Model-based design of dynamic firing patterns for supervisory control of diesel engine vibration
Diesel engine cylinder deactivation (CDA) has been demonstrated to provide significant efficiency and aftertreatment thermal management benefits, enabling fuel-efficient emissions reduction from modern diesel engines at low load engine operation. Dynamic cylinder activation (DCA), a variant of CDA w...
Saved in:
Published in | Control engineering practice Vol. 107; p. 104681 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0967-0661 1873-6939 |
DOI | 10.1016/j.conengprac.2020.104681 |
Cover
Abstract | Diesel engine cylinder deactivation (CDA) has been demonstrated to provide significant efficiency and aftertreatment thermal management benefits, enabling fuel-efficient emissions reduction from modern diesel engines at low load engine operation. Dynamic cylinder activation (DCA), a variant of CDA where the set of deactivated cylinders varies on a cycle-by-cycle basis, has been demonstrated to enable greater control over driveline torsional vibration while maintaining the fuel efficiency and thermal management benefits shown by fixed CDA via appropriate design of firing patterns. A model-based algorithmic approach to designing firing patterns during DCA – to control driveline torsional vibration in a user-defined frequency range, given firing density, engine speed, and maximum length of firing pattern – is described in this article. The described algorithm is generalizable to any engine configuration including different piston–cylinder layouts and number of cylinders. The algorithm is extended to design firing patterns for constrained DCA operation when CDA hardware is installed on a subset of cylinders of the engine. The resulting optimal firing patterns using the algorithm, for various combinations of inputs, are presented through an experimentally-validated simulation framework and discussed. It is demonstrated that the weighted phase-angle approach can accurately predict the frequencies and relative amplitudes of the vibration content, and, if theoretically possible, the proposed algorithm determines firing patterns that meet the specified requirements. The presented algorithm can be easily extended in future work for simultaneous selection of firing density and firing pattern during online, real-time implementation during both steady-state and transient operating conditions.
•Model-based algorithm is presented for designing firing sequences during dynamic cylinder activation (DCA).•Algorithm enables control of torsional vibration in an undesirable frequency range.•Phase-angle approach is used to identify and optimize vibration at a given frequency.•Results are demonstrated with several combinations of frequencies and firing densities.•Vibration control is possible even when only a subset of cylinders is capable of CDA. |
---|---|
AbstractList | Diesel engine cylinder deactivation (CDA) has been demonstrated to provide significant efficiency and aftertreatment thermal management benefits, enabling fuel-efficient emissions reduction from modern diesel engines at low load engine operation. Dynamic cylinder activation (DCA), a variant of CDA where the set of deactivated cylinders varies on a cycle-by-cycle basis, has been demonstrated to enable greater control over driveline torsional vibration while maintaining the fuel efficiency and thermal management benefits shown by fixed CDA via appropriate design of firing patterns. A model-based algorithmic approach to designing firing patterns during DCA – to control driveline torsional vibration in a user-defined frequency range, given firing density, engine speed, and maximum length of firing pattern – is described in this article. The described algorithm is generalizable to any engine configuration including different piston–cylinder layouts and number of cylinders. The algorithm is extended to design firing patterns for constrained DCA operation when CDA hardware is installed on a subset of cylinders of the engine. The resulting optimal firing patterns using the algorithm, for various combinations of inputs, are presented through an experimentally-validated simulation framework and discussed. It is demonstrated that the weighted phase-angle approach can accurately predict the frequencies and relative amplitudes of the vibration content, and, if theoretically possible, the proposed algorithm determines firing patterns that meet the specified requirements. The presented algorithm can be easily extended in future work for simultaneous selection of firing density and firing pattern during online, real-time implementation during both steady-state and transient operating conditions.
•Model-based algorithm is presented for designing firing sequences during dynamic cylinder activation (DCA).•Algorithm enables control of torsional vibration in an undesirable frequency range.•Phase-angle approach is used to identify and optimize vibration at a given frequency.•Results are demonstrated with several combinations of frequencies and firing densities.•Vibration control is possible even when only a subset of cylinders is capable of CDA. |
ArticleNumber | 104681 |
Author | Raghukumar, Harikrishnan Gosala, Dheeraj B. Shaver, Gregory M. Allen, Cody M. Lutz, Timothy P. McCarthy, James E. |
Author_xml | – sequence: 1 givenname: Dheeraj B. orcidid: 0000-0002-4098-1603 surname: Gosala fullname: Gosala, Dheeraj B. organization: Purdue University, West Lafayette, IN, USA – sequence: 2 givenname: Harikrishnan surname: Raghukumar fullname: Raghukumar, Harikrishnan organization: Indian Institute of Technology Madras, Chennai, India – sequence: 3 givenname: Cody M. orcidid: 0000-0001-8429-172X surname: Allen fullname: Allen, Cody M. organization: Purdue University, West Lafayette, IN, USA – sequence: 4 givenname: Gregory M. surname: Shaver fullname: Shaver, Gregory M. email: gshaver@purdue.edu organization: Purdue University, West Lafayette, IN, USA – sequence: 5 givenname: James E. surname: McCarthy fullname: McCarthy, James E. organization: Eaton Vehicle Group, Galesburg, MI, USA – sequence: 6 givenname: Timothy P. orcidid: 0000-0003-1420-8497 surname: Lutz fullname: Lutz, Timothy P. organization: Cummins Technical Center, Columbus, IN, USA |
BookMark | eNqNkNtKAzEQhoNUsK2-Q15ga2a3myY3ghZPUPFGr-NsDiVlmyzJWujbu20FwRu9Gvjh_2bmm5BRiMESQoHNgAG_3sz0EIR1l1DPSlYe4jkXcEbGIBZVwWUlR2TMJF8UjHO4IJOcN2yoSglj8vESjW2LBrM11Njs14FGR80-4NZr6nzyYU077HubQqYuJpo_O5t2Pse0p8PuPsX2WPE225YOp_hg6c43CXsfwyU5d9hme_U9p-T94f5t-VSsXh-fl7erQlcg-qJGhqUQNZs70AAcNK9LATXXJTqG0iA3jVzUUjSoWQMgpJijYLJxumII1ZTcnLg6xZyTdUr7_nhBn9C3Cpg6-FIb9eNLHXypk68BIH4BuuS3mPb_qd6dqnZ4cOdtUll7G7Q1PlndKxP935Avts-PsQ |
CitedBy_id | crossref_primary_10_1038_s41598_021_96259_x crossref_primary_10_1016_j_rser_2021_111196 crossref_primary_10_1177_14680874221098039 crossref_primary_10_3390_s24051551 crossref_primary_10_1016_j_conengprac_2023_105526 crossref_primary_10_31590_ejosat_1179755 crossref_primary_10_1016_j_energy_2024_131946 crossref_primary_10_4271_02_18_01_0001 |
Cites_doi | 10.1109/TCST.2010.2052925 10.1533/9781782421849.3.95 10.4271/2018-01-0880 10.1177/1468087418779937 10.1177/1468087417695897 10.3389/fmech.2019.00052 10.1007/978-3-658-17109-4_47 10.1177/1468087417694000 10.4271/2014-01-1675 10.1016/j.jsv.2018.09.051 10.4271/2018-01-0384 10.1016/j.conengprac.2007.04.001 10.4271/2011-01-0937 10.1016/j.conengprac.2003.09.008 10.1177/1468087418783118 10.1177/1468087419857597 10.1109/CACSD.2004.1393890 10.1016/j.isatra.2019.11.005 10.4271/2013-01-0359 10.1177/1468087415597413 10.1177/1468087419867247 10.3389/fmech.2017.00008 10.1007/978-3-658-16988-6_78 10.1016/j.conengprac.2012.06.010 10.1016/j.measurement.2019.05.059 10.1049/iet-cta:20070479 10.1016/j.ymssp.2017.01.017 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.conengprac.2020.104681 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-6939 |
ExternalDocumentID | 10_1016_j_conengprac_2020_104681 S0967066120302513 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K UNMZH WUQ XFK XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c318t-5a0a288504f1c1161c6528156c2af0a9da6db97598bac0b118984a809bfc30a13 |
IEDL.DBID | .~1 |
ISSN | 0967-0661 |
IngestDate | Tue Jul 01 00:39:05 EDT 2025 Thu Apr 24 22:55:35 EDT 2025 Fri Feb 23 02:47:29 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Firing frequency Dynamic cylinder activation (DCA) Phase angle diagrams Cylinder deactivation (CDA) Vibration control Torsional vibrations Firing pattern design Noise vibration and harshness (NVH) Drivetrain resonance |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c318t-5a0a288504f1c1161c6528156c2af0a9da6db97598bac0b118984a809bfc30a13 |
ORCID | 0000-0003-1420-8497 0000-0002-4098-1603 0000-0001-8429-172X |
ParticipantIDs | crossref_citationtrail_10_1016_j_conengprac_2020_104681 crossref_primary_10_1016_j_conengprac_2020_104681 elsevier_sciencedirect_doi_10_1016_j_conengprac_2020_104681 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2021 2021-02-00 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: February 2021 |
PublicationDecade | 2020 |
PublicationTitle | Control engineering practice |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Jin, Chen, Ji, Zhao, Du, Ma (b17) 2019; 145 Östman, Toivonen (b30) 2011; 19 Joshi, Gosala, Allen, Vos, Van Voorhis, Taylor (b19) 2017; 3 Gosala, Dheeraj B., Allen, Cody M., Shaver, Gregory M., Farrell, Lisa, Koeberlein, Edward, & Franke, Brian, et al. (2019). Dynamic cylinder activation in diesel engines. International Journal of Engine Research, Article 1468087418779937. Bharath, Yang, Reitz, Rutland (b4) 2015 Ding, Roberts, Fain, Ramesh, Shaver, McCarthy (b7) 2016; 17 Orivuori, Zazas, Daley (b27) 2012; 20 Ramesh, Gosala, Allen, Joshi, McCarthy Jr., Farrell (b31) 2018 (pp. 1–11), URL Bian, Gao, Hu, Fan (b5) 2019; 439 Zammit, McGhee, Shayler, Pegg (b43) 2013 Archer, McCarthy (b3) 2018 Serrano, Routledge, Lo, Shost, Srinivasan, Ghosh (b35) 2014; 7 Taraza, Henein, Bryzik (b38) 1998 Serrano, Louis J. (2013). Look-up table based skip fire engine control – US Patent US20150260117A1. Tula Technology, Inc. Guo, Li, Yu, Han, Yuan, Wang (b15) 2017; 94 Wilcutts, Switkes, Shost, Tripathi (b42) 2013; 6 Löfberg, J. (2004). YALMIP : A toolbox for modeling and optimization in MATLAB. In Östman, Toivonen (b28) 2008; 16 Verner, Douglas R. (2016). System and method for controlling a firing sequence of an engine to reduce vibration when cylinders of the engine are deactivated – US Patent US9249748B2. Gm Global Technology Operations LLC. Ramesh, Odstrcil, Gosala, Shaver, Nayyar, Koeberlein (b32) 2019; 20 Kambrath, Alexander, Wang, Yoon, Liu, Wilson (b20) 2017 (2nd ed.). McGraw-Hill. Vos, Shaver, Ramesh, McCarthy (b40) 2019; 5 Allen, Cody M., Gosala, Dheeraj B., Joshi, Mrunal C., Shaver, Gregory M., Farrell, Lisa, & McCarthy, James, Jr. (2019). Experimental assessment of diesel engine cylinder deactivation performance during low-load transient operations. International Journal of Engine Research, Article 1468087419857597. Kitabatake, Minato, Inukai, Shimazaki (b21) 2012; 4 Gosala, Dheeraj B., Shaver, Gregory M., McCarthy, James, Jr., & Lutz, Tim (2019). Fuel-efficient thermal management in diesel engines via valvetrain-enabled cylinder ventilation strategies. International Journal of Engine Research, Article 1468087419867247. Ernst, Kleffel, Koch (b10) 2017 Eisazadeh-Far, Younkins (b9) 2016 Ervin, James Douglas, Boyer, Brad Alan, Mcconville, Gregory Patrick, & Ku, Kim Hwe (2018). Method for controlling vibrations during transitions in a variable displacement engine – US Patent US9874166B2. Ford Global Technologies, LLC. (b8) 2018 Naseri, Talebi, Ohadi, Fakhari (b25) 2020; 100 Joshi, Gosala, Allen, Srinivasan, Ramesh, VanVoorhis (b18) 2018 Taipei, Taiwan. McCarthy (b24) 2017 Ramesh, Aswin K., Shaver, Gregory M., Allen, Cody M., Nayyar, Soumya, Dheeraj, B., Parra, Dina Caicedo, & Koeberlein, Edward, et al. (2018b). . Lu, Ding, Ramesh, Shaver, Holloway, McCarthy (b23) 2015; 1 Serrano, Louis J., Yuan, Xin, Parsels, John W., Pirjaberi, Mohammad R., Wilcutts, Mark A., & Nagashima, Masaki (2016). Noise, vibration and harshness reduction in a skip fire engine control system – US Patent US9512794B2. Tula Technology, Inc. Bohn, Cortabarria, Härtel, Kowalczyk (b6) 2004; 12 (b1) 2018 Shost, Mark A., Serrano, Louis J., Carlson, Steven E., Srinivasan, Vijay, Defenderfer, Eric J., & Wagh, Nitish J., et al. (2015). Method and apparatus for determining optimum skip fire firing profile – US Patent US9200587B2. Tula Technology, Inc. Wagh, Nitish J., & Beikmann, Randall S. (2017). Firing pattern management for improved transient vibration in variable cylinder deactivation mode – US Patent US9556811B2. GM Global Technology Operations LLC. (b16) 2018 Norton, Robert L. (2000). Östman, Toivonen (b29) 2008; 2 Gosala, Allen, Ramesh, Shaver, McCarthy, Stretch (b12) 2017; 18 (10.1016/j.conengprac.2020.104681_b16) 2018 McCarthy (10.1016/j.conengprac.2020.104681_b24) 2017 Vos (10.1016/j.conengprac.2020.104681_b40) 2019; 5 Orivuori (10.1016/j.conengprac.2020.104681_b27) 2012; 20 Ding (10.1016/j.conengprac.2020.104681_b7) 2016; 17 Lu (10.1016/j.conengprac.2020.104681_b23) 2015; 1 (10.1016/j.conengprac.2020.104681_b1) 2018 Ernst (10.1016/j.conengprac.2020.104681_b10) 2017 Ramesh (10.1016/j.conengprac.2020.104681_b31) 2018 10.1016/j.conengprac.2020.104681_b22 (10.1016/j.conengprac.2020.104681_b8) 2018 Wilcutts (10.1016/j.conengprac.2020.104681_b42) 2013; 6 Archer (10.1016/j.conengprac.2020.104681_b3) 2018 10.1016/j.conengprac.2020.104681_b26 Bian (10.1016/j.conengprac.2020.104681_b5) 2019; 439 Kambrath (10.1016/j.conengprac.2020.104681_b20) 2017 Guo (10.1016/j.conengprac.2020.104681_b15) 2017; 94 Ramesh (10.1016/j.conengprac.2020.104681_b32) 2019; 20 Gosala (10.1016/j.conengprac.2020.104681_b12) 2017; 18 Östman (10.1016/j.conengprac.2020.104681_b28) 2008; 16 Bohn (10.1016/j.conengprac.2020.104681_b6) 2004; 12 Joshi (10.1016/j.conengprac.2020.104681_b19) 2017; 3 Östman (10.1016/j.conengprac.2020.104681_b29) 2008; 2 Jin (10.1016/j.conengprac.2020.104681_b17) 2019; 145 Bharath (10.1016/j.conengprac.2020.104681_b4) 2015 Östman (10.1016/j.conengprac.2020.104681_b30) 2011; 19 Zammit (10.1016/j.conengprac.2020.104681_b43) 2013 10.1016/j.conengprac.2020.104681_b41 10.1016/j.conengprac.2020.104681_b11 10.1016/j.conengprac.2020.104681_b33 10.1016/j.conengprac.2020.104681_b13 Joshi (10.1016/j.conengprac.2020.104681_b18) 2018 10.1016/j.conengprac.2020.104681_b34 Taraza (10.1016/j.conengprac.2020.104681_b38) 1998 10.1016/j.conengprac.2020.104681_b2 10.1016/j.conengprac.2020.104681_b37 10.1016/j.conengprac.2020.104681_b14 Serrano (10.1016/j.conengprac.2020.104681_b35) 2014; 7 10.1016/j.conengprac.2020.104681_b36 10.1016/j.conengprac.2020.104681_b39 Eisazadeh-Far (10.1016/j.conengprac.2020.104681_b9) 2016 Kitabatake (10.1016/j.conengprac.2020.104681_b21) 2012; 4 Naseri (10.1016/j.conengprac.2020.104681_b25) 2020; 100 |
References_xml | – start-page: 765 year: 2017 end-page: 778 ident: b10 article-title: The latest generation of Daimler’s 10.7 l heavy-duty engine publication-title: Internationaler motorenkongress 2017 – volume: 5 start-page: 52 year: 2019 ident: b40 article-title: Impact of cylinder deactivation and cylinder cutout via flexible valve actuation on fuel efficient aftertreatment thermal management at curb idle publication-title: Frontiers in Mechanical Engineering – volume: 12 start-page: 1029 year: 2004 end-page: 1039 ident: b6 article-title: Active control of engine-induced vibrations in automotive vehicles using disturbance observer gain scheduling publication-title: Control Engineering Practice – volume: 145 start-page: 503 year: 2019 end-page: 510 ident: b17 article-title: Intelligent vibration detection and control system of agricultural machinery engine publication-title: Measurement – reference: (pp. 1–11), URL – reference: Wagh, Nitish J., & Beikmann, Randall S. (2017). Firing pattern management for improved transient vibration in variable cylinder deactivation mode – US Patent US9556811B2. GM Global Technology Operations LLC. – year: 2018 ident: b1 article-title: About – Tula Technology – volume: 3 start-page: 8 year: 2017 ident: b19 article-title: Reducing diesel engine drive cycle fuel consumption through use of cylinder deactivation to maintain aftertreatment component temperature during idle and low load operating conditions publication-title: Frontiers in Mechanical Engineering – volume: 4 start-page: 1225 year: 2012 end-page: 1234 ident: b21 article-title: Simultaneous improvement of fuel consumption and exhaust emissions on a multi-cylinder camless engine publication-title: SAE Technical Paper – volume: 1 start-page: 1 year: 2015 end-page: 8 ident: b23 article-title: Impact of cylinder deactivation on active diesel particulate filter regeneration at highway cruise conditions publication-title: Frontiers in Mechanical Engineering – year: 2018 ident: b3 article-title: Quantification of diesel engine vibration using cylinder deactivation for exhaust temperature management and recipe for implementation in commercial vehicles publication-title: WCX world congress experience – volume: 439 start-page: 413 year: 2019 end-page: 433 ident: b5 article-title: A semi-active control method for decreasing longitudinal torsional vibration of vehicle engine system: Theory and experiments publication-title: Journal of Sound and Vibration – start-page: 370 year: 2017 end-page: 375 ident: b20 article-title: Dynamic analysis of diesel generator set under cylinder deactivation publication-title: 2017 IEEE transportation electrification conference and expo (ITEC) – reference: Serrano, Louis J., Yuan, Xin, Parsels, John W., Pirjaberi, Mohammad R., Wilcutts, Mark A., & Nagashima, Masaki (2016). Noise, vibration and harshness reduction in a skip fire engine control system – US Patent US9512794B2. Tula Technology, Inc. – volume: 20 start-page: 1206 year: 2012 end-page: 1219 ident: b27 article-title: Active control of frequency varying disturbances in a diesel engine publication-title: Control Engineering Practice – start-page: 95 year: 2013 end-page: 108 ident: b43 article-title: Benefits of cylinder deactivation on a diesel engine and restrictions due to low boost publication-title: Internal combustion engines: Performance, fuel economy and emissions – volume: 6 start-page: 278 year: 2013 end-page: 288 ident: b42 article-title: Design and benefits of dynamic skip fire strategies for cylinder deactivated engines publication-title: The SAE International Journal of Engines – reference: Serrano, Louis J. (2013). Look-up table based skip fire engine control – US Patent US20150260117A1. Tula Technology, Inc. – reference: Allen, Cody M., Gosala, Dheeraj B., Joshi, Mrunal C., Shaver, Gregory M., Farrell, Lisa, & McCarthy, James, Jr. (2019). Experimental assessment of diesel engine cylinder deactivation performance during low-load transient operations. International Journal of Engine Research, Article 1468087419857597. – volume: 17 start-page: 619 year: 2016 end-page: 630 ident: b7 article-title: Fuel efficient exhaust thermal management for compression ignition engines during idle via cylinder deactivation and flexible valve actuation publication-title: International Journal of Engine Research – reference: Löfberg, J. (2004). YALMIP : A toolbox for modeling and optimization in MATLAB. In – volume: 100 start-page: 13 year: 2020 end-page: 27 ident: b25 article-title: A robust active control scheme for automotive engine vibration based on disturbance observer publication-title: ISA Transactions – reference: Norton, Robert L. (2000). – start-page: 1013 year: 2017 end-page: 1039 ident: b24 article-title: Cylinder deactivation improves diesel aftertreatment and fuel economy for commercial vehicles publication-title: 17. Internationales Stuttgarter symposium – volume: 94 start-page: 1 year: 2017 end-page: 13 ident: b15 article-title: Diesel engine torsional vibration control coupling with speed control system publication-title: Mechanical Systems and Signal Processing – year: 2018 ident: b16 article-title: How Dynamic Skip Fire (DSF) works — Tula Technology – year: 2018 ident: b31 article-title: Cylinder deactivation for increased engine efficiency and aftertreatment thermal management in diesel engines publication-title: WCX world congress experience – reference: Ramesh, Aswin K., Shaver, Gregory M., Allen, Cody M., Nayyar, Soumya, Dheeraj, B., Parra, Dina Caicedo, & Koeberlein, Edward, et al. (2018b). – year: 2016 ident: b9 article-title: Fuel economy gains through dynamic-skip-fire in spark ignition engines – volume: 2 start-page: 1024 year: 2008 end-page: 1032 ident: b29 article-title: Model-based torsional vibration control of internal combustion engines publication-title: IET Control Theory Applications – year: 2018 ident: b8 article-title: Dynamic skip fire – volume: 18 start-page: 991 year: 2017 end-page: 1004 ident: b12 article-title: Cylinder deactivation during dynamic diesel engine operation publication-title: International Journal of Engine Research – volume: 19 start-page: 782 year: 2011 end-page: 791 ident: b30 article-title: Adaptive cylinder balancing of internal combustion engines publication-title: IEEE Transactions on Control Systems Technology – reference: . – reference: Shost, Mark A., Serrano, Louis J., Carlson, Steven E., Srinivasan, Vijay, Defenderfer, Eric J., & Wagh, Nitish J., et al. (2015). Method and apparatus for determining optimum skip fire firing profile – US Patent US9200587B2. Tula Technology, Inc. – year: 2015 ident: b4 article-title: Comparison of variable valve actuation, cylinder deactivation and injection strategies for low-load RCCI operation of a light duty engine – reference: (2nd ed.). McGraw-Hill. – reference: Ervin, James Douglas, Boyer, Brad Alan, Mcconville, Gregory Patrick, & Ku, Kim Hwe (2018). Method for controlling vibrations during transitions in a variable displacement engine – US Patent US9874166B2. Ford Global Technologies, LLC. – volume: 16 start-page: 78 year: 2008 end-page: 88 ident: b28 article-title: Active torsional vibration control of reciprocating engines publication-title: Control Engineering Practice – volume: 7 start-page: 1489 year: 2014 end-page: 1501 ident: b35 article-title: Methods of evaluating and mitigating NVH when operating an engine in dynamic skip fire publication-title: The SAE International Journal of Engines – reference: . Taipei, Taiwan. – year: 2018 ident: b18 article-title: Diesel engine cylinder deactivation for improved system performance over transient real-world drive cycles publication-title: WCX world congress experience – volume: 20 start-page: 862 year: 2019 end-page: 876 ident: b32 article-title: Reverse breathing in diesel engines for aftertreatment thermal management publication-title: International Journal of Engine Research – reference: Verner, Douglas R. (2016). System and method for controlling a firing sequence of an engine to reduce vibration when cylinders of the engine are deactivated – US Patent US9249748B2. Gm Global Technology Operations LLC. – year: 1998 ident: b38 publication-title: Diesel Engine Diagnosis Based on Analysis of the Crankshaft’s Speed Variation – reference: Gosala, Dheeraj B., Shaver, Gregory M., McCarthy, James, Jr., & Lutz, Tim (2019). Fuel-efficient thermal management in diesel engines via valvetrain-enabled cylinder ventilation strategies. International Journal of Engine Research, Article 1468087419867247. – reference: Gosala, Dheeraj B., Allen, Cody M., Shaver, Gregory M., Farrell, Lisa, Koeberlein, Edward, & Franke, Brian, et al. (2019). Dynamic cylinder activation in diesel engines. International Journal of Engine Research, Article 1468087418779937. – ident: 10.1016/j.conengprac.2020.104681_b37 – volume: 19 start-page: 782 issn: 1063-6536 issue: 4 year: 2011 ident: 10.1016/j.conengprac.2020.104681_b30 article-title: Adaptive cylinder balancing of internal combustion engines publication-title: IEEE Transactions on Control Systems Technology doi: 10.1109/TCST.2010.2052925 – start-page: 95 year: 2013 ident: 10.1016/j.conengprac.2020.104681_b43 article-title: Benefits of cylinder deactivation on a diesel engine and restrictions due to low boost doi: 10.1533/9781782421849.3.95 – year: 2018 ident: 10.1016/j.conengprac.2020.104681_b8 – issn: 0148-7191 year: 2018 ident: 10.1016/j.conengprac.2020.104681_b18 article-title: Diesel engine cylinder deactivation for improved system performance over transient real-world drive cycles doi: 10.4271/2018-01-0880 – ident: 10.1016/j.conengprac.2020.104681_b13 doi: 10.1177/1468087418779937 – start-page: 370 year: 2017 ident: 10.1016/j.conengprac.2020.104681_b20 article-title: Dynamic analysis of diesel generator set under cylinder deactivation – ident: 10.1016/j.conengprac.2020.104681_b33 doi: 10.1177/1468087417695897 – volume: 5 start-page: 52 issn: 2297-3079 year: 2019 ident: 10.1016/j.conengprac.2020.104681_b40 article-title: Impact of cylinder deactivation and cylinder cutout via flexible valve actuation on fuel efficient aftertreatment thermal management at curb idle publication-title: Frontiers in Mechanical Engineering doi: 10.3389/fmech.2019.00052 – ident: 10.1016/j.conengprac.2020.104681_b39 – start-page: 765 year: 2017 ident: 10.1016/j.conengprac.2020.104681_b10 article-title: The latest generation of Daimler’s 10.7 l heavy-duty engine doi: 10.1007/978-3-658-17109-4_47 – volume: 18 start-page: 991 issue: 10 year: 2017 ident: 10.1016/j.conengprac.2020.104681_b12 article-title: Cylinder deactivation during dynamic diesel engine operation publication-title: International Journal of Engine Research doi: 10.1177/1468087417694000 – ident: 10.1016/j.conengprac.2020.104681_b26 – volume: 7 start-page: 1489 year: 2014 ident: 10.1016/j.conengprac.2020.104681_b35 article-title: Methods of evaluating and mitigating NVH when operating an engine in dynamic skip fire publication-title: The SAE International Journal of Engines doi: 10.4271/2014-01-1675 – volume: 439 start-page: 413 issn: 0022-460X year: 2019 ident: 10.1016/j.conengprac.2020.104681_b5 article-title: A semi-active control method for decreasing longitudinal torsional vibration of vehicle engine system: Theory and experiments publication-title: Journal of Sound and Vibration doi: 10.1016/j.jsv.2018.09.051 – issn: 0148-7191 year: 2018 ident: 10.1016/j.conengprac.2020.104681_b31 article-title: Cylinder deactivation for increased engine efficiency and aftertreatment thermal management in diesel engines doi: 10.4271/2018-01-0384 – volume: 16 start-page: 78 issn: 0967-0661 issue: 1 year: 2008 ident: 10.1016/j.conengprac.2020.104681_b28 article-title: Active torsional vibration control of reciprocating engines publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2007.04.001 – volume: 4 start-page: 1225 issn: 19463936 issue: 1 year: 2012 ident: 10.1016/j.conengprac.2020.104681_b21 article-title: Simultaneous improvement of fuel consumption and exhaust emissions on a multi-cylinder camless engine publication-title: SAE Technical Paper doi: 10.4271/2011-01-0937 – ident: 10.1016/j.conengprac.2020.104681_b41 – volume: 12 start-page: 1029 issn: 0967-0661 issue: 8 year: 2004 ident: 10.1016/j.conengprac.2020.104681_b6 article-title: Active control of engine-induced vibrations in automotive vehicles using disturbance observer gain scheduling publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2003.09.008 – volume: 20 start-page: 862 issue: 8–9 year: 2019 ident: 10.1016/j.conengprac.2020.104681_b32 article-title: Reverse breathing in diesel engines for aftertreatment thermal management publication-title: International Journal of Engine Research doi: 10.1177/1468087418783118 – ident: 10.1016/j.conengprac.2020.104681_b2 doi: 10.1177/1468087419857597 – year: 2016 ident: 10.1016/j.conengprac.2020.104681_b9 – year: 2018 ident: 10.1016/j.conengprac.2020.104681_b1 – year: 2018 ident: 10.1016/j.conengprac.2020.104681_b16 – ident: 10.1016/j.conengprac.2020.104681_b22 doi: 10.1109/CACSD.2004.1393890 – ident: 10.1016/j.conengprac.2020.104681_b11 – volume: 100 start-page: 13 issn: 0019-0578 year: 2020 ident: 10.1016/j.conengprac.2020.104681_b25 article-title: A robust active control scheme for automotive engine vibration based on disturbance observer publication-title: ISA Transactions doi: 10.1016/j.isatra.2019.11.005 – volume: 6 start-page: 278 year: 2013 ident: 10.1016/j.conengprac.2020.104681_b42 article-title: Design and benefits of dynamic skip fire strategies for cylinder deactivated engines publication-title: The SAE International Journal of Engines doi: 10.4271/2013-01-0359 – volume: 17 start-page: 619 issue: 6 year: 2016 ident: 10.1016/j.conengprac.2020.104681_b7 article-title: Fuel efficient exhaust thermal management for compression ignition engines during idle via cylinder deactivation and flexible valve actuation publication-title: International Journal of Engine Research doi: 10.1177/1468087415597413 – ident: 10.1016/j.conengprac.2020.104681_b14 doi: 10.1177/1468087419867247 – year: 1998 ident: 10.1016/j.conengprac.2020.104681_b38 – volume: 3 start-page: 8 issn: 2297-3079 year: 2017 ident: 10.1016/j.conengprac.2020.104681_b19 article-title: Reducing diesel engine drive cycle fuel consumption through use of cylinder deactivation to maintain aftertreatment component temperature during idle and low load operating conditions publication-title: Frontiers in Mechanical Engineering doi: 10.3389/fmech.2017.00008 – start-page: 1013 year: 2017 ident: 10.1016/j.conengprac.2020.104681_b24 article-title: Cylinder deactivation improves diesel aftertreatment and fuel economy for commercial vehicles doi: 10.1007/978-3-658-16988-6_78 – volume: 20 start-page: 1206 issn: 0967-0661 issue: 11 year: 2012 ident: 10.1016/j.conengprac.2020.104681_b27 article-title: Active control of frequency varying disturbances in a diesel engine publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2012.06.010 – year: 2018 ident: 10.1016/j.conengprac.2020.104681_b3 article-title: Quantification of diesel engine vibration using cylinder deactivation for exhaust temperature management and recipe for implementation in commercial vehicles – ident: 10.1016/j.conengprac.2020.104681_b34 – ident: 10.1016/j.conengprac.2020.104681_b36 – year: 2015 ident: 10.1016/j.conengprac.2020.104681_b4 – volume: 145 start-page: 503 issn: 0263-2241 year: 2019 ident: 10.1016/j.conengprac.2020.104681_b17 article-title: Intelligent vibration detection and control system of agricultural machinery engine publication-title: Measurement doi: 10.1016/j.measurement.2019.05.059 – volume: 2 start-page: 1024 issn: 1751-8644 issue: 11 year: 2008 ident: 10.1016/j.conengprac.2020.104681_b29 article-title: Model-based torsional vibration control of internal combustion engines publication-title: IET Control Theory Applications doi: 10.1049/iet-cta:20070479 – volume: 94 start-page: 1 issn: 0888-3270 year: 2017 ident: 10.1016/j.conengprac.2020.104681_b15 article-title: Diesel engine torsional vibration control coupling with speed control system publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2017.01.017 – volume: 1 start-page: 1 issn: 2297-3079 issue: August year: 2015 ident: 10.1016/j.conengprac.2020.104681_b23 article-title: Impact of cylinder deactivation on active diesel particulate filter regeneration at highway cruise conditions publication-title: Frontiers in Mechanical Engineering |
SSID | ssj0016991 |
Score | 2.3511655 |
Snippet | Diesel engine cylinder deactivation (CDA) has been demonstrated to provide significant efficiency and aftertreatment thermal management benefits, enabling... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 104681 |
SubjectTerms | Cylinder deactivation (CDA) Drivetrain resonance Dynamic cylinder activation (DCA) Firing frequency Firing pattern design Noise vibration and harshness (NVH) Phase angle diagrams Torsional vibrations Vibration control |
Title | Model-based design of dynamic firing patterns for supervisory control of diesel engine vibration |
URI | https://dx.doi.org/10.1016/j.conengprac.2020.104681 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6939 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016991 issn: 0967-0661 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6939 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016991 issn: 0967-0661 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-6939 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016991 issn: 0967-0661 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1873-6939 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016991 issn: 0967-0661 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6939 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016991 issn: 0967-0661 databaseCode: AKRWK dateStart: 19930201 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lD14jc3muYunUixVsRct9BY3uxuplDT0IXjxtzuTTWoFQcFr2EnC7GQe2W--IeQyNhHXzI-cgCvtgFEwh2dcOyJDKmhfGCnxh_7DMBqMgrtxOG6QXt0Lg7DKyvdbn1566-pKp9Jmp5hMOo-QfMcQMJkHdgrPQMZPZP8Cm776WMM8WCTs1DxYjN32rELzWIwXlJwmf8F-JKgUPXvgydnPIWoj7PT3yG6VL9KufaV90jD5AdnZYBE8JM84z2zqYDzSVJeIDDrLqLaz5mk2wWW0KIk08wWFLJUuVgX6iMVs_k4rsHopgpQRU2rKu9M3rKRx347IqH_z1Bs41eAER8EnunRC6UqP89ANMqYY5HQqCj2khVGezFwptIx0KuJQ8FQqN4UaQ_BAclekmfJdyfxj0sxBNSeERobHvpYhU34YxEZIP_ONF8sUXIWrmGqRuNZVoipWcRxuMU1q-Nhr8qXlBLWcWC23CFtLFpZZ4w8y1_V2JN-sJIEA8Kv06b-kz8i2h3iWErF9TprL-cpcQEKyTNulxbXJVvf2fjD8BFS84lM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qe1AP4hPf7sFraDabxy6epFiitr3Ygre42d1IpbTBVsF_72yy9QGCgtewk4TZyTyy33wDcJ6YmGvKYi_kSntoFNTjBdeeKCwVNBNGSvtDvz-I01F4cx_dN6Cz7IWxsErn-2ufXnlrd6XttNkux-P2HSbfCQZMGqCd4jPYCrTCCH1yE1qX17fp4OMwIRb14DxcbxvuqQP01DAvrDrN9NG2JGGxGNRnnpz-HKW-RJ7uJmy4lJFc1m-1BQ0z3Yb1L0SCO_BgR5pNPBuSNNEVKIPMCqLrcfOkGNtlpKy4NKdzgokqmb-U1k3MZ89vxOHVKxHLGjEhpro7ebXFtN26XRh1r4ad1HOzEzyFX-nCi6QvA84jPyyoopjWqTgKLDOMCmThS6FlrHORRILnUvk5lhmCh5L7Ii8U8yVle9Ccomr2gcSGJ0zLiCoWhYkRkhXMBInM0Vv4iqoDSJa6ypQjFrfzLSbZEkH2lH1qObNazmotHwD9kCxrco0_yFwstyP7ZigZxoBfpQ__JX0Gq-mw38t614PbI1gLLLylAnAfQ3Px_GJOMD9Z5KfO_t4BCrzk_g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model-based+design+of+dynamic+firing+patterns+for+supervisory+control+of+diesel+engine+vibration&rft.jtitle=Control+engineering+practice&rft.au=Gosala%2C+Dheeraj+B.&rft.au=Raghukumar%2C+Harikrishnan&rft.au=Allen%2C+Cody+M.&rft.au=Shaver%2C+Gregory+M.&rft.date=2021-02-01&rft.issn=0967-0661&rft.volume=107&rft.spage=104681&rft_id=info:doi/10.1016%2Fj.conengprac.2020.104681&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_conengprac_2020_104681 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-0661&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-0661&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-0661&client=summon |