A directional spectrum evolution model for ship noise

A radiation transport equation that describes the spatiotemporal evolution of the directional spectrum of underwater acoustic noise is presented and applied to ship noise. A ray-based algorithm is used to solve the transport equation and numerically simulate the evolution of the directional noise sp...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of the Acoustical Society of America Vol. 153; no. 6; pp. 3469 - 3481
Main Author Brown, Michael G.
Format Journal Article
LanguageEnglish
Published United States 01.06.2023
Subjects
Online AccessGet full text
ISSN0001-4966
1520-8524
1520-8524
DOI10.1121/10.0019851

Cover

Abstract A radiation transport equation that describes the spatiotemporal evolution of the directional spectrum of underwater acoustic noise is presented and applied to ship noise. A ray-based algorithm is used to solve the transport equation and numerically simulate the evolution of the directional noise spectrum produced by a passing ship. The model described accounts for the transient and highly episodic nature of shipping noise, the strong anisotropy of the radiated shipping noise, the directional dependence of the resulting acoustic field, and the critical angle dependence of bottom-reflected energy. The model predicts time histories of sound pressure level and directional spectral energy density at distant locations if the ship track and the ship's radiated noise power are known. Simulations are shown to be in qualitatively good agreement with observations.
AbstractList A radiation transport equation that describes the spatiotemporal evolution of the directional spectrum of underwater acoustic noise is presented and applied to ship noise. A ray-based algorithm is used to solve the transport equation and numerically simulate the evolution of the directional noise spectrum produced by a passing ship. The model described accounts for the transient and highly episodic nature of shipping noise, the strong anisotropy of the radiated shipping noise, the directional dependence of the resulting acoustic field, and the critical angle dependence of bottom-reflected energy. The model predicts time histories of sound pressure level and directional spectral energy density at distant locations if the ship track and the ship's radiated noise power are known. Simulations are shown to be in qualitatively good agreement with observations.
A radiation transport equation that describes the spatiotemporal evolution of the directional spectrum of underwater acoustic noise is presented and applied to ship noise. A ray-based algorithm is used to solve the transport equation and numerically simulate the evolution of the directional noise spectrum produced by a passing ship. The model described accounts for the transient and highly episodic nature of shipping noise, the strong anisotropy of the radiated shipping noise, the directional dependence of the resulting acoustic field, and the critical angle dependence of bottom-reflected energy. The model predicts time histories of sound pressure level and directional spectral energy density at distant locations if the ship track and the ship's radiated noise power are known. Simulations are shown to be in qualitatively good agreement with observations.A radiation transport equation that describes the spatiotemporal evolution of the directional spectrum of underwater acoustic noise is presented and applied to ship noise. A ray-based algorithm is used to solve the transport equation and numerically simulate the evolution of the directional noise spectrum produced by a passing ship. The model described accounts for the transient and highly episodic nature of shipping noise, the strong anisotropy of the radiated shipping noise, the directional dependence of the resulting acoustic field, and the critical angle dependence of bottom-reflected energy. The model predicts time histories of sound pressure level and directional spectral energy density at distant locations if the ship track and the ship's radiated noise power are known. Simulations are shown to be in qualitatively good agreement with observations.
Author Brown, Michael G.
Author_xml – sequence: 1
  givenname: Michael G.
  surname: Brown
  fullname: Brown, Michael G.
  email: mgbrown@miami.edu
  organization: Rosenstiel School of Marine, Atmospheric and Earth Sciences, University of Miami, 4600 Rickenbacker Causeway, Miami, Florida 33149, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37354203$$D View this record in MEDLINE/PubMed
BookMark eNp90MtKxDAUBuAginPRjQ8gXYpSzaVpk-UweIMBN7ouaXOCkbapSTvg25sy4-BCXP3J4eOQ_At03LkOELog-JYQSu5iYkyk4OQIzQmnOBWcZsdojuM4zWSez9AihI945YLJUzRjBeMZxWyO-CrR1kM9WNepJgl9PPqxTWDrmnEaJq3T0CTG-SS82z7pnA1whk6MagKc73OJ3h7uX9dP6ebl8Xm92qQ1I2JIOeOcqUrSHDJZUcOM0JXIDBSAdQGKVJwaYTJFCAZiapULTXl8PMHSsIqzJbra7e29-xwhDGVrQw1NozpwYyipoDKjsshxpJd7OlYt6LL3tlX-q_z5agTXO1B7F4IHcyAEl1OPU-57jPhmh0NtBzX1cNBb53_JstfmP_3H7m9qH38f
CODEN JASMAN
Cites_doi 10.1038/srep01760
10.1121/1.1461915
10.1038/s41598-021-96506-1
10.1121/1.2216565
10.1121/1.3518770
10.1121/1.1427355
10.1121/10.0017433
10.1121/1.391596
10.1121/1.428344
10.1121/1.4802642
10.1121/1.2939128
10.1121/1.5116140
10.1121/1.386746
10.1121/1.394573
10.1121/1.386921
10.4031/002533203787537023
10.1121/1.3567084
10.1121/1.3664100
10.1098/rspb.2011.2429
10.3354/meps08353
10.1121/1.5001063
10.7717/peerj.1657
ContentType Journal Article
Copyright Acoustical Society of America
2023 Acoustical Society of America.
Copyright_xml – notice: Acoustical Society of America
– notice: 2023 Acoustical Society of America.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1121/10.0019851
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1520-8524
EndPage 3481
ExternalDocumentID 37354203
10_1121_10_0019851
jasa
Genre Journal Article
GrantInformation_xml – fundername: Office of Naval Research
  grantid: N00014-21-1-2511
  funderid: 10.13039/100000006
GroupedDBID ---
--Z
-~X
.DC
.GJ
123
186
29L
3O-
4.4
41~
5-Q
53G
5RE
5VS
6TJ
85S
AAAAW
AAEUA
AAPUP
AAYIH
ABDNZ
ABEFF
ABEFU
ABJNI
ABNAN
ABPPZ
ABTAH
ABZEH
ACBNA
ACBRY
ACCUC
ACGFO
ACGFS
ACNCT
ACXMS
ACYGS
ADCTM
AEGXH
AENEX
AETEA
AFFNX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AGVCI
AHPGS
AHSDT
AI.
AIAGR
AIDUJ
AIZTS
ALMA_UNASSIGNED_HOLDINGS
AQWKA
BAUXJ
CS3
D0L
DU5
EBS
EJD
ESX
F5P
G8K
H~9
M71
M73
MVM
NEJ
NHB
OHT
OK1
P2P
RAZ
RIP
RNS
ROL
RQS
S10
SC5
SJN
TN5
TWZ
UCJ
UHB
UPT
UQL
VH1
VOH
VQA
WH7
XFK
XJT
XOL
XSW
YQT
ZCG
ZXP
ZY4
~02
~G0
AAGWI
AAYXX
ABJGX
ADMLS
CITATION
AEILP
NPM
UMC
7X8
ID FETCH-LOGICAL-c318t-53553ab926e49b2f3f8db84fe7e0d7ea1b52f8f4a110e1fca68d25852109f3b53
ISSN 0001-4966
1520-8524
IngestDate Fri Sep 05 09:56:15 EDT 2025
Thu May 22 04:23:40 EDT 2025
Wed Oct 01 01:48:25 EDT 2025
Fri Jun 21 00:13:54 EDT 2024
Tue Jul 04 19:18:37 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License 0001-4966/2023/153(6)/1/13/$30.00
2023 Acoustical Society of America.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c318t-53553ab926e49b2f3f8db84fe7e0d7ea1b52f8f4a110e1fca68d25852109f3b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 37354203
PQID 2829429760
PQPubID 23479
PageCount 13
ParticipantIDs scitation_primary_10_1121_10_0019851
proquest_miscellaneous_2829429760
crossref_primary_10_1121_10_0019851
pubmed_primary_37354203
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230600
2023-06-01
2023-Jun-01
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 20230600
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of the Acoustical Society of America
PublicationTitleAlternate J Acoust Soc Am
PublicationYear 2023
References Wales, Diachok (c26) 1981
McKenna, Wiggins, Hildebrand (c10) 2013
MacGillivray, Li, Hannay, Trounce, Robinson (c21) 2019
Zobell, Frazier, Morten, Hastings, Peavey Reeves, Wiggins, Hildebrand (c23) 2021
Gassmann, Wiggins, Hildebrand (c11) 2017
Trevorrow, Vasiliev, Vagle (c19) 2008
McDonald, Hildebrand, Wiggins (c4) 2006
Rolland, Parks, Hunt, Castellote, Corkeron, Novacek, Wasser, Kraus (c8) 2012
Harrison (c17) 2013
McKenna, Ross, Wiggins, Hildebrand (c9) 2012
Arveson, Vendittis (c18) 2000
Dashen, Munk (c27) 1984
Buckingham, Jones (c25) 1987
Heitmeyer, Wales, Pflug (c14) 2003
MacGillivray, Martin, Ainslee, Dolman, Li, Warner (c20) 2023
Chapman, Price (c5) 2011
Hildebrand (c2) 2009
Tindle, Bold (c28) 1981
Andrew, Howe, Mercer (c6) 2011
Andrew, Howe, Mercer, Dzieciuch (c3) 2002
Wales, Heitmeyer (c13) 2002
Veirs, Veirs, Wood (c22) 2016
(2024062300013506500_c11) 2017; 142
(2024062300013506500_c9) 2012; 131
(2024062300013506500_c24) 1998
(2024062300013506500_c15) 1993
(2024062300013506500_c19) 2008; 124
(2024062300013506500_c17) 2013; 133
(2024062300013506500_c2) 2009; 395
(2024062300013506500_c4) 2006; 120
(2024062300013506500_c3) 2002; 3
(2024062300013506500_c14) 2003; 37
(2024062300013506500_c6) 2011; 129
(2024062300013506500_c10) 2013; 3
(2024062300013506500_c27) 1984; 76
(2024062300013506500_c18) 2000; 107
(2024062300013506500_c25) 1987; 81
(2024062300013506500_c28) 1981; 70
(2024062300013506500_c21) 2019; 146
(2024062300013506500_c16) 2003
(2024062300013506500_c8) 2012; 279
(2024062300013506500_c26) 1981; 70
National Research Council (2024062300013506500_c7) 2003
(2024062300013506500_c13) 2002; 111
(2024062300013506500_c1) 1994
(2024062300013506500_c22) 2016; 4
(2024062300013506500_c5) 2011; 129
(2024062300013506500_c23) 2021; 11
(2024062300013506500_c20) 2023; 153
(2024062300013506500_c12) 1976
References_xml – start-page: EL161
  year: 2011
  ident: c5
  article-title: Low frequency deep ocean ambient noise trend in the Northeast Pacific Ocean
  publication-title: J. Acoust. Soc. Am.
– start-page: 1760
  year: 2013
  ident: c10
  article-title: Relationship between container ship underwater noise levels and ship design, operational and oceanographic conditions
  publication-title: Sci. Rep.
– start-page: 938
  year: 1987
  ident: c25
  article-title: A new shallow-ocean technique for determining the critical angle of the seabed from the vertical directionality of the ambient noise in the water column
  publication-title: J. Acoust. Soc. Am.
– start-page: 813
  year: 1981
  ident: c28
  article-title: Improved ray calculations in shallow water
  publication-title: J. Acoust. Soc. Am.
– start-page: 1211
  year: 2002
  ident: c13
  article-title: An ensemble source spectra model for merchant ship-radiated noise
  publication-title: J. Acoust. Soc. Am.
– start-page: 54
  year: 2003
  ident: c14
  article-title: Shipping noise predictions: Capabilities and limitations
  publication-title: Mar. Tech. Soc. J
– start-page: 577
  year: 1981
  ident: c26
  article-title: Ambient noise vertical directionality in the northwest Atlantic
  publication-title: J. Acoust. Soc. Am.
– start-page: 340
  year: 2019
  ident: c21
  article-title: Slowing deep-sea commercial vessels reduces underwater radiated noise
  publication-title: J. Acoust. Soc. Am.
– start-page: 18391
  year: 2021
  ident: c23
  article-title: Underwater noise mitigation in the Santa Barbara Channel through incentive-based vessel speed reduction
  publication-title: Sci. Rep.
– start-page: 5
  year: 2009
  ident: c2
  article-title: Anthropogenic and natural sources of ambient noise in the ocean
  publication-title: Mar. Ecol. Prog. Ser.
– start-page: 3777
  year: 2013
  ident: c17
  article-title: Ray convergence is a flux-like propagation formulation
  publication-title: J. Acoust. Soc. Am.
– start-page: 711
  year: 2006
  ident: c4
  article-title: Increases in deep-ocean ambient noise in the Northeast Pacific west of San Nicholas Island, California
  publication-title: J. Acoust. Soc. Am.
– start-page: 642
  year: 2011
  ident: c6
  article-title: Long-time trends in ship traffic noise for four sites off the North American West Coast
  publication-title: J. Acoust. Soc. Am.
– start-page: e1657
  year: 2016
  ident: c22
  article-title: Ship noise extends to frequencies used for echolocation by endangered killer whales
  publication-title: PeerJ
– start-page: 2363
  year: 2012
  ident: c8
  article-title: Evidence that ship noise increases stress in right whales
  publication-title: Proc. R. Soc. London, Ser. B: Biol. Sci.
– start-page: 1506
  year: 2023
  ident: c20
  article-title: Measuring vessel underwater radiated noise in shallow water
  publication-title: J. Acoust. Soc. Am.
– start-page: 65
  year: 2002
  ident: c3
  article-title: Ocean ambient sound: Comparing the 1960s with the 1990s for a receiver off the California coast
  publication-title: Acoust. Res. Lett.
– start-page: 118
  year: 2000
  ident: c18
  article-title: Radiated noise characteristics of a modern cargo ship
  publication-title: J. Acoust. Soc. Am.
– start-page: 540
  year: 1984
  ident: c27
  article-title: Three models of global ocean noise
  publication-title: J. Acoust. Soc. Am.
– start-page: 767
  year: 2008
  ident: c19
  article-title: Directionality and maneuvering effects on a surface ship underwater acoustic signature
  publication-title: J. Acoust. Soc. Am.
– start-page: 92
  year: 2012
  ident: c9
  article-title: Underwater radiated noise from modern commercial ships
  publication-title: J. Acoust. Soc. Am.
– start-page: 1563
  year: 2017
  ident: c11
  article-title: Deep-water measurements of container ship radiated noise signatures and directionality
  publication-title: J. Acoust. Soc. Am.
– volume: 3
  start-page: 1760
  year: 2013
  ident: 2024062300013506500_c10
  article-title: Relationship between container ship underwater noise levels and ship design, operational and oceanographic conditions
  publication-title: Sci. Rep.
  doi: 10.1038/srep01760
– volume-title: Mechanics of Underwater Noise
  year: 1976
  ident: 2024062300013506500_c12
– volume: 3
  start-page: 65
  year: 2002
  ident: 2024062300013506500_c3
  article-title: Ocean ambient sound: Comparing the 1960s with the 1990s for a receiver off the California coast
  publication-title: Acoust. Res. Lett.
  doi: 10.1121/1.1461915
– volume: 11
  start-page: 18391
  year: 2021
  ident: 2024062300013506500_c23
  article-title: Underwater noise mitigation in the Santa Barbara Channel through incentive-based vessel speed reduction
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-96506-1
– volume: 120
  start-page: 711
  year: 2006
  ident: 2024062300013506500_c4
  article-title: Increases in deep-ocean ambient noise in the Northeast Pacific west of San Nicholas Island, California
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2216565
– volume: 129
  start-page: 642
  year: 2011
  ident: 2024062300013506500_c6
  article-title: Long-time trends in ship traffic noise for four sites off the North American West Coast
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3518770
– volume: 111
  start-page: 1211
  year: 2002
  ident: 2024062300013506500_c13
  article-title: An ensemble source spectra model for merchant ship-radiated noise
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1427355
– volume-title: Computational Ocean Acoustics
  year: 1993
  ident: 2024062300013506500_c15
– volume: 153
  start-page: 1506
  year: 2023
  ident: 2024062300013506500_c20
  article-title: Measuring vessel underwater radiated noise in shallow water
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/10.0017433
– volume: 76
  start-page: 540
  year: 1984
  ident: 2024062300013506500_c27
  article-title: Three models of global ocean noise
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.391596
– volume: 107
  start-page: 118
  year: 2000
  ident: 2024062300013506500_c18
  article-title: Radiated noise characteristics of a modern cargo ship
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.428344
– volume: 133
  start-page: 3777
  year: 2013
  ident: 2024062300013506500_c17
  article-title: Ray convergence is a flux-like propagation formulation
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4802642
– volume: 124
  start-page: 767
  year: 2008
  ident: 2024062300013506500_c19
  article-title: Directionality and maneuvering effects on a surface ship underwater acoustic signature
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2939128
– volume: 146
  start-page: 340
  year: 2019
  ident: 2024062300013506500_c21
  article-title: Slowing deep-sea commercial vessels reduces underwater radiated noise
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.5116140
– volume: 70
  start-page: 577
  year: 1981
  ident: 2024062300013506500_c26
  article-title: Ambient noise vertical directionality in the northwest Atlantic
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.386746
– volume: 81
  start-page: 938
  year: 1987
  ident: 2024062300013506500_c25
  article-title: A new shallow-ocean technique for determining the critical angle of the seabed from the vertical directionality of the ambient noise in the water column
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.394573
– volume-title: Acoustics of Layered Media I: Plane and Quasi-Plane Waves
  year: 1998
  ident: 2024062300013506500_c24
– volume: 70
  start-page: 813
  year: 1981
  ident: 2024062300013506500_c28
  article-title: Improved ray calculations in shallow water
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.386921
– volume: 37
  start-page: 54
  year: 2003
  ident: 2024062300013506500_c14
  article-title: Shipping noise predictions: Capabilities and limitations
  publication-title: Mar. Tech. Soc. J
  doi: 10.4031/002533203787537023
– volume: 129
  start-page: EL161
  year: 2011
  ident: 2024062300013506500_c5
  article-title: Low frequency deep ocean ambient noise trend in the Northeast Pacific Ocean
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3567084
– volume: 131
  start-page: 92
  year: 2012
  ident: 2024062300013506500_c9
  article-title: Underwater radiated noise from modern commercial ships
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3664100
– volume-title: Ocean Noise and Marine Mammals
  year: 2003
  ident: 2024062300013506500_c7
– volume-title: Dynamics and Modelling of Ocean Waves
  year: 1994
  ident: 2024062300013506500_c1
– volume: 279
  start-page: 2363
  year: 2012
  ident: 2024062300013506500_c8
  article-title: Evidence that ship noise increases stress in right whales
  publication-title: Proc. R. Soc. London, Ser. B: Biol. Sci.
  doi: 10.1098/rspb.2011.2429
– volume: 395
  start-page: 5
  year: 2009
  ident: 2024062300013506500_c2
  article-title: Anthropogenic and natural sources of ambient noise in the ocean
  publication-title: Mar. Ecol. Prog. Ser.
  doi: 10.3354/meps08353
– volume: 142
  start-page: 1563
  year: 2017
  ident: 2024062300013506500_c11
  article-title: Deep-water measurements of container ship radiated noise signatures and directionality
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.5001063
– volume: 4
  start-page: e1657
  year: 2016
  ident: 2024062300013506500_c22
  article-title: Ship noise extends to frequencies used for echolocation by endangered killer whales
  publication-title: PeerJ
  doi: 10.7717/peerj.1657
– start-page: 129
  volume-title: Fundamentals of Ocean Acoustics
  year: 2003
  ident: 2024062300013506500_c16
SSID ssj0005839
Score 2.419079
Snippet A radiation transport equation that describes the spatiotemporal evolution of the directional spectrum of underwater acoustic noise is presented and applied to...
SourceID proquest
pubmed
crossref
scitation
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3469
SubjectTerms Acoustics
Algorithms
Anisotropy
Ships
Title A directional spectrum evolution model for ship noise
URI http://dx.doi.org/10.1121/10.0019851
https://www.ncbi.nlm.nih.gov/pubmed/37354203
https://www.proquest.com/docview/2829429760
Volume 153
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1520-8524
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0005839
  issn: 0001-4966
  databaseCode: ADMLS
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7aDaXpIfSVZPtCobktTm1Jfuho0kcoTS5NIDcjyRIUWm9INjnk13f0WNvbDSXtxRgjWWY-Mf5G-jQDsE9zWSLvzpNSap5wkdpE0FYlVtqScyOEZO688_FJcXTGv57n50NtPX-6ZKEO9O2d50r-B1V8hri6U7L_gGz_UnyA94gvXhFhvN4L43oW_khhOc8fmry8_jUzN3HUUOfGKwm9KKub_7hakf4MB8N-LsUCtZ77Al8uS0hUdDqyGjZ21oL3qLqffTkYLx9QNsicepeIQaQIpU96lxgS-Ebsxw6O8VBZZd3z0iwsAjjSWMUksivprf_47fRiQB-G0KzJXKJS3_chbFB00ukENuqPx9--D5qdisV4JnxzzDeLvT8MI68yjLWw4Qk8RnIRdA4jKnH6FLaiwUkdAH0GD0z3HB55La6-egF5TUawkiWspIeVeFgJwkocrMTD-hLOPn86PTxKYnWLRKMfXSQ5Mj0mlaCF4UJRy2zVqopbU5q0LY3MVE5tZblEgmYyq2VRtRSDO4zRhWUqZ9sw6ead2QUiKbYymgqtFZISJsuiMEi8hCw0x15TeL-0SHMRkpg061afwt7SWA36GLdxJDuDc65xu-3IW8oincJOsGL_HlaynNOUTWG_N-tfB7mj2c38ctSkuWjtq3t98WvYHKb0G5ggGOYtcsSFehdnzm_AYGLc
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+directional+spectrum+evolution+model+for+ship+noise&rft.jtitle=The+Journal+of+the+Acoustical+Society+of+America&rft.au=Brown%2C+Michael+G.&rft.date=2023-06-01&rft.issn=0001-4966&rft.volume=153&rft.issue=6&rft.spage=3469&rft_id=info:doi/10.1121%2F10.0019851&rft.externalDBID=n%2Fa&rft.externalDocID=10_1121_10_0019851
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4966&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4966&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4966&client=summon