Student psychology based optimization algorithm: A new population based optimization algorithm for solving optimization problems
•A new student psychology based optimization (SPBO) algorithm is proposed.•Effectiveness of the SPBO is demonstrated through benchmark function test.•The proposed algorithm is applied to solve CEC 2015 benchmark functions.•The obtained results are compared with other state-of-art algorithms.•SPBO pe...
Saved in:
| Published in | Advances in engineering software (1992) Vol. 146; p. 102804 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.08.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0965-9978 |
| DOI | 10.1016/j.advengsoft.2020.102804 |
Cover
| Abstract | •A new student psychology based optimization (SPBO) algorithm is proposed.•Effectiveness of the SPBO is demonstrated through benchmark function test.•The proposed algorithm is applied to solve CEC 2015 benchmark functions.•The obtained results are compared with other state-of-art algorithms.•SPBO perform well in the entire test and offers faster convergence mobility.
In this article, a new metaheuristic optimization algorithm (named as, student psychology based optimization (SPBO)) is proposed. The proposed SPBO algorithm is based on the psychology of the students who are trying to give more effort to improve their performance in the examination up to the level for becoming the best student in the class. Performance of the proposed SPBO is analyzed while applying the algorithm to solve thirteen 50 dimensional benchmark functions as well as fifteen CEC 2015 benchmark problems. Results of the SPBO is compared to the performance of ten other state-of-the-art optimization algorithms such as particle swarm optimization, teaching learning based optimization, cuckoo search algorithm, symbiotic organism search, covariant matrix adaptation with evolution strategy, success-history based adaptive differential evolution, grey wolf optimization, butterfly optimization algorithm, poor and rich optimization algorithm, and barnacles mating optimizer. For fair analysis, performances of all these algorithms are analyzed based on the optimum results obtained as well as based on convergence mobility of the objective function. Pairwise and multiple comparisons are performed to analyze the statistical performance of the proposed method. From this study, it may be established that the proposed SPBO works very well in all the studied test cases and it is able to obtain an optimum solution with faster convergence mobility. |
|---|---|
| AbstractList | •A new student psychology based optimization (SPBO) algorithm is proposed.•Effectiveness of the SPBO is demonstrated through benchmark function test.•The proposed algorithm is applied to solve CEC 2015 benchmark functions.•The obtained results are compared with other state-of-art algorithms.•SPBO perform well in the entire test and offers faster convergence mobility.
In this article, a new metaheuristic optimization algorithm (named as, student psychology based optimization (SPBO)) is proposed. The proposed SPBO algorithm is based on the psychology of the students who are trying to give more effort to improve their performance in the examination up to the level for becoming the best student in the class. Performance of the proposed SPBO is analyzed while applying the algorithm to solve thirteen 50 dimensional benchmark functions as well as fifteen CEC 2015 benchmark problems. Results of the SPBO is compared to the performance of ten other state-of-the-art optimization algorithms such as particle swarm optimization, teaching learning based optimization, cuckoo search algorithm, symbiotic organism search, covariant matrix adaptation with evolution strategy, success-history based adaptive differential evolution, grey wolf optimization, butterfly optimization algorithm, poor and rich optimization algorithm, and barnacles mating optimizer. For fair analysis, performances of all these algorithms are analyzed based on the optimum results obtained as well as based on convergence mobility of the objective function. Pairwise and multiple comparisons are performed to analyze the statistical performance of the proposed method. From this study, it may be established that the proposed SPBO works very well in all the studied test cases and it is able to obtain an optimum solution with faster convergence mobility. |
| ArticleNumber | 102804 |
| Author | Das, Debapriya Das, Bikash Mukherjee, V. |
| Author_xml | – sequence: 1 givenname: Bikash surname: Das fullname: Das, Bikash email: bcazdas@gmail.com organization: Department of Electrical Engineering, Government College of Engineering and Textile Technology, Berhampore, West Bengal, India – sequence: 2 givenname: V. surname: Mukherjee fullname: Mukherjee, V. email: vivek_agamani@yahoo.com organization: Department of Electrical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India – sequence: 3 givenname: Debapriya surname: Das fullname: Das, Debapriya email: ddas@ee.iitkgp.ernet.in organization: Department of Electrical Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India |
| BookMark | eNqNkMtKAzEUhrOoYKu-Q15gapK5NHEh1OINCi7UdchkzkxTZpIhSSt15aPbOoLoQl0dOOf_PzjfBI2ss4AQpmRKCS3O11NVbcE2wdVxygg7rBkn2QiNiSjyRIgZP0aTENaE0IwwOkZvj3FTgY24Dzu9cq1rdrhUASrs-mg686qicRartnHexFV3gefYwgvuXb9ph9tvcVw7j4Nrt8Y23yO9d2ULXThFR7VqA5x9zhP0fHP9tLhLlg-394v5MtEp5TFhldIq55wAh7QgJauAMsUYAE-VqmkJuWCCcsELUBlkJBez2b5T5mmRi5qmJ4gPXO1dCB5q2XvTKb-TlMiDPbmWX_bkwZ4c7O2rlz-q2sSPL6JXpv0P4GoAwP7BrQEvgzZgNVTGg46ycuZvyDvtZpwJ |
| CitedBy_id | crossref_primary_10_1016_j_asoc_2022_109729 crossref_primary_10_1016_j_cma_2024_117588 crossref_primary_10_1080_15435075_2023_2194395 crossref_primary_10_1080_01430750_2022_2140193 crossref_primary_10_1007_s12652_025_04954_8 crossref_primary_10_1111_exsy_12843 crossref_primary_10_3390_app12168260 crossref_primary_10_1007_s13042_024_02361_7 crossref_primary_10_1016_j_asoc_2022_109847 crossref_primary_10_1016_j_eswa_2021_115305 crossref_primary_10_1007_s00521_024_10782_2 crossref_primary_10_1016_j_aei_2024_102516 crossref_primary_10_1155_2022_3082933 crossref_primary_10_1016_j_dajour_2023_100360 crossref_primary_10_1142_S0218126623501530 crossref_primary_10_1007_s11831_022_09800_0 crossref_primary_10_1038_s41598_025_91270_y crossref_primary_10_1080_01430750_2022_2111354 crossref_primary_10_1016_j_sysarc_2023_102871 crossref_primary_10_1142_S0218126624501111 crossref_primary_10_1080_08839514_2021_1985050 crossref_primary_10_1109_ACCESS_2020_3042196 crossref_primary_10_1016_j_bspc_2021_102925 crossref_primary_10_1016_j_cma_2022_115676 crossref_primary_10_1016_j_advengsoft_2021_103009 crossref_primary_10_3390_electronics12112487 crossref_primary_10_1007_s43684_024_00077_7 crossref_primary_10_1016_j_apenergy_2024_122707 crossref_primary_10_1002_acs_3415 crossref_primary_10_1038_s41598_024_77115_0 crossref_primary_10_1007_s00500_020_05227_6 crossref_primary_10_1108_JEDT_11_2020_0468 crossref_primary_10_1016_j_envc_2023_100720 crossref_primary_10_3233_JIFS_213233 crossref_primary_10_1007_s00521_023_08391_6 crossref_primary_10_1080_13682199_2023_2216976 crossref_primary_10_32604_cmes_2024_055860 crossref_primary_10_1016_j_knosys_2022_108164 crossref_primary_10_1016_j_knosys_2022_108320 crossref_primary_10_1142_S0219691322500503 crossref_primary_10_1016_j_eswa_2023_120905 crossref_primary_10_1007_s11276_022_03150_2 crossref_primary_10_1007_s11227_024_06561_4 crossref_primary_10_3934_mbe_2024202 crossref_primary_10_3934_mbe_2024322 crossref_primary_10_1080_0305215X_2024_2329988 crossref_primary_10_1007_s12065_024_01003_9 crossref_primary_10_1177_0958305X231217635 crossref_primary_10_3846_jcem_2023_20399 crossref_primary_10_1007_s10462_024_11104_7 crossref_primary_10_1016_j_ijhydene_2024_03_169 crossref_primary_10_1016_j_eswa_2023_120594 crossref_primary_10_1109_ACCESS_2023_3308825 crossref_primary_10_3390_electronics11244137 crossref_primary_10_1007_s11276_022_03103_9 crossref_primary_10_1016_j_ctta_2024_100154 crossref_primary_10_1007_s00500_023_08746_0 crossref_primary_10_1007_s13369_023_07993_5 crossref_primary_10_1016_j_seta_2022_102744 crossref_primary_10_1080_13682199_2023_2187518 crossref_primary_10_1016_j_jtice_2024_105796 crossref_primary_10_1038_s41598_024_54910_3 crossref_primary_10_1109_ACCESS_2023_3311271 crossref_primary_10_1515_cppm_2024_0006 crossref_primary_10_1007_s13369_021_06307_x crossref_primary_10_1016_j_apenergy_2022_118851 crossref_primary_10_3390_app12157838 crossref_primary_10_1016_j_matcom_2022_01_018 crossref_primary_10_1063_5_0108340 crossref_primary_10_1007_s10586_024_04881_x crossref_primary_10_1093_jcde_qwad094 crossref_primary_10_3390_math12030415 crossref_primary_10_1016_j_knosys_2024_111737 crossref_primary_10_1002_oca_3067 crossref_primary_10_3390_electronics12041058 crossref_primary_10_3390_pr11051513 crossref_primary_10_3390_biomimetics10030176 crossref_primary_10_1002_cpe_6263 crossref_primary_10_1016_j_energy_2024_131915 crossref_primary_10_1016_j_aej_2023_12_054 crossref_primary_10_1016_j_ijhydene_2024_12_244 crossref_primary_10_1002_er_7684 crossref_primary_10_1016_j_measurement_2021_110545 crossref_primary_10_1016_j_heliyon_2024_e30757 crossref_primary_10_1007_s10462_024_10729_y crossref_primary_10_3390_electronics10172057 crossref_primary_10_1016_j_engappai_2024_109370 crossref_primary_10_1002_est2_70136 crossref_primary_10_1016_j_knosys_2023_110470 crossref_primary_10_1016_j_advengsoft_2022_103321 crossref_primary_10_1007_s11042_024_18579_0 crossref_primary_10_1007_s00521_021_06185_2 crossref_primary_10_1002_cpe_7545 crossref_primary_10_1016_j_eswa_2024_123934 crossref_primary_10_3390_biomimetics9040205 crossref_primary_10_1016_j_jocs_2022_101886 crossref_primary_10_1039_D2DD00040G crossref_primary_10_1007_s11227_024_06105_w crossref_primary_10_1038_s41598_022_22170_8 crossref_primary_10_1590_jatm_v17_1362 crossref_primary_10_1093_comjnl_bxac096 crossref_primary_10_3390_math10132329 crossref_primary_10_1007_s10462_022_10281_7 crossref_primary_10_1016_j_cma_2023_115878 crossref_primary_10_1016_j_ijhydene_2021_09_009 crossref_primary_10_1142_S0219649224500400 crossref_primary_10_1155_2022_5191758 crossref_primary_10_3390_en15093433 crossref_primary_10_1049_gtd2_13157 crossref_primary_10_1016_j_epsr_2022_108677 crossref_primary_10_1016_j_eswa_2023_122200 crossref_primary_10_1007_s10489_022_03171_6 crossref_primary_10_1016_j_engappai_2022_105082 crossref_primary_10_1038_s41598_024_61434_3 crossref_primary_10_1016_j_epsr_2024_111347 crossref_primary_10_1016_j_dsp_2024_104516 crossref_primary_10_3390_math12030435 crossref_primary_10_1016_j_engappai_2023_106697 crossref_primary_10_1002_int_22765 crossref_primary_10_3390_electronics11111675 crossref_primary_10_1016_j_cma_2024_117251 crossref_primary_10_1016_j_jksuci_2021_06_015 crossref_primary_10_1177_0958305X221117518 crossref_primary_10_1016_j_cie_2021_107739 crossref_primary_10_1016_j_tws_2024_112631 crossref_primary_10_1016_j_eswa_2023_120437 crossref_primary_10_1109_JIOT_2024_3476248 crossref_primary_10_1016_j_eswa_2022_118618 crossref_primary_10_1016_j_advengsoft_2020_102885 crossref_primary_10_1002_2050_7038_13230 crossref_primary_10_1007_s10098_023_02542_y crossref_primary_10_1002_cpe_7206 crossref_primary_10_1007_s42044_023_00160_x crossref_primary_10_1155_2021_9931677 crossref_primary_10_1002_dac_5677 crossref_primary_10_3390_biomimetics9080486 crossref_primary_10_1016_j_measurement_2022_111332 crossref_primary_10_1177_0958305X231225101 crossref_primary_10_1109_ACCESS_2022_3157400 crossref_primary_10_1109_TIM_2023_3324345 crossref_primary_10_3390_math12070965 crossref_primary_10_1016_j_engappai_2022_104805 crossref_primary_10_1007_s41660_021_00177_4 crossref_primary_10_1016_j_jclepro_2021_128498 crossref_primary_10_1016_j_eswa_2021_116468 crossref_primary_10_1016_j_energy_2023_128545 crossref_primary_10_1016_j_knosys_2021_106924 crossref_primary_10_1155_2024_3176356 crossref_primary_10_1016_j_eswa_2022_118967 crossref_primary_10_1002_2050_7038_12593 crossref_primary_10_1002_adts_202100147 crossref_primary_10_1007_s00366_020_01248_9 crossref_primary_10_1016_j_enconman_2021_114470 crossref_primary_10_1093_jcde_qwac135 crossref_primary_10_3390_biomimetics8040377 crossref_primary_10_1016_j_swevo_2024_101656 crossref_primary_10_1080_02286203_2023_2281181 crossref_primary_10_1155_2024_5570228 crossref_primary_10_1007_s10586_024_04821_9 crossref_primary_10_1016_j_advengsoft_2025_103866 crossref_primary_10_3390_math11092217 crossref_primary_10_3390_math11183861 crossref_primary_10_29132_ijpas_855869 crossref_primary_10_1007_s10115_023_01931_5 crossref_primary_10_1016_j_eswa_2024_123267 crossref_primary_10_1038_s41598_022_18001_5 crossref_primary_10_1080_03772063_2024_2352644 crossref_primary_10_1016_j_compgeo_2023_105707 crossref_primary_10_17275_per_22_32_9_2 crossref_primary_10_1007_s10489_024_05941_w crossref_primary_10_3233_JIFS_221391 crossref_primary_10_1016_j_engappai_2023_106959 crossref_primary_10_1007_s12652_022_04463_y crossref_primary_10_1007_s11831_023_10030_1 crossref_primary_10_3389_fenrg_2024_1355608 crossref_primary_10_1515_jisys_2023_0269 crossref_primary_10_1080_15567036_2024_2370336 crossref_primary_10_1016_j_aei_2024_102783 crossref_primary_10_1186_s40537_024_00917_6 crossref_primary_10_1007_s11220_023_00434_5 crossref_primary_10_3390_en15196908 crossref_primary_10_1016_j_chemosphere_2024_142859 crossref_primary_10_1016_j_cma_2023_116238 crossref_primary_10_1016_j_egyr_2020_11_168 crossref_primary_10_1038_s41598_021_01018_7 crossref_primary_10_1016_j_artmed_2022_102299 crossref_primary_10_1016_j_ins_2024_120316 |
| Cites_doi | 10.1016/j.compstruc.2014.03.007 10.1109/TSMCB.2010.2046035 10.1016/j.advengsoft.2013.12.007 10.1007/s00521-015-1920-1 10.1016/j.advengsoft.2005.04.005 10.1007/s00500-018-3102-4 10.1287/ijoc.2.1.4 10.1016/j.cad.2010.12.015 10.1016/j.swevo.2011.02.002 10.1016/j.advengsoft.2015.11.004 10.1504/IJBIC.2011.042259 10.1016/j.asoc.2015.04.048 10.1016/j.ijepes.2013.03.032 10.1109/4235.585892 10.1109/MCS.2002.1004010 10.1016/j.ijepes.2004.01.002 10.1016/j.advengsoft.2017.01.004 10.1016/j.asoc.2007.07.002 10.1016/j.eswa.2019.05.035 10.1016/j.knosys.2014.07.025 10.1016/j.ins.2009.03.004 10.1016/j.advengsoft.2013.03.004 10.1287/ijoc.1.3.190 10.1016/j.engappai.2019.08.025 10.1016/j.engappai.2019.103249 10.1016/j.cma.2004.09.007 10.1016/j.ijepes.2010.11.021 10.1016/j.engappai.2019.103330 10.1016/j.asoc.2012.12.025 10.1007/s00521-013-1433-8 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.advengsoft.2020.102804 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Computer Science |
| ExternalDocumentID | 10_1016_j_advengsoft_2020_102804 S0965997820301484 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c318t-2daca5880e8e360b2de12a22ee83aaf1be592918986ea4e405977dacb53659f13 |
| IEDL.DBID | .~1 |
| ISSN | 0965-9978 |
| IngestDate | Thu Apr 24 23:07:22 EDT 2025 Sat Oct 25 06:15:32 EDT 2025 Fri Feb 23 02:46:23 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Benchmark function Optimization algorithm CEC 2015 Global optimum solution Student psychology based optimization (SPBO) |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c318t-2daca5880e8e360b2de12a22ee83aaf1be592918986ea4e405977dacb53659f13 |
| ParticipantIDs | crossref_primary_10_1016_j_advengsoft_2020_102804 crossref_citationtrail_10_1016_j_advengsoft_2020_102804 elsevier_sciencedirect_doi_10_1016_j_advengsoft_2020_102804 |
| PublicationCentury | 2000 |
| PublicationDate | August 2020 2020-08-00 |
| PublicationDateYYYYMMDD | 2020-08-01 |
| PublicationDate_xml | – month: 08 year: 2020 text: August 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Advances in engineering software (1992) |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Mirjalini (bib0033) 2016; 27 Glover (bib0005) 1989; 1 Tanabe, Fukunaga (bib0041) 2013 Derrac, Garcia, Molina, Herrera (bib0043) 2011; 1 Samarah Moosavi, Khatibi Bardsiri (bib0032) 2017; 60 Kennedy, Eberhart (bib0002) 1995 Glover (bib0006) 1990; 2 Price, Rainer, Lampinen (bib0015) 2005 Kao, Zahara (bib0027) 2008; 8 Arora, Singh (bib0034) 2019; 23 Hayyolalam, Pourhaji Kazem (bib0037) 2020; 87 Li, Zhang, Yin (bib0021) 2014; 24 Balochian, Baloochian (bib0035) 2019; 134 Yang, Deb (bib0018) 2009 Saremi, Mirjalili, Lewis (bib0031) 2017; 105 Kaveh, Farhoudi (bib0022) 2013; 59 Swarup (bib0039) 2005 Rao, Savsani, Vakharia (bib0016) 2011; 43 Samarah Moosavi, Khatibi Bardsiri (bib0036) 2019; 86 Merrikh-Bayat (bib0030) 2015; 33 Cheng, Proyogo (bib0029) 2014; 139 Eusuff, Lansey (bib0014) 2003; 129 De Castro, Timmis (bib0012) 2002 Rao, Patel (bib0017) 2013; 4 Erol, Eksin (bib0010) 2006; 37 Sulaiman, Mustaffa, Saari, Daniyal (bib0038) 2020; 87 Reddy, Panigrahi, Kundu, Mukherjee, Debchoudhury (bib0040) 2013; 53 Yang, Deb (bib0019) 2010; 1 Passino (bib0013) 2002; 22 Mirjalili, Mirjalili, Lewis (bib0020) 2014; 69 Das, Mukhopadhyay, Roy, Abraham, Panigrahi (bib0008) 2011; 41 Salimi (bib0025) 2015; 75 Holland (bib0001) 1975 Yang (bib0009) 2011; 3 Yang (bib0024) 2012; 7445 Dorigo, Gambardella (bib0004) 1997; 1 Hsiao, Chen, Chien (bib0028) 2004; 26 Lee, Geem (bib0007) 2005; 194 Rashedi, Nezamabadi-pour, Saryazdi (bib0026) 2009; 179 Rao, Narasimham, Ramalingaeaju (bib0011) 2011; 33 Chen, Liu, Zhang, Liang, Suganthan, Qu (bib0042) 2015 Kang, Li, Li (bib0003) 2013; 13 Li, Zhao, Weng, Han (bib0023) 2016; 92 Cheng (10.1016/j.advengsoft.2020.102804_bib0029) 2014; 139 Li (10.1016/j.advengsoft.2020.102804_bib0021) 2014; 24 Mirjalini (10.1016/j.advengsoft.2020.102804_bib0033) 2016; 27 Swarup (10.1016/j.advengsoft.2020.102804_bib0039) 2005 Yang (10.1016/j.advengsoft.2020.102804_bib0009) 2011; 3 Rao (10.1016/j.advengsoft.2020.102804_bib0016) 2011; 43 Kao (10.1016/j.advengsoft.2020.102804_bib0027) 2008; 8 Passino (10.1016/j.advengsoft.2020.102804_bib0013) 2002; 22 Erol (10.1016/j.advengsoft.2020.102804_bib0010) 2006; 37 Kaveh (10.1016/j.advengsoft.2020.102804_bib0022) 2013; 59 Hsiao (10.1016/j.advengsoft.2020.102804_bib0028) 2004; 26 Samarah Moosavi (10.1016/j.advengsoft.2020.102804_bib0032) 2017; 60 Dorigo (10.1016/j.advengsoft.2020.102804_bib0004) 1997; 1 Sulaiman (10.1016/j.advengsoft.2020.102804_bib0038) 2020; 87 Kennedy (10.1016/j.advengsoft.2020.102804_bib0002) 1995 Glover (10.1016/j.advengsoft.2020.102804_bib0005) 1989; 1 Yang (10.1016/j.advengsoft.2020.102804_bib0018) 2009 Lee (10.1016/j.advengsoft.2020.102804_bib0007) 2005; 194 Saremi (10.1016/j.advengsoft.2020.102804_bib0031) 2017; 105 Yang (10.1016/j.advengsoft.2020.102804_bib0019) 2010; 1 Holland (10.1016/j.advengsoft.2020.102804_bib0001) 1975 Kang (10.1016/j.advengsoft.2020.102804_bib0003) 2013; 13 Balochian (10.1016/j.advengsoft.2020.102804_bib0035) 2019; 134 Chen (10.1016/j.advengsoft.2020.102804_bib0042) 2015 Yang (10.1016/j.advengsoft.2020.102804_bib0024) 2012; 7445 Glover (10.1016/j.advengsoft.2020.102804_bib0006) 1990; 2 Salimi (10.1016/j.advengsoft.2020.102804_bib0025) 2015; 75 Rao (10.1016/j.advengsoft.2020.102804_bib0011) 2011; 33 De Castro (10.1016/j.advengsoft.2020.102804_bib0012) 2002 Tanabe (10.1016/j.advengsoft.2020.102804_bib0041) 2013 Price (10.1016/j.advengsoft.2020.102804_bib0015) 2005 Hayyolalam (10.1016/j.advengsoft.2020.102804_bib0037) 2020; 87 Eusuff (10.1016/j.advengsoft.2020.102804_bib0014) 2003; 129 Rao (10.1016/j.advengsoft.2020.102804_bib0017) 2013; 4 Das (10.1016/j.advengsoft.2020.102804_bib0008) 2011; 41 Mirjalili (10.1016/j.advengsoft.2020.102804_bib0020) 2014; 69 Derrac (10.1016/j.advengsoft.2020.102804_bib0043) 2011; 1 Li (10.1016/j.advengsoft.2020.102804_bib0023) 2016; 92 Arora (10.1016/j.advengsoft.2020.102804_bib0034) 2019; 23 Samarah Moosavi (10.1016/j.advengsoft.2020.102804_bib0036) 2019; 86 Rashedi (10.1016/j.advengsoft.2020.102804_bib0026) 2009; 179 Merrikh-Bayat (10.1016/j.advengsoft.2020.102804_bib0030) 2015; 33 Reddy (10.1016/j.advengsoft.2020.102804_bib0040) 2013; 53 |
| References_xml | – volume: 194 start-page: 3902 year: 2005 end-page: 3933 ident: bib0007 article-title: A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice publication-title: Comput Methods Appl Mech Eng – volume: 129 start-page: 210 year: 2003 end-page: 225 ident: bib0014 article-title: Optimization of water distribution network design using the shuffled frog leaping algorithm publication-title: J Water Resour Manag – volume: 105 start-page: 30 year: 2017 end-page: 47 ident: bib0031 article-title: Grasshopper optimization algorithm: theory and application publication-title: Adv Eng Softw – volume: 8 start-page: 849 year: 2008 end-page: 857 ident: bib0027 article-title: A hybrid genetic algorithm and particle swarm optimization for multimodal functions publication-title: Appl Soft Comput – volume: 53 start-page: 113 year: 2013 end-page: 122 ident: bib0040 article-title: Energy and spinning reserve scheduling for a wind-thermal power system using CMA-ES with mean learning technique publication-title: Int J Electr Power Energy Syst – volume: 1 start-page: 3 year: 2011 end-page: 18 ident: bib0043 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol Comput – volume: 26 start-page: 501 year: 2004 end-page: 508 ident: bib0028 article-title: Optimal capacitor placement in distribution systems using combination fuzzy-GA method publication-title: Int J Electr Power Energy Syst – volume: 87 year: 2020 ident: bib0038 article-title: Barnacles mating optimizer: a new bio-inspired algorithm for solving engineering optimization problems publication-title: Eng Appl Artif Intell – start-page: 152 year: 2005 end-page: 159 ident: bib0039 article-title: Genetic algorithm for optimal capacitor allocation in radial distribution systems publication-title: Proceedings of the 6th WSEAS international conference on evolutionary computing – year: 1975 ident: bib0001 article-title: Adaptation in natural and artificial systems: an introductory analysis with applications to biology publication-title: Control and artificial intelligence – volume: 41 start-page: 89 year: 2011 end-page: 106 ident: bib0008 article-title: Exploratory power of the harmony search algorithm: analysis and improvements for global numerical optimization publication-title: IEEE Trans Syst Man Cybern – Part B: Cybern – start-page: 1942 year: 1995 end-page: 1948 ident: bib0002 article-title: Particle swarm optimization publication-title: Proceedings of the IEEE international conference on neural networks – volume: 13 start-page: 1781 year: 2013 end-page: 1791 ident: bib0003 article-title: Artificial bee colony algorithm and pattern search hybridized for global optimization publication-title: Appl Soft Comput – year: 2015 ident: bib0042 article-title: Problem definitions and evaluation criteria for CEC 2015 special session on bound constrained single -objective computationally expensive numerical optimization – volume: 24 start-page: 1867 year: 2014 end-page: 1877 ident: bib0021 article-title: Animal migration optimization: an optimization algorithm inspired by animal migration behaviour publication-title: Neural Comput Appl – volume: 134 start-page: 178 year: 2019 end-page: 191 ident: bib0035 article-title: Social mimic optimization algorithm and engineering application publication-title: Exp Syst Appl – volume: 22 start-page: 52 year: 2002 end-page: 67 ident: bib0013 article-title: Biomimicry of bacterial foraging for distributed optimization and control publication-title: IEEE Control Syst Mag – volume: 92 start-page: 65 year: 2016 end-page: 88 ident: bib0023 article-title: A novel nature-inspired algorithm for optimization: virus colony search publication-title: Adv Eng Softw – volume: 27 start-page: 1053 year: 2016 end-page: 1073 ident: bib0033 article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective discrete nad multi-objective problems publication-title: Neural Comput Appl – volume: 179 start-page: 2232 year: 2009 end-page: 2248 ident: bib0026 article-title: GSA: a gravitational search algorithm publication-title: Inf Sci – volume: 4 start-page: 29 year: 2013 end-page: 50 ident: bib0017 article-title: Comparative performance of an elitist teaching-learning based optimization algorithm for solving unconstrained optimization problems publication-title: Int J Ind Eng Comput – volume: 37 start-page: 106 year: 2006 end-page: 111 ident: bib0010 article-title: A new optimization method: big bang-big crunch publication-title: Adv Eng Softw – year: 2002 ident: bib0012 article-title: Artificial immune systems: a new computational intelligence approach – volume: 33 start-page: 1133 year: 2011 end-page: 1139 ident: bib0011 article-title: Optimal capacitor placement in a radial distribution system using plant growth simulation algorithm publication-title: Int. J. Electr. Power Energy Syst. – start-page: 71 year: 2013 end-page: 78 ident: bib0041 article-title: Success-history based parameter adaptation for differential evolution publication-title: Proceedings of IEEE CEC. – volume: 86 start-page: 165 year: 2019 end-page: 181 ident: bib0036 article-title: Poor and rich optimization algorithm: a new human based and multi populations algorithm publication-title: Eng Appl Artif Intell – volume: 59 start-page: 53 year: 2013 end-page: 70 ident: bib0022 article-title: A new optimization method: dolphin echolocation publication-title: Adv Eng Softw – volume: 87 year: 2020 ident: bib0037 article-title: Black Widow Optimization Algorithm: a novel meta-heuristic approach for solving engineering optimization problems publication-title: Eng Appl Artif Intell – volume: 1 start-page: 190 year: 1989 end-page: 206 ident: bib0005 article-title: Tabu search-part 1 publication-title: ORSA J Comput – volume: 2 start-page: 4 year: 1990 end-page: 32 ident: bib0006 article-title: Tabu search-part 2 publication-title: ORSA J Comput – start-page: 210 year: 2009 end-page: 214 ident: bib0018 article-title: Cuckoo search via Lévy flights publication-title: Proceedings of the world congress nature & biologically inspired computing (NaBIC 2009) – volume: 1 start-page: 330 year: 2010 end-page: 343 ident: bib0019 article-title: Engineering optimization by cuckoo search publication-title: Int J Math Model Numer Optim – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: bib0020 article-title: Gray wolf optimizer publication-title: Adv Eng Softw – volume: 23 start-page: 715 year: 2019 end-page: 734 ident: bib0034 article-title: Butterfly optimization algorithm: a novel approach for global optimization publication-title: Soft Comput – volume: 1 start-page: 53 year: 1997 end-page: 66 ident: bib0004 article-title: Ant colony system: a cooperative learning approach to the traveling salesman problem publication-title: IEEE Trans Evol Comput – volume: 43 start-page: 303 year: 2011 end-page: 315 ident: bib0016 article-title: Teaching-learning based optimization: a novel method for constrained mechanical design optimization problems publication-title: Comput Aided Des – volume: 75 start-page: 1 year: 2015 end-page: 18 ident: bib0025 article-title: Stochastic fractal search: a powerful metaheuristic algorithm publication-title: Knowl Based Syst – volume: 3 start-page: 267 year: 2011 end-page: 274 ident: bib0009 article-title: Bat algorithm for multi-objective optimization publication-title: Int . Bio-Inspired Comput – year: 2005 ident: bib0015 article-title: Differential evolution: a practical approach to global optimization – volume: 7445 start-page: 240 year: 2012 end-page: 249 ident: bib0024 article-title: Flower pollination algorithm for global optimization publication-title: Proceedings of unconventional computation and natural computation – volume: 33 start-page: 291 year: 2015 end-page: 303 ident: bib0030 article-title: The runner-root algorithm: a metaheuristic for solving unimodal and multimodal optimization problems inspired by runners and roots of plants in nature publication-title: Appl Soft Comput – volume: 60 start-page: 1 year: 2017 end-page: 15 ident: bib0032 article-title: Satin bowerbird optimizer: a new optimization algorithm to optimiza ANFIS for software development effort estimation publication-title: Inf Sci – volume: 139 start-page: 98 year: 2014 end-page: 112 ident: bib0029 article-title: Symbiotic organisms search: a new metaheuristic optimization algorithm publication-title: Comput Struct – volume: 139 start-page: 98 year: 2014 ident: 10.1016/j.advengsoft.2020.102804_bib0029 article-title: Symbiotic organisms search: a new metaheuristic optimization algorithm publication-title: Comput Struct doi: 10.1016/j.compstruc.2014.03.007 – volume: 41 start-page: 89 issue: 1 year: 2011 ident: 10.1016/j.advengsoft.2020.102804_bib0008 article-title: Exploratory power of the harmony search algorithm: analysis and improvements for global numerical optimization publication-title: IEEE Trans Syst Man Cybern – Part B: Cybern doi: 10.1109/TSMCB.2010.2046035 – volume: 129 start-page: 210 year: 2003 ident: 10.1016/j.advengsoft.2020.102804_bib0014 article-title: Optimization of water distribution network design using the shuffled frog leaping algorithm publication-title: J Water Resour Manag – start-page: 71 year: 2013 ident: 10.1016/j.advengsoft.2020.102804_bib0041 article-title: Success-history based parameter adaptation for differential evolution – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.advengsoft.2020.102804_bib0020 article-title: Gray wolf optimizer publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 – year: 2005 ident: 10.1016/j.advengsoft.2020.102804_bib0015 – volume: 27 start-page: 1053 year: 2016 ident: 10.1016/j.advengsoft.2020.102804_bib0033 article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective discrete nad multi-objective problems publication-title: Neural Comput Appl doi: 10.1007/s00521-015-1920-1 – start-page: 210 year: 2009 ident: 10.1016/j.advengsoft.2020.102804_bib0018 article-title: Cuckoo search via Lévy flights – volume: 37 start-page: 106 issue: 2 year: 2006 ident: 10.1016/j.advengsoft.2020.102804_bib0010 article-title: A new optimization method: big bang-big crunch publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2005.04.005 – volume: 23 start-page: 715 year: 2019 ident: 10.1016/j.advengsoft.2020.102804_bib0034 article-title: Butterfly optimization algorithm: a novel approach for global optimization publication-title: Soft Comput doi: 10.1007/s00500-018-3102-4 – volume: 2 start-page: 4 issue: 1 year: 1990 ident: 10.1016/j.advengsoft.2020.102804_bib0006 article-title: Tabu search-part 2 publication-title: ORSA J Comput doi: 10.1287/ijoc.2.1.4 – volume: 43 start-page: 303 issue: 3 year: 2011 ident: 10.1016/j.advengsoft.2020.102804_bib0016 article-title: Teaching-learning based optimization: a novel method for constrained mechanical design optimization problems publication-title: Comput Aided Des doi: 10.1016/j.cad.2010.12.015 – year: 2015 ident: 10.1016/j.advengsoft.2020.102804_bib0042 – volume: 1 start-page: 3 year: 2011 ident: 10.1016/j.advengsoft.2020.102804_bib0043 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2011.02.002 – volume: 92 start-page: 65 year: 2016 ident: 10.1016/j.advengsoft.2020.102804_bib0023 article-title: A novel nature-inspired algorithm for optimization: virus colony search publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2015.11.004 – volume: 3 start-page: 267 issue: 5 year: 2011 ident: 10.1016/j.advengsoft.2020.102804_bib0009 article-title: Bat algorithm for multi-objective optimization publication-title: Int . Bio-Inspired Comput doi: 10.1504/IJBIC.2011.042259 – volume: 33 start-page: 291 year: 2015 ident: 10.1016/j.advengsoft.2020.102804_bib0030 article-title: The runner-root algorithm: a metaheuristic for solving unimodal and multimodal optimization problems inspired by runners and roots of plants in nature publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.04.048 – start-page: 1942 year: 1995 ident: 10.1016/j.advengsoft.2020.102804_bib0002 article-title: Particle swarm optimization – volume: 53 start-page: 113 year: 2013 ident: 10.1016/j.advengsoft.2020.102804_bib0040 article-title: Energy and spinning reserve scheduling for a wind-thermal power system using CMA-ES with mean learning technique publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2013.03.032 – volume: 1 start-page: 53 issue: 1 year: 1997 ident: 10.1016/j.advengsoft.2020.102804_bib0004 article-title: Ant colony system: a cooperative learning approach to the traveling salesman problem publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.585892 – volume: 22 start-page: 52 issue: 3 year: 2002 ident: 10.1016/j.advengsoft.2020.102804_bib0013 article-title: Biomimicry of bacterial foraging for distributed optimization and control publication-title: IEEE Control Syst Mag doi: 10.1109/MCS.2002.1004010 – volume: 26 start-page: 501 issue: 7 year: 2004 ident: 10.1016/j.advengsoft.2020.102804_bib0028 article-title: Optimal capacitor placement in distribution systems using combination fuzzy-GA method publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2004.01.002 – volume: 105 start-page: 30 year: 2017 ident: 10.1016/j.advengsoft.2020.102804_bib0031 article-title: Grasshopper optimization algorithm: theory and application publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.01.004 – year: 2002 ident: 10.1016/j.advengsoft.2020.102804_bib0012 – volume: 4 start-page: 29 issue: 1 year: 2013 ident: 10.1016/j.advengsoft.2020.102804_bib0017 article-title: Comparative performance of an elitist teaching-learning based optimization algorithm for solving unconstrained optimization problems publication-title: Int J Ind Eng Comput – volume: 8 start-page: 849 issue: 2 year: 2008 ident: 10.1016/j.advengsoft.2020.102804_bib0027 article-title: A hybrid genetic algorithm and particle swarm optimization for multimodal functions publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2007.07.002 – start-page: 152 year: 2005 ident: 10.1016/j.advengsoft.2020.102804_bib0039 article-title: Genetic algorithm for optimal capacitor allocation in radial distribution systems – volume: 134 start-page: 178 year: 2019 ident: 10.1016/j.advengsoft.2020.102804_bib0035 article-title: Social mimic optimization algorithm and engineering application publication-title: Exp Syst Appl doi: 10.1016/j.eswa.2019.05.035 – volume: 1 start-page: 330 issue: 4 year: 2010 ident: 10.1016/j.advengsoft.2020.102804_bib0019 article-title: Engineering optimization by cuckoo search publication-title: Int J Math Model Numer Optim – volume: 75 start-page: 1 year: 2015 ident: 10.1016/j.advengsoft.2020.102804_bib0025 article-title: Stochastic fractal search: a powerful metaheuristic algorithm publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2014.07.025 – volume: 179 start-page: 2232 year: 2009 ident: 10.1016/j.advengsoft.2020.102804_bib0026 article-title: GSA: a gravitational search algorithm publication-title: Inf Sci doi: 10.1016/j.ins.2009.03.004 – volume: 59 start-page: 53 year: 2013 ident: 10.1016/j.advengsoft.2020.102804_bib0022 article-title: A new optimization method: dolphin echolocation publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2013.03.004 – volume: 1 start-page: 190 issue: 3 year: 1989 ident: 10.1016/j.advengsoft.2020.102804_bib0005 article-title: Tabu search-part 1 publication-title: ORSA J Comput doi: 10.1287/ijoc.1.3.190 – volume: 86 start-page: 165 year: 2019 ident: 10.1016/j.advengsoft.2020.102804_bib0036 article-title: Poor and rich optimization algorithm: a new human based and multi populations algorithm publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2019.08.025 – volume: 87 year: 2020 ident: 10.1016/j.advengsoft.2020.102804_bib0037 article-title: Black Widow Optimization Algorithm: a novel meta-heuristic approach for solving engineering optimization problems publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2019.103249 – volume: 60 start-page: 1 year: 2017 ident: 10.1016/j.advengsoft.2020.102804_bib0032 article-title: Satin bowerbird optimizer: a new optimization algorithm to optimiza ANFIS for software development effort estimation publication-title: Inf Sci – volume: 7445 start-page: 240 year: 2012 ident: 10.1016/j.advengsoft.2020.102804_bib0024 article-title: Flower pollination algorithm for global optimization – year: 1975 ident: 10.1016/j.advengsoft.2020.102804_bib0001 article-title: Adaptation in natural and artificial systems: an introductory analysis with applications to biology – volume: 194 start-page: 3902 issue: 36–38 year: 2005 ident: 10.1016/j.advengsoft.2020.102804_bib0007 article-title: A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2004.09.007 – volume: 33 start-page: 1133 issue: 5 year: 2011 ident: 10.1016/j.advengsoft.2020.102804_bib0011 article-title: Optimal capacitor placement in a radial distribution system using plant growth simulation algorithm publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2010.11.021 – volume: 87 year: 2020 ident: 10.1016/j.advengsoft.2020.102804_bib0038 article-title: Barnacles mating optimizer: a new bio-inspired algorithm for solving engineering optimization problems publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2019.103330 – volume: 13 start-page: 1781 issue: 4 year: 2013 ident: 10.1016/j.advengsoft.2020.102804_bib0003 article-title: Artificial bee colony algorithm and pattern search hybridized for global optimization publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2012.12.025 – volume: 24 start-page: 1867 issue: 7 year: 2014 ident: 10.1016/j.advengsoft.2020.102804_bib0021 article-title: Animal migration optimization: an optimization algorithm inspired by animal migration behaviour publication-title: Neural Comput Appl doi: 10.1007/s00521-013-1433-8 |
| SSID | ssj0014021 |
| Score | 2.646901 |
| Snippet | •A new student psychology based optimization (SPBO) algorithm is proposed.•Effectiveness of the SPBO is demonstrated through benchmark function test.•The... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 102804 |
| SubjectTerms | Benchmark function CEC 2015 Global optimum solution Optimization algorithm Student psychology based optimization (SPBO) |
| Title | Student psychology based optimization algorithm: A new population based optimization algorithm for solving optimization problems |
| URI | https://dx.doi.org/10.1016/j.advengsoft.2020.102804 |
| Volume | 146 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0965-9978 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0014021 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 0965-9978 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0014021 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0965-9978 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0014021 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0965-9978 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0014021 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0965-9978 databaseCode: AKRWK dateStart: 19920101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014021 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5VZYGBRwFRHpUH1tDGiVMHpqqiKiC6lErdIiexS1EfURsGFsRP55w4pRUSIDHGupMsn333nXP-DuDSjhTjXtOxRENEmKAwavmOjC0uZeSqmDIu9D3kY8_rDtz7IRuWoF28hdFllcb35z4989ZmpG5Ws56Mx_W-5i3xfc33ptMCrjlBXbepuxhcva_KPDB_yN5eaWFLS5tqnrzGS8ToUUZLdHiYKdKMx4Cblm3fQtRa2Onsw67Bi6SVT-kASnJWgT2DHYk5mUscKtozFGMV2FnjGjyEj37OYkmSwuW9ER3CYjJHrzE1zzGJmIzmi3H6PL0mLYKQmySrDl8_ihMEvwT3sb6f2BQxLWuWRzDo3D61u5Zpv2BFeNBTi8YiEgzPt-TS8RohjaVNBaVSckcIZYeSIbayuc89KVyJdkYsiTohc9AwynaOoTybz-QJEEa5sKXgDA3khlT_G2woJTwV-UpSHlehWax4EBluct0iYxIURWgvwZetAm2rILdVFeyVZpLzc_xB56YwarCx1wIMI79qn_5L-wy29VdeQngO5XTxKi8Q1qRhLdu3Ndhq3T10e5-SZP06 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4gHtSDD9SIzz14rdBtt93qiRAJKnABEm7Ntt0ihlegHrwYf7qzdIsQEzXxup1JNju7M99sZ78BuDbDmHHHtQxRFiEmKIwaniUjg0sZ2nFEGRfqHrLZcupd-7HHejmoZm9hVFml9v2pT194az1S0qtZmg4GpbbiLfE8xfem0gJub8CmzairMrCb92WdByYQi8dXStpQ4rqcJy3yEhG6lP4cPR6minRBZMB1z7ZvMWol7tT2YVcDRlJJ53QAOTkuwJ4Gj0QfzTkOZf0ZsrEC7KyQDR7CRzulsSTTzOe9ERXDIjJBtzHS7zGJGPYns0HyPLolFYKYm0yXLb5-FCeIfgluZHVBsS6ie9bMj6Bbu-9U64buv2CEeNITg0YiFAwPuOTScsoBjaRJBaVSckuI2AwkQ3Blco87UtgSDY1gEnUCZqFlYtM6hvx4MpYnQBjlwpSCM9t27YCqn4PlOBZOHHqxpDwqgputuB9qcnLVI2PoZ1VoL_6XrXxlKz-1VRHMpeY0Jej4g85dZlR_bbP5GEd-1T79l_YVbNU7zYbfeGg9ncG2-pLWE55DPpm9ygvEOElwudjDn2CI_s8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Student+psychology+based+optimization+algorithm%3A+A+new+population+based+optimization+algorithm+for+solving+optimization+problems&rft.jtitle=Advances+in+engineering+software+%281992%29&rft.au=Das%2C+Bikash&rft.au=Mukherjee%2C+V.&rft.au=Das%2C+Debapriya&rft.date=2020-08-01&rft.issn=0965-9978&rft.volume=146&rft.spage=102804&rft_id=info:doi/10.1016%2Fj.advengsoft.2020.102804&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_advengsoft_2020_102804 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0965-9978&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0965-9978&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0965-9978&client=summon |