Impact of nano-scale cavities on hydrogen storage and retention in yttrium hydride

Here, in situ synchrotron high-energy x-ray diffraction experiments and detailed transmission electron microscopy (TEM) characterization were conducted on as-fabricated and neutron-irradiated yttrium hydrides. The high-resolution synchrotron x-ray diffraction revealed minor α yttrium and major δ ytt...

Full description

Saved in:
Bibliographic Details
Published inMaterialia Vol. 32; no. 1; p. 101933
Main Authors Nedim Cinbiz, M., Lach, Timothy, Topsakal, Mehmet, Le Coq, Annabelle, Linton, Kory
Format Journal Article
LanguageEnglish
Published United States Elsevier 01.12.2023
Subjects
Online AccessGet full text
ISSN2589-1529
2589-1529
DOI10.1016/j.mtla.2023.101933

Cover

Abstract Here, in situ synchrotron high-energy x-ray diffraction experiments and detailed transmission electron microscopy (TEM) characterization were conducted on as-fabricated and neutron-irradiated yttrium hydrides. The high-resolution synchrotron x-ray diffraction revealed minor α yttrium and major δ yttrium hydride phases in all specimens. Specimens were subject to heat treatments (heating-cooling cycles), and the intensity of α yttrium partially and completely disappeared in as-fabricated and neutron-irradiated specimens, respectively. The disappearance of α yttrium was unforeseen because hydrogen was expected to leave δ phase, causing an increase in α yttrium diffraction peak intensity. This observation indicated a surplus of hydrogen in the specimens where it was odd for hydride-forming early transition metal elements. The subsequent through-focus TEM characterization discovered nanometric cavities in both as-fabricated and neutron-irradiated yttrium hydride specimens for the first time. Two types of cavities were identified as fabrication-caused and irradiation-induced. The fabrication-caused cavities were associated with regions having linear deformation features, interfaces, and inclusions. The irradiation-induced cavities were observed as being formed isolated in the yttrium hydride phase. The presence of such nanometric cavities was considered as potential hydrogen storage pockets where the overall hydrogen storing capacity of yttrium hydride would be enhanced.
AbstractList Here, in situ synchrotron high-energy x-ray diffraction experiments and detailed transmission electron microscopy (TEM) characterization were conducted on as-fabricated and neutron-irradiated yttrium hydrides. The high-resolution synchrotron x-ray diffraction revealed minor α yttrium and major δ yttrium hydride phases in all specimens. Specimens were subject to heat treatments (heating-cooling cycles), and the intensity of α yttrium partially and completely disappeared in as-fabricated and neutron-irradiated specimens, respectively. The disappearance of α yttrium was unforeseen because hydrogen was expected to leave δ phase, causing an increase in α yttrium diffraction peak intensity. This observation indicated a surplus of hydrogen in the specimens where it was odd for hydride-forming early transition metal elements. The subsequent through-focus TEM characterization discovered nanometric cavities in both as-fabricated and neutron-irradiated yttrium hydride specimens for the first time. Two types of cavities were identified as fabrication-caused and irradiation-induced. The fabrication-caused cavities were associated with regions having linear deformation features, interfaces, and inclusions. The irradiation-induced cavities were observed as being formed isolated in the yttrium hydride phase. The presence of such nanometric cavities was considered as potential hydrogen storage pockets where the overall hydrogen storing capacity of yttrium hydride would be enhanced.
ArticleNumber 101933
Author Lach, Timothy
Le Coq, Annabelle
Nedim Cinbiz, M.
Linton, Kory
Topsakal, Mehmet
Author_xml – sequence: 1
  givenname: M.
  surname: Nedim Cinbiz
  fullname: Nedim Cinbiz, M.
– sequence: 2
  givenname: Timothy
  orcidid: 0000-0002-4745-4179
  surname: Lach
  fullname: Lach, Timothy
– sequence: 3
  givenname: Mehmet
  surname: Topsakal
  fullname: Topsakal, Mehmet
– sequence: 4
  givenname: Annabelle
  orcidid: 0000-0001-6482-690X
  surname: Le Coq
  fullname: Le Coq, Annabelle
– sequence: 5
  givenname: Kory
  orcidid: 0000-0002-3002-4623
  surname: Linton
  fullname: Linton, Kory
BackLink https://www.osti.gov/servlets/purl/2216997$$D View this record in Osti.gov
BookMark eNp9kE1LAzEQhoNUsNb-AU_B-9Z87XZzlOIXFATRc5hmZ9uU3aQkUei_d9d6EA-eZph53mF4LsnEB4-EXHO24IxXt_tFnztYCCbkONBSnpGpKGtd8FLoya_-gsxT2jPGBFdK1WpKXp_7A9hMQ0s9-FAkCx1SC58uO0w0eLo7NjFs0dOUQ4QtUvANjZjRZzesnafHnKP76L9J1-AVOW-hSzj_qTPy_nD_tnoq1i-Pz6u7dWElr3OhxFJgZYWVjUa5lJW2FQCvVckUY3XDeCmRNRvFK2gZswwtLzcAKIC3Flo5IzenuyFlZ5J1Ge3OBu_RZiMEr7ReDlB9gmwMKUVszcDB-HmO4DrDmRkdmr0ZHZrRoTk5HKLiT_QQXQ_x-F_oC9GMePQ
CitedBy_id crossref_primary_10_1016_j_jnucmat_2024_155586
crossref_primary_10_1016_j_jnucmat_2024_155374
Cites_doi 10.1016/0029-5493(70)90159-7
10.1016/j.ijhydene.2006.11.022
10.1016/j.ijhydene.2016.05.244
10.1016/j.jallcom.2020.154597
10.1080/00295450.2022.2043088
10.1016/j.ijhydene.2016.11.195
10.1016/j.jnucmat.2011.10.047
10.1016/j.ijhydene.2016.07.260
10.1080/00295450.2022.2118626
10.1016/0029-5493(75)90178-8
10.1016/j.actamat.2014.06.034
10.1016/j.nimb.2019.02.022
10.1016/j.jnucmat.2017.02.027
10.1016/j.jnucmat.2021.153396
10.1016/0022-3697(94)90571-1
10.1016/j.jnucmat.2018.07.026
10.1016/j.ijhydene.2021.07.058
10.1016/j.ijhydene.2019.01.224
10.1016/j.nme.2019.04.001
10.1007/s11837-021-04898-2
10.1016/0022-3115(93)90085-D
10.1016/j.jnucmat.2022.153722
10.1016/j.scriptamat.2018.08.044
10.1016/j.jnucmat.2020.152335
ContentType Journal Article
CorporateAuthor Idaho National Laboratory (INL), Idaho Falls, ID (United States)
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)
CorporateAuthor_xml – name: Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)
– name: Idaho National Laboratory (INL), Idaho Falls, ID (United States)
– name: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
DBID AAYXX
CITATION
OIOZB
OTOTI
DOI 10.1016/j.mtla.2023.101933
DatabaseName CrossRef
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2589-1529
ExternalDocumentID 2216997
10_1016_j_mtla_2023_101933
GroupedDBID 0R~
AABXZ
AAEDW
AAKOC
AALRI
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABJNI
ABMAC
ACDAQ
ACRLP
ACVFH
ADCNI
AEBSH
AEIPS
AEUPX
AEZYN
AFJKZ
AFPUW
AFRZQ
AFTJW
AFXIZ
AGCQF
AGRNS
AGUBO
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BNPGV
CITATION
EBS
EFJIC
EJD
FDB
FYGXN
M41
ROL
SPC
SPCBC
SSH
SSM
SSZ
T5K
~G-
AACTN
AFKWA
OIOZB
OTOTI
ID FETCH-LOGICAL-c318t-4272e6c2c3d9e37369c6aa184504008d0153e0db416af00c0ec15baae2a1fcaf3
ISSN 2589-1529
IngestDate Mon Nov 04 02:34:45 EST 2024
Thu Apr 24 23:00:17 EDT 2025
Tue Jul 01 02:13:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c318t-4272e6c2c3d9e37369c6aa184504008d0153e0db416af00c0ec15baae2a1fcaf3
Notes AC05-00OR22725; AC07-05ID14517; SC0012704
BNL-225331-2024-JAAM
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities (SUF)
USDOE Office of Science (SC), Nuclear Physics (NP)
USDOE Office of Nuclear Energy (NE)
USDOE Laboratory Directed Research and Development (LDRD) Program
ORCID 0000-0002-3002-4623
0000-0001-6482-690X
0000-0002-4745-4179
0000000230024623
0000000247454179
0000000346268515
000000016482690X
OpenAccessLink https://www.osti.gov/servlets/purl/2216997
ParticipantIDs osti_scitechconnect_2216997
crossref_citationtrail_10_1016_j_mtla_2023_101933
crossref_primary_10_1016_j_mtla_2023_101933
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Materialia
PublicationYear 2023
Publisher Elsevier
Publisher_xml – name: Elsevier
References Mueller (10.1016/j.mtla.2023.101933_bib0016) 1968
Ren (10.1016/j.mtla.2023.101933_bib0005) 2017; 42
Clowers (10.1016/j.mtla.2023.101933_bib0032) 2022; 565
Champlin (10.1016/j.mtla.2023.101933_bib0028) 2019
Field (10.1016/j.mtla.2023.101933_bib0029) 2019; 445
Cinbiz (10.1016/j.mtla.2023.101933_bib0030) 2023
Blackledge (10.1016/j.mtla.2023.101933_bib0018) 1968
Cinbiz (10.1016/j.mtla.2023.101933_bib0025) 2017; 487
Vetrano (10.1016/j.mtla.2023.101933_bib0007) 1971; 14
Agrawal (10.1016/j.mtla.2023.101933_bib0023) 2012; 421
Ouyang (10.1016/j.mtla.2023.101933_bib0012) 2020; 829
(10.1016/j.mtla.2023.101933_bib0008) 2020
Trellue (10.1016/j.mtla.2023.101933_bib0011) 2023; 209
Taylor (10.1016/j.mtla.2023.101933_bib0020) 2022; 558
Hu (10.1016/j.mtla.2023.101933_bib0027) 2020; 539
Rusman (10.1016/j.mtla.2023.101933_bib0006) 2016; 41
Van Houten (10.1016/j.mtla.2023.101933_bib0014) 1974; 31
Belmonte (10.1016/j.mtla.2023.101933_bib0002) 2016; 41
Griesche (10.1016/j.mtla.2023.101933_bib0022) 2014; 78
Broom (10.1016/j.mtla.2023.101933_bib0003) 2019; 44
Black (10.1016/j.mtla.2023.101933_bib0010) 2023; 209
Trellue (10.1016/j.mtla.2023.101933_bib0015) 2021; 73
Cinbiz (10.1016/j.mtla.2023.101933_bib0009) 2022
Ali (10.1016/j.mtla.2023.101933_bib0001) 2021; 46
Blackledge (10.1016/j.mtla.2023.101933_bib0017) 1968
Libowitz (10.1016/j.mtla.2023.101933_bib0019) 1994; 55
Nemanič (10.1016/j.mtla.2023.101933_bib0004) 2019; 19
Griffiths (10.1016/j.mtla.2023.101933_bib0026) 1993; 205
Cinbiz (10.1016/j.mtla.2023.101933_bib0021) 2022
Tunes (10.1016/j.mtla.2023.101933_bib0031) 2019; 158
Sakintuna (10.1016/j.mtla.2023.101933_bib0013) 2007; 32
Cinbiz (10.1016/j.mtla.2023.101933_bib0024) 2018; 509
References_xml – volume: 14
  start-page: 390
  issue: 3
  year: 1971
  ident: 10.1016/j.mtla.2023.101933_bib0007
  article-title: Hydrides as neutron moderator and reflector materials
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/0029-5493(70)90159-7
– volume: 32
  start-page: 1121
  issue: 9
  year: 2007
  ident: 10.1016/j.mtla.2023.101933_bib0013
  article-title: Metal hydride materials for solid hydrogen storage: a review
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2006.11.022
– volume: 41
  start-page: 12108
  year: 2016
  ident: 10.1016/j.mtla.2023.101933_bib0006
  article-title: A review on the current progress of metal hydrides material for solid-state hydrogen storage applications
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.05.244
– volume: 829
  year: 2020
  ident: 10.1016/j.mtla.2023.101933_bib0012
  article-title: Hydrogen storage in light-metal based systems: a review
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.154597
– start-page: 21
  year: 1968
  ident: 10.1016/j.mtla.2023.101933_bib0016
  article-title: Chapter 2 - hydrides in nuclear reactor applications
– volume: 209
  start-page: S123
  issue: sup1
  year: 2023
  ident: 10.1016/j.mtla.2023.101933_bib0011
  article-title: Advancements in yttrium hydride moderator development
  publication-title: Nucl. Technol.
  doi: 10.1080/00295450.2022.2043088
– volume: 42
  start-page: 289
  issue: 1
  year: 2017
  ident: 10.1016/j.mtla.2023.101933_bib0005
  article-title: Current research trends and perspectives on materials-based hydrogen storage solutions: a critical review
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.11.195
– start-page: 441
  year: 1968
  ident: 10.1016/j.mtla.2023.101933_bib0018
  article-title: Chapter 10 - yttrium and scandium hydrides
– volume: 421
  start-page: 47
  issue: 1
  year: 2012
  ident: 10.1016/j.mtla.2023.101933_bib0023
  article-title: Study of hydride blisters in Zr-alloy using neutron tomography
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2011.10.047
– volume: 41
  start-page: 21427
  issue: 46
  year: 2016
  ident: 10.1016/j.mtla.2023.101933_bib0002
  article-title: A comparison of energy storage from renewable sources through batteries and fuel cells: a case study in Turin, Italy
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.07.260
– volume: 209
  start-page: S1
  issue: sup1
  year: 2023
  ident: 10.1016/j.mtla.2023.101933_bib0010
  article-title: Prospects for nuclear microreactors: a review of the technology, economics, and regulatory considerations
  publication-title: Nucl. Technol.
  doi: 10.1080/00295450.2022.2118626
– volume: 31
  start-page: 434
  issue: 3
  year: 1974
  ident: 10.1016/j.mtla.2023.101933_bib0014
  article-title: Selected engineering and fabrication aspects of nuclear metal hydrides (Li, Ti, Zr, and Y)
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/0029-5493(75)90178-8
– start-page: 23
  year: 2020
  ident: 10.1016/j.mtla.2023.101933_bib0008
– start-page: 1
  year: 1968
  ident: 10.1016/j.mtla.2023.101933_bib0017
  article-title: CHAPTER 1 - an introduction to the nature and technology of hydrides
– start-page: 1
  year: 2022
  ident: 10.1016/j.mtla.2023.101933_bib0009
  article-title: Considerations for hydride moderator readiness in microreactors
  publication-title: Nucl. Technol.
– volume: 78
  start-page: 14
  year: 2014
  ident: 10.1016/j.mtla.2023.101933_bib0022
  article-title: Three-dimensional imaging of hydrogen blister in iron with neutron tomography
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.06.034
– year: 2022
  ident: 10.1016/j.mtla.2023.101933_bib0021
– volume: 445
  start-page: 46
  year: 2019
  ident: 10.1016/j.mtla.2023.101933_bib0029
  article-title: Evaluation of the continuous dilatometer method of silicon carbide thermometry for passive irradiation temperature determination
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B
  doi: 10.1016/j.nimb.2019.02.022
– volume: 487
  start-page: 247
  year: 2017
  ident: 10.1016/j.mtla.2023.101933_bib0025
  article-title: In situ synchrotron X-ray diffraction study of hydrides in Zircaloy-4 during thermomechanical cycling
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2017.02.027
– volume: 558
  year: 2022
  ident: 10.1016/j.mtla.2023.101933_bib0020
  article-title: Hydrogen and its detection in fusion and fission nuclear materials – a review
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2021.153396
– year: 2019
  ident: 10.1016/j.mtla.2023.101933_bib0028
– volume: 55
  start-page: 1461
  issue: 12
  year: 1994
  ident: 10.1016/j.mtla.2023.101933_bib0019
  article-title: Metallic hydrides; fundamental properties and applications
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(94)90571-1
– volume: 509
  start-page: 566
  year: 2018
  ident: 10.1016/j.mtla.2023.101933_bib0024
  article-title: Thermal expansion behavior of δ-zirconium hydrides: comparison of δ hydride powder and platelets
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2018.07.026
– volume: 46
  start-page: 31674
  issue: 62
  year: 2021
  ident: 10.1016/j.mtla.2023.101933_bib0001
  article-title: An overview of reactive hydride composite (RHC) for solid-state hydrogen storage materials
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.07.058
– year: 2023
  ident: 10.1016/j.mtla.2023.101933_bib0030
– volume: 44
  start-page: 7768
  issue: 15
  year: 2019
  ident: 10.1016/j.mtla.2023.101933_bib0003
  article-title: Concepts for improving hydrogen storage in nanoporous materials
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.01.224
– volume: 19
  start-page: 451
  year: 2019
  ident: 10.1016/j.mtla.2023.101933_bib0004
  article-title: Hydrogen permeation barriers: basic requirements, materials selection, deposition methods, and quality evaluation
  publication-title: Nucl. Mater. Energy
  doi: 10.1016/j.nme.2019.04.001
– volume: 73
  start-page: 3513
  issue: 11
  year: 2021
  ident: 10.1016/j.mtla.2023.101933_bib0015
  article-title: Effects of hydrogen redistribution at high temperatures in yttrium hydride moderator material
  publication-title: JOM
  doi: 10.1007/s11837-021-04898-2
– volume: 205
  start-page: 225
  year: 1993
  ident: 10.1016/j.mtla.2023.101933_bib0026
  article-title: Evolution of microstructure in hcp metals during irradiation
  publication-title: J. Nucl. Mater.
  doi: 10.1016/0022-3115(93)90085-D
– volume: 565
  year: 2022
  ident: 10.1016/j.mtla.2023.101933_bib0032
  article-title: Synergies between H, He and radiation damage in dual and triple ion irradiation of candidate fusion blanket materials
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2022.153722
– volume: 158
  start-page: 136
  year: 2019
  ident: 10.1016/j.mtla.2023.101933_bib0031
  article-title: Site specific dependencies of hydrogen concentrations in zirconium hydrides
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2018.08.044
– volume: 539
  year: 2020
  ident: 10.1016/j.mtla.2023.101933_bib0027
  article-title: Fabrication of yttrium hydride for high-temperature moderator application
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2020.152335
SSID ssj0002144484
Score 2.3024025
Snippet Here, in situ synchrotron high-energy x-ray diffraction experiments and detailed transmission electron microscopy (TEM) characterization were conducted on...
SourceID osti
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage 101933
SubjectTerms hydrogen
irradiation-induced defects
MATERIALS SCIENCE
metal hydrides
nanometric cavities
neutron irradiation
NUCLEAR PHYSICS AND RADIATION PHYSICS
radiation-damage
synchrotron diffraction
transmission electron microscopy
yttrium hydride
Title Impact of nano-scale cavities on hydrogen storage and retention in yttrium hydride
URI https://www.osti.gov/servlets/purl/2216997
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2F9MIFgQBRCmgP3CJH8fpzj1UFSgvJAbVSb9Z6dq26NHZJHaT213fGu7bTUFXAxbLW3_NW4_H4zRvGPkstUjBF7OUQhV4oQXupCowXRhriVKFPjKkaebGM52fhyXl0PhqdbLGWNk0-hbtH60r-B1UcQ1ypSvYfkO1PigO4jvjiEhHG5V9hfNyXOFaqqr0btDfRuH63Kqn0G-DiVq9rPHxCHEhi57RscoqTO47jbdOsy82q3bPUD3hBC9W0D1H2nnuJb7rV5Kis8rLNOy-mPZ9H2ZZSDvohd319o362PQUmC3OxGqqtv1O7vF-WUlkp-vththMQItghc3SVMYPjElEqPYwLrCs0j4w5zztkNrsZ9odDt7mFy-mquSKVKBHQkLTaGTtC2UL4sZTJM7YnEoyjxmzv8PjbfNln3EgcLmxbUPc346qoLOFv9xIPIpVxjR53K_I4fcleuE8Gfmjxf8VGpnrNfljseV3wAXveYc_rinfYc4c9R-x5jz0vK-6w5w77N-zs65fTo7nn-mN4gJ648UKRCBODgEBLEyRBLCFWCj_ZI_LMqcZILzAznWPMrYrZDGYG_ChXygjlF6CK4C0bV3Vl3jGuQAjjU7NWKEIIQYGWQVjoRKpWUGmf-Z0tMnDi8dTD5CrrWIKXGdkvI_tl1n77bNIfc22lU57c-4BMnGHgR-rFQDQvaDIH6vsntx6w58PE_MDGzXpjPmKs2OSf3CS4Bws_bC4
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+nano-scale+cavities+on+hydrogen+storage+and+retention+in+yttrium+hydride&rft.jtitle=Materialia&rft.au=Nedim+Cinbiz%2C+M.&rft.au=Lach%2C+Timothy&rft.au=Topsakal%2C+Mehmet&rft.au=Le+Coq%2C+Annabelle&rft.date=2023-12-01&rft.pub=Elsevier&rft.issn=2589-1529&rft.eissn=2589-1529&rft.volume=32&rft.issue=1&rft_id=info:doi/10.1016%2Fj.mtla.2023.101933&rft.externalDocID=2216997
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-1529&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-1529&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-1529&client=summon