reference: AlizadehAPrinciples of applied hydrology2005MashhadAstan Ghods Razavi Press(in Persian)
– reference: AllenRGPerieraLSRaesDSmithMCrop evapotranspiration: guideline for computing crop water requirement. FAO Irrigation and Drainage Paper No. 561998RomeFood and Agriculture Organization of the UN301
– reference: Lopez-Urrea R, Martı′n de Santa Olalla F, Fabeiro C, Moratalla A (2006) Testing evapotranspiration equations using lysimeter observations in a semi-arid climate. Agric Water Manag 85:15–26
– reference: DinpashohYStudy of reference crop evapotranspiration in I.R. of IranAgric Water Manage20068412312910.1016/j.agwat.2006.02.011
– reference: SabziparvarAAShetaeeHEstimation of global solar radiation in arid and semi-arid climates of East and West IranEnergy (Int J)20073264965510.1016/j.energy.2006.05.005
– reference: Goldberg DE (1989) Genetic algorithm in search, optimization and machine learning. Addison-Wesley, Reading
– reference: YangHGriffithsPRTateJDComparison of partial least squares regression and multi-layer neural networks for quantification of nonlinear systems and application to gas phase Fourier transform infrared spectraAnal Chim Acta200348912513610.1016/S0003-2670(03)00726-8
– reference: Rahimi KhoobAComparative study of Hargreaves’s and artificial neural network’s methodologies in estimating reference evapotranspiration in a semi-arid environmentIrrig Sci20082625325910.1007/s00271-007-0090-z
– reference: TrajkovicSTodorovicBStankovicMForecasting of reference evapotranspiration by artificial neural networksJ Irrig Drain Eng200312945445710.1061/(ASCE)0733-9437(2003)129:6(454)
– reference: SabziparvarAATabariHAeiniAGhafouriMEvaluation of class A pan coefficient models for estimation of reference crop evapotranspiration in cold-semi arid and warm arid climatesWater Resour Manage201024590992010.1007/s11269-009-9478-2
– reference: XuPeng JZZhangSZLiRMNeural network model for reference crop evapotranspiration prediction based on weather forecast. Shuili XuebaoJ Hydraul Eng200637376379
– reference: ChauhanSShrivastavaRKPerformance evaluation of reference evapotranspiration estimation using climate based methods and artificial neural networksWater Resour Manage200923582583710.1007/s11269-008-9301-5
– reference: GaoRChaolunbagenCYuCZhuZChaiJEstimating reference crop evapotranspiration using artificial neural network based on random samplesNongye Gongcheng Xuebao Trans Chin Soc Agric Engin2006224245
– reference: HuoZFengSKangSDaiXArtificial neural network models for reference evapotranspiration in an arid area of northwest ChinaJ Arid Environ201282819010.1016/j.jaridenv.2012.01.016
– reference: TabariHMarofiSChanges of pan evaporation in the west of IranWater Resour Manage2011259711110.1007/s11269-010-9689-6
– reference: LeeTSNajimMMMAminulMHEstimating evapotranspiration of irrigated rice at the West Coast of the Peninsular of MalaysiaJ Appl Irrig Sci200439103117
– reference: SungwonKHung SooKNeural networks and genetic algorithm approach for non-linear evaporation and evapotranspiration modelingJ Hydrol200835129931710.1016/j.jhydrol.2007.12.014
– reference: SabziparvarAATabariHRegional estimation of reference evapotranspiration in arid and semi-arid regionsJ Irrig Drain Eng20101361072473110.1061/(ASCE)IR.1943-4774.0000242
– reference: TabariHKisiOEzaniAHosseinzadeh TalaeePSVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environmentJ Hydrol2012444–445788910.1016/j.jhydrol.2012.04.007
– reference: TabariHMartinezCEzaniAHosseinzadeh TalaeePApplicability of support vector machines and adaptive neurofuzzy inference system for potato crop evapotranspiration forecastingIrrig Sci2012
– reference: TabariHMarofiSZare AbyanehHSharifiMRComparison of artificial neural network and combined models in estimating spatial distribution of snow depth and snow water equivalent in Samsami basin of IranNeural Comput Appl20101962563510.1007/s00521-009-0320-9
– reference: TabariHHosseinzadeh TalaeePMultilayer perceptron for reference evapotranspiration estimation in a semiarid regionNeural Comput Appl2012
– reference: LanderasGOrtiz-BarredoALópezJJComparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain)Agric Water Manag20089555356510.1016/j.agwat.2007.12.011
– reference: BealeRJacksonTNeural computing: an introduction1991Techno HouseAdam Hilger
– reference: Jensen, ME, Burman RD, Allen RG (1990) Evapotranspiration and irrigation water requirements. ASCE Manuals and Reports on Eng. Practice No. 70. American Society of Civil Engineers (ASCE), NY, USA
– reference: TabariHEvaluation of reference crop evapotranspiration equations in various climatesWater Resour Manage2010242311233710.1007/s11269-009-9553-8
– reference: KisiÖGeneralized regression neural networks for evapotranspiration modelingHydrolog Sci J2006511092110510.1623/hysj.51.6.1092
– reference: HuYCFunctional-link nets with genetic-algorithm-based learning for robust nonlinear interval regression analysisNeurocomputing2009791808181610.1016/j.neucom.2008.07.002
– reference: TabariHSabziparvarAAAhmadiMComparison of artificial neural network and multivariate linear regression methods for estimation of daily soil temperature in an arid regionMeteor Atmos Phys201111013514210.1007/s00703-010-0110-z
– reference: TabariHMarofiSSabziparvarAAEstimation of daily pan evaporation using artificial neural network and multivariate non-linear regressionIrrig Sci20102839940610.1007/s00271-009-0201-0
– reference: RaziMAAthappillyKA comparative predictive analysis of neural networks (NNs), nonlinear regression and classification and regression tree (CART) modelsExp Syst Appl200529657410.1016/j.eswa.2005.01.006
– reference: KuoS-FChenF-WLiaoP-YLiuC-WA comparative study on the estimation of evapotranspiration using backpropagation neural network: Penman-Monteith method versus pan evaporation methodPaddy Water Environ20119441342410.1007/s10333-011-0289-8
– volume: 51
  start-page: 1092
  year: 2006
  ident: 1087_CR13
  publication-title: Hydrolog Sci J
  doi: 10.1623/hysj.51.6.1092
– volume: 29
  start-page: 65
  year: 2005
  ident: 1087_CR21
  publication-title: Exp Syst Appl
  doi: 10.1016/j.eswa.2005.01.006
– volume: 37
  start-page: 376
  year: 2006
  ident: 1087_CR37
  publication-title: J Hydraul Eng
– volume: 24
  start-page: 2311
  year: 2010
  ident: 1087_CR27
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-009-9553-8
– volume: 25
  start-page: 97
  year: 2011
  ident: 1087_CR31
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-010-9689-6
– volume: 82
  start-page: 81
  year: 2012
  ident: 1087_CR10
  publication-title: J Arid Environ
  doi: 10.1016/j.jaridenv.2012.01.016
– volume: 489
  start-page: 125
  year: 2003
  ident: 1087_CR38
  publication-title: Anal Chim Acta
  doi: 10.1016/S0003-2670(03)00726-8
– volume: 79
  start-page: 1808
  year: 2009
  ident: 1087_CR9
  publication-title: Neurocomputing
– year: 2012
  ident: 1087_CR34
  publication-title: Irrig Sci
– volume: 24
  start-page: 909
  issue: 5
  year: 2010
  ident: 1087_CR25
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-009-9478-2
– volume: 22
  start-page: 42
  year: 2006
  ident: 1087_CR7
  publication-title: Nongye Gongcheng Xuebao Trans Chin Soc Agric Engin
– volume: 110
  start-page: 135
  year: 2011
  ident: 1087_CR35
  publication-title: Meteor Atmos Phys
  doi: 10.1007/s00703-010-0110-z
– volume-title: Neural computing: an introduction
  year: 1991
  ident: 1087_CR3
– volume: 19
  start-page: 625
  year: 2010
  ident: 1087_CR32
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-009-0320-9
– volume: 26
  start-page: 253
  year: 2008
  ident: 1087_CR20
  publication-title: Irrig Sci
  doi: 10.1007/s00271-007-0090-z
– volume: 95
  start-page: 707
  issue: 6
  year: 2008
  ident: 1087_CR11
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2008.01.009
– volume: 31
  start-page: 1710
  year: 2011
  ident: 1087_CR22
  publication-title: Int J Climatol
  doi: 10.1002/joc.2187
– start-page: 301
  volume-title: Crop evapotranspiration: guideline for computing crop water requirement. FAO Irrigation and Drainage Paper No. 56
  year: 1998
  ident: 1087_CR2
– year: 2012
  ident: 1087_CR29
  publication-title: Neural Comput Appl
– volume: 23
  start-page: 825
  issue: 5
  year: 2009
  ident: 1087_CR4
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-008-9301-5
– volume: 136
  start-page: 724
  issue: 10
  year: 2010
  ident: 1087_CR24
  publication-title: J Irrig Drain Eng
  doi: 10.1061/(ASCE)IR.1943-4774.0000242
– volume: 95
  start-page: 553
  year: 2008
  ident: 1087_CR16
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2007.12.011
– volume-title: Principles of applied hydrology
  year: 2005
  ident: 1087_CR1
– volume: 39
  start-page: 103
  year: 2004
  ident: 1087_CR17
  publication-title: J Appl Irrig Sci
– volume: 32
  start-page: 649
  year: 2007
  ident: 1087_CR23
  publication-title: Energy (Int J)
  doi: 10.1016/j.energy.2006.05.005
– volume: 351
  start-page: 299
  year: 2008
  ident: 1087_CR26
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2007.12.014
– volume: 444–445
  start-page: 78
  year: 2012
  ident: 1087_CR30
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2012.04.007
– volume: 129
  start-page: 454
  year: 2003
  ident: 1087_CR36
  publication-title: J Irrig Drain Eng
  doi: 10.1061/(ASCE)0733-9437(2003)129:6(454)
– ident: 1087_CR19
– ident: 1087_CR12
– volume: 116
  start-page: 147
  year: 2012
  ident: 1087_CR28
  publication-title: Meteor Atmos Phys
  doi: 10.1007/s00703-012-0184-x
– volume: 84
  start-page: 123
  year: 2006
  ident: 1087_CR6
  publication-title: Agric Water Manage
  doi: 10.1016/j.agwat.2006.02.011
– volume: 29
  start-page: 951
  year: 2002
  ident: 1087_CR5
  publication-title: Comput Oper Res
  doi: 10.1016/S0305-0548(00)00096-4
– volume: 128
  start-page: 224
  year: 2002
  ident: 1087_CR14
  publication-title: J Irrg Drain Eng
  doi: 10.1061/(ASCE)0733-9437(2002)128:4(224)
– ident: 1087_CR8
– volume: 28
  start-page: 399
  year: 2010
  ident: 1087_CR33
  publication-title: Irrig Sci
  doi: 10.1007/s00271-009-0201-0
– ident: 1087_CR18
  doi: 10.1016/j.agwat.2006.03.014
– volume: 9
  start-page: 413
  issue: 4
  year: 2011
  ident: 1087_CR15
  publication-title: Paddy Water Environ
  doi: 10.1007/s10333-011-0289-8
SSID ssj0004685
Score 2.1951177
Snippet This study compares the daily potato crop evapotranspiration (ET C ) estimated by artificial neural network (ANN), neural network–genetic algorithm (NNGA) and...
SourceID pascalfrancis
crossref
springer
SourceType Index Database
Enrichment Source
Publisher
StartPage 1387
SubjectTerms Applied sciences
Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Computer science; control theory; systems
Connectionism. Neural networks
Data Mining and Knowledge Discovery
Exact sciences and technology
Image Processing and Computer Vision
Original Article
Probability and Statistics in Computer Science
Title Artificial neural network–genetic algorithm for estimation of crop evapotranspiration in a semi-arid region of Iran
URI https://link.springer.com/article/10.1007/s00521-012-1087-y
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ADMLS
  dateStart: 19930301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA66vQjiXZyXkQeflMKWpmn6OGVzKg4RB_OppGmqhd1YO2Fv_gf_ob_Ek_SCwwv4lJeTUHIuOafJ-T6ETpuSUhVIZtnSYxaVMrA8KgKLCI95katCz5DB3PVYt09vBs4g7-NOitfuxZWkidRls5v-g6lLXwKhAzxjsYqqjkbzAiPuk9aXZkjDwwlli37SQ-3iKvOnJZYOo_WpSGBfoozQ4tvNqDlwOltoI88UcStT7TZaUeMdtFmwMODcKXfRXEtkOBBYo1Oawbzt_nh7B_PQXYpYDJ8nszh9GWFIUrFG1shaFvEkwprEC6tXMZ2kBuk8zowCx2MscKJGsQX1dIg1hUM24RrE9lC_03687Fo5mYIlwW1Ti4ch5GY250JoynMaUkoi5SoaRk2uJES5kEKtGDqcQUagSINJqJ6Ew-yANYjk9j6qjCdjdYAwlYx7EjIVBcUbF7ZwbFc6EBkCl0csIDXUKHbVlznSuCa8GPolRrJRhA-K0AClrr-oobNyyjSD2fhLuL6kqnIGcSGZ9Tz4gPNCd37uksnvyx3-S_oIrRHNiGHe8x2jSjqbqxPIS9Kgjqqtq6fbNowX7d79Q93Y5SdVjOAA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BOYCEKKsoqw-cQEHFcRznWCGgrKciwSlyHAci6KI2RSon_oE_5EsYO0nFLnHKZWx5GY9n4pn3AHYOFGM6UtxxVcAdplTkBExGDpUBDxJfx4Elg7m84s1rdnbj3RR13IMy2718krSWelzsZv5gmtCXounAkzGahCmG8QmtwFTj5Pb86EM5pGXixMDFJPUwt3zM_KmTT9fRbE8OcGWSnNLi29uovXKOq9AqB5tnmjzsD7NoXz1_wXH852zmYa5wQUkj15kFmNCdRaiW9A6kOO1LMDQSOcAEMbCX9mOTxt9eXlHvTPkjkY933X6a3bcJer_EQHbktZCkmxDDDkb0k-x1MwuhnubaRtIOkWSg26mDgXpMDDdE3uAUxZbh-vioddh0CpYGR6E9yBwRx-j0uUJIabjUWcwYTbSvWZwcCK3QfMYMg9DYExxdDU3rXGFYJj3uRrxOlXBXoNLpdvQqEKa4CBS6QBqjQiFd6bm-8tDkRL5IeERrUC83K1QFhLlh0ngMx-DLdllDXFaDfOqHoxrsjpv0cvyOv4S3PmnAuAX10UsOAhzAXrmbYXHWB793t_Yv6W2YbrYuL8KL06vzdZihhnbDJg1uQCXrD_UmOj9ZtFUo-zt1wvy5
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aQQTxLdZnDp6UpW02m80ei1paH8WDhd6WbJLVQrst7Vbozf_gP_SXOMnuFosP8LSXSQiZmWRmM_N9CJ3XJKU6ksxxZcAcKmXkBFREDhEBC2Jfq8CSwTy0WbNDb7teN-c5nRTV7sWTZNbTYFCakrQyUnFl3vhm_maaNJjAMQJeMltGK9TgJIBBd0j9S2Ok5eSEFMaU91C3eNb8aYqFi2l9JCawR3FGbvHtldRePo0ttJFHjbieqXkbLelkB20WjAw4d9BdNDUSGSYENkiV9mPrvD_e3sFUTMciFv3n4biXvgwwBKzYoGxk7Yt4GGND6IX1qxgNU4t63ssMBPcSLPBED3oO5NYKGzqHbEALxPZQp3HzdNV0cmIFR4ILpw5XCuI0l3MhDP05VZSSWPuaqrjGtYQTT1HIG5XHGUQHmlSZhExKeMyNWJVI7u6jUjJM9AHCVDIeSIhaNCRyXLjCc33pwSkR-TxmESmjarGrocxRxw35RT-c4yVbRYSgCANW6oezMrqYDxllkBt_CZ8uqGo-gvgQ2AYBLOCy0F2Yu-fk9-kO_yV9hlYfrxvhfat9d4TWiCHKsGV-x6iUjqf6BMKVNDq1JvkJwrPj-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+neural+network%E2%80%93genetic+algorithm+for+estimation+of+crop+evapotranspiration+in+a+semi-arid+region+of+Iran&rft.jtitle=Neural+computing+%26+applications&rft.au=Aghajanloo%2C+Mohammad-Bagher&rft.au=Sabziparvar%2C+Ali-Akbar&rft.au=Hosseinzadeh+Talaee%2C+P.&rft.date=2013-10-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=23&rft.issue=5&rft.spage=1387&rft.epage=1393&rft_id=info:doi/10.1007%2Fs00521-012-1087-y&rft.externalDocID=10_1007_s00521_012_1087_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon