Model-based design of dynamic firing patterns for supervisory control of diesel engine vibration

Diesel engine cylinder deactivation (CDA) has been demonstrated to provide significant efficiency and aftertreatment thermal management benefits, enabling fuel-efficient emissions reduction from modern diesel engines at low load engine operation. Dynamic cylinder activation (DCA), a variant of CDA w...

Full description

Saved in:
Bibliographic Details
Published inControl engineering practice Vol. 107; p. 104681
Main Authors Gosala, Dheeraj B., Raghukumar, Harikrishnan, Allen, Cody M., Shaver, Gregory M., McCarthy, James E., Lutz, Timothy P.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2021
Subjects
Online AccessGet full text
ISSN0967-0661
1873-6939
DOI10.1016/j.conengprac.2020.104681

Cover

Abstract Diesel engine cylinder deactivation (CDA) has been demonstrated to provide significant efficiency and aftertreatment thermal management benefits, enabling fuel-efficient emissions reduction from modern diesel engines at low load engine operation. Dynamic cylinder activation (DCA), a variant of CDA where the set of deactivated cylinders varies on a cycle-by-cycle basis, has been demonstrated to enable greater control over driveline torsional vibration while maintaining the fuel efficiency and thermal management benefits shown by fixed CDA via appropriate design of firing patterns. A model-based algorithmic approach to designing firing patterns during DCA – to control driveline torsional vibration in a user-defined frequency range, given firing density, engine speed, and maximum length of firing pattern – is described in this article. The described algorithm is generalizable to any engine configuration including different piston–cylinder layouts and number of cylinders. The algorithm is extended to design firing patterns for constrained DCA operation when CDA hardware is installed on a subset of cylinders of the engine. The resulting optimal firing patterns using the algorithm, for various combinations of inputs, are presented through an experimentally-validated simulation framework and discussed. It is demonstrated that the weighted phase-angle approach can accurately predict the frequencies and relative amplitudes of the vibration content, and, if theoretically possible, the proposed algorithm determines firing patterns that meet the specified requirements. The presented algorithm can be easily extended in future work for simultaneous selection of firing density and firing pattern during online, real-time implementation during both steady-state and transient operating conditions. •Model-based algorithm is presented for designing firing sequences during dynamic cylinder activation (DCA).•Algorithm enables control of torsional vibration in an undesirable frequency range.•Phase-angle approach is used to identify and optimize vibration at a given frequency.•Results are demonstrated with several combinations of frequencies and firing densities.•Vibration control is possible even when only a subset of cylinders is capable of CDA.
AbstractList Diesel engine cylinder deactivation (CDA) has been demonstrated to provide significant efficiency and aftertreatment thermal management benefits, enabling fuel-efficient emissions reduction from modern diesel engines at low load engine operation. Dynamic cylinder activation (DCA), a variant of CDA where the set of deactivated cylinders varies on a cycle-by-cycle basis, has been demonstrated to enable greater control over driveline torsional vibration while maintaining the fuel efficiency and thermal management benefits shown by fixed CDA via appropriate design of firing patterns. A model-based algorithmic approach to designing firing patterns during DCA – to control driveline torsional vibration in a user-defined frequency range, given firing density, engine speed, and maximum length of firing pattern – is described in this article. The described algorithm is generalizable to any engine configuration including different piston–cylinder layouts and number of cylinders. The algorithm is extended to design firing patterns for constrained DCA operation when CDA hardware is installed on a subset of cylinders of the engine. The resulting optimal firing patterns using the algorithm, for various combinations of inputs, are presented through an experimentally-validated simulation framework and discussed. It is demonstrated that the weighted phase-angle approach can accurately predict the frequencies and relative amplitudes of the vibration content, and, if theoretically possible, the proposed algorithm determines firing patterns that meet the specified requirements. The presented algorithm can be easily extended in future work for simultaneous selection of firing density and firing pattern during online, real-time implementation during both steady-state and transient operating conditions. •Model-based algorithm is presented for designing firing sequences during dynamic cylinder activation (DCA).•Algorithm enables control of torsional vibration in an undesirable frequency range.•Phase-angle approach is used to identify and optimize vibration at a given frequency.•Results are demonstrated with several combinations of frequencies and firing densities.•Vibration control is possible even when only a subset of cylinders is capable of CDA.
ArticleNumber 104681
Author Raghukumar, Harikrishnan
Gosala, Dheeraj B.
Shaver, Gregory M.
Allen, Cody M.
Lutz, Timothy P.
McCarthy, James E.
Author_xml – sequence: 1
  givenname: Dheeraj B.
  orcidid: 0000-0002-4098-1603
  surname: Gosala
  fullname: Gosala, Dheeraj B.
  organization: Purdue University, West Lafayette, IN, USA
– sequence: 2
  givenname: Harikrishnan
  surname: Raghukumar
  fullname: Raghukumar, Harikrishnan
  organization: Indian Institute of Technology Madras, Chennai, India
– sequence: 3
  givenname: Cody M.
  orcidid: 0000-0001-8429-172X
  surname: Allen
  fullname: Allen, Cody M.
  organization: Purdue University, West Lafayette, IN, USA
– sequence: 4
  givenname: Gregory M.
  surname: Shaver
  fullname: Shaver, Gregory M.
  email: gshaver@purdue.edu
  organization: Purdue University, West Lafayette, IN, USA
– sequence: 5
  givenname: James E.
  surname: McCarthy
  fullname: McCarthy, James E.
  organization: Eaton Vehicle Group, Galesburg, MI, USA
– sequence: 6
  givenname: Timothy P.
  orcidid: 0000-0003-1420-8497
  surname: Lutz
  fullname: Lutz, Timothy P.
  organization: Cummins Technical Center, Columbus, IN, USA
BookMark eNqNkNtKAzEQhoNUsK2-Q15ga2a3myY3ghZPUPFGr-NsDiVlmyzJWujbu20FwRu9Gvjh_2bmm5BRiMESQoHNgAG_3sz0EIR1l1DPSlYe4jkXcEbGIBZVwWUlR2TMJF8UjHO4IJOcN2yoSglj8vESjW2LBrM11Njs14FGR80-4NZr6nzyYU077HubQqYuJpo_O5t2Pse0p8PuPsX2WPE225YOp_hg6c43CXsfwyU5d9hme_U9p-T94f5t-VSsXh-fl7erQlcg-qJGhqUQNZs70AAcNK9LATXXJTqG0iA3jVzUUjSoWQMgpJijYLJxumII1ZTcnLg6xZyTdUr7_nhBn9C3Cpg6-FIb9eNLHXypk68BIH4BuuS3mPb_qd6dqnZ4cOdtUll7G7Q1PlndKxP935Avts-PsQ
CitedBy_id crossref_primary_10_1038_s41598_021_96259_x
crossref_primary_10_1016_j_rser_2021_111196
crossref_primary_10_1177_14680874221098039
crossref_primary_10_3390_s24051551
crossref_primary_10_1016_j_conengprac_2023_105526
crossref_primary_10_31590_ejosat_1179755
crossref_primary_10_1016_j_energy_2024_131946
crossref_primary_10_4271_02_18_01_0001
Cites_doi 10.1109/TCST.2010.2052925
10.1533/9781782421849.3.95
10.4271/2018-01-0880
10.1177/1468087418779937
10.1177/1468087417695897
10.3389/fmech.2019.00052
10.1007/978-3-658-17109-4_47
10.1177/1468087417694000
10.4271/2014-01-1675
10.1016/j.jsv.2018.09.051
10.4271/2018-01-0384
10.1016/j.conengprac.2007.04.001
10.4271/2011-01-0937
10.1016/j.conengprac.2003.09.008
10.1177/1468087418783118
10.1177/1468087419857597
10.1109/CACSD.2004.1393890
10.1016/j.isatra.2019.11.005
10.4271/2013-01-0359
10.1177/1468087415597413
10.1177/1468087419867247
10.3389/fmech.2017.00008
10.1007/978-3-658-16988-6_78
10.1016/j.conengprac.2012.06.010
10.1016/j.measurement.2019.05.059
10.1049/iet-cta:20070479
10.1016/j.ymssp.2017.01.017
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.conengprac.2020.104681
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-6939
ExternalDocumentID 10_1016_j_conengprac_2020_104681
S0967066120302513
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
UNMZH
WUQ
XFK
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c318t-5a0a288504f1c1161c6528156c2af0a9da6db97598bac0b118984a809bfc30a13
IEDL.DBID .~1
ISSN 0967-0661
IngestDate Tue Jul 01 00:39:05 EDT 2025
Thu Apr 24 22:55:35 EDT 2025
Fri Feb 23 02:47:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Firing frequency
Dynamic cylinder activation (DCA)
Phase angle diagrams
Cylinder deactivation (CDA)
Vibration control
Torsional vibrations
Firing pattern design
Noise vibration and harshness (NVH)
Drivetrain resonance
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c318t-5a0a288504f1c1161c6528156c2af0a9da6db97598bac0b118984a809bfc30a13
ORCID 0000-0003-1420-8497
0000-0002-4098-1603
0000-0001-8429-172X
ParticipantIDs crossref_citationtrail_10_1016_j_conengprac_2020_104681
crossref_primary_10_1016_j_conengprac_2020_104681
elsevier_sciencedirect_doi_10_1016_j_conengprac_2020_104681
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2021
2021-02-00
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: February 2021
PublicationDecade 2020
PublicationTitle Control engineering practice
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jin, Chen, Ji, Zhao, Du, Ma (b17) 2019; 145
Östman, Toivonen (b30) 2011; 19
Joshi, Gosala, Allen, Vos, Van Voorhis, Taylor (b19) 2017; 3
Gosala, Dheeraj B., Allen, Cody M., Shaver, Gregory M., Farrell, Lisa, Koeberlein, Edward, & Franke, Brian, et al. (2019). Dynamic cylinder activation in diesel engines. International Journal of Engine Research, Article 1468087418779937.
Bharath, Yang, Reitz, Rutland (b4) 2015
Ding, Roberts, Fain, Ramesh, Shaver, McCarthy (b7) 2016; 17
Orivuori, Zazas, Daley (b27) 2012; 20
Ramesh, Gosala, Allen, Joshi, McCarthy Jr., Farrell (b31) 2018
(pp. 1–11), URL
Bian, Gao, Hu, Fan (b5) 2019; 439
Zammit, McGhee, Shayler, Pegg (b43) 2013
Archer, McCarthy (b3) 2018
Serrano, Routledge, Lo, Shost, Srinivasan, Ghosh (b35) 2014; 7
Taraza, Henein, Bryzik (b38) 1998
Serrano, Louis J. (2013). Look-up table based skip fire engine control – US Patent US20150260117A1. Tula Technology, Inc.
Guo, Li, Yu, Han, Yuan, Wang (b15) 2017; 94
Wilcutts, Switkes, Shost, Tripathi (b42) 2013; 6
Löfberg, J. (2004). YALMIP : A toolbox for modeling and optimization in MATLAB. In
Östman, Toivonen (b28) 2008; 16
Verner, Douglas R. (2016). System and method for controlling a firing sequence of an engine to reduce vibration when cylinders of the engine are deactivated – US Patent US9249748B2. Gm Global Technology Operations LLC.
Ramesh, Odstrcil, Gosala, Shaver, Nayyar, Koeberlein (b32) 2019; 20
Kambrath, Alexander, Wang, Yoon, Liu, Wilson (b20) 2017
(2nd ed.). McGraw-Hill.
Vos, Shaver, Ramesh, McCarthy (b40) 2019; 5
Allen, Cody M., Gosala, Dheeraj B., Joshi, Mrunal C., Shaver, Gregory M., Farrell, Lisa, & McCarthy, James, Jr. (2019). Experimental assessment of diesel engine cylinder deactivation performance during low-load transient operations. International Journal of Engine Research, Article 1468087419857597.
Kitabatake, Minato, Inukai, Shimazaki (b21) 2012; 4
Gosala, Dheeraj B., Shaver, Gregory M., McCarthy, James, Jr., & Lutz, Tim (2019). Fuel-efficient thermal management in diesel engines via valvetrain-enabled cylinder ventilation strategies. International Journal of Engine Research, Article 1468087419867247.
Ernst, Kleffel, Koch (b10) 2017
Eisazadeh-Far, Younkins (b9) 2016
Ervin, James Douglas, Boyer, Brad Alan, Mcconville, Gregory Patrick, & Ku, Kim Hwe (2018). Method for controlling vibrations during transitions in a variable displacement engine – US Patent US9874166B2. Ford Global Technologies, LLC.
(b8) 2018
Naseri, Talebi, Ohadi, Fakhari (b25) 2020; 100
Joshi, Gosala, Allen, Srinivasan, Ramesh, VanVoorhis (b18) 2018
Taipei, Taiwan.
McCarthy (b24) 2017
Ramesh, Aswin K., Shaver, Gregory M., Allen, Cody M., Nayyar, Soumya, Dheeraj, B., Parra, Dina Caicedo, & Koeberlein, Edward, et al. (2018b).
.
Lu, Ding, Ramesh, Shaver, Holloway, McCarthy (b23) 2015; 1
Serrano, Louis J., Yuan, Xin, Parsels, John W., Pirjaberi, Mohammad R., Wilcutts, Mark A., & Nagashima, Masaki (2016). Noise, vibration and harshness reduction in a skip fire engine control system – US Patent US9512794B2. Tula Technology, Inc.
Bohn, Cortabarria, Härtel, Kowalczyk (b6) 2004; 12
(b1) 2018
Shost, Mark A., Serrano, Louis J., Carlson, Steven E., Srinivasan, Vijay, Defenderfer, Eric J., & Wagh, Nitish J., et al. (2015). Method and apparatus for determining optimum skip fire firing profile – US Patent US9200587B2. Tula Technology, Inc.
Wagh, Nitish J., & Beikmann, Randall S. (2017). Firing pattern management for improved transient vibration in variable cylinder deactivation mode – US Patent US9556811B2. GM Global Technology Operations LLC.
(b16) 2018
Norton, Robert L. (2000).
Östman, Toivonen (b29) 2008; 2
Gosala, Allen, Ramesh, Shaver, McCarthy, Stretch (b12) 2017; 18
(10.1016/j.conengprac.2020.104681_b16) 2018
McCarthy (10.1016/j.conengprac.2020.104681_b24) 2017
Vos (10.1016/j.conengprac.2020.104681_b40) 2019; 5
Orivuori (10.1016/j.conengprac.2020.104681_b27) 2012; 20
Ding (10.1016/j.conengprac.2020.104681_b7) 2016; 17
Lu (10.1016/j.conengprac.2020.104681_b23) 2015; 1
(10.1016/j.conengprac.2020.104681_b1) 2018
Ernst (10.1016/j.conengprac.2020.104681_b10) 2017
Ramesh (10.1016/j.conengprac.2020.104681_b31) 2018
10.1016/j.conengprac.2020.104681_b22
(10.1016/j.conengprac.2020.104681_b8) 2018
Wilcutts (10.1016/j.conengprac.2020.104681_b42) 2013; 6
Archer (10.1016/j.conengprac.2020.104681_b3) 2018
10.1016/j.conengprac.2020.104681_b26
Bian (10.1016/j.conengprac.2020.104681_b5) 2019; 439
Kambrath (10.1016/j.conengprac.2020.104681_b20) 2017
Guo (10.1016/j.conengprac.2020.104681_b15) 2017; 94
Ramesh (10.1016/j.conengprac.2020.104681_b32) 2019; 20
Gosala (10.1016/j.conengprac.2020.104681_b12) 2017; 18
Östman (10.1016/j.conengprac.2020.104681_b28) 2008; 16
Bohn (10.1016/j.conengprac.2020.104681_b6) 2004; 12
Joshi (10.1016/j.conengprac.2020.104681_b19) 2017; 3
Östman (10.1016/j.conengprac.2020.104681_b29) 2008; 2
Jin (10.1016/j.conengprac.2020.104681_b17) 2019; 145
Bharath (10.1016/j.conengprac.2020.104681_b4) 2015
Östman (10.1016/j.conengprac.2020.104681_b30) 2011; 19
Zammit (10.1016/j.conengprac.2020.104681_b43) 2013
10.1016/j.conengprac.2020.104681_b41
10.1016/j.conengprac.2020.104681_b11
10.1016/j.conengprac.2020.104681_b33
10.1016/j.conengprac.2020.104681_b13
Joshi (10.1016/j.conengprac.2020.104681_b18) 2018
10.1016/j.conengprac.2020.104681_b34
Taraza (10.1016/j.conengprac.2020.104681_b38) 1998
10.1016/j.conengprac.2020.104681_b2
10.1016/j.conengprac.2020.104681_b37
10.1016/j.conengprac.2020.104681_b14
Serrano (10.1016/j.conengprac.2020.104681_b35) 2014; 7
10.1016/j.conengprac.2020.104681_b36
10.1016/j.conengprac.2020.104681_b39
Eisazadeh-Far (10.1016/j.conengprac.2020.104681_b9) 2016
Kitabatake (10.1016/j.conengprac.2020.104681_b21) 2012; 4
Naseri (10.1016/j.conengprac.2020.104681_b25) 2020; 100
References_xml – start-page: 765
  year: 2017
  end-page: 778
  ident: b10
  article-title: The latest generation of Daimler’s 10.7 l heavy-duty engine
  publication-title: Internationaler motorenkongress 2017
– volume: 5
  start-page: 52
  year: 2019
  ident: b40
  article-title: Impact of cylinder deactivation and cylinder cutout via flexible valve actuation on fuel efficient aftertreatment thermal management at curb idle
  publication-title: Frontiers in Mechanical Engineering
– volume: 12
  start-page: 1029
  year: 2004
  end-page: 1039
  ident: b6
  article-title: Active control of engine-induced vibrations in automotive vehicles using disturbance observer gain scheduling
  publication-title: Control Engineering Practice
– volume: 145
  start-page: 503
  year: 2019
  end-page: 510
  ident: b17
  article-title: Intelligent vibration detection and control system of agricultural machinery engine
  publication-title: Measurement
– reference: (pp. 1–11), URL
– reference: Wagh, Nitish J., & Beikmann, Randall S. (2017). Firing pattern management for improved transient vibration in variable cylinder deactivation mode – US Patent US9556811B2. GM Global Technology Operations LLC.
– year: 2018
  ident: b1
  article-title: About – Tula Technology
– volume: 3
  start-page: 8
  year: 2017
  ident: b19
  article-title: Reducing diesel engine drive cycle fuel consumption through use of cylinder deactivation to maintain aftertreatment component temperature during idle and low load operating conditions
  publication-title: Frontiers in Mechanical Engineering
– volume: 4
  start-page: 1225
  year: 2012
  end-page: 1234
  ident: b21
  article-title: Simultaneous improvement of fuel consumption and exhaust emissions on a multi-cylinder camless engine
  publication-title: SAE Technical Paper
– volume: 1
  start-page: 1
  year: 2015
  end-page: 8
  ident: b23
  article-title: Impact of cylinder deactivation on active diesel particulate filter regeneration at highway cruise conditions
  publication-title: Frontiers in Mechanical Engineering
– year: 2018
  ident: b3
  article-title: Quantification of diesel engine vibration using cylinder deactivation for exhaust temperature management and recipe for implementation in commercial vehicles
  publication-title: WCX world congress experience
– volume: 439
  start-page: 413
  year: 2019
  end-page: 433
  ident: b5
  article-title: A semi-active control method for decreasing longitudinal torsional vibration of vehicle engine system: Theory and experiments
  publication-title: Journal of Sound and Vibration
– start-page: 370
  year: 2017
  end-page: 375
  ident: b20
  article-title: Dynamic analysis of diesel generator set under cylinder deactivation
  publication-title: 2017 IEEE transportation electrification conference and expo (ITEC)
– reference: Serrano, Louis J., Yuan, Xin, Parsels, John W., Pirjaberi, Mohammad R., Wilcutts, Mark A., & Nagashima, Masaki (2016). Noise, vibration and harshness reduction in a skip fire engine control system – US Patent US9512794B2. Tula Technology, Inc.
– volume: 20
  start-page: 1206
  year: 2012
  end-page: 1219
  ident: b27
  article-title: Active control of frequency varying disturbances in a diesel engine
  publication-title: Control Engineering Practice
– start-page: 95
  year: 2013
  end-page: 108
  ident: b43
  article-title: Benefits of cylinder deactivation on a diesel engine and restrictions due to low boost
  publication-title: Internal combustion engines: Performance, fuel economy and emissions
– volume: 6
  start-page: 278
  year: 2013
  end-page: 288
  ident: b42
  article-title: Design and benefits of dynamic skip fire strategies for cylinder deactivated engines
  publication-title: The SAE International Journal of Engines
– reference: Serrano, Louis J. (2013). Look-up table based skip fire engine control – US Patent US20150260117A1. Tula Technology, Inc.
– reference: Allen, Cody M., Gosala, Dheeraj B., Joshi, Mrunal C., Shaver, Gregory M., Farrell, Lisa, & McCarthy, James, Jr. (2019). Experimental assessment of diesel engine cylinder deactivation performance during low-load transient operations. International Journal of Engine Research, Article 1468087419857597.
– volume: 17
  start-page: 619
  year: 2016
  end-page: 630
  ident: b7
  article-title: Fuel efficient exhaust thermal management for compression ignition engines during idle via cylinder deactivation and flexible valve actuation
  publication-title: International Journal of Engine Research
– reference: Löfberg, J. (2004). YALMIP : A toolbox for modeling and optimization in MATLAB. In
– volume: 100
  start-page: 13
  year: 2020
  end-page: 27
  ident: b25
  article-title: A robust active control scheme for automotive engine vibration based on disturbance observer
  publication-title: ISA Transactions
– reference: Norton, Robert L. (2000).
– start-page: 1013
  year: 2017
  end-page: 1039
  ident: b24
  article-title: Cylinder deactivation improves diesel aftertreatment and fuel economy for commercial vehicles
  publication-title: 17. Internationales Stuttgarter symposium
– volume: 94
  start-page: 1
  year: 2017
  end-page: 13
  ident: b15
  article-title: Diesel engine torsional vibration control coupling with speed control system
  publication-title: Mechanical Systems and Signal Processing
– year: 2018
  ident: b16
  article-title: How Dynamic Skip Fire (DSF) works — Tula Technology
– year: 2018
  ident: b31
  article-title: Cylinder deactivation for increased engine efficiency and aftertreatment thermal management in diesel engines
  publication-title: WCX world congress experience
– reference: Ramesh, Aswin K., Shaver, Gregory M., Allen, Cody M., Nayyar, Soumya, Dheeraj, B., Parra, Dina Caicedo, & Koeberlein, Edward, et al. (2018b).
– year: 2016
  ident: b9
  article-title: Fuel economy gains through dynamic-skip-fire in spark ignition engines
– volume: 2
  start-page: 1024
  year: 2008
  end-page: 1032
  ident: b29
  article-title: Model-based torsional vibration control of internal combustion engines
  publication-title: IET Control Theory Applications
– year: 2018
  ident: b8
  article-title: Dynamic skip fire
– volume: 18
  start-page: 991
  year: 2017
  end-page: 1004
  ident: b12
  article-title: Cylinder deactivation during dynamic diesel engine operation
  publication-title: International Journal of Engine Research
– volume: 19
  start-page: 782
  year: 2011
  end-page: 791
  ident: b30
  article-title: Adaptive cylinder balancing of internal combustion engines
  publication-title: IEEE Transactions on Control Systems Technology
– reference: .
– reference: Shost, Mark A., Serrano, Louis J., Carlson, Steven E., Srinivasan, Vijay, Defenderfer, Eric J., & Wagh, Nitish J., et al. (2015). Method and apparatus for determining optimum skip fire firing profile – US Patent US9200587B2. Tula Technology, Inc.
– year: 2015
  ident: b4
  article-title: Comparison of variable valve actuation, cylinder deactivation and injection strategies for low-load RCCI operation of a light duty engine
– reference: (2nd ed.). McGraw-Hill.
– reference: Ervin, James Douglas, Boyer, Brad Alan, Mcconville, Gregory Patrick, & Ku, Kim Hwe (2018). Method for controlling vibrations during transitions in a variable displacement engine – US Patent US9874166B2. Ford Global Technologies, LLC.
– volume: 16
  start-page: 78
  year: 2008
  end-page: 88
  ident: b28
  article-title: Active torsional vibration control of reciprocating engines
  publication-title: Control Engineering Practice
– volume: 7
  start-page: 1489
  year: 2014
  end-page: 1501
  ident: b35
  article-title: Methods of evaluating and mitigating NVH when operating an engine in dynamic skip fire
  publication-title: The SAE International Journal of Engines
– reference: . Taipei, Taiwan.
– year: 2018
  ident: b18
  article-title: Diesel engine cylinder deactivation for improved system performance over transient real-world drive cycles
  publication-title: WCX world congress experience
– volume: 20
  start-page: 862
  year: 2019
  end-page: 876
  ident: b32
  article-title: Reverse breathing in diesel engines for aftertreatment thermal management
  publication-title: International Journal of Engine Research
– reference: Verner, Douglas R. (2016). System and method for controlling a firing sequence of an engine to reduce vibration when cylinders of the engine are deactivated – US Patent US9249748B2. Gm Global Technology Operations LLC.
– year: 1998
  ident: b38
  publication-title: Diesel Engine Diagnosis Based on Analysis of the Crankshaft’s Speed Variation
– reference: Gosala, Dheeraj B., Shaver, Gregory M., McCarthy, James, Jr., & Lutz, Tim (2019). Fuel-efficient thermal management in diesel engines via valvetrain-enabled cylinder ventilation strategies. International Journal of Engine Research, Article 1468087419867247.
– reference: Gosala, Dheeraj B., Allen, Cody M., Shaver, Gregory M., Farrell, Lisa, Koeberlein, Edward, & Franke, Brian, et al. (2019). Dynamic cylinder activation in diesel engines. International Journal of Engine Research, Article 1468087418779937.
– ident: 10.1016/j.conengprac.2020.104681_b37
– volume: 19
  start-page: 782
  issn: 1063-6536
  issue: 4
  year: 2011
  ident: 10.1016/j.conengprac.2020.104681_b30
  article-title: Adaptive cylinder balancing of internal combustion engines
  publication-title: IEEE Transactions on Control Systems Technology
  doi: 10.1109/TCST.2010.2052925
– start-page: 95
  year: 2013
  ident: 10.1016/j.conengprac.2020.104681_b43
  article-title: Benefits of cylinder deactivation on a diesel engine and restrictions due to low boost
  doi: 10.1533/9781782421849.3.95
– year: 2018
  ident: 10.1016/j.conengprac.2020.104681_b8
– issn: 0148-7191
  year: 2018
  ident: 10.1016/j.conengprac.2020.104681_b18
  article-title: Diesel engine cylinder deactivation for improved system performance over transient real-world drive cycles
  doi: 10.4271/2018-01-0880
– ident: 10.1016/j.conengprac.2020.104681_b13
  doi: 10.1177/1468087418779937
– start-page: 370
  year: 2017
  ident: 10.1016/j.conengprac.2020.104681_b20
  article-title: Dynamic analysis of diesel generator set under cylinder deactivation
– ident: 10.1016/j.conengprac.2020.104681_b33
  doi: 10.1177/1468087417695897
– volume: 5
  start-page: 52
  issn: 2297-3079
  year: 2019
  ident: 10.1016/j.conengprac.2020.104681_b40
  article-title: Impact of cylinder deactivation and cylinder cutout via flexible valve actuation on fuel efficient aftertreatment thermal management at curb idle
  publication-title: Frontiers in Mechanical Engineering
  doi: 10.3389/fmech.2019.00052
– ident: 10.1016/j.conengprac.2020.104681_b39
– start-page: 765
  year: 2017
  ident: 10.1016/j.conengprac.2020.104681_b10
  article-title: The latest generation of Daimler’s 10.7 l heavy-duty engine
  doi: 10.1007/978-3-658-17109-4_47
– volume: 18
  start-page: 991
  issue: 10
  year: 2017
  ident: 10.1016/j.conengprac.2020.104681_b12
  article-title: Cylinder deactivation during dynamic diesel engine operation
  publication-title: International Journal of Engine Research
  doi: 10.1177/1468087417694000
– ident: 10.1016/j.conengprac.2020.104681_b26
– volume: 7
  start-page: 1489
  year: 2014
  ident: 10.1016/j.conengprac.2020.104681_b35
  article-title: Methods of evaluating and mitigating NVH when operating an engine in dynamic skip fire
  publication-title: The SAE International Journal of Engines
  doi: 10.4271/2014-01-1675
– volume: 439
  start-page: 413
  issn: 0022-460X
  year: 2019
  ident: 10.1016/j.conengprac.2020.104681_b5
  article-title: A semi-active control method for decreasing longitudinal torsional vibration of vehicle engine system: Theory and experiments
  publication-title: Journal of Sound and Vibration
  doi: 10.1016/j.jsv.2018.09.051
– issn: 0148-7191
  year: 2018
  ident: 10.1016/j.conengprac.2020.104681_b31
  article-title: Cylinder deactivation for increased engine efficiency and aftertreatment thermal management in diesel engines
  doi: 10.4271/2018-01-0384
– volume: 16
  start-page: 78
  issn: 0967-0661
  issue: 1
  year: 2008
  ident: 10.1016/j.conengprac.2020.104681_b28
  article-title: Active torsional vibration control of reciprocating engines
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2007.04.001
– volume: 4
  start-page: 1225
  issn: 19463936
  issue: 1
  year: 2012
  ident: 10.1016/j.conengprac.2020.104681_b21
  article-title: Simultaneous improvement of fuel consumption and exhaust emissions on a multi-cylinder camless engine
  publication-title: SAE Technical Paper
  doi: 10.4271/2011-01-0937
– ident: 10.1016/j.conengprac.2020.104681_b41
– volume: 12
  start-page: 1029
  issn: 0967-0661
  issue: 8
  year: 2004
  ident: 10.1016/j.conengprac.2020.104681_b6
  article-title: Active control of engine-induced vibrations in automotive vehicles using disturbance observer gain scheduling
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2003.09.008
– volume: 20
  start-page: 862
  issue: 8–9
  year: 2019
  ident: 10.1016/j.conengprac.2020.104681_b32
  article-title: Reverse breathing in diesel engines for aftertreatment thermal management
  publication-title: International Journal of Engine Research
  doi: 10.1177/1468087418783118
– ident: 10.1016/j.conengprac.2020.104681_b2
  doi: 10.1177/1468087419857597
– year: 2016
  ident: 10.1016/j.conengprac.2020.104681_b9
– year: 2018
  ident: 10.1016/j.conengprac.2020.104681_b1
– year: 2018
  ident: 10.1016/j.conengprac.2020.104681_b16
– ident: 10.1016/j.conengprac.2020.104681_b22
  doi: 10.1109/CACSD.2004.1393890
– ident: 10.1016/j.conengprac.2020.104681_b11
– volume: 100
  start-page: 13
  issn: 0019-0578
  year: 2020
  ident: 10.1016/j.conengprac.2020.104681_b25
  article-title: A robust active control scheme for automotive engine vibration based on disturbance observer
  publication-title: ISA Transactions
  doi: 10.1016/j.isatra.2019.11.005
– volume: 6
  start-page: 278
  year: 2013
  ident: 10.1016/j.conengprac.2020.104681_b42
  article-title: Design and benefits of dynamic skip fire strategies for cylinder deactivated engines
  publication-title: The SAE International Journal of Engines
  doi: 10.4271/2013-01-0359
– volume: 17
  start-page: 619
  issue: 6
  year: 2016
  ident: 10.1016/j.conengprac.2020.104681_b7
  article-title: Fuel efficient exhaust thermal management for compression ignition engines during idle via cylinder deactivation and flexible valve actuation
  publication-title: International Journal of Engine Research
  doi: 10.1177/1468087415597413
– ident: 10.1016/j.conengprac.2020.104681_b14
  doi: 10.1177/1468087419867247
– year: 1998
  ident: 10.1016/j.conengprac.2020.104681_b38
– volume: 3
  start-page: 8
  issn: 2297-3079
  year: 2017
  ident: 10.1016/j.conengprac.2020.104681_b19
  article-title: Reducing diesel engine drive cycle fuel consumption through use of cylinder deactivation to maintain aftertreatment component temperature during idle and low load operating conditions
  publication-title: Frontiers in Mechanical Engineering
  doi: 10.3389/fmech.2017.00008
– start-page: 1013
  year: 2017
  ident: 10.1016/j.conengprac.2020.104681_b24
  article-title: Cylinder deactivation improves diesel aftertreatment and fuel economy for commercial vehicles
  doi: 10.1007/978-3-658-16988-6_78
– volume: 20
  start-page: 1206
  issn: 0967-0661
  issue: 11
  year: 2012
  ident: 10.1016/j.conengprac.2020.104681_b27
  article-title: Active control of frequency varying disturbances in a diesel engine
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2012.06.010
– year: 2018
  ident: 10.1016/j.conengprac.2020.104681_b3
  article-title: Quantification of diesel engine vibration using cylinder deactivation for exhaust temperature management and recipe for implementation in commercial vehicles
– ident: 10.1016/j.conengprac.2020.104681_b34
– ident: 10.1016/j.conengprac.2020.104681_b36
– year: 2015
  ident: 10.1016/j.conengprac.2020.104681_b4
– volume: 145
  start-page: 503
  issn: 0263-2241
  year: 2019
  ident: 10.1016/j.conengprac.2020.104681_b17
  article-title: Intelligent vibration detection and control system of agricultural machinery engine
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.05.059
– volume: 2
  start-page: 1024
  issn: 1751-8644
  issue: 11
  year: 2008
  ident: 10.1016/j.conengprac.2020.104681_b29
  article-title: Model-based torsional vibration control of internal combustion engines
  publication-title: IET Control Theory Applications
  doi: 10.1049/iet-cta:20070479
– volume: 94
  start-page: 1
  issn: 0888-3270
  year: 2017
  ident: 10.1016/j.conengprac.2020.104681_b15
  article-title: Diesel engine torsional vibration control coupling with speed control system
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2017.01.017
– volume: 1
  start-page: 1
  issn: 2297-3079
  issue: August
  year: 2015
  ident: 10.1016/j.conengprac.2020.104681_b23
  article-title: Impact of cylinder deactivation on active diesel particulate filter regeneration at highway cruise conditions
  publication-title: Frontiers in Mechanical Engineering
SSID ssj0016991
Score 2.3511655
Snippet Diesel engine cylinder deactivation (CDA) has been demonstrated to provide significant efficiency and aftertreatment thermal management benefits, enabling...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104681
SubjectTerms Cylinder deactivation (CDA)
Drivetrain resonance
Dynamic cylinder activation (DCA)
Firing frequency
Firing pattern design
Noise vibration and harshness (NVH)
Phase angle diagrams
Torsional vibrations
Vibration control
Title Model-based design of dynamic firing patterns for supervisory control of diesel engine vibration
URI https://dx.doi.org/10.1016/j.conengprac.2020.104681
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6939
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016991
  issn: 0967-0661
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6939
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016991
  issn: 0967-0661
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-6939
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016991
  issn: 0967-0661
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  customDbUrl:
  eissn: 1873-6939
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016991
  issn: 0967-0661
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6939
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016991
  issn: 0967-0661
  databaseCode: AKRWK
  dateStart: 19930201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lD14jc3muYunUixVsRct9BY3uxuplDT0IXjxtzuTTWoFQcFr2EnC7GQe2W--IeQyNhHXzI-cgCvtgFEwh2dcOyJDKmhfGCnxh_7DMBqMgrtxOG6QXt0Lg7DKyvdbn1566-pKp9Jmp5hMOo-QfMcQMJkHdgrPQMZPZP8Cm776WMM8WCTs1DxYjN32rELzWIwXlJwmf8F-JKgUPXvgydnPIWoj7PT3yG6VL9KufaV90jD5AdnZYBE8JM84z2zqYDzSVJeIDDrLqLaz5mk2wWW0KIk08wWFLJUuVgX6iMVs_k4rsHopgpQRU2rKu9M3rKRx347IqH_z1Bs41eAER8EnunRC6UqP89ANMqYY5HQqCj2khVGezFwptIx0KuJQ8FQqN4UaQ_BAclekmfJdyfxj0sxBNSeERobHvpYhU34YxEZIP_ONF8sUXIWrmGqRuNZVoipWcRxuMU1q-Nhr8qXlBLWcWC23CFtLFpZZ4w8y1_V2JN-sJIEA8Kv06b-kz8i2h3iWErF9TprL-cpcQEKyTNulxbXJVvf2fjD8BFS84lM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qe1AP4hPf7sFraDabxy6epFiitr3Ygre42d1IpbTBVsF_72yy9QGCgtewk4TZyTyy33wDcJ6YmGvKYi_kSntoFNTjBdeeKCwVNBNGSvtDvz-I01F4cx_dN6Cz7IWxsErn-2ufXnlrd6XttNkux-P2HSbfCQZMGqCd4jPYCrTCCH1yE1qX17fp4OMwIRb14DxcbxvuqQP01DAvrDrN9NG2JGGxGNRnnpz-HKW-RJ7uJmy4lJFc1m-1BQ0z3Yb1L0SCO_BgR5pNPBuSNNEVKIPMCqLrcfOkGNtlpKy4NKdzgokqmb-U1k3MZ89vxOHVKxHLGjEhpro7ebXFtN26XRh1r4ad1HOzEzyFX-nCi6QvA84jPyyoopjWqTgKLDOMCmThS6FlrHORRILnUvk5lhmCh5L7Ii8U8yVle9Ccomr2gcSGJ0zLiCoWhYkRkhXMBInM0Vv4iqoDSJa6ypQjFrfzLSbZEkH2lH1qObNazmotHwD9kCxrco0_yFwstyP7ZigZxoBfpQ__JX0Gq-mw38t614PbI1gLLLylAnAfQ3Px_GJOMD9Z5KfO_t4BCrzk_g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model-based+design+of+dynamic+firing+patterns+for+supervisory+control+of+diesel+engine+vibration&rft.jtitle=Control+engineering+practice&rft.au=Gosala%2C+Dheeraj+B.&rft.au=Raghukumar%2C+Harikrishnan&rft.au=Allen%2C+Cody+M.&rft.au=Shaver%2C+Gregory+M.&rft.date=2021-02-01&rft.issn=0967-0661&rft.volume=107&rft.spage=104681&rft_id=info:doi/10.1016%2Fj.conengprac.2020.104681&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_conengprac_2020_104681
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-0661&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-0661&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-0661&client=summon