Improved oscillation detection via noise-assisted data analysis
Oscillation detection is usually a precursor to more advanced performance monitoring steps such as plant wide oscillation detection and root cause detection. Therefore any false or missed detection can have serious implications. Oscillation detection is a challenging problem due to the presence of n...
Saved in:
| Published in | Control engineering practice Vol. 81; pp. 162 - 171 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.12.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0967-0661 1873-6939 |
| DOI | 10.1016/j.conengprac.2018.08.019 |
Cover
| Abstract | Oscillation detection is usually a precursor to more advanced performance monitoring steps such as plant wide oscillation detection and root cause detection. Therefore any false or missed detection can have serious implications. Oscillation detection is a challenging problem due to the presence of noise and multiple modes in the plant data. This paper presents an improved and robust automatic oscillation detection algorithm based on noise-assisted data analysis that can handle multiple oscillatory modes in the presence of both coloured and white noise along with non-stationary effects. The dyadic filter bank property of multivariate empirical mode decomposition has been used to accurately detect the oscillations and to calculate the associated characteristics. This work improves upon the existing auto covariance function based methods. The robustness and reliability of the proposed scheme is demonstrated via simulation and industrial case studies. |
|---|---|
| AbstractList | Oscillation detection is usually a precursor to more advanced performance monitoring steps such as plant wide oscillation detection and root cause detection. Therefore any false or missed detection can have serious implications. Oscillation detection is a challenging problem due to the presence of noise and multiple modes in the plant data. This paper presents an improved and robust automatic oscillation detection algorithm based on noise-assisted data analysis that can handle multiple oscillatory modes in the presence of both coloured and white noise along with non-stationary effects. The dyadic filter bank property of multivariate empirical mode decomposition has been used to accurately detect the oscillations and to calculate the associated characteristics. This work improves upon the existing auto covariance function based methods. The robustness and reliability of the proposed scheme is demonstrated via simulation and industrial case studies. |
| Author | Hovd, Morten Aftab, Muhammad Faisal Sivalingam, Selvanathan |
| Author_xml | – sequence: 1 givenname: Muhammad Faisal surname: Aftab fullname: Aftab, Muhammad Faisal email: muhammad.faisal.aftab@itk.ntnu.no organization: Department of Engineering Cybernetics, NTNU, Trondheim, Norway – sequence: 2 givenname: Morten surname: Hovd fullname: Hovd, Morten email: morten.hovd@itk.ntnu.no organization: Department of Engineering Cybernetics, NTNU, Trondheim, Norway – sequence: 3 givenname: Selvanathan surname: Sivalingam fullname: Sivalingam, Selvanathan organization: Siemens AS, Trondheim, Norway |
| BookMark | eNqNkN1KAzEQhYNUsK2-w77ArpnNbn5uFC3-FAre6HXIZrOSZZuUJBT69qatIHijMDDDMOdw5lugmfPOIFQArgADvR0rnRfucxeUrmoMvMK5QFygOXBGSiqImKE5FpSVmFK4QosYR5ylQsAc3a-3u-D3pi981HaaVLLeFb1JRp-mvVWF8zaaUsVoY8qHvUqqUE5Nh7y4RpeDmqK5-e5L9PH89L56LTdvL-vVw6bUBHgq6xao0g0QBqZmncacE4FZwyilDdFCdB3XhOAW6o6LthnaoW86ThjRbU6OyRLdnX118DEGM0ht0ylsCspOErA84pCj_MEhjzgkzgUiG_BfBrtgtyoc_iN9PEtNfnBvTZAZlXHa9DZkTLL39m-TL6DmguQ |
| CitedBy_id | crossref_primary_10_1016_j_compchemeng_2020_107029 crossref_primary_10_1109_TII_2022_3188844 crossref_primary_10_1016_j_jprocont_2022_10_004 crossref_primary_10_1016_j_jprocont_2024_103226 crossref_primary_10_1021_acs_iecr_2c02785 crossref_primary_10_1177_14727978251322269 crossref_primary_10_1016_j_conengprac_2024_106123 crossref_primary_10_1016_j_compchemeng_2021_107231 crossref_primary_10_1016_j_conengprac_2023_105715 crossref_primary_10_1016_j_compchemeng_2023_108173 crossref_primary_10_1016_j_conengprac_2020_104307 crossref_primary_10_1016_j_ifacol_2019_11_703 crossref_primary_10_1016_j_ifacol_2024_08_415 crossref_primary_10_1016_j_ymssp_2021_108112 crossref_primary_10_1016_j_jprocont_2019_04_002 crossref_primary_10_1016_j_ifacol_2020_12_655 crossref_primary_10_1021_acs_iecr_9b01456 crossref_primary_10_1021_acs_iecr_9b06351 |
| Cites_doi | 10.1016/j.jprocont.2010.02.012 10.1142/9789814508247_0005 10.1016/j.jprocont.2005.01.005 10.1016/j.ifacol.2016.07.336 10.1098/rspa.1998.0193 10.1016/S0967-0661(02)00035-7 10.1016/j.conengprac.2012.02.008 10.1016/j.conengprac.2007.01.014 10.1016/j.jprocont.2017.08.005 10.1016/j.conengprac.2016.06.020 10.1109/TSP.2011.2106779 10.1021/ie0602299 10.1016/j.ymssp.2004.01.006 10.1142/S1793536909000047 10.1016/j.conengprac.2016.03.012 10.1109/LSP.2003.821662 10.1016/j.automatica.2004.03.022 10.1016/S0959-1524(02)00007-0 10.1021/ie4037998 10.1016/j.conengprac.2006.10.011 10.1016/0967-0661(95)00164-P |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd |
| Copyright_xml | – notice: 2018 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.conengprac.2018.08.019 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-6939 |
| EndPage | 171 |
| ExternalDocumentID | 10_1016_j_conengprac_2018_08_019 S0967066118304726 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K UNMZH WUQ XFK XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c318t-2516ac41371e27bc08839074766643c99bb8c330512b8954f5fd4b8373c596703 |
| IEDL.DBID | .~1 |
| ISSN | 0967-0661 |
| IngestDate | Sat Oct 25 05:20:47 EDT 2025 Thu Apr 24 23:11:57 EDT 2025 Fri Feb 23 02:35:44 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Mode mixing Multiple oscillations Dyadic filter bank property Multivariate empirical mode decomposition |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c318t-2516ac41371e27bc08839074766643c99bb8c330512b8954f5fd4b8373c596703 |
| PageCount | 10 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_conengprac_2018_08_019 crossref_primary_10_1016_j_conengprac_2018_08_019 elsevier_sciencedirect_doi_10_1016_j_conengprac_2018_08_019 |
| PublicationCentury | 2000 |
| PublicationDate | December 2018 2018-12-00 |
| PublicationDateYYYYMMDD | 2018-12-01 |
| PublicationDate_xml | – month: 12 year: 2018 text: December 2018 |
| PublicationDecade | 2010 |
| PublicationTitle | Control engineering practice |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Karra, Jelali, Karim, Horch (b11) 2010 Flandrin, Gonçalves, Rilling (b5) 2014; 16 Aftab, Hovd, Huang, Sivalingam (b1) 2016; 49 Flandrin, Rilling, Goncalves (b6) 2004; 11 Wu, Huang (b28) 2004 Aftab, Hovd, Sivalingam (b2) 2017; 60 Bacci di Capaci, Scali (b3) 2018; 130 Wu, Huang (b29) 2009; 1 Xie, Lang, Chen, Horch, Su (b30) 2016; 51 Hägglund (b8) 1995; 3(11) Thornhill, Huang, Zhang (b24) 2003; 13 Miao, Seborg (b13) 1999 Naghoosi, Huang (b14) 2014; 53 Rehman, Mandic (b17) 2011; 59 Tangirala, Shah, Thornhill (b21) 2005; 15 Gao, Ge, Sheng, Sang (b7) 2008 Srinivasan, Rengaswamy, Miller (b20) 2007; 15 Chaudhry, Shah, Thornhill (b4) 2004; 40 Srinivasan, Rengaswamy (b19) 2012; 20 Huang, Shen, Long, Wu, Shih, Zheng (b10) 1998; 454 Wardana (b27) 2015 Thornhill, Shah, Huang, Vishnubhotla (b25) 2002; 10 Hoyer (b9) 2004; 5 Rehman, Mandic (b16) 2010 Thornhill, Horch (b23) 2007; 15 Tangirala, Kanodia, Shah (b22) 2007; 46 Xie, Lang, Horch, Yang (b31) 2016; 55 Peng, Peter, Chu (b15) 2005; 19 ur Rehman, Park, Huang, Mandic (b26) 2013; 5 Rilling, Patrick, Paulo (b18) 2003; Vol. 3 Li, Wang, Huang, Lu (b12) 2010; 20 Bacci di Capaci (10.1016/j.conengprac.2018.08.019_b3) 2018; 130 Peng (10.1016/j.conengprac.2018.08.019_b15) 2005; 19 Hoyer (10.1016/j.conengprac.2018.08.019_b9) 2004; 5 Tangirala (10.1016/j.conengprac.2018.08.019_b22) 2007; 46 Li (10.1016/j.conengprac.2018.08.019_b12) 2010; 20 Rilling (10.1016/j.conengprac.2018.08.019_b18) 2003; Vol. 3 Xie (10.1016/j.conengprac.2018.08.019_b31) 2016; 55 Naghoosi (10.1016/j.conengprac.2018.08.019_b14) 2014; 53 Huang (10.1016/j.conengprac.2018.08.019_b10) 1998; 454 Gao (10.1016/j.conengprac.2018.08.019_b7) 2008 Chaudhry (10.1016/j.conengprac.2018.08.019_b4) 2004; 40 Flandrin (10.1016/j.conengprac.2018.08.019_b6) 2004; 11 Aftab (10.1016/j.conengprac.2018.08.019_b2) 2017; 60 Rehman (10.1016/j.conengprac.2018.08.019_b16) 2010 Hägglund (10.1016/j.conengprac.2018.08.019_b8) 1995; 3(11) Xie (10.1016/j.conengprac.2018.08.019_b30) 2016; 51 Wu (10.1016/j.conengprac.2018.08.019_b29) 2009; 1 Srinivasan (10.1016/j.conengprac.2018.08.019_b19) 2012; 20 Tangirala (10.1016/j.conengprac.2018.08.019_b21) 2005; 15 Srinivasan (10.1016/j.conengprac.2018.08.019_b20) 2007; 15 Miao (10.1016/j.conengprac.2018.08.019_b13) 1999 Wu (10.1016/j.conengprac.2018.08.019_b28) 2004 Flandrin (10.1016/j.conengprac.2018.08.019_b5) 2014; 16 Aftab (10.1016/j.conengprac.2018.08.019_b1) 2016; 49 Thornhill (10.1016/j.conengprac.2018.08.019_b23) 2007; 15 Wardana (10.1016/j.conengprac.2018.08.019_b27) 2015 Thornhill (10.1016/j.conengprac.2018.08.019_b25) 2002; 10 ur Rehman (10.1016/j.conengprac.2018.08.019_b26) 2013; 5 Thornhill (10.1016/j.conengprac.2018.08.019_b24) 2003; 13 Karra (10.1016/j.conengprac.2018.08.019_b11) 2010 Rehman (10.1016/j.conengprac.2018.08.019_b17) 2011; 59 |
| References_xml | – volume: Vol. 3 start-page: 8 year: 2003 end-page: 11 ident: b18 article-title: On empirical mode decomposition and its algorithms publication-title: IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing – volume: 20 start-page: 733 year: 2012 end-page: 746 ident: b19 article-title: Automatic oscillation detection and characterization in closed-loop systems publication-title: Control Engineering Practice – start-page: 181 year: 2015 end-page: 186 ident: b27 article-title: A method for detecting the oscillation in control loops based on variational mode decomposition publication-title: 2015 International conference on computer, control, informatics and its applications, IC3INA – volume: 15 start-page: 931 year: 2005 end-page: 941 ident: b21 article-title: PSCMAP: A new tool for plant-wide oscillation detection publication-title: Journal of Process Control – volume: 40 start-page: 1719 year: 2004 end-page: 1728 ident: b4 article-title: Diagnosis of poor control-loop performance using higher-order statistics publication-title: Automatica – volume: 51 start-page: 48 year: 2016 end-page: 57 ident: b30 article-title: Time-varying oscillation detector based on improved LMD and robust Lempel–Ziv complexity publication-title: Control Engineering Practice – volume: 46 start-page: 801 year: 2007 end-page: 817 ident: b22 article-title: Non-negative matrix factorization for detection and diagnosis of plantwide oscillations publication-title: Industrial and Engineering Chemistry Research – volume: 5 year: 2013 ident: b26 article-title: EMD via MEMD: Multivariate noise-aided computation of standard EMD publication-title: Advances in Adaptive Data Analysis – start-page: 359 year: 1999 end-page: 364 ident: b13 article-title: Automatic detection of excessively oscillatory feedback control loops publication-title: Proceedings of the IEEE international conference on control applications, 1999, Vol. 1 – volume: 53 start-page: 9427 year: 2014 end-page: 9438 ident: b14 article-title: Automatic detection and frequency estimation of oscillatory variables in the presence of multiple oscillations publication-title: Industrial and Engineering Chemistry Research – volume: 15 start-page: 1135 year: 2007 end-page: 1148 ident: b20 article-title: A modified empirical mode decomposition (EMD) process for oscillation characterization in control loops publication-title: Control Engineering Practice – volume: 3(11) start-page: 1543 year: 1995 end-page: 1551 ident: b8 article-title: A control-loop performance monitor publication-title: Control Engineering Practice – volume: 59 start-page: 2421 year: 2011 end-page: 2426 ident: b17 article-title: Filter bank property of multivariate empirical mode decomposition publication-title: IEEE Transactions on Signal Processing – start-page: 223 year: 2008 end-page: 227 ident: b7 article-title: Analysis and solution to the mode mixing phenomenon in EMD publication-title: Image and signal processing, 2008. CISP’08. Congress on, Vol. 5 – start-page: 1597 year: 2004 end-page: 1611 ident: b28 article-title: A study of the characteristics of white noise using the empirical mode decomposition method publication-title: Proceedings of the royal society of london a: Mathematical, physical and engineering sciences, Vol. 460 – start-page: 1291 year: 2010 end-page: 1302 ident: b16 article-title: Multivariate empirical mode decomposition publication-title: Proceedings of the royal society of london a: Mathematical, physical and engineering sciences, Vol. 466 – volume: 13 start-page: 91 year: 2003 end-page: 100 ident: b24 article-title: Detection of multiple oscillations in control loops publication-title: Journal of Process Control – volume: 60 start-page: 68 year: 2017 end-page: 81 ident: b2 article-title: Detecting non-linearity induced oscillations via the dyadic filter bank property of multivariate empirical mode decomposition publication-title: Journal of Process Control – volume: 1 start-page: 1 year: 2009 end-page: 41 ident: b29 article-title: Ensemble empirical mode decomposition: A noise-assisted data analysis method publication-title: Advances in Adaptive Data Analysis – start-page: 61 year: 2010 end-page: 100 ident: b11 article-title: Detection of oscillating control loops publication-title: Detection and diagnosis of stiction in control loops: State of the art and advanced methods – volume: 454 start-page: 903 year: 1998 end-page: 995 ident: b10 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences – volume: 55 start-page: 91 year: 2016 end-page: 100 ident: b31 article-title: Online oscillation detection in the presence of signal intermittency publication-title: Control Engineering Practice – volume: 11 start-page: 112 year: 2004 end-page: 114 ident: b6 article-title: Empirical mode decomposition as a filter bank publication-title: IEEE Signal Processing Letters – volume: 15 start-page: 1196 year: 2007 end-page: 1206 ident: b23 article-title: Advances and new directions in plant-wide disturbance detection and diagnosis publication-title: Control Engineering Practice – volume: 20 start-page: 609 year: 2010 end-page: 617 ident: b12 article-title: The DCT-based oscillation detection method for a single time series publication-title: Journal of Process Control – volume: 19 start-page: 974 year: 2005 end-page: 988 ident: b15 article-title: A comparison study of improved Hilbert Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing publication-title: Mechanical Systems and Signal Processing – volume: 130 year: 2018 ident: b3 article-title: Review and comparison of techniques of analysis of valve stiction: From modeling to smart diagnosis publication-title: Chemical Engineering Research and Design – volume: 10 start-page: 833 year: 2002 end-page: 846 ident: b25 article-title: Spectral principal component analysis of dynamic process data publication-title: Control Engineering Practice – volume: 49 start-page: 1020 year: 2016 end-page: 1025 ident: b1 article-title: An adaptive non-linearity detection algorithm for process control loops publication-title: IFAC-PapersOnLine – volume: 16 start-page: 99 year: 2014 end-page: 116 ident: b5 article-title: EMD Equivalent filter banks, from interpretation to applications publication-title: Hilbert-Huang Transform and Its Applications – volume: 5 start-page: 1457 year: 2004 end-page: 1469 ident: b9 article-title: Non-negative matrix factorization with sparseness constraints publication-title: Journal of Machine Learning Research (JMLR) – volume: 20 start-page: 609 issue: 5 year: 2010 ident: 10.1016/j.conengprac.2018.08.019_b12 article-title: The DCT-based oscillation detection method for a single time series publication-title: Journal of Process Control doi: 10.1016/j.jprocont.2010.02.012 – start-page: 223 year: 2008 ident: 10.1016/j.conengprac.2018.08.019_b7 article-title: Analysis and solution to the mode mixing phenomenon in EMD – volume: 16 start-page: 99 year: 2014 ident: 10.1016/j.conengprac.2018.08.019_b5 article-title: EMD Equivalent filter banks, from interpretation to applications publication-title: Hilbert-Huang Transform and Its Applications doi: 10.1142/9789814508247_0005 – start-page: 359 year: 1999 ident: 10.1016/j.conengprac.2018.08.019_b13 article-title: Automatic detection of excessively oscillatory feedback control loops – volume: 15 start-page: 931 issue: 8 year: 2005 ident: 10.1016/j.conengprac.2018.08.019_b21 article-title: PSCMAP: A new tool for plant-wide oscillation detection publication-title: Journal of Process Control doi: 10.1016/j.jprocont.2005.01.005 – volume: 49 start-page: 1020 issue: 7 year: 2016 ident: 10.1016/j.conengprac.2018.08.019_b1 article-title: An adaptive non-linearity detection algorithm for process control loops publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2016.07.336 – volume: 454 start-page: 903 issue: 1971 year: 1998 ident: 10.1016/j.conengprac.2018.08.019_b10 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences doi: 10.1098/rspa.1998.0193 – volume: 10 start-page: 833 issue: 8 year: 2002 ident: 10.1016/j.conengprac.2018.08.019_b25 article-title: Spectral principal component analysis of dynamic process data publication-title: Control Engineering Practice doi: 10.1016/S0967-0661(02)00035-7 – volume: 20 start-page: 733 issue: 8 year: 2012 ident: 10.1016/j.conengprac.2018.08.019_b19 article-title: Automatic oscillation detection and characterization in closed-loop systems publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2012.02.008 – start-page: 61 year: 2010 ident: 10.1016/j.conengprac.2018.08.019_b11 article-title: Detection of oscillating control loops – volume: 15 start-page: 1135 issue: 9 year: 2007 ident: 10.1016/j.conengprac.2018.08.019_b20 article-title: A modified empirical mode decomposition (EMD) process for oscillation characterization in control loops publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2007.01.014 – volume: 60 start-page: 68 year: 2017 ident: 10.1016/j.conengprac.2018.08.019_b2 article-title: Detecting non-linearity induced oscillations via the dyadic filter bank property of multivariate empirical mode decomposition publication-title: Journal of Process Control doi: 10.1016/j.jprocont.2017.08.005 – volume: 55 start-page: 91 year: 2016 ident: 10.1016/j.conengprac.2018.08.019_b31 article-title: Online oscillation detection in the presence of signal intermittency publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2016.06.020 – volume: 59 start-page: 2421 issue: 5 year: 2011 ident: 10.1016/j.conengprac.2018.08.019_b17 article-title: Filter bank property of multivariate empirical mode decomposition publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2011.2106779 – volume: 46 start-page: 801 issue: 3 year: 2007 ident: 10.1016/j.conengprac.2018.08.019_b22 article-title: Non-negative matrix factorization for detection and diagnosis of plantwide oscillations publication-title: Industrial and Engineering Chemistry Research doi: 10.1021/ie0602299 – volume: 19 start-page: 974 issue: 5 year: 2005 ident: 10.1016/j.conengprac.2018.08.019_b15 article-title: A comparison study of improved Hilbert Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2004.01.006 – volume: 1 start-page: 1 issue: 01 year: 2009 ident: 10.1016/j.conengprac.2018.08.019_b29 article-title: Ensemble empirical mode decomposition: A noise-assisted data analysis method publication-title: Advances in Adaptive Data Analysis doi: 10.1142/S1793536909000047 – volume: 51 start-page: 48 year: 2016 ident: 10.1016/j.conengprac.2018.08.019_b30 article-title: Time-varying oscillation detector based on improved LMD and robust Lempel–Ziv complexity publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2016.03.012 – volume: 130 year: 2018 ident: 10.1016/j.conengprac.2018.08.019_b3 article-title: Review and comparison of techniques of analysis of valve stiction: From modeling to smart diagnosis publication-title: Chemical Engineering Research and Design – volume: 11 start-page: 112 issue: 2 year: 2004 ident: 10.1016/j.conengprac.2018.08.019_b6 article-title: Empirical mode decomposition as a filter bank publication-title: IEEE Signal Processing Letters doi: 10.1109/LSP.2003.821662 – volume: 40 start-page: 1719 year: 2004 ident: 10.1016/j.conengprac.2018.08.019_b4 article-title: Diagnosis of poor control-loop performance using higher-order statistics publication-title: Automatica doi: 10.1016/j.automatica.2004.03.022 – volume: Vol. 3 start-page: 8 year: 2003 ident: 10.1016/j.conengprac.2018.08.019_b18 article-title: On empirical mode decomposition and its algorithms – start-page: 181 year: 2015 ident: 10.1016/j.conengprac.2018.08.019_b27 article-title: A method for detecting the oscillation in control loops based on variational mode decomposition – volume: 13 start-page: 91 issue: 1 year: 2003 ident: 10.1016/j.conengprac.2018.08.019_b24 article-title: Detection of multiple oscillations in control loops publication-title: Journal of Process Control doi: 10.1016/S0959-1524(02)00007-0 – volume: 5 issue: 02 year: 2013 ident: 10.1016/j.conengprac.2018.08.019_b26 article-title: EMD via MEMD: Multivariate noise-aided computation of standard EMD publication-title: Advances in Adaptive Data Analysis – volume: 53 start-page: 9427 issue: 22 year: 2014 ident: 10.1016/j.conengprac.2018.08.019_b14 article-title: Automatic detection and frequency estimation of oscillatory variables in the presence of multiple oscillations publication-title: Industrial and Engineering Chemistry Research doi: 10.1021/ie4037998 – volume: 15 start-page: 1196 issue: 10 year: 2007 ident: 10.1016/j.conengprac.2018.08.019_b23 article-title: Advances and new directions in plant-wide disturbance detection and diagnosis publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2006.10.011 – volume: 3(11) start-page: 1543 year: 1995 ident: 10.1016/j.conengprac.2018.08.019_b8 article-title: A control-loop performance monitor publication-title: Control Engineering Practice doi: 10.1016/0967-0661(95)00164-P – volume: 5 start-page: 1457 year: 2004 ident: 10.1016/j.conengprac.2018.08.019_b9 article-title: Non-negative matrix factorization with sparseness constraints publication-title: Journal of Machine Learning Research (JMLR) – start-page: 1291 year: 2010 ident: 10.1016/j.conengprac.2018.08.019_b16 article-title: Multivariate empirical mode decomposition – start-page: 1597 year: 2004 ident: 10.1016/j.conengprac.2018.08.019_b28 article-title: A study of the characteristics of white noise using the empirical mode decomposition method |
| SSID | ssj0016991 |
| Score | 2.3677526 |
| Snippet | Oscillation detection is usually a precursor to more advanced performance monitoring steps such as plant wide oscillation detection and root cause detection.... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 162 |
| SubjectTerms | Dyadic filter bank property Mode mixing Multiple oscillations Multivariate empirical mode decomposition |
| Title | Improved oscillation detection via noise-assisted data analysis |
| URI | https://dx.doi.org/10.1016/j.conengprac.2018.08.019 |
| Volume | 81 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6939 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016991 issn: 0967-0661 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6939 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016991 issn: 0967-0661 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-6939 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016991 issn: 0967-0661 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-6939 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016991 issn: 0967-0661 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6939 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016991 issn: 0967-0661 databaseCode: AKRWK dateStart: 19930201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6KXvQgPrE-yh68xnabzWPxIKVYqmIvWugtJLsbiZRYNHr0tzuT3dQKgoKnkJCBZLL7zczm228Azkye5oFB9JNCaE8oLT2sbLXHMfiEQua6Vysx3U3C8VTczIJZC4bNXhiiVTrst5heo7W70nXe7C6KonuPyXeEARMzZPp11CfZbYFHHNPnH0uaBw-l7ZqHN9Nue-7YPJbjhSWnKR9pPxKRvOJazJM0d34KUSthZ7QNWy5fZAP7SDvQMuUubK6oCO7BpV0YMJqRMOXcktuYNlXNsirZe5Gy8rl4NR4myvRVNSNeKEudHsk-TEdXD8Ox5_oieApnYOVhShKmCqNPxE0_yhQChU81boSliPCVlFkWKx8nMu9nsQxEHuRaZFiJ-iogn_kHsFbimx8Cw2RI9NJAmyiUIpA8jcMYEU-oNM8EV3kbosYViXKi4dS7Yp407LCn5MuJCTkxobaWXLaBLy0XVjjjDzYXjbeTb4MgQXz_1froX9bHsEFnlqlyAmvVy5s5xXyjyjr1gOrA-uD6djz5BHkN1a4 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELVKGYAB8SnKpwfW0Dqxk1gMCFVUBdoutFI3K7EdFFSFCgIjv51z7JQiIYHEmuSk5GK_u0vevUPoXGdJxjSgH6dUeVQq7kFlqzwCwSekPFOdSolpOAr7E3o3ZdMG6ta9MIZW6bDfYnqF1u5I23mzPc_z9gMk3xEETMiQza8jP1xBq5T5kanALj4WPA8Scjs2D6427fbE0XksyQtqTl08moYkw_KKKzVPI7rzU4xaiju9LbTpEkZ8be9pGzV0sYM2lmQEd9GV_TKgFTbKlDPLbsNKlxXNqsDveYKL5_xVe5Apm9eqsCGG4sQJkuyhSe9m3O17bjCCJ2ELlh7kJGEiIfxERPtRKgEpAlPkRlCL0EBynqaxDGAnEz-NOaMZyxRNoRQNJDNOC_ZRs4AnP0AYsiHaSZjSUcgp4ySJwxggj8okSymRWQtFtSuEdKrhZnjFTNT0sCfx5URhnCjMXEvCW4gsLOdWOeMPNpe1t8W3VSAA4H-1PvyX9Rla64-HAzG4Hd0foXVzxtJWjlGzfHnTJ5B8lOlptbg-AZGZ10M |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+oscillation+detection+via+noise-assisted+data+analysis&rft.jtitle=Control+engineering+practice&rft.au=Aftab%2C+Muhammad+Faisal&rft.au=Hovd%2C+Morten&rft.au=Sivalingam%2C+Selvanathan&rft.date=2018-12-01&rft.pub=Elsevier+Ltd&rft.issn=0967-0661&rft.eissn=1873-6939&rft.volume=81&rft.spage=162&rft.epage=171&rft_id=info:doi/10.1016%2Fj.conengprac.2018.08.019&rft.externalDocID=S0967066118304726 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-0661&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-0661&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-0661&client=summon |