Improved oscillation detection via noise-assisted data analysis

Oscillation detection is usually a precursor to more advanced performance monitoring steps such as plant wide oscillation detection and root cause detection. Therefore any false or missed detection can have serious implications. Oscillation detection is a challenging problem due to the presence of n...

Full description

Saved in:
Bibliographic Details
Published inControl engineering practice Vol. 81; pp. 162 - 171
Main Authors Aftab, Muhammad Faisal, Hovd, Morten, Sivalingam, Selvanathan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2018
Subjects
Online AccessGet full text
ISSN0967-0661
1873-6939
DOI10.1016/j.conengprac.2018.08.019

Cover

Abstract Oscillation detection is usually a precursor to more advanced performance monitoring steps such as plant wide oscillation detection and root cause detection. Therefore any false or missed detection can have serious implications. Oscillation detection is a challenging problem due to the presence of noise and multiple modes in the plant data. This paper presents an improved and robust automatic oscillation detection algorithm based on noise-assisted data analysis that can handle multiple oscillatory modes in the presence of both coloured and white noise along with non-stationary effects. The dyadic filter bank property of multivariate empirical mode decomposition has been used to accurately detect the oscillations and to calculate the associated characteristics. This work improves upon the existing auto covariance function based methods. The robustness and reliability of the proposed scheme is demonstrated via simulation and industrial case studies.
AbstractList Oscillation detection is usually a precursor to more advanced performance monitoring steps such as plant wide oscillation detection and root cause detection. Therefore any false or missed detection can have serious implications. Oscillation detection is a challenging problem due to the presence of noise and multiple modes in the plant data. This paper presents an improved and robust automatic oscillation detection algorithm based on noise-assisted data analysis that can handle multiple oscillatory modes in the presence of both coloured and white noise along with non-stationary effects. The dyadic filter bank property of multivariate empirical mode decomposition has been used to accurately detect the oscillations and to calculate the associated characteristics. This work improves upon the existing auto covariance function based methods. The robustness and reliability of the proposed scheme is demonstrated via simulation and industrial case studies.
Author Hovd, Morten
Aftab, Muhammad Faisal
Sivalingam, Selvanathan
Author_xml – sequence: 1
  givenname: Muhammad Faisal
  surname: Aftab
  fullname: Aftab, Muhammad Faisal
  email: muhammad.faisal.aftab@itk.ntnu.no
  organization: Department of Engineering Cybernetics, NTNU, Trondheim, Norway
– sequence: 2
  givenname: Morten
  surname: Hovd
  fullname: Hovd, Morten
  email: morten.hovd@itk.ntnu.no
  organization: Department of Engineering Cybernetics, NTNU, Trondheim, Norway
– sequence: 3
  givenname: Selvanathan
  surname: Sivalingam
  fullname: Sivalingam, Selvanathan
  organization: Siemens AS, Trondheim, Norway
BookMark eNqNkN1KAzEQhYNUsK2-w77ArpnNbn5uFC3-FAre6HXIZrOSZZuUJBT69qatIHijMDDDMOdw5lugmfPOIFQArgADvR0rnRfucxeUrmoMvMK5QFygOXBGSiqImKE5FpSVmFK4QosYR5ylQsAc3a-3u-D3pi981HaaVLLeFb1JRp-mvVWF8zaaUsVoY8qHvUqqUE5Nh7y4RpeDmqK5-e5L9PH89L56LTdvL-vVw6bUBHgq6xao0g0QBqZmncacE4FZwyilDdFCdB3XhOAW6o6LthnaoW86ThjRbU6OyRLdnX118DEGM0ht0ylsCspOErA84pCj_MEhjzgkzgUiG_BfBrtgtyoc_iN9PEtNfnBvTZAZlXHa9DZkTLL39m-TL6DmguQ
CitedBy_id crossref_primary_10_1016_j_compchemeng_2020_107029
crossref_primary_10_1109_TII_2022_3188844
crossref_primary_10_1016_j_jprocont_2022_10_004
crossref_primary_10_1016_j_jprocont_2024_103226
crossref_primary_10_1021_acs_iecr_2c02785
crossref_primary_10_1177_14727978251322269
crossref_primary_10_1016_j_conengprac_2024_106123
crossref_primary_10_1016_j_compchemeng_2021_107231
crossref_primary_10_1016_j_conengprac_2023_105715
crossref_primary_10_1016_j_compchemeng_2023_108173
crossref_primary_10_1016_j_conengprac_2020_104307
crossref_primary_10_1016_j_ifacol_2019_11_703
crossref_primary_10_1016_j_ifacol_2024_08_415
crossref_primary_10_1016_j_ymssp_2021_108112
crossref_primary_10_1016_j_jprocont_2019_04_002
crossref_primary_10_1016_j_ifacol_2020_12_655
crossref_primary_10_1021_acs_iecr_9b01456
crossref_primary_10_1021_acs_iecr_9b06351
Cites_doi 10.1016/j.jprocont.2010.02.012
10.1142/9789814508247_0005
10.1016/j.jprocont.2005.01.005
10.1016/j.ifacol.2016.07.336
10.1098/rspa.1998.0193
10.1016/S0967-0661(02)00035-7
10.1016/j.conengprac.2012.02.008
10.1016/j.conengprac.2007.01.014
10.1016/j.jprocont.2017.08.005
10.1016/j.conengprac.2016.06.020
10.1109/TSP.2011.2106779
10.1021/ie0602299
10.1016/j.ymssp.2004.01.006
10.1142/S1793536909000047
10.1016/j.conengprac.2016.03.012
10.1109/LSP.2003.821662
10.1016/j.automatica.2004.03.022
10.1016/S0959-1524(02)00007-0
10.1021/ie4037998
10.1016/j.conengprac.2006.10.011
10.1016/0967-0661(95)00164-P
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.conengprac.2018.08.019
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-6939
EndPage 171
ExternalDocumentID 10_1016_j_conengprac_2018_08_019
S0967066118304726
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
UNMZH
WUQ
XFK
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c318t-2516ac41371e27bc08839074766643c99bb8c330512b8954f5fd4b8373c596703
IEDL.DBID .~1
ISSN 0967-0661
IngestDate Sat Oct 25 05:20:47 EDT 2025
Thu Apr 24 23:11:57 EDT 2025
Fri Feb 23 02:35:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Mode mixing
Multiple oscillations
Dyadic filter bank property
Multivariate empirical mode decomposition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c318t-2516ac41371e27bc08839074766643c99bb8c330512b8954f5fd4b8373c596703
PageCount 10
ParticipantIDs crossref_citationtrail_10_1016_j_conengprac_2018_08_019
crossref_primary_10_1016_j_conengprac_2018_08_019
elsevier_sciencedirect_doi_10_1016_j_conengprac_2018_08_019
PublicationCentury 2000
PublicationDate December 2018
2018-12-00
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: December 2018
PublicationDecade 2010
PublicationTitle Control engineering practice
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Karra, Jelali, Karim, Horch (b11) 2010
Flandrin, Gonçalves, Rilling (b5) 2014; 16
Aftab, Hovd, Huang, Sivalingam (b1) 2016; 49
Flandrin, Rilling, Goncalves (b6) 2004; 11
Wu, Huang (b28) 2004
Aftab, Hovd, Sivalingam (b2) 2017; 60
Bacci di Capaci, Scali (b3) 2018; 130
Wu, Huang (b29) 2009; 1
Xie, Lang, Chen, Horch, Su (b30) 2016; 51
Hägglund (b8) 1995; 3(11)
Thornhill, Huang, Zhang (b24) 2003; 13
Miao, Seborg (b13) 1999
Naghoosi, Huang (b14) 2014; 53
Rehman, Mandic (b17) 2011; 59
Tangirala, Shah, Thornhill (b21) 2005; 15
Gao, Ge, Sheng, Sang (b7) 2008
Srinivasan, Rengaswamy, Miller (b20) 2007; 15
Chaudhry, Shah, Thornhill (b4) 2004; 40
Srinivasan, Rengaswamy (b19) 2012; 20
Huang, Shen, Long, Wu, Shih, Zheng (b10) 1998; 454
Wardana (b27) 2015
Thornhill, Shah, Huang, Vishnubhotla (b25) 2002; 10
Hoyer (b9) 2004; 5
Rehman, Mandic (b16) 2010
Thornhill, Horch (b23) 2007; 15
Tangirala, Kanodia, Shah (b22) 2007; 46
Xie, Lang, Horch, Yang (b31) 2016; 55
Peng, Peter, Chu (b15) 2005; 19
ur Rehman, Park, Huang, Mandic (b26) 2013; 5
Rilling, Patrick, Paulo (b18) 2003; Vol. 3
Li, Wang, Huang, Lu (b12) 2010; 20
Bacci di Capaci (10.1016/j.conengprac.2018.08.019_b3) 2018; 130
Peng (10.1016/j.conengprac.2018.08.019_b15) 2005; 19
Hoyer (10.1016/j.conengprac.2018.08.019_b9) 2004; 5
Tangirala (10.1016/j.conengprac.2018.08.019_b22) 2007; 46
Li (10.1016/j.conengprac.2018.08.019_b12) 2010; 20
Rilling (10.1016/j.conengprac.2018.08.019_b18) 2003; Vol. 3
Xie (10.1016/j.conengprac.2018.08.019_b31) 2016; 55
Naghoosi (10.1016/j.conengprac.2018.08.019_b14) 2014; 53
Huang (10.1016/j.conengprac.2018.08.019_b10) 1998; 454
Gao (10.1016/j.conengprac.2018.08.019_b7) 2008
Chaudhry (10.1016/j.conengprac.2018.08.019_b4) 2004; 40
Flandrin (10.1016/j.conengprac.2018.08.019_b6) 2004; 11
Aftab (10.1016/j.conengprac.2018.08.019_b2) 2017; 60
Rehman (10.1016/j.conengprac.2018.08.019_b16) 2010
Hägglund (10.1016/j.conengprac.2018.08.019_b8) 1995; 3(11)
Xie (10.1016/j.conengprac.2018.08.019_b30) 2016; 51
Wu (10.1016/j.conengprac.2018.08.019_b29) 2009; 1
Srinivasan (10.1016/j.conengprac.2018.08.019_b19) 2012; 20
Tangirala (10.1016/j.conengprac.2018.08.019_b21) 2005; 15
Srinivasan (10.1016/j.conengprac.2018.08.019_b20) 2007; 15
Miao (10.1016/j.conengprac.2018.08.019_b13) 1999
Wu (10.1016/j.conengprac.2018.08.019_b28) 2004
Flandrin (10.1016/j.conengprac.2018.08.019_b5) 2014; 16
Aftab (10.1016/j.conengprac.2018.08.019_b1) 2016; 49
Thornhill (10.1016/j.conengprac.2018.08.019_b23) 2007; 15
Wardana (10.1016/j.conengprac.2018.08.019_b27) 2015
Thornhill (10.1016/j.conengprac.2018.08.019_b25) 2002; 10
ur Rehman (10.1016/j.conengprac.2018.08.019_b26) 2013; 5
Thornhill (10.1016/j.conengprac.2018.08.019_b24) 2003; 13
Karra (10.1016/j.conengprac.2018.08.019_b11) 2010
Rehman (10.1016/j.conengprac.2018.08.019_b17) 2011; 59
References_xml – volume: Vol. 3
  start-page: 8
  year: 2003
  end-page: 11
  ident: b18
  article-title: On empirical mode decomposition and its algorithms
  publication-title: IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing
– volume: 20
  start-page: 733
  year: 2012
  end-page: 746
  ident: b19
  article-title: Automatic oscillation detection and characterization in closed-loop systems
  publication-title: Control Engineering Practice
– start-page: 181
  year: 2015
  end-page: 186
  ident: b27
  article-title: A method for detecting the oscillation in control loops based on variational mode decomposition
  publication-title: 2015 International conference on computer, control, informatics and its applications, IC3INA
– volume: 15
  start-page: 931
  year: 2005
  end-page: 941
  ident: b21
  article-title: PSCMAP: A new tool for plant-wide oscillation detection
  publication-title: Journal of Process Control
– volume: 40
  start-page: 1719
  year: 2004
  end-page: 1728
  ident: b4
  article-title: Diagnosis of poor control-loop performance using higher-order statistics
  publication-title: Automatica
– volume: 51
  start-page: 48
  year: 2016
  end-page: 57
  ident: b30
  article-title: Time-varying oscillation detector based on improved LMD and robust Lempel–Ziv complexity
  publication-title: Control Engineering Practice
– volume: 46
  start-page: 801
  year: 2007
  end-page: 817
  ident: b22
  article-title: Non-negative matrix factorization for detection and diagnosis of plantwide oscillations
  publication-title: Industrial and Engineering Chemistry Research
– volume: 5
  year: 2013
  ident: b26
  article-title: EMD via MEMD: Multivariate noise-aided computation of standard EMD
  publication-title: Advances in Adaptive Data Analysis
– start-page: 359
  year: 1999
  end-page: 364
  ident: b13
  article-title: Automatic detection of excessively oscillatory feedback control loops
  publication-title: Proceedings of the IEEE international conference on control applications, 1999, Vol. 1
– volume: 53
  start-page: 9427
  year: 2014
  end-page: 9438
  ident: b14
  article-title: Automatic detection and frequency estimation of oscillatory variables in the presence of multiple oscillations
  publication-title: Industrial and Engineering Chemistry Research
– volume: 15
  start-page: 1135
  year: 2007
  end-page: 1148
  ident: b20
  article-title: A modified empirical mode decomposition (EMD) process for oscillation characterization in control loops
  publication-title: Control Engineering Practice
– volume: 3(11)
  start-page: 1543
  year: 1995
  end-page: 1551
  ident: b8
  article-title: A control-loop performance monitor
  publication-title: Control Engineering Practice
– volume: 59
  start-page: 2421
  year: 2011
  end-page: 2426
  ident: b17
  article-title: Filter bank property of multivariate empirical mode decomposition
  publication-title: IEEE Transactions on Signal Processing
– start-page: 223
  year: 2008
  end-page: 227
  ident: b7
  article-title: Analysis and solution to the mode mixing phenomenon in EMD
  publication-title: Image and signal processing, 2008. CISP’08. Congress on, Vol. 5
– start-page: 1597
  year: 2004
  end-page: 1611
  ident: b28
  article-title: A study of the characteristics of white noise using the empirical mode decomposition method
  publication-title: Proceedings of the royal society of london a: Mathematical, physical and engineering sciences, Vol. 460
– start-page: 1291
  year: 2010
  end-page: 1302
  ident: b16
  article-title: Multivariate empirical mode decomposition
  publication-title: Proceedings of the royal society of london a: Mathematical, physical and engineering sciences, Vol. 466
– volume: 13
  start-page: 91
  year: 2003
  end-page: 100
  ident: b24
  article-title: Detection of multiple oscillations in control loops
  publication-title: Journal of Process Control
– volume: 60
  start-page: 68
  year: 2017
  end-page: 81
  ident: b2
  article-title: Detecting non-linearity induced oscillations via the dyadic filter bank property of multivariate empirical mode decomposition
  publication-title: Journal of Process Control
– volume: 1
  start-page: 1
  year: 2009
  end-page: 41
  ident: b29
  article-title: Ensemble empirical mode decomposition: A noise-assisted data analysis method
  publication-title: Advances in Adaptive Data Analysis
– start-page: 61
  year: 2010
  end-page: 100
  ident: b11
  article-title: Detection of oscillating control loops
  publication-title: Detection and diagnosis of stiction in control loops: State of the art and advanced methods
– volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: b10
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences
– volume: 55
  start-page: 91
  year: 2016
  end-page: 100
  ident: b31
  article-title: Online oscillation detection in the presence of signal intermittency
  publication-title: Control Engineering Practice
– volume: 11
  start-page: 112
  year: 2004
  end-page: 114
  ident: b6
  article-title: Empirical mode decomposition as a filter bank
  publication-title: IEEE Signal Processing Letters
– volume: 15
  start-page: 1196
  year: 2007
  end-page: 1206
  ident: b23
  article-title: Advances and new directions in plant-wide disturbance detection and diagnosis
  publication-title: Control Engineering Practice
– volume: 20
  start-page: 609
  year: 2010
  end-page: 617
  ident: b12
  article-title: The DCT-based oscillation detection method for a single time series
  publication-title: Journal of Process Control
– volume: 19
  start-page: 974
  year: 2005
  end-page: 988
  ident: b15
  article-title: A comparison study of improved Hilbert Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing
  publication-title: Mechanical Systems and Signal Processing
– volume: 130
  year: 2018
  ident: b3
  article-title: Review and comparison of techniques of analysis of valve stiction: From modeling to smart diagnosis
  publication-title: Chemical Engineering Research and Design
– volume: 10
  start-page: 833
  year: 2002
  end-page: 846
  ident: b25
  article-title: Spectral principal component analysis of dynamic process data
  publication-title: Control Engineering Practice
– volume: 49
  start-page: 1020
  year: 2016
  end-page: 1025
  ident: b1
  article-title: An adaptive non-linearity detection algorithm for process control loops
  publication-title: IFAC-PapersOnLine
– volume: 16
  start-page: 99
  year: 2014
  end-page: 116
  ident: b5
  article-title: EMD Equivalent filter banks, from interpretation to applications
  publication-title: Hilbert-Huang Transform and Its Applications
– volume: 5
  start-page: 1457
  year: 2004
  end-page: 1469
  ident: b9
  article-title: Non-negative matrix factorization with sparseness constraints
  publication-title: Journal of Machine Learning Research (JMLR)
– volume: 20
  start-page: 609
  issue: 5
  year: 2010
  ident: 10.1016/j.conengprac.2018.08.019_b12
  article-title: The DCT-based oscillation detection method for a single time series
  publication-title: Journal of Process Control
  doi: 10.1016/j.jprocont.2010.02.012
– start-page: 223
  year: 2008
  ident: 10.1016/j.conengprac.2018.08.019_b7
  article-title: Analysis and solution to the mode mixing phenomenon in EMD
– volume: 16
  start-page: 99
  year: 2014
  ident: 10.1016/j.conengprac.2018.08.019_b5
  article-title: EMD Equivalent filter banks, from interpretation to applications
  publication-title: Hilbert-Huang Transform and Its Applications
  doi: 10.1142/9789814508247_0005
– start-page: 359
  year: 1999
  ident: 10.1016/j.conengprac.2018.08.019_b13
  article-title: Automatic detection of excessively oscillatory feedback control loops
– volume: 15
  start-page: 931
  issue: 8
  year: 2005
  ident: 10.1016/j.conengprac.2018.08.019_b21
  article-title: PSCMAP: A new tool for plant-wide oscillation detection
  publication-title: Journal of Process Control
  doi: 10.1016/j.jprocont.2005.01.005
– volume: 49
  start-page: 1020
  issue: 7
  year: 2016
  ident: 10.1016/j.conengprac.2018.08.019_b1
  article-title: An adaptive non-linearity detection algorithm for process control loops
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2016.07.336
– volume: 454
  start-page: 903
  issue: 1971
  year: 1998
  ident: 10.1016/j.conengprac.2018.08.019_b10
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences
  doi: 10.1098/rspa.1998.0193
– volume: 10
  start-page: 833
  issue: 8
  year: 2002
  ident: 10.1016/j.conengprac.2018.08.019_b25
  article-title: Spectral principal component analysis of dynamic process data
  publication-title: Control Engineering Practice
  doi: 10.1016/S0967-0661(02)00035-7
– volume: 20
  start-page: 733
  issue: 8
  year: 2012
  ident: 10.1016/j.conengprac.2018.08.019_b19
  article-title: Automatic oscillation detection and characterization in closed-loop systems
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2012.02.008
– start-page: 61
  year: 2010
  ident: 10.1016/j.conengprac.2018.08.019_b11
  article-title: Detection of oscillating control loops
– volume: 15
  start-page: 1135
  issue: 9
  year: 2007
  ident: 10.1016/j.conengprac.2018.08.019_b20
  article-title: A modified empirical mode decomposition (EMD) process for oscillation characterization in control loops
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2007.01.014
– volume: 60
  start-page: 68
  year: 2017
  ident: 10.1016/j.conengprac.2018.08.019_b2
  article-title: Detecting non-linearity induced oscillations via the dyadic filter bank property of multivariate empirical mode decomposition
  publication-title: Journal of Process Control
  doi: 10.1016/j.jprocont.2017.08.005
– volume: 55
  start-page: 91
  year: 2016
  ident: 10.1016/j.conengprac.2018.08.019_b31
  article-title: Online oscillation detection in the presence of signal intermittency
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2016.06.020
– volume: 59
  start-page: 2421
  issue: 5
  year: 2011
  ident: 10.1016/j.conengprac.2018.08.019_b17
  article-title: Filter bank property of multivariate empirical mode decomposition
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2011.2106779
– volume: 46
  start-page: 801
  issue: 3
  year: 2007
  ident: 10.1016/j.conengprac.2018.08.019_b22
  article-title: Non-negative matrix factorization for detection and diagnosis of plantwide oscillations
  publication-title: Industrial and Engineering Chemistry Research
  doi: 10.1021/ie0602299
– volume: 19
  start-page: 974
  issue: 5
  year: 2005
  ident: 10.1016/j.conengprac.2018.08.019_b15
  article-title: A comparison study of improved Hilbert Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2004.01.006
– volume: 1
  start-page: 1
  issue: 01
  year: 2009
  ident: 10.1016/j.conengprac.2018.08.019_b29
  article-title: Ensemble empirical mode decomposition: A noise-assisted data analysis method
  publication-title: Advances in Adaptive Data Analysis
  doi: 10.1142/S1793536909000047
– volume: 51
  start-page: 48
  year: 2016
  ident: 10.1016/j.conengprac.2018.08.019_b30
  article-title: Time-varying oscillation detector based on improved LMD and robust Lempel–Ziv complexity
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2016.03.012
– volume: 130
  year: 2018
  ident: 10.1016/j.conengprac.2018.08.019_b3
  article-title: Review and comparison of techniques of analysis of valve stiction: From modeling to smart diagnosis
  publication-title: Chemical Engineering Research and Design
– volume: 11
  start-page: 112
  issue: 2
  year: 2004
  ident: 10.1016/j.conengprac.2018.08.019_b6
  article-title: Empirical mode decomposition as a filter bank
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2003.821662
– volume: 40
  start-page: 1719
  year: 2004
  ident: 10.1016/j.conengprac.2018.08.019_b4
  article-title: Diagnosis of poor control-loop performance using higher-order statistics
  publication-title: Automatica
  doi: 10.1016/j.automatica.2004.03.022
– volume: Vol. 3
  start-page: 8
  year: 2003
  ident: 10.1016/j.conengprac.2018.08.019_b18
  article-title: On empirical mode decomposition and its algorithms
– start-page: 181
  year: 2015
  ident: 10.1016/j.conengprac.2018.08.019_b27
  article-title: A method for detecting the oscillation in control loops based on variational mode decomposition
– volume: 13
  start-page: 91
  issue: 1
  year: 2003
  ident: 10.1016/j.conengprac.2018.08.019_b24
  article-title: Detection of multiple oscillations in control loops
  publication-title: Journal of Process Control
  doi: 10.1016/S0959-1524(02)00007-0
– volume: 5
  issue: 02
  year: 2013
  ident: 10.1016/j.conengprac.2018.08.019_b26
  article-title: EMD via MEMD: Multivariate noise-aided computation of standard EMD
  publication-title: Advances in Adaptive Data Analysis
– volume: 53
  start-page: 9427
  issue: 22
  year: 2014
  ident: 10.1016/j.conengprac.2018.08.019_b14
  article-title: Automatic detection and frequency estimation of oscillatory variables in the presence of multiple oscillations
  publication-title: Industrial and Engineering Chemistry Research
  doi: 10.1021/ie4037998
– volume: 15
  start-page: 1196
  issue: 10
  year: 2007
  ident: 10.1016/j.conengprac.2018.08.019_b23
  article-title: Advances and new directions in plant-wide disturbance detection and diagnosis
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2006.10.011
– volume: 3(11)
  start-page: 1543
  year: 1995
  ident: 10.1016/j.conengprac.2018.08.019_b8
  article-title: A control-loop performance monitor
  publication-title: Control Engineering Practice
  doi: 10.1016/0967-0661(95)00164-P
– volume: 5
  start-page: 1457
  year: 2004
  ident: 10.1016/j.conengprac.2018.08.019_b9
  article-title: Non-negative matrix factorization with sparseness constraints
  publication-title: Journal of Machine Learning Research (JMLR)
– start-page: 1291
  year: 2010
  ident: 10.1016/j.conengprac.2018.08.019_b16
  article-title: Multivariate empirical mode decomposition
– start-page: 1597
  year: 2004
  ident: 10.1016/j.conengprac.2018.08.019_b28
  article-title: A study of the characteristics of white noise using the empirical mode decomposition method
SSID ssj0016991
Score 2.3677526
Snippet Oscillation detection is usually a precursor to more advanced performance monitoring steps such as plant wide oscillation detection and root cause detection....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 162
SubjectTerms Dyadic filter bank property
Mode mixing
Multiple oscillations
Multivariate empirical mode decomposition
Title Improved oscillation detection via noise-assisted data analysis
URI https://dx.doi.org/10.1016/j.conengprac.2018.08.019
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6939
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016991
  issn: 0967-0661
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6939
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016991
  issn: 0967-0661
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-6939
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016991
  issn: 0967-0661
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-6939
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016991
  issn: 0967-0661
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6939
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016991
  issn: 0967-0661
  databaseCode: AKRWK
  dateStart: 19930201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6KXvQgPrE-yh68xnabzWPxIKVYqmIvWugtJLsbiZRYNHr0tzuT3dQKgoKnkJCBZLL7zczm228Azkye5oFB9JNCaE8oLT2sbLXHMfiEQua6Vysx3U3C8VTczIJZC4bNXhiiVTrst5heo7W70nXe7C6KonuPyXeEARMzZPp11CfZbYFHHNPnH0uaBw-l7ZqHN9Nue-7YPJbjhSWnKR9pPxKRvOJazJM0d34KUSthZ7QNWy5fZAP7SDvQMuUubK6oCO7BpV0YMJqRMOXcktuYNlXNsirZe5Gy8rl4NR4myvRVNSNeKEudHsk-TEdXD8Ox5_oieApnYOVhShKmCqNPxE0_yhQChU81boSliPCVlFkWKx8nMu9nsQxEHuRaZFiJ-iogn_kHsFbimx8Cw2RI9NJAmyiUIpA8jcMYEU-oNM8EV3kbosYViXKi4dS7Yp407LCn5MuJCTkxobaWXLaBLy0XVjjjDzYXjbeTb4MgQXz_1froX9bHsEFnlqlyAmvVy5s5xXyjyjr1gOrA-uD6djz5BHkN1a4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELVKGYAB8SnKpwfW0Dqxk1gMCFVUBdoutFI3K7EdFFSFCgIjv51z7JQiIYHEmuSk5GK_u0vevUPoXGdJxjSgH6dUeVQq7kFlqzwCwSekPFOdSolpOAr7E3o3ZdMG6ta9MIZW6bDfYnqF1u5I23mzPc_z9gMk3xEETMiQza8jP1xBq5T5kanALj4WPA8Scjs2D6427fbE0XksyQtqTl08moYkw_KKKzVPI7rzU4xaiju9LbTpEkZ8be9pGzV0sYM2lmQEd9GV_TKgFTbKlDPLbsNKlxXNqsDveYKL5_xVe5Apm9eqsCGG4sQJkuyhSe9m3O17bjCCJ2ELlh7kJGEiIfxERPtRKgEpAlPkRlCL0EBynqaxDGAnEz-NOaMZyxRNoRQNJDNOC_ZRs4AnP0AYsiHaSZjSUcgp4ySJwxggj8okSymRWQtFtSuEdKrhZnjFTNT0sCfx5URhnCjMXEvCW4gsLOdWOeMPNpe1t8W3VSAA4H-1PvyX9Rla64-HAzG4Hd0foXVzxtJWjlGzfHnTJ5B8lOlptbg-AZGZ10M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+oscillation+detection+via+noise-assisted+data+analysis&rft.jtitle=Control+engineering+practice&rft.au=Aftab%2C+Muhammad+Faisal&rft.au=Hovd%2C+Morten&rft.au=Sivalingam%2C+Selvanathan&rft.date=2018-12-01&rft.pub=Elsevier+Ltd&rft.issn=0967-0661&rft.eissn=1873-6939&rft.volume=81&rft.spage=162&rft.epage=171&rft_id=info:doi/10.1016%2Fj.conengprac.2018.08.019&rft.externalDocID=S0967066118304726
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-0661&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-0661&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-0661&client=summon