Artificial neural network–genetic algorithm for estimation of crop evapotranspiration in a semi-arid region of Iran
This study compares the daily potato crop evapotranspiration (ET C ) estimated by artificial neural network (ANN), neural network–genetic algorithm (NNGA) and multivariate nonlinear regression (MNLR) methods. Using a 6-year (2000–2005) daily meteorological data recorded at Tabriz synoptic station an...
Saved in:
| Published in | Neural computing & applications Vol. 23; no. 5; pp. 1387 - 1393 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Springer London
01.10.2013
Springer |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0941-0643 1433-3058 |
| DOI | 10.1007/s00521-012-1087-y |
Cover
| Abstract | This study compares the daily potato crop evapotranspiration (ET
C
) estimated by artificial neural network (ANN), neural network–genetic algorithm (NNGA) and multivariate nonlinear regression (MNLR) methods. Using a 6-year (2000–2005) daily meteorological data recorded at Tabriz synoptic station and the Penman–Monteith FAO 56 standard approach (PMF-56), the daily ET
C
was determined during the growing season (April–September). Air temperature, wind speed at 2 m height, net solar radiation, air pressure, relative humidity and crop coefficient for every day of the growing season were selected as the input of ANN models. In this study, the genetic algorithm was applied for optimization of the parameters used in ANN approach. It was found that the optimization of the ANN parameters did not improve the performance of ANN method. The results indicated that MNLR, ANN and NNGA methods were able to predict potato ET
C
at desirable level of accuracy. However, the MNLR method with highest coefficient of determination (
R
2
> 0.96,
P
value < 0.05) and minimum errors provided superior performance among the other methods. |
|---|---|
| AbstractList | This study compares the daily potato crop evapotranspiration (ET
C
) estimated by artificial neural network (ANN), neural network–genetic algorithm (NNGA) and multivariate nonlinear regression (MNLR) methods. Using a 6-year (2000–2005) daily meteorological data recorded at Tabriz synoptic station and the Penman–Monteith FAO 56 standard approach (PMF-56), the daily ET
C
was determined during the growing season (April–September). Air temperature, wind speed at 2 m height, net solar radiation, air pressure, relative humidity and crop coefficient for every day of the growing season were selected as the input of ANN models. In this study, the genetic algorithm was applied for optimization of the parameters used in ANN approach. It was found that the optimization of the ANN parameters did not improve the performance of ANN method. The results indicated that MNLR, ANN and NNGA methods were able to predict potato ET
C
at desirable level of accuracy. However, the MNLR method with highest coefficient of determination (
R
2
> 0.96,
P
value < 0.05) and minimum errors provided superior performance among the other methods. |
| Author | Aghajanloo, Mohammad-Bagher Sabziparvar, Ali-Akbar Hosseinzadeh Talaee, P. |
| Author_xml | – sequence: 1 givenname: Mohammad-Bagher surname: Aghajanloo fullname: Aghajanloo, Mohammad-Bagher email: mba_aghajan@yahoo.com organization: Department of Water Engineering, Zanjan Branch, Islamic Azad University – sequence: 2 givenname: Ali-Akbar surname: Sabziparvar fullname: Sabziparvar, Ali-Akbar organization: Department of Irrigation, Faculty of Agriculture, Bu-Ali Sina University – sequence: 3 givenname: P. surname: Hosseinzadeh Talaee fullname: Hosseinzadeh Talaee, P. organization: Young Researchers Club, Hamedan Branch, Islamic Azad University |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27774992$$DView record in Pascal Francis |
| BookMark | eNp9kLtOwzAUhi1UJNrCA7B5YQwcX5K4Y1VxqVSJBWbL2E5wSePITkHdeAfekCfBbWBh6HQsnf871v9N0Kj1rUXoksA1AShvIkBOSQaEZgREme1O0JhwxjIGuRihMcx42hacnaFJjGsA4IXIx2g7D72rnHaqwa3dhsPoP3x4-_78qm16O41VU_vg-tcNrnzANvZuo3rnW-wrrIPvsH1Xne-DamPnwrByLVY42o3LVHAGB1v_AssUO0enlWqivfidU_R8d_u0eMhWj_fLxXyVaUZEnwljOORMCKXKVIYbzmllS8tNRYTVxljDcz4zuSgIAUuh0EC4ygv2UgDVgk3R1XC3U1GrpkpfaxdlF1KBsJO0LEs-m9GUK4dcahNjsJXUrj_0SKVcIwnIvWU5WJbJstxblrtEkn_k3_FjDB2YmLJtbYNc-21ok4gj0A_H-pSu |
| CitedBy_id | crossref_primary_10_1007_s00521_012_1240_7 crossref_primary_10_1016_j_agwat_2021_106968 crossref_primary_10_1590_1679_78254378 crossref_primary_10_1002_ird_2699 crossref_primary_10_1007_s00704_017_2120_y crossref_primary_10_3390_agronomy14030532 crossref_primary_10_3390_w15122294 crossref_primary_10_1007_s00521_015_2024_7 crossref_primary_10_1016_j_agrformet_2020_108308 crossref_primary_10_1007_s11227_019_02965_9 crossref_primary_10_1007_s00704_019_02966_x crossref_primary_10_1007_s00477_022_02196_0 crossref_primary_10_1016_j_agwat_2021_107317 crossref_primary_10_1007_s10706_015_9970_9 crossref_primary_10_12944_CARJ_12_1_35 crossref_primary_10_1016_j_agwat_2022_107691 crossref_primary_10_1007_s10064_018_1405_4 crossref_primary_10_1007_s00521_014_1636_7 crossref_primary_10_1007_s11831_023_10017_y crossref_primary_10_1016_j_agwat_2019_105875 crossref_primary_10_1016_j_compag_2022_107338 crossref_primary_10_1007_s00521_020_04800_2 crossref_primary_10_1016_j_compag_2015_04_012 crossref_primary_10_1061__ASCE_IR_1943_4774_0001714 crossref_primary_10_1007_s00704_024_04953_3 crossref_primary_10_1007_s42452_020_04069_z crossref_primary_10_2478_johr_2023_0033 crossref_primary_10_1007_s12665_015_4983_5 crossref_primary_10_1177_0037549718788955 crossref_primary_10_1007_s11269_017_1857_5 crossref_primary_10_1007_s12145_023_00935_7 crossref_primary_10_32604_cmes_2025_058595 crossref_primary_10_1155_2014_839205 crossref_primary_10_1038_s41598_023_32838_4 crossref_primary_10_1016_j_jhydrol_2016_11_045 crossref_primary_10_1016_j_compag_2014_08_007 crossref_primary_10_1016_j_ecoinf_2023_102133 crossref_primary_10_1016_j_jhydrol_2022_128638 crossref_primary_10_1016_j_compag_2015_02_010 crossref_primary_10_1038_s41598_022_22272_3 crossref_primary_10_1007_s00366_017_0541_y crossref_primary_10_1021_acsomega_0c02224 |
| Cites_doi | 10.1623/hysj.51.6.1092 10.1016/j.eswa.2005.01.006 10.1007/s11269-009-9553-8 10.1007/s11269-010-9689-6 10.1016/j.jaridenv.2012.01.016 10.1016/S0003-2670(03)00726-8 10.1007/s11269-009-9478-2 10.1007/s00703-010-0110-z 10.1007/s00521-009-0320-9 10.1007/s00271-007-0090-z 10.1016/j.agwat.2008.01.009 10.1002/joc.2187 10.1007/s11269-008-9301-5 10.1061/(ASCE)IR.1943-4774.0000242 10.1016/j.agwat.2007.12.011 10.1016/j.energy.2006.05.005 10.1016/j.jhydrol.2007.12.014 10.1016/j.jhydrol.2012.04.007 10.1061/(ASCE)0733-9437(2003)129:6(454) 10.1007/s00703-012-0184-x 10.1016/j.agwat.2006.02.011 10.1016/S0305-0548(00)00096-4 10.1061/(ASCE)0733-9437(2002)128:4(224) 10.1007/s00271-009-0201-0 10.1016/j.agwat.2006.03.014 10.1007/s10333-011-0289-8 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag London Limited 2012 2014 INIST-CNRS |
| Copyright_xml | – notice: Springer-Verlag London Limited 2012 – notice: 2014 INIST-CNRS |
| DBID | AAYXX CITATION IQODW |
| DOI | 10.1007/s00521-012-1087-y |
| DatabaseName | CrossRef Pascal-Francis |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Applied Sciences |
| EISSN | 1433-3058 |
| EndPage | 1393 |
| ExternalDocumentID | 27774992 10_1007_s00521_012_1087_y |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO IQODW |
| ID | FETCH-LOGICAL-c318t-8dd405388aa71434d442fe7e4df18ecdded4549d586110e206c014a563b602c83 |
| IEDL.DBID | U2A |
| ISSN | 0941-0643 |
| IngestDate | Mon Jul 21 09:13:25 EDT 2025 Wed Oct 01 02:25:37 EDT 2025 Thu Apr 24 22:58:46 EDT 2025 Fri Feb 21 02:34:25 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Penman–Monteith FAO 56 model Neural network–genetic algorithm Nonlinear regression Cold semi-arid climate Climate Atmospheric pressure Non linear regression Neural network―genetic algorithm Regression analysis Neural network Penman-Monteith FAO 56 model Multivariate analysis Gene expression Modeling Optimization Statistical test Genetic algorithm Humidity Solar radiation Meteorology |
| Language | English |
| License | http://www.springer.com/tdm CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c318t-8dd405388aa71434d442fe7e4df18ecdded4549d586110e206c014a563b602c83 |
| PageCount | 7 |
| ParticipantIDs | pascalfrancis_primary_27774992 crossref_citationtrail_10_1007_s00521_012_1087_y crossref_primary_10_1007_s00521_012_1087_y springer_journals_10_1007_s00521_012_1087_y |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2013-10-01 |
| PublicationDateYYYYMMDD | 2013-10-01 |
| PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2013 |
| Publisher | Springer London Springer |
| Publisher_xml | – name: Springer London – name: Springer |
| References | BealeRJacksonTNeural computing: an introduction1991Techno HouseAdam Hilger TabariHKisiOEzaniAHosseinzadeh TalaeePSVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environmentJ Hydrol2012444–445788910.1016/j.jhydrol.2012.04.007 TabariHMarofiSSabziparvarAAEstimation of daily pan evaporation using artificial neural network and multivariate non-linear regressionIrrig Sci20102839940610.1007/s00271-009-0201-0 Goldberg DE (1989) Genetic algorithm in search, optimization and machine learning. Addison-Wesley, Reading GaoRChaolunbagenCYuCZhuZChaiJEstimating reference crop evapotranspiration using artificial neural network based on random samplesNongye Gongcheng Xuebao Trans Chin Soc Agric Engin2006224245 Lopez-Urrea R, Martı′n de Santa Olalla F, Fabeiro C, Moratalla A (2006) Testing evapotranspiration equations using lysimeter observations in a semi-arid climate. Agric Water Manag 85:15–26 SabziparvarAATabariHAeiniAGhafouriMEvaluation of class A pan coefficient models for estimation of reference crop evapotranspiration in cold-semi arid and warm arid climatesWater Resour Manage201024590992010.1007/s11269-009-9478-2 LanderasGOrtiz-BarredoALópezJJComparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain)Agric Water Manag20089555356510.1016/j.agwat.2007.12.011 DinpashohYStudy of reference crop evapotranspiration in I.R. of IranAgric Water Manage20068412312910.1016/j.agwat.2006.02.011 KumarMRaghuwanshiNSSinghRWallenderWWPruittWOForecasting evapotranspiration using artificial neural networkJ Irrg Drain Eng200212822423310.1061/(ASCE)0733-9437(2002)128:4(224) YangHGriffithsPRTateJDComparison of partial least squares regression and multi-layer neural networks for quantification of nonlinear systems and application to gas phase Fourier transform infrared spectraAnal Chim Acta200348912513610.1016/S0003-2670(03)00726-8 TabariHSabziparvarAAAhmadiMComparison of artificial neural network and multivariate linear regression methods for estimation of daily soil temperature in an arid regionMeteor Atmos Phys201111013514210.1007/s00703-010-0110-z LeeTSNajimMMMAminulMHEstimating evapotranspiration of irrigated rice at the West Coast of the Peninsular of MalaysiaJ Appl Irrig Sci200439103117 CurryBMorganPSilverMNeural networks and non-linear statistical methods: an application to the modeling of price-quality relationshipsComput Oper Res20022995196910.1016/S0305-0548(00)00096-41003.91021 RaziMAAthappillyKA comparative predictive analysis of neural networks (NNs), nonlinear regression and classification and regression tree (CART) modelsExp Syst Appl200529657410.1016/j.eswa.2005.01.006 XuPeng JZZhangSZLiRMNeural network model for reference crop evapotranspiration prediction based on weather forecast. Shuili XuebaoJ Hydraul Eng200637376379 Jensen, ME, Burman RD, Allen RG (1990) Evapotranspiration and irrigation water requirements. ASCE Manuals and Reports on Eng. Practice No. 70. American Society of Civil Engineers (ASCE), NY, USA KisiÖGeneralized regression neural networks for evapotranspiration modelingHydrolog Sci J2006511092110510.1623/hysj.51.6.1092 TrajkovicSTodorovicBStankovicMForecasting of reference evapotranspiration by artificial neural networksJ Irrig Drain Eng200312945445710.1061/(ASCE)0733-9437(2003)129:6(454) AlizadehAPrinciples of applied hydrology2005MashhadAstan Ghods Razavi Press(in Persian) ChauhanSShrivastavaRKPerformance evaluation of reference evapotranspiration estimation using climate based methods and artificial neural networksWater Resour Manage200923582583710.1007/s11269-008-9301-5 TabariHMarofiSZare AbyanehHSharifiMRComparison of artificial neural network and combined models in estimating spatial distribution of snow depth and snow water equivalent in Samsami basin of IranNeural Comput Appl20101962563510.1007/s00521-009-0320-9 TabariHMarofiSChanges of pan evaporation in the west of IranWater Resour Manage2011259711110.1007/s11269-010-9689-6 SabziparvarAAShetaeeHEstimation of global solar radiation in arid and semi-arid climates of East and West IranEnergy (Int J)20073264965510.1016/j.energy.2006.05.005 TabariHHosseinzadeh TalaeePAbghariHUtility of coactive neuro-fuzzy inference system for pan evaporation modeling in comparison with multilayer perceptronMeteor Atmos Phys201211614715410.1007/s00703-012-0184-x HuoZFengSKangSDaiXArtificial neural network models for reference evapotranspiration in an arid area of northwest ChinaJ Arid Environ201282819010.1016/j.jaridenv.2012.01.016 TabariHEvaluation of reference crop evapotranspiration equations in various climatesWater Resour Manage2010242311233710.1007/s11269-009-9553-8 TabariHMartinezCEzaniAHosseinzadeh TalaeePApplicability of support vector machines and adaptive neurofuzzy inference system for potato crop evapotranspiration forecastingIrrig Sci2012 NeuroDimension, Inc (2005) Developers of NeuroSolutions v5.01: Neural Network Simulator. The World Wide Web address is www.nd.com, Gainesville, FL TabariHHosseinzadeh TalaeePMultilayer perceptron for reference evapotranspiration estimation in a semiarid regionNeural Comput Appl2012 SabziparvarAATabariHRegional estimation of reference evapotranspiration in arid and semi-arid regionsJ Irrig Drain Eng20101361072473110.1061/(ASCE)IR.1943-4774.0000242 SungwonKHung SooKNeural networks and genetic algorithm approach for non-linear evaporation and evapotranspiration modelingJ Hydrol200835129931710.1016/j.jhydrol.2007.12.014 KuoS-FChenF-WLiaoP-YLiuC-WA comparative study on the estimation of evapotranspiration using backpropagation neural network: Penman-Monteith method versus pan evaporation methodPaddy Water Environ20119441342410.1007/s10333-011-0289-8 AllenRGPerieraLSRaesDSmithMCrop evapotranspiration: guideline for computing crop water requirement. FAO Irrigation and Drainage Paper No. 561998RomeFood and Agriculture Organization of the UN301 Rahimi KhoobAComparative study of Hargreaves’s and artificial neural network’s methodologies in estimating reference evapotranspiration in a semi-arid environmentIrrig Sci20082625325910.1007/s00271-007-0090-z HuYCFunctional-link nets with genetic-algorithm-based learning for robust nonlinear interval regression analysisNeurocomputing2009791808181610.1016/j.neucom.2008.07.002 JablounMSahliAEvaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data: application to TunisiaAgric Water Manag200895670771510.1016/j.agwat.2008.01.009 SabziparvarAAMirmasoudiSHTabariHNazemosadatMJMaryanajiZENSO teleconnection impacts on reference evapotranspiration variability in some warm climates of IranInt J Climatol20113117101723 S Trajkovic (1087_CR36) 2003; 129 S-F Kuo (1087_CR15) 2011; 9 Ö Kisi (1087_CR13) 2006; 51 AA Sabziparvar (1087_CR23) 2007; 32 M Jabloun (1087_CR11) 2008; 95 A Alizadeh (1087_CR1) 2005 S Chauhan (1087_CR4) 2009; 23 Z Huo (1087_CR10) 2012; 82 TS Lee (1087_CR17) 2004; 39 H Yang (1087_CR38) 2003; 489 G Landeras (1087_CR16) 2008; 95 1087_CR8 H Tabari (1087_CR28) 2012; 116 K Sungwon (1087_CR26) 2008; 351 AA Sabziparvar (1087_CR22) 2011; 31 H Tabari (1087_CR35) 2011; 110 A Rahimi Khoob (1087_CR20) 2008; 26 MA Razi (1087_CR21) 2005; 29 AA Sabziparvar (1087_CR25) 2010; 24 AA Sabziparvar (1087_CR24) 2010; 136 H Tabari (1087_CR31) 2011; 25 B Curry (1087_CR5) 2002; 29 R Beale (1087_CR3) 1991 H Tabari (1087_CR33) 2010; 28 H Tabari (1087_CR27) 2010; 24 H Tabari (1087_CR32) 2010; 19 M Kumar (1087_CR14) 2002; 128 Y Dinpashoh (1087_CR6) 2006; 84 H Tabari (1087_CR30) 2012; 444–445 1087_CR12 1087_CR18 Peng JZ Xu (1087_CR37) 2006; 37 H Tabari (1087_CR34) 2012 YC Hu (1087_CR9) 2009; 79 R Gao (1087_CR7) 2006; 22 H Tabari (1087_CR29) 2012 RG Allen (1087_CR2) 1998 1087_CR19 |
| References_xml | – reference: KumarMRaghuwanshiNSSinghRWallenderWWPruittWOForecasting evapotranspiration using artificial neural networkJ Irrg Drain Eng200212822423310.1061/(ASCE)0733-9437(2002)128:4(224) – reference: JablounMSahliAEvaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data: application to TunisiaAgric Water Manag200895670771510.1016/j.agwat.2008.01.009 – reference: SabziparvarAAMirmasoudiSHTabariHNazemosadatMJMaryanajiZENSO teleconnection impacts on reference evapotranspiration variability in some warm climates of IranInt J Climatol20113117101723 – reference: NeuroDimension, Inc (2005) Developers of NeuroSolutions v5.01: Neural Network Simulator. The World Wide Web address is www.nd.com, Gainesville, FL – reference: CurryBMorganPSilverMNeural networks and non-linear statistical methods: an application to the modeling of price-quality relationshipsComput Oper Res20022995196910.1016/S0305-0548(00)00096-41003.91021 – reference: TabariHHosseinzadeh TalaeePAbghariHUtility of coactive neuro-fuzzy inference system for pan evaporation modeling in comparison with multilayer perceptronMeteor Atmos Phys201211614715410.1007/s00703-012-0184-x – reference: AlizadehAPrinciples of applied hydrology2005MashhadAstan Ghods Razavi Press(in Persian) – reference: AllenRGPerieraLSRaesDSmithMCrop evapotranspiration: guideline for computing crop water requirement. FAO Irrigation and Drainage Paper No. 561998RomeFood and Agriculture Organization of the UN301 – reference: Lopez-Urrea R, Martı′n de Santa Olalla F, Fabeiro C, Moratalla A (2006) Testing evapotranspiration equations using lysimeter observations in a semi-arid climate. Agric Water Manag 85:15–26 – reference: DinpashohYStudy of reference crop evapotranspiration in I.R. of IranAgric Water Manage20068412312910.1016/j.agwat.2006.02.011 – reference: SabziparvarAAShetaeeHEstimation of global solar radiation in arid and semi-arid climates of East and West IranEnergy (Int J)20073264965510.1016/j.energy.2006.05.005 – reference: Goldberg DE (1989) Genetic algorithm in search, optimization and machine learning. Addison-Wesley, Reading – reference: YangHGriffithsPRTateJDComparison of partial least squares regression and multi-layer neural networks for quantification of nonlinear systems and application to gas phase Fourier transform infrared spectraAnal Chim Acta200348912513610.1016/S0003-2670(03)00726-8 – reference: Rahimi KhoobAComparative study of Hargreaves’s and artificial neural network’s methodologies in estimating reference evapotranspiration in a semi-arid environmentIrrig Sci20082625325910.1007/s00271-007-0090-z – reference: TrajkovicSTodorovicBStankovicMForecasting of reference evapotranspiration by artificial neural networksJ Irrig Drain Eng200312945445710.1061/(ASCE)0733-9437(2003)129:6(454) – reference: SabziparvarAATabariHAeiniAGhafouriMEvaluation of class A pan coefficient models for estimation of reference crop evapotranspiration in cold-semi arid and warm arid climatesWater Resour Manage201024590992010.1007/s11269-009-9478-2 – reference: XuPeng JZZhangSZLiRMNeural network model for reference crop evapotranspiration prediction based on weather forecast. Shuili XuebaoJ Hydraul Eng200637376379 – reference: ChauhanSShrivastavaRKPerformance evaluation of reference evapotranspiration estimation using climate based methods and artificial neural networksWater Resour Manage200923582583710.1007/s11269-008-9301-5 – reference: GaoRChaolunbagenCYuCZhuZChaiJEstimating reference crop evapotranspiration using artificial neural network based on random samplesNongye Gongcheng Xuebao Trans Chin Soc Agric Engin2006224245 – reference: HuoZFengSKangSDaiXArtificial neural network models for reference evapotranspiration in an arid area of northwest ChinaJ Arid Environ201282819010.1016/j.jaridenv.2012.01.016 – reference: TabariHMarofiSChanges of pan evaporation in the west of IranWater Resour Manage2011259711110.1007/s11269-010-9689-6 – reference: LeeTSNajimMMMAminulMHEstimating evapotranspiration of irrigated rice at the West Coast of the Peninsular of MalaysiaJ Appl Irrig Sci200439103117 – reference: SungwonKHung SooKNeural networks and genetic algorithm approach for non-linear evaporation and evapotranspiration modelingJ Hydrol200835129931710.1016/j.jhydrol.2007.12.014 – reference: SabziparvarAATabariHRegional estimation of reference evapotranspiration in arid and semi-arid regionsJ Irrig Drain Eng20101361072473110.1061/(ASCE)IR.1943-4774.0000242 – reference: TabariHKisiOEzaniAHosseinzadeh TalaeePSVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environmentJ Hydrol2012444–445788910.1016/j.jhydrol.2012.04.007 – reference: TabariHMartinezCEzaniAHosseinzadeh TalaeePApplicability of support vector machines and adaptive neurofuzzy inference system for potato crop evapotranspiration forecastingIrrig Sci2012 – reference: TabariHMarofiSZare AbyanehHSharifiMRComparison of artificial neural network and combined models in estimating spatial distribution of snow depth and snow water equivalent in Samsami basin of IranNeural Comput Appl20101962563510.1007/s00521-009-0320-9 – reference: TabariHHosseinzadeh TalaeePMultilayer perceptron for reference evapotranspiration estimation in a semiarid regionNeural Comput Appl2012 – reference: LanderasGOrtiz-BarredoALópezJJComparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain)Agric Water Manag20089555356510.1016/j.agwat.2007.12.011 – reference: BealeRJacksonTNeural computing: an introduction1991Techno HouseAdam Hilger – reference: Jensen, ME, Burman RD, Allen RG (1990) Evapotranspiration and irrigation water requirements. ASCE Manuals and Reports on Eng. Practice No. 70. American Society of Civil Engineers (ASCE), NY, USA – reference: TabariHEvaluation of reference crop evapotranspiration equations in various climatesWater Resour Manage2010242311233710.1007/s11269-009-9553-8 – reference: KisiÖGeneralized regression neural networks for evapotranspiration modelingHydrolog Sci J2006511092110510.1623/hysj.51.6.1092 – reference: HuYCFunctional-link nets with genetic-algorithm-based learning for robust nonlinear interval regression analysisNeurocomputing2009791808181610.1016/j.neucom.2008.07.002 – reference: TabariHSabziparvarAAAhmadiMComparison of artificial neural network and multivariate linear regression methods for estimation of daily soil temperature in an arid regionMeteor Atmos Phys201111013514210.1007/s00703-010-0110-z – reference: TabariHMarofiSSabziparvarAAEstimation of daily pan evaporation using artificial neural network and multivariate non-linear regressionIrrig Sci20102839940610.1007/s00271-009-0201-0 – reference: RaziMAAthappillyKA comparative predictive analysis of neural networks (NNs), nonlinear regression and classification and regression tree (CART) modelsExp Syst Appl200529657410.1016/j.eswa.2005.01.006 – reference: KuoS-FChenF-WLiaoP-YLiuC-WA comparative study on the estimation of evapotranspiration using backpropagation neural network: Penman-Monteith method versus pan evaporation methodPaddy Water Environ20119441342410.1007/s10333-011-0289-8 – volume: 51 start-page: 1092 year: 2006 ident: 1087_CR13 publication-title: Hydrolog Sci J doi: 10.1623/hysj.51.6.1092 – volume: 29 start-page: 65 year: 2005 ident: 1087_CR21 publication-title: Exp Syst Appl doi: 10.1016/j.eswa.2005.01.006 – volume: 37 start-page: 376 year: 2006 ident: 1087_CR37 publication-title: J Hydraul Eng – volume: 24 start-page: 2311 year: 2010 ident: 1087_CR27 publication-title: Water Resour Manage doi: 10.1007/s11269-009-9553-8 – volume: 25 start-page: 97 year: 2011 ident: 1087_CR31 publication-title: Water Resour Manage doi: 10.1007/s11269-010-9689-6 – volume: 82 start-page: 81 year: 2012 ident: 1087_CR10 publication-title: J Arid Environ doi: 10.1016/j.jaridenv.2012.01.016 – volume: 489 start-page: 125 year: 2003 ident: 1087_CR38 publication-title: Anal Chim Acta doi: 10.1016/S0003-2670(03)00726-8 – volume: 79 start-page: 1808 year: 2009 ident: 1087_CR9 publication-title: Neurocomputing – year: 2012 ident: 1087_CR34 publication-title: Irrig Sci – volume: 24 start-page: 909 issue: 5 year: 2010 ident: 1087_CR25 publication-title: Water Resour Manage doi: 10.1007/s11269-009-9478-2 – volume: 22 start-page: 42 year: 2006 ident: 1087_CR7 publication-title: Nongye Gongcheng Xuebao Trans Chin Soc Agric Engin – volume: 110 start-page: 135 year: 2011 ident: 1087_CR35 publication-title: Meteor Atmos Phys doi: 10.1007/s00703-010-0110-z – volume-title: Neural computing: an introduction year: 1991 ident: 1087_CR3 – volume: 19 start-page: 625 year: 2010 ident: 1087_CR32 publication-title: Neural Comput Appl doi: 10.1007/s00521-009-0320-9 – volume: 26 start-page: 253 year: 2008 ident: 1087_CR20 publication-title: Irrig Sci doi: 10.1007/s00271-007-0090-z – volume: 95 start-page: 707 issue: 6 year: 2008 ident: 1087_CR11 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2008.01.009 – volume: 31 start-page: 1710 year: 2011 ident: 1087_CR22 publication-title: Int J Climatol doi: 10.1002/joc.2187 – start-page: 301 volume-title: Crop evapotranspiration: guideline for computing crop water requirement. FAO Irrigation and Drainage Paper No. 56 year: 1998 ident: 1087_CR2 – year: 2012 ident: 1087_CR29 publication-title: Neural Comput Appl – volume: 23 start-page: 825 issue: 5 year: 2009 ident: 1087_CR4 publication-title: Water Resour Manage doi: 10.1007/s11269-008-9301-5 – volume: 136 start-page: 724 issue: 10 year: 2010 ident: 1087_CR24 publication-title: J Irrig Drain Eng doi: 10.1061/(ASCE)IR.1943-4774.0000242 – volume: 95 start-page: 553 year: 2008 ident: 1087_CR16 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2007.12.011 – volume-title: Principles of applied hydrology year: 2005 ident: 1087_CR1 – volume: 39 start-page: 103 year: 2004 ident: 1087_CR17 publication-title: J Appl Irrig Sci – volume: 32 start-page: 649 year: 2007 ident: 1087_CR23 publication-title: Energy (Int J) doi: 10.1016/j.energy.2006.05.005 – volume: 351 start-page: 299 year: 2008 ident: 1087_CR26 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2007.12.014 – volume: 444–445 start-page: 78 year: 2012 ident: 1087_CR30 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2012.04.007 – volume: 129 start-page: 454 year: 2003 ident: 1087_CR36 publication-title: J Irrig Drain Eng doi: 10.1061/(ASCE)0733-9437(2003)129:6(454) – ident: 1087_CR19 – ident: 1087_CR12 – volume: 116 start-page: 147 year: 2012 ident: 1087_CR28 publication-title: Meteor Atmos Phys doi: 10.1007/s00703-012-0184-x – volume: 84 start-page: 123 year: 2006 ident: 1087_CR6 publication-title: Agric Water Manage doi: 10.1016/j.agwat.2006.02.011 – volume: 29 start-page: 951 year: 2002 ident: 1087_CR5 publication-title: Comput Oper Res doi: 10.1016/S0305-0548(00)00096-4 – volume: 128 start-page: 224 year: 2002 ident: 1087_CR14 publication-title: J Irrg Drain Eng doi: 10.1061/(ASCE)0733-9437(2002)128:4(224) – ident: 1087_CR8 – volume: 28 start-page: 399 year: 2010 ident: 1087_CR33 publication-title: Irrig Sci doi: 10.1007/s00271-009-0201-0 – ident: 1087_CR18 doi: 10.1016/j.agwat.2006.03.014 – volume: 9 start-page: 413 issue: 4 year: 2011 ident: 1087_CR15 publication-title: Paddy Water Environ doi: 10.1007/s10333-011-0289-8 |
| SSID | ssj0004685 |
| Score | 2.1951177 |
| Snippet | This study compares the daily potato crop evapotranspiration (ET
C
) estimated by artificial neural network (ANN), neural network–genetic algorithm (NNGA) and... |
| SourceID | pascalfrancis crossref springer |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 1387 |
| SubjectTerms | Applied sciences Artificial Intelligence Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Computer science; control theory; systems Connectionism. Neural networks Data Mining and Knowledge Discovery Exact sciences and technology Image Processing and Computer Vision Original Article Probability and Statistics in Computer Science |
| Title | Artificial neural network–genetic algorithm for estimation of crop evapotranspiration in a semi-arid region of Iran |
| URI | https://link.springer.com/article/10.1007/s00521-012-1087-y |
| Volume | 23 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ABDBF dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1433-3058 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ADMLS dateStart: 19930301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA66vQjiXZyXkQeflMKWpmn6OGVzKg4RB_OppGmqhd1YO2Fv_gf_ob_Ek_SCwwv4lJeTUHIuOafJ-T6ETpuSUhVIZtnSYxaVMrA8KgKLCI95katCz5DB3PVYt09vBs4g7-NOitfuxZWkidRls5v-g6lLXwKhAzxjsYqqjkbzAiPuk9aXZkjDwwlli37SQ-3iKvOnJZYOo_WpSGBfoozQ4tvNqDlwOltoI88UcStT7TZaUeMdtFmwMODcKXfRXEtkOBBYo1Oawbzt_nh7B_PQXYpYDJ8nszh9GWFIUrFG1shaFvEkwprEC6tXMZ2kBuk8zowCx2MscKJGsQX1dIg1hUM24RrE9lC_03687Fo5mYIlwW1Ti4ch5GY250JoynMaUkoi5SoaRk2uJES5kEKtGDqcQUagSINJqJ6Ew-yANYjk9j6qjCdjdYAwlYx7EjIVBcUbF7ZwbFc6EBkCl0csIDXUKHbVlznSuCa8GPolRrJRhA-K0AClrr-oobNyyjSD2fhLuL6kqnIGcSGZ9Tz4gPNCd37uksnvyx3-S_oIrRHNiGHe8x2jSjqbqxPIS9Kgjqqtq6fbNowX7d79Q93Y5SdVjOAA |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BOYCEKKsoqw-cQEHFcRznWCGgrKciwSlyHAci6KI2RSon_oE_5EsYO0nFLnHKZWx5GY9n4pn3AHYOFGM6UtxxVcAdplTkBExGDpUBDxJfx4Elg7m84s1rdnbj3RR13IMy2718krSWelzsZv5gmtCXounAkzGahCmG8QmtwFTj5Pb86EM5pGXixMDFJPUwt3zM_KmTT9fRbE8OcGWSnNLi29uovXKOq9AqB5tnmjzsD7NoXz1_wXH852zmYa5wQUkj15kFmNCdRaiW9A6kOO1LMDQSOcAEMbCX9mOTxt9eXlHvTPkjkY933X6a3bcJer_EQHbktZCkmxDDDkb0k-x1MwuhnubaRtIOkWSg26mDgXpMDDdE3uAUxZbh-vioddh0CpYGR6E9yBwRx-j0uUJIabjUWcwYTbSvWZwcCK3QfMYMg9DYExxdDU3rXGFYJj3uRrxOlXBXoNLpdvQqEKa4CBS6QBqjQiFd6bm-8tDkRL5IeERrUC83K1QFhLlh0ngMx-DLdllDXFaDfOqHoxrsjpv0cvyOv4S3PmnAuAX10UsOAhzAXrmbYXHWB793t_Yv6W2YbrYuL8KL06vzdZihhnbDJg1uQCXrD_UmOj9ZtFUo-zt1wvy5 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aQQTxLdZnDp6UpW02m80ei1paH8WDhd6WbJLVQrst7Vbozf_gP_SXOMnuFosP8LSXSQiZmWRmM_N9CJ3XJKU6ksxxZcAcKmXkBFREDhEBC2Jfq8CSwTy0WbNDb7teN-c5nRTV7sWTZNbTYFCakrQyUnFl3vhm_maaNJjAMQJeMltGK9TgJIBBd0j9S2Ok5eSEFMaU91C3eNb8aYqFi2l9JCawR3FGbvHtldRePo0ttJFHjbieqXkbLelkB20WjAw4d9BdNDUSGSYENkiV9mPrvD_e3sFUTMciFv3n4biXvgwwBKzYoGxk7Yt4GGND6IX1qxgNU4t63ssMBPcSLPBED3oO5NYKGzqHbEALxPZQp3HzdNV0cmIFR4ILpw5XCuI0l3MhDP05VZSSWPuaqrjGtYQTT1HIG5XHGUQHmlSZhExKeMyNWJVI7u6jUjJM9AHCVDIeSIhaNCRyXLjCc33pwSkR-TxmESmjarGrocxRxw35RT-c4yVbRYSgCANW6oezMrqYDxllkBt_CZ8uqGo-gvgQ2AYBLOCy0F2Yu-fk9-kO_yV9hlYfrxvhfat9d4TWiCHKsGV-x6iUjqf6BMKVNDq1JvkJwrPj-g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+neural+network%E2%80%93genetic+algorithm+for+estimation+of+crop+evapotranspiration+in+a+semi-arid+region+of+Iran&rft.jtitle=Neural+computing+%26+applications&rft.au=Aghajanloo%2C+Mohammad-Bagher&rft.au=Sabziparvar%2C+Ali-Akbar&rft.au=Hosseinzadeh+Talaee%2C+P.&rft.date=2013-10-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=23&rft.issue=5&rft.spage=1387&rft.epage=1393&rft_id=info:doi/10.1007%2Fs00521-012-1087-y&rft.externalDocID=10_1007_s00521_012_1087_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |