Semi-Supervised Dual-Stream Self-Attentive Adversarial Graph Contrastive Learning for Cross-Subject EEG-Based Emotion Recognition
Electroencephalography (EEG) is an objective tool for emotion recognition with promising applications. However, the scarcity of labeled data remains a major challenge in this field, limiting the widespread use of EEG-based emotion recognition. In this paper, a semi-supervised D ual-stream S elf-atte...
Saved in:
| Published in | IEEE transactions on affective computing Vol. 16; no. 1; pp. 290 - 305 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1949-3045 1949-3045 |
| DOI | 10.1109/TAFFC.2024.3433470 |
Cover
| Abstract | Electroencephalography (EEG) is an objective tool for emotion recognition with promising applications. However, the scarcity of labeled data remains a major challenge in this field, limiting the widespread use of EEG-based emotion recognition. In this paper, a semi-supervised D ual-stream S elf-attentive A dversarial G raph C ontrastive learning framework (termed as DS-AGC ) is proposed to tackle the challenge of limited labeled data in cross-subject EEG-based emotion recognition. The DS-AGC framework includes two parallel streams for extracting non-structural and structural EEG features. The non-structural stream incorporates a semi-supervised multi-domain adaptation method to alleviate distribution discrepancy among labeled source domain, unlabeled source domain, and unknown target domain. The structural stream develops a graph contrastive learning method to extract effective graph-based feature representation from multiple EEG channels in a semi-supervised manner. Further, a self-attentive fusion module is developed for feature fusion, sample selection, and emotion recognition, which highlights EEG features more relevant to emotions and data samples in the labeled source domain that are closer to the target domain. Extensive experiments are conducted on four benchmark databases (SEED, SEED-IV, SEED-V, and FACED) using a semi-supervised cross-subject leave-one-subject-out cross-validation evaluation protocol. The results show that the proposed model outperforms existing methods under different incomplete label conditions with an average improvement of 2.17%, which demonstrates its effectiveness in addressing the label scarcity problem in cross-subject EEG-based emotion recognition. |
|---|---|
| AbstractList | Electroencephalography (EEG) is an objective tool for emotion recognition with promising applications. However, the scarcity of labeled data remains a major challenge in this field, limiting the widespread use of EEG-based emotion recognition. In this paper, a semi-supervised D ual-stream S elf-attentive A dversarial G raph C ontrastive learning framework (termed as DS-AGC ) is proposed to tackle the challenge of limited labeled data in cross-subject EEG-based emotion recognition. The DS-AGC framework includes two parallel streams for extracting non-structural and structural EEG features. The non-structural stream incorporates a semi-supervised multi-domain adaptation method to alleviate distribution discrepancy among labeled source domain, unlabeled source domain, and unknown target domain. The structural stream develops a graph contrastive learning method to extract effective graph-based feature representation from multiple EEG channels in a semi-supervised manner. Further, a self-attentive fusion module is developed for feature fusion, sample selection, and emotion recognition, which highlights EEG features more relevant to emotions and data samples in the labeled source domain that are closer to the target domain. Extensive experiments are conducted on four benchmark databases (SEED, SEED-IV, SEED-V, and FACED) using a semi-supervised cross-subject leave-one-subject-out cross-validation evaluation protocol. The results show that the proposed model outperforms existing methods under different incomplete label conditions with an average improvement of 2.17%, which demonstrates its effectiveness in addressing the label scarcity problem in cross-subject EEG-based emotion recognition. |
| Author | Liang, Zhen Ni, Dong Xu, Peng Zhang, Zhiguo Ye, Weishan Wang, Jianhong Li, Fali Teng, Fei Zhang, Min |
| Author_xml | – sequence: 1 givenname: Weishan orcidid: 0009-0004-9971-1482 surname: Ye fullname: Ye, Weishan email: 2110246024@email.szu.edu.cn organization: School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, China – sequence: 2 givenname: Zhiguo orcidid: 0000-0001-7992-7965 surname: Zhang fullname: Zhang, Zhiguo email: zhiguozhang@hit.edu.cn organization: Institute of Computing and Intelligence, Harbin Institute of Technology, Shenzhen, China – sequence: 3 givenname: Fei surname: Teng fullname: Teng, Fei email: 2021222013@email.szu.edu.cn organization: School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, China – sequence: 4 givenname: Min surname: Zhang fullname: Zhang, Min email: zhangmin2021@hit.edu.cn organization: Institute of Computing and Intelligence, Harbin Institute of Technology, Shenzhen, China – sequence: 5 givenname: Jianhong surname: Wang fullname: Wang, Jianhong email: wangjianhong0755@163.com organization: Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen, China – sequence: 6 givenname: Dong orcidid: 0000-0002-9146-6003 surname: Ni fullname: Ni, Dong email: nidong@szu.edu.cn organization: School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, China – sequence: 7 givenname: Fali orcidid: 0000-0002-2450-4591 surname: Li fullname: Li, Fali email: fali.li@uestc.edu.cn organization: Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China – sequence: 8 givenname: Peng orcidid: 0000-0002-7932-0386 surname: Xu fullname: Xu, Peng email: xupeng@uestc.edu.cn organization: Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China – sequence: 9 givenname: Zhen orcidid: 0000-0002-1749-2975 surname: Liang fullname: Liang, Zhen email: janezliang@szu.edu.cn organization: School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, China |
| BookMark | eNpNUE1PwkAQ3RhMROQPGA-beC7uR9ttj1gBTUhMBM_NdjvFJWUXdxcSj_5zW_DAXOYl8z4y7xYNjDWA0D0lE0pJ_rSezufFhBEWT3jMeSzIFRrSPM4jTuJkcIFv0Nj7LemGc54yMUS_K9jpaHXYgztqDzV-Ocg2WgUHcodX0DbRNAQwQR8BT-sjOC-dli1eOLn_woU1wUl_ui5BOqPNBjfW4cJZ7zvbagsq4NlsET3L3n22s0Fbgz9A2Y3RPb5D141sPYz_9wh9zmfr4jVavi_eiukyUpyKEDUiSSpWkbyGLK1jljUpCJ4nKpGcVhVP60yIWoKIaa4qpTrMEsGoJDxRKcn4CD2efffOfh_Ah3JrD850kWUXwDjN07RnsTNL9R84aMq90zvpfkpKyr7t8tR22bdd_rfdiR7OIg0AF4KU5Akl_A--AX4i |
| CODEN | ITACBQ |
| Cites_doi | 10.29172/7c2a6982-6d72-4cd8-bba6-2fccb06a7011 10.1109/ICOT.2017.8336126 10.1609/aaai.v35i1.16169 10.1007/s12559-022-10016-4 10.1109/TAFFC.2020.2994159 10.1007/s10994-023-06324-x 10.1109/TIM.2020.3006611 10.1109/TCYB.2018.2797176 10.1609/aaai.v32i1.11496 10.7551/mitpress/7503.003.0022 10.1109/TAFFC.2022.3210441 10.1109/TCDS.2020.3007453 10.1109/TCDS.2021.3098842 10.1088/1741-2552/acae06 10.1109/TAFFC.2022.3189222 10.1109/TCDS.2021.3071170 10.1007/s10994-009-5152-4 10.1109/TNN.2010.2091281 10.1609/aaai.v30i1.10306 10.1109/CVPR.2013.448 10.1023/A:1018628609742 10.3389/fnins.2021.778488 10.1109/TAFFC.2018.2817622 10.1109/ICASSP43922.2022.9746528 10.3389/fncom.2019.00053 10.1109/TCDS.2020.2999337 10.1016/j.cmpb.2016.08.010 10.1093/bib/bbab109 10.1109/TAFFC.2022.3164516 10.1109/TAFFC.2017.2660485 10.1109/TNSRE.2021.3111689 10.1109/TCDS.2019.2949306 10.1016/S0003-2670(01)95359-0 10.1007/978-3-319-49409-8_35 10.1109/BIBE.2014.26 10.1371/journal.pcbi.1009284 10.1016/j.ins.2022.07.121 10.1109/TCYB.2019.2904052 10.1109/ICCV.2013.368 10.1007/s10994-019-05855-6 10.1109/TAMD.2015.2431497 10.1109/NER.2013.6695876 10.1016/j.compbiomed.2021.105048 10.4310/SII.2009.v2.n3.a8 10.1109/TAFFC.2023.3288118 10.1007/978-3-030-04221-9_25 10.1109/CVPR.2012.6247911 10.1016/j.neuroimage.2015.02.015 10.5555/2946645.2946704 10.1038/s41597-023-02650-w 10.1109/TBME.2013.2253608 10.1109/TAFFC.2020.3013711 10.1109/TNSRE.2023.3236434 10.1007/978-3-030-04221-9_36 10.48550/ARXIV.1706.03762 10.1109/IEMBS.2010.5627125 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TAFFC.2024.3433470 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1949-3045 |
| EndPage | 305 |
| ExternalDocumentID | 10_1109_TAFFC_2024_3433470 10609510 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Shenzhen Science and Technology Research and Development Fund for Sustainable Development Project grantid: KCXFZ20201221173613036 – fundername: Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions grantid: 2022SHIBS0003 – fundername: Shenzhen University-Lingnan University Joint Research Programme – fundername: Medical-Engineering Interdisciplinary Research Foundation of Shenzhen University grantid: 2024YG008 – fundername: National Natural Science Foundation of China grantid: 62276169; 62071310; 82272114 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNI RZB AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c317t-f755b2b09de86d428f6e7395c5a31bb36d877dae7419cbcc7da25721a035c6083 |
| IEDL.DBID | RIE |
| ISSN | 1949-3045 |
| IngestDate | Mon Jun 30 12:19:45 EDT 2025 Wed Oct 01 06:40:06 EDT 2025 Wed Aug 27 01:46:38 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c317t-f755b2b09de86d428f6e7395c5a31bb36d877dae7419cbcc7da25721a035c6083 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7932-0386 0000-0001-7992-7965 0000-0002-1749-2975 0000-0002-9146-6003 0009-0004-9971-1482 0000-0002-2450-4591 |
| PQID | 3172319668 |
| PQPubID | 2040414 |
| PageCount | 16 |
| ParticipantIDs | crossref_primary_10_1109_TAFFC_2024_3433470 proquest_journals_3172319668 ieee_primary_10609510 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on affective computing |
| PublicationTitleAbbrev | TAFFC |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 Chen (ref28) ref17 ref16 ref19 Zhang (ref71) Berthelot (ref4) Sohn (ref5) ref51 ref45 ref48 ref42 ref41 ref43 Devlin (ref29) 2018 ref49 ref8 ref7 ref9 ref3 Zheng (ref18) ref40 ref35 Mohsenvand (ref32) 2020; 136 ref37 ref36 ref31 ref30 ref33 ref2 ref1 ref39 ref38 Tzeng (ref70) 2014 Zhao (ref47) David (ref44) Van der Maaten (ref73) 2008; 9 ref24 ref68 ref23 ref67 ref26 ref25 ref69 Berthelot (ref6) 2021 ref20 ref64 ref22 ref66 ref21 ref65 ref27 Mika (ref63) Defferrard (ref50) Albuquerque (ref46) 2019 ref60 Chen (ref72) 2023 You (ref34) ref62 ref61 |
| References_xml | – start-page: 18 408 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref71 article-title: FlexMatch: Boosting semi-supervised learning with curriculum pseudo labeling – ident: ref64 doi: 10.29172/7c2a6982-6d72-4cd8-bba6-2fccb06a7011 – year: 2014 ident: ref70 article-title: Deep domain confusion: Maximizing for domain invariance – ident: ref24 doi: 10.1109/ICOT.2017.8336126 – ident: ref39 doi: 10.1609/aaai.v35i1.16169 – ident: ref22 doi: 10.1007/s12559-022-10016-4 – ident: ref40 doi: 10.1109/TAFFC.2020.2994159 – ident: ref48 doi: 10.1007/s10994-023-06324-x – volume: 9 start-page: 1 issue: 11 year: 2008 ident: ref73 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – year: 2019 ident: ref46 article-title: Generalizing to unseen domains via distribution matching – ident: ref14 doi: 10.1109/TIM.2020.3006611 – start-page: 2732 volume-title: Proc. 25th Int. Joint Conf. Artif. Intell. ident: ref18 article-title: Personalizing EEG-based affective models with transfer learning – ident: ref52 doi: 10.1109/TCYB.2018.2797176 – ident: ref12 doi: 10.1609/aaai.v32i1.11496 – ident: ref45 doi: 10.7551/mitpress/7503.003.0022 – start-page: 1725 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref28 article-title: Simple and deep graph convolutional networks – year: 2018 ident: ref29 article-title: BERT: Pre-training of deep bidirectional transformers for language understanding – ident: ref7 doi: 10.1109/TAFFC.2022.3210441 – ident: ref58 doi: 10.1109/TCDS.2020.3007453 – ident: ref59 doi: 10.1109/TCDS.2021.3098842 – start-page: 1 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref4 article-title: MixMatch: A holistic approach to semi-supervised learning – ident: ref21 doi: 10.1088/1741-2552/acae06 – start-page: 5812 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref34 article-title: Graph contrastive learning with augmentations – ident: ref27 doi: 10.1109/TAFFC.2022.3189222 – ident: ref53 doi: 10.1109/TCDS.2021.3071170 – ident: ref43 doi: 10.1007/s10994-009-5152-4 – ident: ref61 doi: 10.1109/TNN.2010.2091281 – start-page: 1 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref50 article-title: Convolutional neural networks on graphs with fast localized spectral filtering – ident: ref66 doi: 10.1609/aaai.v30i1.10306 – ident: ref49 doi: 10.1109/CVPR.2013.448 – ident: ref60 doi: 10.1023/A:1018628609742 – ident: ref42 doi: 10.3389/fnins.2021.778488 – ident: ref16 doi: 10.1109/TAFFC.2018.2817622 – ident: ref3 doi: 10.1109/ICASSP43922.2022.9746528 – ident: ref13 doi: 10.3389/fncom.2019.00053 – ident: ref37 doi: 10.1109/TCDS.2020.2999337 – volume: 136 start-page: 238 year: 2020 ident: ref32 article-title: Contrastive representation learning for electroencephalogram classification publication-title: Mach. Learn. Health – ident: ref10 doi: 10.1016/j.cmpb.2016.08.010 – ident: ref30 doi: 10.1093/bib/bbab109 – ident: ref33 doi: 10.1109/TAFFC.2022.3164516 – ident: ref11 doi: 10.1109/TAFFC.2017.2660485 – ident: ref57 doi: 10.1109/TNSRE.2021.3111689 – ident: ref26 doi: 10.1109/TCDS.2019.2949306 – ident: ref68 doi: 10.1016/S0003-2670(01)95359-0 – ident: ref69 doi: 10.1007/978-3-319-49409-8_35 – ident: ref2 doi: 10.1109/BIBE.2014.26 – ident: ref31 doi: 10.1371/journal.pcbi.1009284 – year: 2021 ident: ref6 article-title: AdaMatch: A unified approach to semi-supervised learning and domain adaptation – start-page: 1 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref63 article-title: Kernel PCA and de-noising in feature spaces – year: 2023 ident: ref72 article-title: SoftMatch: Addressing the quantity-quality trade-off in semi-supervised learning – ident: ref15 doi: 10.1016/j.ins.2022.07.121 – ident: ref41 doi: 10.1109/TCYB.2019.2904052 – start-page: 596 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref5 article-title: FixMatch: Simplifying semi-supervised learning with consistency and confidence – ident: ref62 doi: 10.1109/ICCV.2013.368 – ident: ref1 doi: 10.1007/s10994-019-05855-6 – ident: ref9 doi: 10.1109/TAMD.2015.2431497 – start-page: 1 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref47 article-title: Adversarial multiple source domain adaptation – ident: ref8 doi: 10.1109/NER.2013.6695876 – ident: ref23 doi: 10.1016/j.compbiomed.2021.105048 – ident: ref65 doi: 10.4310/SII.2009.v2.n3.a8 – ident: ref56 doi: 10.1109/TAFFC.2023.3288118 – ident: ref36 doi: 10.1007/978-3-030-04221-9_25 – ident: ref67 doi: 10.1109/CVPR.2012.6247911 – ident: ref20 doi: 10.1016/j.neuroimage.2015.02.015 – ident: ref25 doi: 10.5555/2946645.2946704 – ident: ref54 doi: 10.1038/s41597-023-02650-w – ident: ref19 doi: 10.1109/TBME.2013.2253608 – ident: ref35 doi: 10.1109/TAFFC.2020.3013711 – ident: ref17 doi: 10.1109/TNSRE.2023.3236434 – ident: ref38 doi: 10.1007/978-3-030-04221-9_36 – start-page: 129 volume-title: Proc. 13th Int. Conf. Artif. Intell. Statist. ident: ref44 article-title: Impossibility theorems for domain adaptation – ident: ref51 doi: 10.48550/ARXIV.1706.03762 – ident: ref55 doi: 10.1109/IEMBS.2010.5627125 |
| SSID | ssj0000333627 |
| Score | 2.4508994 |
| Snippet | Electroencephalography (EEG) is an objective tool for emotion recognition with promising applications. However, the scarcity of labeled data remains a major... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 290 |
| SubjectTerms | Brain modeling Data models domain adaption EEG Effectiveness Electroencephalography Emotion recognition Emotions Feature extraction graph contrastive learning Graphical representations Labels Learning semi-supervised learning Streams Transfer learning |
| Title | Semi-Supervised Dual-Stream Self-Attentive Adversarial Graph Contrastive Learning for Cross-Subject EEG-Based Emotion Recognition |
| URI | https://ieeexplore.ieee.org/document/10609510 https://www.proquest.com/docview/3172319668 |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1949-3045 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000333627 issn: 1949-3045 databaseCode: RIE dateStart: 20100101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaAiYVnEeUlD2zIJYkd2x1LaUFIdKAgsUV-BSHoQ23CwMY_x-ckCIGQ2Cwltmyfff58vrsPodNcCSeE1IQnMiLMMEpknDPikaniBgLUYghOvh3x6wd285g-1sHqIRbGORecz1wHiuEt385MCaYyv8N5QASraFVIXgVrfRlUIkq9MhZNYEzUPb_vDYd9fwVMWIcyShkQEn87fAKbyi8VHM6V4SYaNT2q3EleOmWhO-b9R7LGf3d5C23UCBP3qiWxjVbcdAdtNuwNuN7Mu-hj7CbPZFzOQVssncWXpXol8EqtJnjsXnPSKwrwJXpzONA2LxUsVnwFKa4xZLVaqGX4WudofcIeAOM-jNw3q8HAgweDK3KhoPVBxReE7xqPpdm0hR6Gg_v-NakJGYjxMKMguUhTneioa53k1l9ccu7goc-kisZaU26lEFY5j1K6Rhvjy14jJLGKaGq4B3t7aG06m7p9hBWVgtpIM5kbxm2iqE6FFYkXU6z8mdlGZ42ksnmVdyML95WomwW5ZiDXrJZrG7Vg6r_9Wc16Gx010s3qvbnM_FASUDxcHvxR7RCtJ0DzGywtR2itWJTu2GOPQp-ENfcJc8TXGw |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH9icNguAzYQHV8-7Da5S2LHTo9daSkb9LAWiVvkryAEtIgmHLjxn8_PSRAaQuJmKbFl-9nPPz-_934A3wslnZSZpiLJIsoNZzSLC049MlXCYIBajMHJZxMxPue_L9KLJlg9xMI454LzmetiMbzl24Wp0FTmd7gIiOADrKWc87QO13o2qUSMeXUs29CYqPdz1h-NBv4SmPAu44xxpCR-cfwEPpVXSjicLKN1mLR9qh1KrrtVqbvm8b90je_u9AZ8bjAm6deLYhNW3PwLrLf8DaTZzl_haepur-i0ukN9sXSWHFXqhuI7tbolU3dT0H5ZojfRgyOBuHmpcLmSY0xyTTCv1b1ahq9NltZL4iEwGeDIfbMaTTxkODymvxS2PqwZg8jf1mdpMd-C89FwNhjThpKBGg80SlrINNWJjnrWZcL6q0shHD71mVSxWGsmbCalVc7jlJ7Rxviy1wlJrCKWGuHh3jaszhdztwNEsUwyG2meFYYLmyimU2ll4sUUK39qduBHK6n8rs68kYcbS9TLg1xzlGveyLUDWzj1L_6sZ70De61082Z3LnM_lARVj8i-vVHtED6OZ2en-enJ5M8ufEqQ9DfYXfZgtbyv3L5HIqU-COvvH92e2mg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-Supervised+Dual-Stream+Self-Attentive+Adversarial+Graph+Contrastive+Learning+for+Cross-Subject+EEG-Based+Emotion+Recognition&rft.jtitle=IEEE+transactions+on+affective+computing&rft.au=Ye%2C+Weishan&rft.au=Zhang%2C+Zhiguo&rft.au=Teng%2C+Fei&rft.au=Zhang%2C+Min&rft.date=2025-01-01&rft.issn=1949-3045&rft.eissn=1949-3045&rft.volume=16&rft.issue=1&rft.spage=290&rft.epage=305&rft_id=info:doi/10.1109%2FTAFFC.2024.3433470&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAFFC_2024_3433470 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3045&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3045&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3045&client=summon |