Student psychology based optimization algorithm: A new population based optimization algorithm for solving optimization problems

•A new student psychology based optimization (SPBO) algorithm is proposed.•Effectiveness of the SPBO is demonstrated through benchmark function test.•The proposed algorithm is applied to solve CEC 2015 benchmark functions.•The obtained results are compared with other state-of-art algorithms.•SPBO pe...

Full description

Saved in:
Bibliographic Details
Published inAdvances in engineering software (1992) Vol. 146; p. 102804
Main Authors Das, Bikash, Mukherjee, V., Das, Debapriya
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2020
Subjects
Online AccessGet full text
ISSN0965-9978
DOI10.1016/j.advengsoft.2020.102804

Cover

Abstract •A new student psychology based optimization (SPBO) algorithm is proposed.•Effectiveness of the SPBO is demonstrated through benchmark function test.•The proposed algorithm is applied to solve CEC 2015 benchmark functions.•The obtained results are compared with other state-of-art algorithms.•SPBO perform well in the entire test and offers faster convergence mobility. In this article, a new metaheuristic optimization algorithm (named as, student psychology based optimization (SPBO)) is proposed. The proposed SPBO algorithm is based on the psychology of the students who are trying to give more effort to improve their performance in the examination up to the level for becoming the best student in the class. Performance of the proposed SPBO is analyzed while applying the algorithm to solve thirteen 50 dimensional benchmark functions as well as fifteen CEC 2015 benchmark problems. Results of the SPBO is compared to the performance of ten other state-of-the-art optimization algorithms such as particle swarm optimization, teaching learning based optimization, cuckoo search algorithm, symbiotic organism search, covariant matrix adaptation with evolution strategy, success-history based adaptive differential evolution, grey wolf optimization, butterfly optimization algorithm, poor and rich optimization algorithm, and barnacles mating optimizer. For fair analysis, performances of all these algorithms are analyzed based on the optimum results obtained as well as based on convergence mobility of the objective function. Pairwise and multiple comparisons are performed to analyze the statistical performance of the proposed method. From this study, it may be established that the proposed SPBO works very well in all the studied test cases and it is able to obtain an optimum solution with faster convergence mobility.
AbstractList •A new student psychology based optimization (SPBO) algorithm is proposed.•Effectiveness of the SPBO is demonstrated through benchmark function test.•The proposed algorithm is applied to solve CEC 2015 benchmark functions.•The obtained results are compared with other state-of-art algorithms.•SPBO perform well in the entire test and offers faster convergence mobility. In this article, a new metaheuristic optimization algorithm (named as, student psychology based optimization (SPBO)) is proposed. The proposed SPBO algorithm is based on the psychology of the students who are trying to give more effort to improve their performance in the examination up to the level for becoming the best student in the class. Performance of the proposed SPBO is analyzed while applying the algorithm to solve thirteen 50 dimensional benchmark functions as well as fifteen CEC 2015 benchmark problems. Results of the SPBO is compared to the performance of ten other state-of-the-art optimization algorithms such as particle swarm optimization, teaching learning based optimization, cuckoo search algorithm, symbiotic organism search, covariant matrix adaptation with evolution strategy, success-history based adaptive differential evolution, grey wolf optimization, butterfly optimization algorithm, poor and rich optimization algorithm, and barnacles mating optimizer. For fair analysis, performances of all these algorithms are analyzed based on the optimum results obtained as well as based on convergence mobility of the objective function. Pairwise and multiple comparisons are performed to analyze the statistical performance of the proposed method. From this study, it may be established that the proposed SPBO works very well in all the studied test cases and it is able to obtain an optimum solution with faster convergence mobility.
ArticleNumber 102804
Author Das, Debapriya
Das, Bikash
Mukherjee, V.
Author_xml – sequence: 1
  givenname: Bikash
  surname: Das
  fullname: Das, Bikash
  email: bcazdas@gmail.com
  organization: Department of Electrical Engineering, Government College of Engineering and Textile Technology, Berhampore, West Bengal, India
– sequence: 2
  givenname: V.
  surname: Mukherjee
  fullname: Mukherjee, V.
  email: vivek_agamani@yahoo.com
  organization: Department of Electrical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
– sequence: 3
  givenname: Debapriya
  surname: Das
  fullname: Das, Debapriya
  email: ddas@ee.iitkgp.ernet.in
  organization: Department of Electrical Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
BookMark eNqNkMtKAzEUhrOoYKu-Q15gapK5NHEh1OINCi7UdchkzkxTZpIhSSt15aPbOoLoQl0dOOf_PzjfBI2ss4AQpmRKCS3O11NVbcE2wdVxygg7rBkn2QiNiSjyRIgZP0aTENaE0IwwOkZvj3FTgY24Dzu9cq1rdrhUASrs-mg686qicRartnHexFV3gefYwgvuXb9ph9tvcVw7j4Nrt8Y23yO9d2ULXThFR7VqA5x9zhP0fHP9tLhLlg-394v5MtEp5TFhldIq55wAh7QgJauAMsUYAE-VqmkJuWCCcsELUBlkJBez2b5T5mmRi5qmJ4gPXO1dCB5q2XvTKb-TlMiDPbmWX_bkwZ4c7O2rlz-q2sSPL6JXpv0P4GoAwP7BrQEvgzZgNVTGg46ycuZvyDvtZpwJ
CitedBy_id crossref_primary_10_1016_j_asoc_2022_109729
crossref_primary_10_1016_j_cma_2024_117588
crossref_primary_10_1080_15435075_2023_2194395
crossref_primary_10_1080_01430750_2022_2140193
crossref_primary_10_1007_s12652_025_04954_8
crossref_primary_10_1111_exsy_12843
crossref_primary_10_3390_app12168260
crossref_primary_10_1007_s13042_024_02361_7
crossref_primary_10_1016_j_asoc_2022_109847
crossref_primary_10_1016_j_eswa_2021_115305
crossref_primary_10_1007_s00521_024_10782_2
crossref_primary_10_1016_j_aei_2024_102516
crossref_primary_10_1155_2022_3082933
crossref_primary_10_1016_j_dajour_2023_100360
crossref_primary_10_1142_S0218126623501530
crossref_primary_10_1007_s11831_022_09800_0
crossref_primary_10_1038_s41598_025_91270_y
crossref_primary_10_1080_01430750_2022_2111354
crossref_primary_10_1016_j_sysarc_2023_102871
crossref_primary_10_1142_S0218126624501111
crossref_primary_10_1080_08839514_2021_1985050
crossref_primary_10_1109_ACCESS_2020_3042196
crossref_primary_10_1016_j_bspc_2021_102925
crossref_primary_10_1016_j_cma_2022_115676
crossref_primary_10_1016_j_advengsoft_2021_103009
crossref_primary_10_3390_electronics12112487
crossref_primary_10_1007_s43684_024_00077_7
crossref_primary_10_1016_j_apenergy_2024_122707
crossref_primary_10_1002_acs_3415
crossref_primary_10_1038_s41598_024_77115_0
crossref_primary_10_1007_s00500_020_05227_6
crossref_primary_10_1108_JEDT_11_2020_0468
crossref_primary_10_1016_j_envc_2023_100720
crossref_primary_10_3233_JIFS_213233
crossref_primary_10_1007_s00521_023_08391_6
crossref_primary_10_1080_13682199_2023_2216976
crossref_primary_10_32604_cmes_2024_055860
crossref_primary_10_1016_j_knosys_2022_108164
crossref_primary_10_1016_j_knosys_2022_108320
crossref_primary_10_1142_S0219691322500503
crossref_primary_10_1016_j_eswa_2023_120905
crossref_primary_10_1007_s11276_022_03150_2
crossref_primary_10_1007_s11227_024_06561_4
crossref_primary_10_3934_mbe_2024202
crossref_primary_10_3934_mbe_2024322
crossref_primary_10_1080_0305215X_2024_2329988
crossref_primary_10_1007_s12065_024_01003_9
crossref_primary_10_1177_0958305X231217635
crossref_primary_10_3846_jcem_2023_20399
crossref_primary_10_1007_s10462_024_11104_7
crossref_primary_10_1016_j_ijhydene_2024_03_169
crossref_primary_10_1016_j_eswa_2023_120594
crossref_primary_10_1109_ACCESS_2023_3308825
crossref_primary_10_3390_electronics11244137
crossref_primary_10_1007_s11276_022_03103_9
crossref_primary_10_1016_j_ctta_2024_100154
crossref_primary_10_1007_s00500_023_08746_0
crossref_primary_10_1007_s13369_023_07993_5
crossref_primary_10_1016_j_seta_2022_102744
crossref_primary_10_1080_13682199_2023_2187518
crossref_primary_10_1016_j_jtice_2024_105796
crossref_primary_10_1038_s41598_024_54910_3
crossref_primary_10_1109_ACCESS_2023_3311271
crossref_primary_10_1515_cppm_2024_0006
crossref_primary_10_1007_s13369_021_06307_x
crossref_primary_10_1016_j_apenergy_2022_118851
crossref_primary_10_3390_app12157838
crossref_primary_10_1016_j_matcom_2022_01_018
crossref_primary_10_1063_5_0108340
crossref_primary_10_1007_s10586_024_04881_x
crossref_primary_10_1093_jcde_qwad094
crossref_primary_10_3390_math12030415
crossref_primary_10_1016_j_knosys_2024_111737
crossref_primary_10_1002_oca_3067
crossref_primary_10_3390_electronics12041058
crossref_primary_10_3390_pr11051513
crossref_primary_10_3390_biomimetics10030176
crossref_primary_10_1002_cpe_6263
crossref_primary_10_1016_j_energy_2024_131915
crossref_primary_10_1016_j_aej_2023_12_054
crossref_primary_10_1016_j_ijhydene_2024_12_244
crossref_primary_10_1002_er_7684
crossref_primary_10_1016_j_measurement_2021_110545
crossref_primary_10_1016_j_heliyon_2024_e30757
crossref_primary_10_1007_s10462_024_10729_y
crossref_primary_10_3390_electronics10172057
crossref_primary_10_1016_j_engappai_2024_109370
crossref_primary_10_1002_est2_70136
crossref_primary_10_1016_j_knosys_2023_110470
crossref_primary_10_1016_j_advengsoft_2022_103321
crossref_primary_10_1007_s11042_024_18579_0
crossref_primary_10_1007_s00521_021_06185_2
crossref_primary_10_1002_cpe_7545
crossref_primary_10_1016_j_eswa_2024_123934
crossref_primary_10_3390_biomimetics9040205
crossref_primary_10_1016_j_jocs_2022_101886
crossref_primary_10_1039_D2DD00040G
crossref_primary_10_1007_s11227_024_06105_w
crossref_primary_10_1038_s41598_022_22170_8
crossref_primary_10_1590_jatm_v17_1362
crossref_primary_10_1093_comjnl_bxac096
crossref_primary_10_3390_math10132329
crossref_primary_10_1007_s10462_022_10281_7
crossref_primary_10_1016_j_cma_2023_115878
crossref_primary_10_1016_j_ijhydene_2021_09_009
crossref_primary_10_1142_S0219649224500400
crossref_primary_10_1155_2022_5191758
crossref_primary_10_3390_en15093433
crossref_primary_10_1049_gtd2_13157
crossref_primary_10_1016_j_epsr_2022_108677
crossref_primary_10_1016_j_eswa_2023_122200
crossref_primary_10_1007_s10489_022_03171_6
crossref_primary_10_1016_j_engappai_2022_105082
crossref_primary_10_1038_s41598_024_61434_3
crossref_primary_10_1016_j_epsr_2024_111347
crossref_primary_10_1016_j_dsp_2024_104516
crossref_primary_10_3390_math12030435
crossref_primary_10_1016_j_engappai_2023_106697
crossref_primary_10_1002_int_22765
crossref_primary_10_3390_electronics11111675
crossref_primary_10_1016_j_cma_2024_117251
crossref_primary_10_1016_j_jksuci_2021_06_015
crossref_primary_10_1177_0958305X221117518
crossref_primary_10_1016_j_cie_2021_107739
crossref_primary_10_1016_j_tws_2024_112631
crossref_primary_10_1016_j_eswa_2023_120437
crossref_primary_10_1109_JIOT_2024_3476248
crossref_primary_10_1016_j_eswa_2022_118618
crossref_primary_10_1016_j_advengsoft_2020_102885
crossref_primary_10_1002_2050_7038_13230
crossref_primary_10_1007_s10098_023_02542_y
crossref_primary_10_1002_cpe_7206
crossref_primary_10_1007_s42044_023_00160_x
crossref_primary_10_1155_2021_9931677
crossref_primary_10_1002_dac_5677
crossref_primary_10_3390_biomimetics9080486
crossref_primary_10_1016_j_measurement_2022_111332
crossref_primary_10_1177_0958305X231225101
crossref_primary_10_1109_ACCESS_2022_3157400
crossref_primary_10_1109_TIM_2023_3324345
crossref_primary_10_3390_math12070965
crossref_primary_10_1016_j_engappai_2022_104805
crossref_primary_10_1007_s41660_021_00177_4
crossref_primary_10_1016_j_jclepro_2021_128498
crossref_primary_10_1016_j_eswa_2021_116468
crossref_primary_10_1016_j_energy_2023_128545
crossref_primary_10_1016_j_knosys_2021_106924
crossref_primary_10_1155_2024_3176356
crossref_primary_10_1016_j_eswa_2022_118967
crossref_primary_10_1002_2050_7038_12593
crossref_primary_10_1002_adts_202100147
crossref_primary_10_1007_s00366_020_01248_9
crossref_primary_10_1016_j_enconman_2021_114470
crossref_primary_10_1093_jcde_qwac135
crossref_primary_10_3390_biomimetics8040377
crossref_primary_10_1016_j_swevo_2024_101656
crossref_primary_10_1080_02286203_2023_2281181
crossref_primary_10_1155_2024_5570228
crossref_primary_10_1007_s10586_024_04821_9
crossref_primary_10_1016_j_advengsoft_2025_103866
crossref_primary_10_3390_math11092217
crossref_primary_10_3390_math11183861
crossref_primary_10_29132_ijpas_855869
crossref_primary_10_1007_s10115_023_01931_5
crossref_primary_10_1016_j_eswa_2024_123267
crossref_primary_10_1038_s41598_022_18001_5
crossref_primary_10_1080_03772063_2024_2352644
crossref_primary_10_1016_j_compgeo_2023_105707
crossref_primary_10_17275_per_22_32_9_2
crossref_primary_10_1007_s10489_024_05941_w
crossref_primary_10_3233_JIFS_221391
crossref_primary_10_1016_j_engappai_2023_106959
crossref_primary_10_1007_s12652_022_04463_y
crossref_primary_10_1007_s11831_023_10030_1
crossref_primary_10_3389_fenrg_2024_1355608
crossref_primary_10_1515_jisys_2023_0269
crossref_primary_10_1080_15567036_2024_2370336
crossref_primary_10_1016_j_aei_2024_102783
crossref_primary_10_1186_s40537_024_00917_6
crossref_primary_10_1007_s11220_023_00434_5
crossref_primary_10_3390_en15196908
crossref_primary_10_1016_j_chemosphere_2024_142859
crossref_primary_10_1016_j_cma_2023_116238
crossref_primary_10_1016_j_egyr_2020_11_168
crossref_primary_10_1038_s41598_021_01018_7
crossref_primary_10_1016_j_artmed_2022_102299
crossref_primary_10_1016_j_ins_2024_120316
Cites_doi 10.1016/j.compstruc.2014.03.007
10.1109/TSMCB.2010.2046035
10.1016/j.advengsoft.2013.12.007
10.1007/s00521-015-1920-1
10.1016/j.advengsoft.2005.04.005
10.1007/s00500-018-3102-4
10.1287/ijoc.2.1.4
10.1016/j.cad.2010.12.015
10.1016/j.swevo.2011.02.002
10.1016/j.advengsoft.2015.11.004
10.1504/IJBIC.2011.042259
10.1016/j.asoc.2015.04.048
10.1016/j.ijepes.2013.03.032
10.1109/4235.585892
10.1109/MCS.2002.1004010
10.1016/j.ijepes.2004.01.002
10.1016/j.advengsoft.2017.01.004
10.1016/j.asoc.2007.07.002
10.1016/j.eswa.2019.05.035
10.1016/j.knosys.2014.07.025
10.1016/j.ins.2009.03.004
10.1016/j.advengsoft.2013.03.004
10.1287/ijoc.1.3.190
10.1016/j.engappai.2019.08.025
10.1016/j.engappai.2019.103249
10.1016/j.cma.2004.09.007
10.1016/j.ijepes.2010.11.021
10.1016/j.engappai.2019.103330
10.1016/j.asoc.2012.12.025
10.1007/s00521-013-1433-8
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.advengsoft.2020.102804
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
ExternalDocumentID 10_1016_j_advengsoft_2020_102804
S0965997820301484
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c318t-2daca5880e8e360b2de12a22ee83aaf1be592918986ea4e405977dacb53659f13
IEDL.DBID .~1
ISSN 0965-9978
IngestDate Thu Apr 24 23:07:22 EDT 2025
Sat Oct 25 06:15:32 EDT 2025
Fri Feb 23 02:46:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Benchmark function
Optimization algorithm
CEC 2015
Global optimum solution
Student psychology based optimization (SPBO)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c318t-2daca5880e8e360b2de12a22ee83aaf1be592918986ea4e405977dacb53659f13
ParticipantIDs crossref_primary_10_1016_j_advengsoft_2020_102804
crossref_citationtrail_10_1016_j_advengsoft_2020_102804
elsevier_sciencedirect_doi_10_1016_j_advengsoft_2020_102804
PublicationCentury 2000
PublicationDate August 2020
2020-08-00
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationTitle Advances in engineering software (1992)
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mirjalini (bib0033) 2016; 27
Glover (bib0005) 1989; 1
Tanabe, Fukunaga (bib0041) 2013
Derrac, Garcia, Molina, Herrera (bib0043) 2011; 1
Samarah Moosavi, Khatibi Bardsiri (bib0032) 2017; 60
Kennedy, Eberhart (bib0002) 1995
Glover (bib0006) 1990; 2
Price, Rainer, Lampinen (bib0015) 2005
Kao, Zahara (bib0027) 2008; 8
Arora, Singh (bib0034) 2019; 23
Hayyolalam, Pourhaji Kazem (bib0037) 2020; 87
Li, Zhang, Yin (bib0021) 2014; 24
Balochian, Baloochian (bib0035) 2019; 134
Yang, Deb (bib0018) 2009
Saremi, Mirjalili, Lewis (bib0031) 2017; 105
Kaveh, Farhoudi (bib0022) 2013; 59
Swarup (bib0039) 2005
Rao, Savsani, Vakharia (bib0016) 2011; 43
Samarah Moosavi, Khatibi Bardsiri (bib0036) 2019; 86
Merrikh-Bayat (bib0030) 2015; 33
Cheng, Proyogo (bib0029) 2014; 139
Eusuff, Lansey (bib0014) 2003; 129
De Castro, Timmis (bib0012) 2002
Rao, Patel (bib0017) 2013; 4
Erol, Eksin (bib0010) 2006; 37
Sulaiman, Mustaffa, Saari, Daniyal (bib0038) 2020; 87
Reddy, Panigrahi, Kundu, Mukherjee, Debchoudhury (bib0040) 2013; 53
Yang, Deb (bib0019) 2010; 1
Passino (bib0013) 2002; 22
Mirjalili, Mirjalili, Lewis (bib0020) 2014; 69
Das, Mukhopadhyay, Roy, Abraham, Panigrahi (bib0008) 2011; 41
Salimi (bib0025) 2015; 75
Holland (bib0001) 1975
Yang (bib0009) 2011; 3
Yang (bib0024) 2012; 7445
Dorigo, Gambardella (bib0004) 1997; 1
Hsiao, Chen, Chien (bib0028) 2004; 26
Lee, Geem (bib0007) 2005; 194
Rashedi, Nezamabadi-pour, Saryazdi (bib0026) 2009; 179
Rao, Narasimham, Ramalingaeaju (bib0011) 2011; 33
Chen, Liu, Zhang, Liang, Suganthan, Qu (bib0042) 2015
Kang, Li, Li (bib0003) 2013; 13
Li, Zhao, Weng, Han (bib0023) 2016; 92
Cheng (10.1016/j.advengsoft.2020.102804_bib0029) 2014; 139
Li (10.1016/j.advengsoft.2020.102804_bib0021) 2014; 24
Mirjalini (10.1016/j.advengsoft.2020.102804_bib0033) 2016; 27
Swarup (10.1016/j.advengsoft.2020.102804_bib0039) 2005
Yang (10.1016/j.advengsoft.2020.102804_bib0009) 2011; 3
Rao (10.1016/j.advengsoft.2020.102804_bib0016) 2011; 43
Kao (10.1016/j.advengsoft.2020.102804_bib0027) 2008; 8
Passino (10.1016/j.advengsoft.2020.102804_bib0013) 2002; 22
Erol (10.1016/j.advengsoft.2020.102804_bib0010) 2006; 37
Kaveh (10.1016/j.advengsoft.2020.102804_bib0022) 2013; 59
Hsiao (10.1016/j.advengsoft.2020.102804_bib0028) 2004; 26
Samarah Moosavi (10.1016/j.advengsoft.2020.102804_bib0032) 2017; 60
Dorigo (10.1016/j.advengsoft.2020.102804_bib0004) 1997; 1
Sulaiman (10.1016/j.advengsoft.2020.102804_bib0038) 2020; 87
Kennedy (10.1016/j.advengsoft.2020.102804_bib0002) 1995
Glover (10.1016/j.advengsoft.2020.102804_bib0005) 1989; 1
Yang (10.1016/j.advengsoft.2020.102804_bib0018) 2009
Lee (10.1016/j.advengsoft.2020.102804_bib0007) 2005; 194
Saremi (10.1016/j.advengsoft.2020.102804_bib0031) 2017; 105
Yang (10.1016/j.advengsoft.2020.102804_bib0019) 2010; 1
Holland (10.1016/j.advengsoft.2020.102804_bib0001) 1975
Kang (10.1016/j.advengsoft.2020.102804_bib0003) 2013; 13
Balochian (10.1016/j.advengsoft.2020.102804_bib0035) 2019; 134
Chen (10.1016/j.advengsoft.2020.102804_bib0042) 2015
Yang (10.1016/j.advengsoft.2020.102804_bib0024) 2012; 7445
Glover (10.1016/j.advengsoft.2020.102804_bib0006) 1990; 2
Salimi (10.1016/j.advengsoft.2020.102804_bib0025) 2015; 75
Rao (10.1016/j.advengsoft.2020.102804_bib0011) 2011; 33
De Castro (10.1016/j.advengsoft.2020.102804_bib0012) 2002
Tanabe (10.1016/j.advengsoft.2020.102804_bib0041) 2013
Price (10.1016/j.advengsoft.2020.102804_bib0015) 2005
Hayyolalam (10.1016/j.advengsoft.2020.102804_bib0037) 2020; 87
Eusuff (10.1016/j.advengsoft.2020.102804_bib0014) 2003; 129
Rao (10.1016/j.advengsoft.2020.102804_bib0017) 2013; 4
Das (10.1016/j.advengsoft.2020.102804_bib0008) 2011; 41
Mirjalili (10.1016/j.advengsoft.2020.102804_bib0020) 2014; 69
Derrac (10.1016/j.advengsoft.2020.102804_bib0043) 2011; 1
Li (10.1016/j.advengsoft.2020.102804_bib0023) 2016; 92
Arora (10.1016/j.advengsoft.2020.102804_bib0034) 2019; 23
Samarah Moosavi (10.1016/j.advengsoft.2020.102804_bib0036) 2019; 86
Rashedi (10.1016/j.advengsoft.2020.102804_bib0026) 2009; 179
Merrikh-Bayat (10.1016/j.advengsoft.2020.102804_bib0030) 2015; 33
Reddy (10.1016/j.advengsoft.2020.102804_bib0040) 2013; 53
References_xml – volume: 194
  start-page: 3902
  year: 2005
  end-page: 3933
  ident: bib0007
  article-title: A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice
  publication-title: Comput Methods Appl Mech Eng
– volume: 129
  start-page: 210
  year: 2003
  end-page: 225
  ident: bib0014
  article-title: Optimization of water distribution network design using the shuffled frog leaping algorithm
  publication-title: J Water Resour Manag
– volume: 105
  start-page: 30
  year: 2017
  end-page: 47
  ident: bib0031
  article-title: Grasshopper optimization algorithm: theory and application
  publication-title: Adv Eng Softw
– volume: 8
  start-page: 849
  year: 2008
  end-page: 857
  ident: bib0027
  article-title: A hybrid genetic algorithm and particle swarm optimization for multimodal functions
  publication-title: Appl Soft Comput
– volume: 53
  start-page: 113
  year: 2013
  end-page: 122
  ident: bib0040
  article-title: Energy and spinning reserve scheduling for a wind-thermal power system using CMA-ES with mean learning technique
  publication-title: Int J Electr Power Energy Syst
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: bib0043
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol Comput
– volume: 26
  start-page: 501
  year: 2004
  end-page: 508
  ident: bib0028
  article-title: Optimal capacitor placement in distribution systems using combination fuzzy-GA method
  publication-title: Int J Electr Power Energy Syst
– volume: 87
  year: 2020
  ident: bib0038
  article-title: Barnacles mating optimizer: a new bio-inspired algorithm for solving engineering optimization problems
  publication-title: Eng Appl Artif Intell
– start-page: 152
  year: 2005
  end-page: 159
  ident: bib0039
  article-title: Genetic algorithm for optimal capacitor allocation in radial distribution systems
  publication-title: Proceedings of the 6th WSEAS international conference on evolutionary computing
– year: 1975
  ident: bib0001
  article-title: Adaptation in natural and artificial systems: an introductory analysis with applications to biology
  publication-title: Control and artificial intelligence
– volume: 41
  start-page: 89
  year: 2011
  end-page: 106
  ident: bib0008
  article-title: Exploratory power of the harmony search algorithm: analysis and improvements for global numerical optimization
  publication-title: IEEE Trans Syst Man Cybern – Part B: Cybern
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: bib0002
  article-title: Particle swarm optimization
  publication-title: Proceedings of the IEEE international conference on neural networks
– volume: 13
  start-page: 1781
  year: 2013
  end-page: 1791
  ident: bib0003
  article-title: Artificial bee colony algorithm and pattern search hybridized for global optimization
  publication-title: Appl Soft Comput
– year: 2015
  ident: bib0042
  article-title: Problem definitions and evaluation criteria for CEC 2015 special session on bound constrained single -objective computationally expensive numerical optimization
– volume: 24
  start-page: 1867
  year: 2014
  end-page: 1877
  ident: bib0021
  article-title: Animal migration optimization: an optimization algorithm inspired by animal migration behaviour
  publication-title: Neural Comput Appl
– volume: 134
  start-page: 178
  year: 2019
  end-page: 191
  ident: bib0035
  article-title: Social mimic optimization algorithm and engineering application
  publication-title: Exp Syst Appl
– volume: 22
  start-page: 52
  year: 2002
  end-page: 67
  ident: bib0013
  article-title: Biomimicry of bacterial foraging for distributed optimization and control
  publication-title: IEEE Control Syst Mag
– volume: 92
  start-page: 65
  year: 2016
  end-page: 88
  ident: bib0023
  article-title: A novel nature-inspired algorithm for optimization: virus colony search
  publication-title: Adv Eng Softw
– volume: 27
  start-page: 1053
  year: 2016
  end-page: 1073
  ident: bib0033
  article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective discrete nad multi-objective problems
  publication-title: Neural Comput Appl
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: bib0026
  article-title: GSA: a gravitational search algorithm
  publication-title: Inf Sci
– volume: 4
  start-page: 29
  year: 2013
  end-page: 50
  ident: bib0017
  article-title: Comparative performance of an elitist teaching-learning based optimization algorithm for solving unconstrained optimization problems
  publication-title: Int J Ind Eng Comput
– volume: 37
  start-page: 106
  year: 2006
  end-page: 111
  ident: bib0010
  article-title: A new optimization method: big bang-big crunch
  publication-title: Adv Eng Softw
– year: 2002
  ident: bib0012
  article-title: Artificial immune systems: a new computational intelligence approach
– volume: 33
  start-page: 1133
  year: 2011
  end-page: 1139
  ident: bib0011
  article-title: Optimal capacitor placement in a radial distribution system using plant growth simulation algorithm
  publication-title: Int. J. Electr. Power Energy Syst.
– start-page: 71
  year: 2013
  end-page: 78
  ident: bib0041
  article-title: Success-history based parameter adaptation for differential evolution
  publication-title: Proceedings of IEEE CEC.
– volume: 86
  start-page: 165
  year: 2019
  end-page: 181
  ident: bib0036
  article-title: Poor and rich optimization algorithm: a new human based and multi populations algorithm
  publication-title: Eng Appl Artif Intell
– volume: 59
  start-page: 53
  year: 2013
  end-page: 70
  ident: bib0022
  article-title: A new optimization method: dolphin echolocation
  publication-title: Adv Eng Softw
– volume: 87
  year: 2020
  ident: bib0037
  article-title: Black Widow Optimization Algorithm: a novel meta-heuristic approach for solving engineering optimization problems
  publication-title: Eng Appl Artif Intell
– volume: 1
  start-page: 190
  year: 1989
  end-page: 206
  ident: bib0005
  article-title: Tabu search-part 1
  publication-title: ORSA J Comput
– volume: 2
  start-page: 4
  year: 1990
  end-page: 32
  ident: bib0006
  article-title: Tabu search-part 2
  publication-title: ORSA J Comput
– start-page: 210
  year: 2009
  end-page: 214
  ident: bib0018
  article-title: Cuckoo search via Lévy flights
  publication-title: Proceedings of the world congress nature & biologically inspired computing (NaBIC 2009)
– volume: 1
  start-page: 330
  year: 2010
  end-page: 343
  ident: bib0019
  article-title: Engineering optimization by cuckoo search
  publication-title: Int J Math Model Numer Optim
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: bib0020
  article-title: Gray wolf optimizer
  publication-title: Adv Eng Softw
– volume: 23
  start-page: 715
  year: 2019
  end-page: 734
  ident: bib0034
  article-title: Butterfly optimization algorithm: a novel approach for global optimization
  publication-title: Soft Comput
– volume: 1
  start-page: 53
  year: 1997
  end-page: 66
  ident: bib0004
  article-title: Ant colony system: a cooperative learning approach to the traveling salesman problem
  publication-title: IEEE Trans Evol Comput
– volume: 43
  start-page: 303
  year: 2011
  end-page: 315
  ident: bib0016
  article-title: Teaching-learning based optimization: a novel method for constrained mechanical design optimization problems
  publication-title: Comput Aided Des
– volume: 75
  start-page: 1
  year: 2015
  end-page: 18
  ident: bib0025
  article-title: Stochastic fractal search: a powerful metaheuristic algorithm
  publication-title: Knowl Based Syst
– volume: 3
  start-page: 267
  year: 2011
  end-page: 274
  ident: bib0009
  article-title: Bat algorithm for multi-objective optimization
  publication-title: Int . Bio-Inspired Comput
– year: 2005
  ident: bib0015
  article-title: Differential evolution: a practical approach to global optimization
– volume: 7445
  start-page: 240
  year: 2012
  end-page: 249
  ident: bib0024
  article-title: Flower pollination algorithm for global optimization
  publication-title: Proceedings of unconventional computation and natural computation
– volume: 33
  start-page: 291
  year: 2015
  end-page: 303
  ident: bib0030
  article-title: The runner-root algorithm: a metaheuristic for solving unimodal and multimodal optimization problems inspired by runners and roots of plants in nature
  publication-title: Appl Soft Comput
– volume: 60
  start-page: 1
  year: 2017
  end-page: 15
  ident: bib0032
  article-title: Satin bowerbird optimizer: a new optimization algorithm to optimiza ANFIS for software development effort estimation
  publication-title: Inf Sci
– volume: 139
  start-page: 98
  year: 2014
  end-page: 112
  ident: bib0029
  article-title: Symbiotic organisms search: a new metaheuristic optimization algorithm
  publication-title: Comput Struct
– volume: 139
  start-page: 98
  year: 2014
  ident: 10.1016/j.advengsoft.2020.102804_bib0029
  article-title: Symbiotic organisms search: a new metaheuristic optimization algorithm
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2014.03.007
– volume: 41
  start-page: 89
  issue: 1
  year: 2011
  ident: 10.1016/j.advengsoft.2020.102804_bib0008
  article-title: Exploratory power of the harmony search algorithm: analysis and improvements for global numerical optimization
  publication-title: IEEE Trans Syst Man Cybern – Part B: Cybern
  doi: 10.1109/TSMCB.2010.2046035
– volume: 129
  start-page: 210
  year: 2003
  ident: 10.1016/j.advengsoft.2020.102804_bib0014
  article-title: Optimization of water distribution network design using the shuffled frog leaping algorithm
  publication-title: J Water Resour Manag
– start-page: 71
  year: 2013
  ident: 10.1016/j.advengsoft.2020.102804_bib0041
  article-title: Success-history based parameter adaptation for differential evolution
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.advengsoft.2020.102804_bib0020
  article-title: Gray wolf optimizer
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– year: 2005
  ident: 10.1016/j.advengsoft.2020.102804_bib0015
– volume: 27
  start-page: 1053
  year: 2016
  ident: 10.1016/j.advengsoft.2020.102804_bib0033
  article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective discrete nad multi-objective problems
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1920-1
– start-page: 210
  year: 2009
  ident: 10.1016/j.advengsoft.2020.102804_bib0018
  article-title: Cuckoo search via Lévy flights
– volume: 37
  start-page: 106
  issue: 2
  year: 2006
  ident: 10.1016/j.advengsoft.2020.102804_bib0010
  article-title: A new optimization method: big bang-big crunch
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2005.04.005
– volume: 23
  start-page: 715
  year: 2019
  ident: 10.1016/j.advengsoft.2020.102804_bib0034
  article-title: Butterfly optimization algorithm: a novel approach for global optimization
  publication-title: Soft Comput
  doi: 10.1007/s00500-018-3102-4
– volume: 2
  start-page: 4
  issue: 1
  year: 1990
  ident: 10.1016/j.advengsoft.2020.102804_bib0006
  article-title: Tabu search-part 2
  publication-title: ORSA J Comput
  doi: 10.1287/ijoc.2.1.4
– volume: 43
  start-page: 303
  issue: 3
  year: 2011
  ident: 10.1016/j.advengsoft.2020.102804_bib0016
  article-title: Teaching-learning based optimization: a novel method for constrained mechanical design optimization problems
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2010.12.015
– year: 2015
  ident: 10.1016/j.advengsoft.2020.102804_bib0042
– volume: 1
  start-page: 3
  year: 2011
  ident: 10.1016/j.advengsoft.2020.102804_bib0043
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2011.02.002
– volume: 92
  start-page: 65
  year: 2016
  ident: 10.1016/j.advengsoft.2020.102804_bib0023
  article-title: A novel nature-inspired algorithm for optimization: virus colony search
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2015.11.004
– volume: 3
  start-page: 267
  issue: 5
  year: 2011
  ident: 10.1016/j.advengsoft.2020.102804_bib0009
  article-title: Bat algorithm for multi-objective optimization
  publication-title: Int . Bio-Inspired Comput
  doi: 10.1504/IJBIC.2011.042259
– volume: 33
  start-page: 291
  year: 2015
  ident: 10.1016/j.advengsoft.2020.102804_bib0030
  article-title: The runner-root algorithm: a metaheuristic for solving unimodal and multimodal optimization problems inspired by runners and roots of plants in nature
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.04.048
– start-page: 1942
  year: 1995
  ident: 10.1016/j.advengsoft.2020.102804_bib0002
  article-title: Particle swarm optimization
– volume: 53
  start-page: 113
  year: 2013
  ident: 10.1016/j.advengsoft.2020.102804_bib0040
  article-title: Energy and spinning reserve scheduling for a wind-thermal power system using CMA-ES with mean learning technique
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2013.03.032
– volume: 1
  start-page: 53
  issue: 1
  year: 1997
  ident: 10.1016/j.advengsoft.2020.102804_bib0004
  article-title: Ant colony system: a cooperative learning approach to the traveling salesman problem
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.585892
– volume: 22
  start-page: 52
  issue: 3
  year: 2002
  ident: 10.1016/j.advengsoft.2020.102804_bib0013
  article-title: Biomimicry of bacterial foraging for distributed optimization and control
  publication-title: IEEE Control Syst Mag
  doi: 10.1109/MCS.2002.1004010
– volume: 26
  start-page: 501
  issue: 7
  year: 2004
  ident: 10.1016/j.advengsoft.2020.102804_bib0028
  article-title: Optimal capacitor placement in distribution systems using combination fuzzy-GA method
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2004.01.002
– volume: 105
  start-page: 30
  year: 2017
  ident: 10.1016/j.advengsoft.2020.102804_bib0031
  article-title: Grasshopper optimization algorithm: theory and application
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.01.004
– year: 2002
  ident: 10.1016/j.advengsoft.2020.102804_bib0012
– volume: 4
  start-page: 29
  issue: 1
  year: 2013
  ident: 10.1016/j.advengsoft.2020.102804_bib0017
  article-title: Comparative performance of an elitist teaching-learning based optimization algorithm for solving unconstrained optimization problems
  publication-title: Int J Ind Eng Comput
– volume: 8
  start-page: 849
  issue: 2
  year: 2008
  ident: 10.1016/j.advengsoft.2020.102804_bib0027
  article-title: A hybrid genetic algorithm and particle swarm optimization for multimodal functions
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2007.07.002
– start-page: 152
  year: 2005
  ident: 10.1016/j.advengsoft.2020.102804_bib0039
  article-title: Genetic algorithm for optimal capacitor allocation in radial distribution systems
– volume: 134
  start-page: 178
  year: 2019
  ident: 10.1016/j.advengsoft.2020.102804_bib0035
  article-title: Social mimic optimization algorithm and engineering application
  publication-title: Exp Syst Appl
  doi: 10.1016/j.eswa.2019.05.035
– volume: 1
  start-page: 330
  issue: 4
  year: 2010
  ident: 10.1016/j.advengsoft.2020.102804_bib0019
  article-title: Engineering optimization by cuckoo search
  publication-title: Int J Math Model Numer Optim
– volume: 75
  start-page: 1
  year: 2015
  ident: 10.1016/j.advengsoft.2020.102804_bib0025
  article-title: Stochastic fractal search: a powerful metaheuristic algorithm
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2014.07.025
– volume: 179
  start-page: 2232
  year: 2009
  ident: 10.1016/j.advengsoft.2020.102804_bib0026
  article-title: GSA: a gravitational search algorithm
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2009.03.004
– volume: 59
  start-page: 53
  year: 2013
  ident: 10.1016/j.advengsoft.2020.102804_bib0022
  article-title: A new optimization method: dolphin echolocation
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.03.004
– volume: 1
  start-page: 190
  issue: 3
  year: 1989
  ident: 10.1016/j.advengsoft.2020.102804_bib0005
  article-title: Tabu search-part 1
  publication-title: ORSA J Comput
  doi: 10.1287/ijoc.1.3.190
– volume: 86
  start-page: 165
  year: 2019
  ident: 10.1016/j.advengsoft.2020.102804_bib0036
  article-title: Poor and rich optimization algorithm: a new human based and multi populations algorithm
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2019.08.025
– volume: 87
  year: 2020
  ident: 10.1016/j.advengsoft.2020.102804_bib0037
  article-title: Black Widow Optimization Algorithm: a novel meta-heuristic approach for solving engineering optimization problems
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2019.103249
– volume: 60
  start-page: 1
  year: 2017
  ident: 10.1016/j.advengsoft.2020.102804_bib0032
  article-title: Satin bowerbird optimizer: a new optimization algorithm to optimiza ANFIS for software development effort estimation
  publication-title: Inf Sci
– volume: 7445
  start-page: 240
  year: 2012
  ident: 10.1016/j.advengsoft.2020.102804_bib0024
  article-title: Flower pollination algorithm for global optimization
– year: 1975
  ident: 10.1016/j.advengsoft.2020.102804_bib0001
  article-title: Adaptation in natural and artificial systems: an introductory analysis with applications to biology
– volume: 194
  start-page: 3902
  issue: 36–38
  year: 2005
  ident: 10.1016/j.advengsoft.2020.102804_bib0007
  article-title: A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2004.09.007
– volume: 33
  start-page: 1133
  issue: 5
  year: 2011
  ident: 10.1016/j.advengsoft.2020.102804_bib0011
  article-title: Optimal capacitor placement in a radial distribution system using plant growth simulation algorithm
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2010.11.021
– volume: 87
  year: 2020
  ident: 10.1016/j.advengsoft.2020.102804_bib0038
  article-title: Barnacles mating optimizer: a new bio-inspired algorithm for solving engineering optimization problems
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2019.103330
– volume: 13
  start-page: 1781
  issue: 4
  year: 2013
  ident: 10.1016/j.advengsoft.2020.102804_bib0003
  article-title: Artificial bee colony algorithm and pattern search hybridized for global optimization
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2012.12.025
– volume: 24
  start-page: 1867
  issue: 7
  year: 2014
  ident: 10.1016/j.advengsoft.2020.102804_bib0021
  article-title: Animal migration optimization: an optimization algorithm inspired by animal migration behaviour
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-013-1433-8
SSID ssj0014021
Score 2.646901
Snippet •A new student psychology based optimization (SPBO) algorithm is proposed.•Effectiveness of the SPBO is demonstrated through benchmark function test.•The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102804
SubjectTerms Benchmark function
CEC 2015
Global optimum solution
Optimization algorithm
Student psychology based optimization (SPBO)
Title Student psychology based optimization algorithm: A new population based optimization algorithm for solving optimization problems
URI https://dx.doi.org/10.1016/j.advengsoft.2020.102804
Volume 146
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0965-9978
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0014021
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 0965-9978
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0014021
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0965-9978
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0014021
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0965-9978
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0014021
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0965-9978
  databaseCode: AKRWK
  dateStart: 19920101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014021
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5VZYGBRwFRHpUH1tDGiVMHpqqiKiC6lErdIiexS1EfURsGFsRP55w4pRUSIDHGupMsn333nXP-DuDSjhTjXtOxRENEmKAwavmOjC0uZeSqmDIu9D3kY8_rDtz7IRuWoF28hdFllcb35z4989ZmpG5Ws56Mx_W-5i3xfc33ptMCrjlBXbepuxhcva_KPDB_yN5eaWFLS5tqnrzGS8ToUUZLdHiYKdKMx4Cblm3fQtRa2Onsw67Bi6SVT-kASnJWgT2DHYk5mUscKtozFGMV2FnjGjyEj37OYkmSwuW9ER3CYjJHrzE1zzGJmIzmi3H6PL0mLYKQmySrDl8_ihMEvwT3sb6f2BQxLWuWRzDo3D61u5Zpv2BFeNBTi8YiEgzPt-TS8RohjaVNBaVSckcIZYeSIbayuc89KVyJdkYsiTohc9AwynaOoTybz-QJEEa5sKXgDA3khlT_G2woJTwV-UpSHlehWax4EBluct0iYxIURWgvwZetAm2rILdVFeyVZpLzc_xB56YwarCx1wIMI79qn_5L-wy29VdeQngO5XTxKi8Q1qRhLdu3Ndhq3T10e5-SZP06
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4gHtSDD9SIzz14rdBtt93qiRAJKnABEm7Ntt0ihlegHrwYf7qzdIsQEzXxup1JNju7M99sZ78BuDbDmHHHtQxRFiEmKIwaniUjg0sZ2nFEGRfqHrLZcupd-7HHejmoZm9hVFml9v2pT194az1S0qtZmg4GpbbiLfE8xfem0gJub8CmzairMrCb92WdByYQi8dXStpQ4rqcJy3yEhG6lP4cPR6minRBZMB1z7ZvMWol7tT2YVcDRlJJ53QAOTkuwJ4Gj0QfzTkOZf0ZsrEC7KyQDR7CRzulsSTTzOe9ERXDIjJBtzHS7zGJGPYns0HyPLolFYKYm0yXLb5-FCeIfgluZHVBsS6ie9bMj6Bbu-9U64buv2CEeNITg0YiFAwPuOTScsoBjaRJBaVSckuI2AwkQ3Blco87UtgSDY1gEnUCZqFlYtM6hvx4MpYnQBjlwpSCM9t27YCqn4PlOBZOHHqxpDwqgputuB9qcnLVI2PoZ1VoL_6XrXxlKz-1VRHMpeY0Jej4g85dZlR_bbP5GEd-1T79l_YVbNU7zYbfeGg9ncG2-pLWE55DPpm9ygvEOElwudjDn2CI_s8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Student+psychology+based+optimization+algorithm%3A+A+new+population+based+optimization+algorithm+for+solving+optimization+problems&rft.jtitle=Advances+in+engineering+software+%281992%29&rft.au=Das%2C+Bikash&rft.au=Mukherjee%2C+V.&rft.au=Das%2C+Debapriya&rft.date=2020-08-01&rft.issn=0965-9978&rft.volume=146&rft.spage=102804&rft_id=info:doi/10.1016%2Fj.advengsoft.2020.102804&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_advengsoft_2020_102804
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0965-9978&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0965-9978&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0965-9978&client=summon