Impact of nano-scale cavities on hydrogen storage and retention in yttrium hydride
Here, in situ synchrotron high-energy x-ray diffraction experiments and detailed transmission electron microscopy (TEM) characterization were conducted on as-fabricated and neutron-irradiated yttrium hydrides. The high-resolution synchrotron x-ray diffraction revealed minor α yttrium and major δ ytt...
Saved in:
Published in | Materialia Vol. 32; no. 1; p. 101933 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier
01.12.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2589-1529 2589-1529 |
DOI | 10.1016/j.mtla.2023.101933 |
Cover
Abstract | Here, in situ synchrotron high-energy x-ray diffraction experiments and detailed transmission electron microscopy (TEM) characterization were conducted on as-fabricated and neutron-irradiated yttrium hydrides. The high-resolution synchrotron x-ray diffraction revealed minor α yttrium and major δ yttrium hydride phases in all specimens. Specimens were subject to heat treatments (heating-cooling cycles), and the intensity of α yttrium partially and completely disappeared in as-fabricated and neutron-irradiated specimens, respectively. The disappearance of α yttrium was unforeseen because hydrogen was expected to leave δ phase, causing an increase in α yttrium diffraction peak intensity. This observation indicated a surplus of hydrogen in the specimens where it was odd for hydride-forming early transition metal elements. The subsequent through-focus TEM characterization discovered nanometric cavities in both as-fabricated and neutron-irradiated yttrium hydride specimens for the first time. Two types of cavities were identified as fabrication-caused and irradiation-induced. The fabrication-caused cavities were associated with regions having linear deformation features, interfaces, and inclusions. The irradiation-induced cavities were observed as being formed isolated in the yttrium hydride phase. The presence of such nanometric cavities was considered as potential hydrogen storage pockets where the overall hydrogen storing capacity of yttrium hydride would be enhanced. |
---|---|
AbstractList | Here, in situ synchrotron high-energy x-ray diffraction experiments and detailed transmission electron microscopy (TEM) characterization were conducted on as-fabricated and neutron-irradiated yttrium hydrides. The high-resolution synchrotron x-ray diffraction revealed minor α yttrium and major δ yttrium hydride phases in all specimens. Specimens were subject to heat treatments (heating-cooling cycles), and the intensity of α yttrium partially and completely disappeared in as-fabricated and neutron-irradiated specimens, respectively. The disappearance of α yttrium was unforeseen because hydrogen was expected to leave δ phase, causing an increase in α yttrium diffraction peak intensity. This observation indicated a surplus of hydrogen in the specimens where it was odd for hydride-forming early transition metal elements. The subsequent through-focus TEM characterization discovered nanometric cavities in both as-fabricated and neutron-irradiated yttrium hydride specimens for the first time. Two types of cavities were identified as fabrication-caused and irradiation-induced. The fabrication-caused cavities were associated with regions having linear deformation features, interfaces, and inclusions. The irradiation-induced cavities were observed as being formed isolated in the yttrium hydride phase. The presence of such nanometric cavities was considered as potential hydrogen storage pockets where the overall hydrogen storing capacity of yttrium hydride would be enhanced. |
ArticleNumber | 101933 |
Author | Lach, Timothy Le Coq, Annabelle Nedim Cinbiz, M. Linton, Kory Topsakal, Mehmet |
Author_xml | – sequence: 1 givenname: M. surname: Nedim Cinbiz fullname: Nedim Cinbiz, M. – sequence: 2 givenname: Timothy orcidid: 0000-0002-4745-4179 surname: Lach fullname: Lach, Timothy – sequence: 3 givenname: Mehmet surname: Topsakal fullname: Topsakal, Mehmet – sequence: 4 givenname: Annabelle orcidid: 0000-0001-6482-690X surname: Le Coq fullname: Le Coq, Annabelle – sequence: 5 givenname: Kory orcidid: 0000-0002-3002-4623 surname: Linton fullname: Linton, Kory |
BackLink | https://www.osti.gov/servlets/purl/2216997$$D View this record in Osti.gov |
BookMark | eNp9kE1LAzEQhoNUsNb-AU_B-9Z87XZzlOIXFATRc5hmZ9uU3aQkUei_d9d6EA-eZph53mF4LsnEB4-EXHO24IxXt_tFnztYCCbkONBSnpGpKGtd8FLoya_-gsxT2jPGBFdK1WpKXp_7A9hMQ0s9-FAkCx1SC58uO0w0eLo7NjFs0dOUQ4QtUvANjZjRZzesnafHnKP76L9J1-AVOW-hSzj_qTPy_nD_tnoq1i-Pz6u7dWElr3OhxFJgZYWVjUa5lJW2FQCvVckUY3XDeCmRNRvFK2gZswwtLzcAKIC3Flo5IzenuyFlZ5J1Ge3OBu_RZiMEr7ReDlB9gmwMKUVszcDB-HmO4DrDmRkdmr0ZHZrRoTk5HKLiT_QQXQ_x-F_oC9GMePQ |
CitedBy_id | crossref_primary_10_1016_j_jnucmat_2024_155586 crossref_primary_10_1016_j_jnucmat_2024_155374 |
Cites_doi | 10.1016/0029-5493(70)90159-7 10.1016/j.ijhydene.2006.11.022 10.1016/j.ijhydene.2016.05.244 10.1016/j.jallcom.2020.154597 10.1080/00295450.2022.2043088 10.1016/j.ijhydene.2016.11.195 10.1016/j.jnucmat.2011.10.047 10.1016/j.ijhydene.2016.07.260 10.1080/00295450.2022.2118626 10.1016/0029-5493(75)90178-8 10.1016/j.actamat.2014.06.034 10.1016/j.nimb.2019.02.022 10.1016/j.jnucmat.2017.02.027 10.1016/j.jnucmat.2021.153396 10.1016/0022-3697(94)90571-1 10.1016/j.jnucmat.2018.07.026 10.1016/j.ijhydene.2021.07.058 10.1016/j.ijhydene.2019.01.224 10.1016/j.nme.2019.04.001 10.1007/s11837-021-04898-2 10.1016/0022-3115(93)90085-D 10.1016/j.jnucmat.2022.153722 10.1016/j.scriptamat.2018.08.044 10.1016/j.jnucmat.2020.152335 |
ContentType | Journal Article |
CorporateAuthor | Idaho National Laboratory (INL), Idaho Falls, ID (United States) Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States) Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II) |
CorporateAuthor_xml | – name: Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II) – name: Idaho National Laboratory (INL), Idaho Falls, ID (United States) – name: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States) |
DBID | AAYXX CITATION OIOZB OTOTI |
DOI | 10.1016/j.mtla.2023.101933 |
DatabaseName | CrossRef OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2589-1529 |
ExternalDocumentID | 2216997 10_1016_j_mtla_2023_101933 |
GroupedDBID | 0R~ AABXZ AAEDW AAKOC AALRI AAQFI AATTM AAXKI AAXUO AAYWO AAYXX ABJNI ABMAC ACDAQ ACRLP ACVFH ADCNI AEBSH AEIPS AEUPX AEZYN AFJKZ AFPUW AFRZQ AFTJW AFXIZ AGCQF AGRNS AGUBO AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BNPGV CITATION EBS EFJIC EJD FDB FYGXN M41 ROL SPC SPCBC SSH SSM SSZ T5K ~G- AACTN AFKWA OIOZB OTOTI |
ID | FETCH-LOGICAL-c318t-4272e6c2c3d9e37369c6aa184504008d0153e0db416af00c0ec15baae2a1fcaf3 |
ISSN | 2589-1529 |
IngestDate | Mon Nov 04 02:34:45 EST 2024 Thu Apr 24 23:00:17 EDT 2025 Tue Jul 01 02:13:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c318t-4272e6c2c3d9e37369c6aa184504008d0153e0db416af00c0ec15baae2a1fcaf3 |
Notes | AC05-00OR22725; AC07-05ID14517; SC0012704 BNL-225331-2024-JAAM USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities (SUF) USDOE Office of Science (SC), Nuclear Physics (NP) USDOE Office of Nuclear Energy (NE) USDOE Laboratory Directed Research and Development (LDRD) Program |
ORCID | 0000-0002-3002-4623 0000-0001-6482-690X 0000-0002-4745-4179 0000000230024623 0000000247454179 0000000346268515 000000016482690X |
OpenAccessLink | https://www.osti.gov/servlets/purl/2216997 |
ParticipantIDs | osti_scitechconnect_2216997 crossref_citationtrail_10_1016_j_mtla_2023_101933 crossref_primary_10_1016_j_mtla_2023_101933 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Materialia |
PublicationYear | 2023 |
Publisher | Elsevier |
Publisher_xml | – name: Elsevier |
References | Mueller (10.1016/j.mtla.2023.101933_bib0016) 1968 Ren (10.1016/j.mtla.2023.101933_bib0005) 2017; 42 Clowers (10.1016/j.mtla.2023.101933_bib0032) 2022; 565 Champlin (10.1016/j.mtla.2023.101933_bib0028) 2019 Field (10.1016/j.mtla.2023.101933_bib0029) 2019; 445 Cinbiz (10.1016/j.mtla.2023.101933_bib0030) 2023 Blackledge (10.1016/j.mtla.2023.101933_bib0018) 1968 Cinbiz (10.1016/j.mtla.2023.101933_bib0025) 2017; 487 Vetrano (10.1016/j.mtla.2023.101933_bib0007) 1971; 14 Agrawal (10.1016/j.mtla.2023.101933_bib0023) 2012; 421 Ouyang (10.1016/j.mtla.2023.101933_bib0012) 2020; 829 (10.1016/j.mtla.2023.101933_bib0008) 2020 Trellue (10.1016/j.mtla.2023.101933_bib0011) 2023; 209 Taylor (10.1016/j.mtla.2023.101933_bib0020) 2022; 558 Hu (10.1016/j.mtla.2023.101933_bib0027) 2020; 539 Rusman (10.1016/j.mtla.2023.101933_bib0006) 2016; 41 Van Houten (10.1016/j.mtla.2023.101933_bib0014) 1974; 31 Belmonte (10.1016/j.mtla.2023.101933_bib0002) 2016; 41 Griesche (10.1016/j.mtla.2023.101933_bib0022) 2014; 78 Broom (10.1016/j.mtla.2023.101933_bib0003) 2019; 44 Black (10.1016/j.mtla.2023.101933_bib0010) 2023; 209 Trellue (10.1016/j.mtla.2023.101933_bib0015) 2021; 73 Cinbiz (10.1016/j.mtla.2023.101933_bib0009) 2022 Ali (10.1016/j.mtla.2023.101933_bib0001) 2021; 46 Blackledge (10.1016/j.mtla.2023.101933_bib0017) 1968 Libowitz (10.1016/j.mtla.2023.101933_bib0019) 1994; 55 Nemanič (10.1016/j.mtla.2023.101933_bib0004) 2019; 19 Griffiths (10.1016/j.mtla.2023.101933_bib0026) 1993; 205 Cinbiz (10.1016/j.mtla.2023.101933_bib0021) 2022 Tunes (10.1016/j.mtla.2023.101933_bib0031) 2019; 158 Sakintuna (10.1016/j.mtla.2023.101933_bib0013) 2007; 32 Cinbiz (10.1016/j.mtla.2023.101933_bib0024) 2018; 509 |
References_xml | – volume: 14 start-page: 390 issue: 3 year: 1971 ident: 10.1016/j.mtla.2023.101933_bib0007 article-title: Hydrides as neutron moderator and reflector materials publication-title: Nucl. Eng. Des. doi: 10.1016/0029-5493(70)90159-7 – volume: 32 start-page: 1121 issue: 9 year: 2007 ident: 10.1016/j.mtla.2023.101933_bib0013 article-title: Metal hydride materials for solid hydrogen storage: a review publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2006.11.022 – volume: 41 start-page: 12108 year: 2016 ident: 10.1016/j.mtla.2023.101933_bib0006 article-title: A review on the current progress of metal hydrides material for solid-state hydrogen storage applications publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.05.244 – volume: 829 year: 2020 ident: 10.1016/j.mtla.2023.101933_bib0012 article-title: Hydrogen storage in light-metal based systems: a review publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.154597 – start-page: 21 year: 1968 ident: 10.1016/j.mtla.2023.101933_bib0016 article-title: Chapter 2 - hydrides in nuclear reactor applications – volume: 209 start-page: S123 issue: sup1 year: 2023 ident: 10.1016/j.mtla.2023.101933_bib0011 article-title: Advancements in yttrium hydride moderator development publication-title: Nucl. Technol. doi: 10.1080/00295450.2022.2043088 – volume: 42 start-page: 289 issue: 1 year: 2017 ident: 10.1016/j.mtla.2023.101933_bib0005 article-title: Current research trends and perspectives on materials-based hydrogen storage solutions: a critical review publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.11.195 – start-page: 441 year: 1968 ident: 10.1016/j.mtla.2023.101933_bib0018 article-title: Chapter 10 - yttrium and scandium hydrides – volume: 421 start-page: 47 issue: 1 year: 2012 ident: 10.1016/j.mtla.2023.101933_bib0023 article-title: Study of hydride blisters in Zr-alloy using neutron tomography publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2011.10.047 – volume: 41 start-page: 21427 issue: 46 year: 2016 ident: 10.1016/j.mtla.2023.101933_bib0002 article-title: A comparison of energy storage from renewable sources through batteries and fuel cells: a case study in Turin, Italy publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.07.260 – volume: 209 start-page: S1 issue: sup1 year: 2023 ident: 10.1016/j.mtla.2023.101933_bib0010 article-title: Prospects for nuclear microreactors: a review of the technology, economics, and regulatory considerations publication-title: Nucl. Technol. doi: 10.1080/00295450.2022.2118626 – volume: 31 start-page: 434 issue: 3 year: 1974 ident: 10.1016/j.mtla.2023.101933_bib0014 article-title: Selected engineering and fabrication aspects of nuclear metal hydrides (Li, Ti, Zr, and Y) publication-title: Nucl. Eng. Des. doi: 10.1016/0029-5493(75)90178-8 – start-page: 23 year: 2020 ident: 10.1016/j.mtla.2023.101933_bib0008 – start-page: 1 year: 1968 ident: 10.1016/j.mtla.2023.101933_bib0017 article-title: CHAPTER 1 - an introduction to the nature and technology of hydrides – start-page: 1 year: 2022 ident: 10.1016/j.mtla.2023.101933_bib0009 article-title: Considerations for hydride moderator readiness in microreactors publication-title: Nucl. Technol. – volume: 78 start-page: 14 year: 2014 ident: 10.1016/j.mtla.2023.101933_bib0022 article-title: Three-dimensional imaging of hydrogen blister in iron with neutron tomography publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.06.034 – year: 2022 ident: 10.1016/j.mtla.2023.101933_bib0021 – volume: 445 start-page: 46 year: 2019 ident: 10.1016/j.mtla.2023.101933_bib0029 article-title: Evaluation of the continuous dilatometer method of silicon carbide thermometry for passive irradiation temperature determination publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B doi: 10.1016/j.nimb.2019.02.022 – volume: 487 start-page: 247 year: 2017 ident: 10.1016/j.mtla.2023.101933_bib0025 article-title: In situ synchrotron X-ray diffraction study of hydrides in Zircaloy-4 during thermomechanical cycling publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2017.02.027 – volume: 558 year: 2022 ident: 10.1016/j.mtla.2023.101933_bib0020 article-title: Hydrogen and its detection in fusion and fission nuclear materials – a review publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2021.153396 – year: 2019 ident: 10.1016/j.mtla.2023.101933_bib0028 – volume: 55 start-page: 1461 issue: 12 year: 1994 ident: 10.1016/j.mtla.2023.101933_bib0019 article-title: Metallic hydrides; fundamental properties and applications publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(94)90571-1 – volume: 509 start-page: 566 year: 2018 ident: 10.1016/j.mtla.2023.101933_bib0024 article-title: Thermal expansion behavior of δ-zirconium hydrides: comparison of δ hydride powder and platelets publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2018.07.026 – volume: 46 start-page: 31674 issue: 62 year: 2021 ident: 10.1016/j.mtla.2023.101933_bib0001 article-title: An overview of reactive hydride composite (RHC) for solid-state hydrogen storage materials publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.07.058 – year: 2023 ident: 10.1016/j.mtla.2023.101933_bib0030 – volume: 44 start-page: 7768 issue: 15 year: 2019 ident: 10.1016/j.mtla.2023.101933_bib0003 article-title: Concepts for improving hydrogen storage in nanoporous materials publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.01.224 – volume: 19 start-page: 451 year: 2019 ident: 10.1016/j.mtla.2023.101933_bib0004 article-title: Hydrogen permeation barriers: basic requirements, materials selection, deposition methods, and quality evaluation publication-title: Nucl. Mater. Energy doi: 10.1016/j.nme.2019.04.001 – volume: 73 start-page: 3513 issue: 11 year: 2021 ident: 10.1016/j.mtla.2023.101933_bib0015 article-title: Effects of hydrogen redistribution at high temperatures in yttrium hydride moderator material publication-title: JOM doi: 10.1007/s11837-021-04898-2 – volume: 205 start-page: 225 year: 1993 ident: 10.1016/j.mtla.2023.101933_bib0026 article-title: Evolution of microstructure in hcp metals during irradiation publication-title: J. Nucl. Mater. doi: 10.1016/0022-3115(93)90085-D – volume: 565 year: 2022 ident: 10.1016/j.mtla.2023.101933_bib0032 article-title: Synergies between H, He and radiation damage in dual and triple ion irradiation of candidate fusion blanket materials publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2022.153722 – volume: 158 start-page: 136 year: 2019 ident: 10.1016/j.mtla.2023.101933_bib0031 article-title: Site specific dependencies of hydrogen concentrations in zirconium hydrides publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2018.08.044 – volume: 539 year: 2020 ident: 10.1016/j.mtla.2023.101933_bib0027 article-title: Fabrication of yttrium hydride for high-temperature moderator application publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2020.152335 |
SSID | ssj0002144484 |
Score | 2.3024025 |
Snippet | Here, in situ synchrotron high-energy x-ray diffraction experiments and detailed transmission electron microscopy (TEM) characterization were conducted on... |
SourceID | osti crossref |
SourceType | Open Access Repository Enrichment Source Index Database |
StartPage | 101933 |
SubjectTerms | hydrogen irradiation-induced defects MATERIALS SCIENCE metal hydrides nanometric cavities neutron irradiation NUCLEAR PHYSICS AND RADIATION PHYSICS radiation-damage synchrotron diffraction transmission electron microscopy yttrium hydride |
Title | Impact of nano-scale cavities on hydrogen storage and retention in yttrium hydride |
URI | https://www.osti.gov/servlets/purl/2216997 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2F9MIFgQBRCmgP3CJH8fpzj1UFSgvJAbVSb9Z6dq26NHZJHaT213fGu7bTUFXAxbLW3_NW4_H4zRvGPkstUjBF7OUQhV4oQXupCowXRhriVKFPjKkaebGM52fhyXl0PhqdbLGWNk0-hbtH60r-B1UcQ1ypSvYfkO1PigO4jvjiEhHG5V9hfNyXOFaqqr0btDfRuH63Kqn0G-DiVq9rPHxCHEhi57RscoqTO47jbdOsy82q3bPUD3hBC9W0D1H2nnuJb7rV5Kis8rLNOy-mPZ9H2ZZSDvohd319o362PQUmC3OxGqqtv1O7vF-WUlkp-vththMQItghc3SVMYPjElEqPYwLrCs0j4w5zztkNrsZ9odDt7mFy-mquSKVKBHQkLTaGTtC2UL4sZTJM7YnEoyjxmzv8PjbfNln3EgcLmxbUPc346qoLOFv9xIPIpVxjR53K_I4fcleuE8Gfmjxf8VGpnrNfljseV3wAXveYc_rinfYc4c9R-x5jz0vK-6w5w77N-zs65fTo7nn-mN4gJ648UKRCBODgEBLEyRBLCFWCj_ZI_LMqcZILzAznWPMrYrZDGYG_ChXygjlF6CK4C0bV3Vl3jGuQAjjU7NWKEIIQYGWQVjoRKpWUGmf-Z0tMnDi8dTD5CrrWIKXGdkvI_tl1n77bNIfc22lU57c-4BMnGHgR-rFQDQvaDIH6vsntx6w58PE_MDGzXpjPmKs2OSf3CS4Bws_bC4 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+nano-scale+cavities+on+hydrogen+storage+and+retention+in+yttrium+hydride&rft.jtitle=Materialia&rft.au=Nedim+Cinbiz%2C+M.&rft.au=Lach%2C+Timothy&rft.au=Topsakal%2C+Mehmet&rft.au=Le+Coq%2C+Annabelle&rft.date=2023-12-01&rft.pub=Elsevier&rft.issn=2589-1529&rft.eissn=2589-1529&rft.volume=32&rft.issue=1&rft_id=info:doi/10.1016%2Fj.mtla.2023.101933&rft.externalDocID=2216997 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-1529&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-1529&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-1529&client=summon |