Low MBOAT7 expression, a genetic risk for MASH, promotes a profibrotic pathway involving hepatocyte TAZ upregulation

The common genetic variant rs641738 C>T is a risk factor for metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis (MASH), including liver fibrosis, and is associated with decreased expression of the phospholipid-remodeling enzyme MBOAT7 (LP...

Full description

Saved in:
Bibliographic Details
Published inHepatology Vol. 81; no. 2; pp. 576 - 590
Main Authors Moore, Mary P., Wang, Xiaobo, Kennelly, John Paul, Shi, Hongxue, Ishino, Yuki, Kano, Kuniyuki, Aoki, Junken, Cherubini, Alessandro, Ronzoni, Luisa, Guo, Xiuqing, Chalasani, Naga P., Khalid, Shareef, Saleheen, Danish, Mitsche, Matthew A., Rotter, Jerome I., Yates, Katherine P., Valenti, Luca, Kono, Nozomu, Tontonoz, Peter, Tabas, Ira
Format Journal Article
LanguageEnglish
Japanese
Published United States Ovid Technologies (Wolters Kluwer Health) 01.02.2025
Subjects
Online AccessGet full text
ISSN0270-9139
1527-3350
1527-3350
DOI10.1097/hep.0000000000000933

Cover

Abstract The common genetic variant rs641738 C>T is a risk factor for metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis (MASH), including liver fibrosis, and is associated with decreased expression of the phospholipid-remodeling enzyme MBOAT7 (LPIAT1). However, whether restoring MBOAT7 expression in established metabolic dysfunction-associated steatotic liver disease dampens the progression to liver fibrosis and, importantly, the mechanism through which decreased MBOAT7 expression exacerbates MASH fibrosis remain unclear. We first showed that hepatocyte MBOAT7 restoration in mice with diet-induced steatohepatitis slows the progression to liver fibrosis. Conversely, when hepatocyte-MBOAT7 was silenced in mice with established hepatosteatosis, liver fibrosis but not hepatosteatosis was exacerbated. Mechanistic studies revealed that hepatocyte-MBOAT7 restoration in MASH mice lowered hepatocyte-TAZ (WWTR1), which is known to promote MASH fibrosis. Conversely, hepatocyte-MBOAT7 silencing enhanced TAZ upregulation in MASH. Finally, we discovered that changes in hepatocyte phospholipids due to MBOAT7 loss-of-function promote a cholesterol trafficking pathway that upregulates TAZ and the TAZ-induced profibrotic factor Indian hedgehog (IHH). As evidence for relevance in humans, we found that the livers of individuals with MASH carrying the rs641738-T allele had higher hepatocyte nuclear TAZ, indicating higher TAZ activity and increased IHH mRNA. This study provides evidence for a novel mechanism linking MBOAT7-LoF to MASH fibrosis, adds new insight into an established genetic locus for MASH, and, given the druggability of hepatocyte TAZ for MASH fibrosis, suggests a personalized medicine approach for subjects at increased risk for MASH fibrosis due to inheritance of variants that lower MBOAT7.
AbstractList The common genetic variant rs641738 C>T is a risk factor for metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis (MASH), including liver fibrosis, and is associated with decreased expression of the phospholipid-remodeling enzyme MBOAT7 (LPIAT1). However, whether restoring MBOAT7 expression in established metabolic dysfunction-associated steatotic liver disease dampens the progression to liver fibrosis and, importantly, the mechanism through which decreased MBOAT7 expression exacerbates MASH fibrosis remain unclear. We first showed that hepatocyte MBOAT7 restoration in mice with diet-induced steatohepatitis slows the progression to liver fibrosis. Conversely, when hepatocyte-MBOAT7 was silenced in mice with established hepatosteatosis, liver fibrosis but not hepatosteatosis was exacerbated. Mechanistic studies revealed that hepatocyte-MBOAT7 restoration in MASH mice lowered hepatocyte-TAZ (WWTR1), which is known to promote MASH fibrosis. Conversely, hepatocyte-MBOAT7 silencing enhanced TAZ upregulation in MASH. Finally, we discovered that changes in hepatocyte phospholipids due to MBOAT7 loss-of-function promote a cholesterol trafficking pathway that upregulates TAZ and the TAZ-induced profibrotic factor Indian hedgehog (IHH). As evidence for relevance in humans, we found that the livers of individuals with MASH carrying the rs641738-T allele had higher hepatocyte nuclear TAZ, indicating higher TAZ activity and increased IHH mRNA. This study provides evidence for a novel mechanism linking MBOAT7-LoF to MASH fibrosis, adds new insight into an established genetic locus for MASH, and, given the druggability of hepatocyte TAZ for MASH fibrosis, suggests a personalized medicine approach for subjects at increased risk for MASH fibrosis due to inheritance of variants that lower MBOAT7.
The common genetic variant rs641738 C>T is a risk factor for metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis (MASH), including liver fibrosis, and is associated with decreased expression of the phospholipid-remodeling enzyme MBOAT7 (LPIAT1). However, whether restoring MBOAT7 expression in established metabolic dysfunction-associated steatotic liver disease dampens the progression to liver fibrosis and, importantly, the mechanism through which decreased MBOAT7 expression exacerbates MASH fibrosis remain unclear.BACKGROUND AND AIMSThe common genetic variant rs641738 C>T is a risk factor for metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis (MASH), including liver fibrosis, and is associated with decreased expression of the phospholipid-remodeling enzyme MBOAT7 (LPIAT1). However, whether restoring MBOAT7 expression in established metabolic dysfunction-associated steatotic liver disease dampens the progression to liver fibrosis and, importantly, the mechanism through which decreased MBOAT7 expression exacerbates MASH fibrosis remain unclear.We first showed that hepatocyte MBOAT7 restoration in mice with diet-induced steatohepatitis slows the progression to liver fibrosis. Conversely, when hepatocyte-MBOAT7 was silenced in mice with established hepatosteatosis, liver fibrosis but not hepatosteatosis was exacerbated. Mechanistic studies revealed that hepatocyte-MBOAT7 restoration in MASH mice lowered hepatocyte-TAZ (WWTR1), which is known to promote MASH fibrosis. Conversely, hepatocyte-MBOAT7 silencing enhanced TAZ upregulation in MASH. Finally, we discovered that changes in hepatocyte phospholipids due to MBOAT7 loss-of-function promote a cholesterol trafficking pathway that upregulates TAZ and the TAZ-induced profibrotic factor Indian hedgehog (IHH). As evidence for relevance in humans, we found that the livers of individuals with MASH carrying the rs641738-T allele had higher hepatocyte nuclear TAZ, indicating higher TAZ activity and increased IHH mRNA.APPROACH AND RESULTSWe first showed that hepatocyte MBOAT7 restoration in mice with diet-induced steatohepatitis slows the progression to liver fibrosis. Conversely, when hepatocyte-MBOAT7 was silenced in mice with established hepatosteatosis, liver fibrosis but not hepatosteatosis was exacerbated. Mechanistic studies revealed that hepatocyte-MBOAT7 restoration in MASH mice lowered hepatocyte-TAZ (WWTR1), which is known to promote MASH fibrosis. Conversely, hepatocyte-MBOAT7 silencing enhanced TAZ upregulation in MASH. Finally, we discovered that changes in hepatocyte phospholipids due to MBOAT7 loss-of-function promote a cholesterol trafficking pathway that upregulates TAZ and the TAZ-induced profibrotic factor Indian hedgehog (IHH). As evidence for relevance in humans, we found that the livers of individuals with MASH carrying the rs641738-T allele had higher hepatocyte nuclear TAZ, indicating higher TAZ activity and increased IHH mRNA.This study provides evidence for a novel mechanism linking MBOAT7-LoF to MASH fibrosis, adds new insight into an established genetic locus for MASH, and, given the druggability of hepatocyte TAZ for MASH fibrosis, suggests a personalized medicine approach for subjects at increased risk for MASH fibrosis due to inheritance of variants that lower MBOAT7.CONCLUSIONSThis study provides evidence for a novel mechanism linking MBOAT7-LoF to MASH fibrosis, adds new insight into an established genetic locus for MASH, and, given the druggability of hepatocyte TAZ for MASH fibrosis, suggests a personalized medicine approach for subjects at increased risk for MASH fibrosis due to inheritance of variants that lower MBOAT7.
Author Hongxue Shi
Peter Tontonoz
Danish Saleheen
Junken Aoki
Shareef Khalid
Luisa Ronzoni
Katherine P. Yates
Jerome I. Rotter
Xiuqing Guo
Alessandro Cherubini
Naga P. Chalasani
Ira Tabas
Xiaobo Wang
Yuki Ishino
John Paul Kennelly
Matthew A. Mitsche
Luca Valenti
Nozomu Kono
Mary P. Moore
Kuniyuki Kano
Author_xml – sequence: 1
  givenname: Mary P.
  orcidid: 0000-0002-6365-7718
  surname: Moore
  fullname: Moore, Mary P.
  organization: Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
– sequence: 2
  givenname: Xiaobo
  orcidid: 0000-0001-6044-914X
  surname: Wang
  fullname: Wang, Xiaobo
  organization: Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
– sequence: 3
  givenname: John Paul
  surname: Kennelly
  fullname: Kennelly, John Paul
  organization: Department of Pathology and Laboratory Medicine, Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
– sequence: 4
  givenname: Hongxue
  orcidid: 0000-0001-9877-0369
  surname: Shi
  fullname: Shi, Hongxue
  organization: Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
– sequence: 5
  givenname: Yuki
  surname: Ishino
  fullname: Ishino, Yuki
  organization: Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
– sequence: 6
  givenname: Kuniyuki
  surname: Kano
  fullname: Kano, Kuniyuki
  organization: Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
– sequence: 7
  givenname: Junken
  surname: Aoki
  fullname: Aoki, Junken
  organization: Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
– sequence: 8
  givenname: Alessandro
  surname: Cherubini
  fullname: Cherubini, Alessandro
  organization: Precisione Medicine Lab, Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
– sequence: 9
  givenname: Luisa
  surname: Ronzoni
  fullname: Ronzoni, Luisa
  organization: Precisione Medicine Lab, Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
– sequence: 10
  givenname: Xiuqing
  surname: Guo
  fullname: Guo, Xiuqing
  organization: The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
– sequence: 11
  givenname: Naga P.
  surname: Chalasani
  fullname: Chalasani, Naga P.
  organization: Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
– sequence: 12
  givenname: Shareef
  surname: Khalid
  fullname: Khalid, Shareef
  organization: Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA, Center for Non-Communicable Disease, Karachi, Karachi City, Sindh, Pakistan
– sequence: 13
  givenname: Danish
  surname: Saleheen
  fullname: Saleheen, Danish
  organization: Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA, Center for Non-Communicable Disease, Karachi, Karachi City, Sindh, Pakistan
– sequence: 14
  givenname: Matthew A.
  surname: Mitsche
  fullname: Mitsche, Matthew A.
  organization: Center for Human Nutrition and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
– sequence: 15
  givenname: Jerome I.
  surname: Rotter
  fullname: Rotter, Jerome I.
  organization: The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
– sequence: 16
  givenname: Katherine P.
  surname: Yates
  fullname: Yates, Katherine P.
  organization: Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
– sequence: 17
  givenname: Luca
  surname: Valenti
  fullname: Valenti, Luca
  organization: Precisione Medicine Lab, Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, Milan, Italy, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano, Italy
– sequence: 18
  givenname: Nozomu
  surname: Kono
  fullname: Kono, Nozomu
  organization: Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
– sequence: 19
  givenname: Peter
  surname: Tontonoz
  fullname: Tontonoz, Peter
  organization: Department of Pathology and Laboratory Medicine, Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
– sequence: 20
  givenname: Ira
  orcidid: 0000-0003-3429-1515
  surname: Tabas
  fullname: Tabas, Ira
  organization: Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA, Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York, USA, Columbia University Digestive and Liver Disease Research Center, New York, NY
BackLink https://cir.nii.ac.jp/crid/1871710641501680896$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/38776184$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv1DAQhS1URJfSf4CQDxw4NMUTx3HMbanaLtJWRWK5cImceLy1yMbB9rbsv8fLFoR6wQfbh-89vTfzkhyNfkRCXgM7B6bk-zucztm_R3H-jMxAlLLgXLAjMmOlZIUCro7JaYyuY4IpJSrgL8gxb6SsoalmJC39A735eDtfSYo_p4AZ9eMZ1XSNIybX0-Did2p9oDfzL4szOgW_8QljJvLXui74PTXpdPegd9SN9364d-Oa5og6-X6XkK7m3-g2e6-3g07Z_hV5bvUQ8fTxPSFfry5XF4tieXv96WK-LHoOMhVoa9SsqcuGgwFthDAldNA1wlSyNA3vDChlLQIIJmwHxlS5GZjSSsDO8hPy7uCbk_7YYkztxsUeh0GP6Lex5UyoUlQSWEbfPKLbboOmnYLb6LBr_0wqA9UB6IOPMaD9iwBr9ztpF5ef26c7ybIPT2S9S7-HkIJ2w__Ebw_i0bms29-Q--W8dZUrQ92wRtX8FzpNmps
CitedBy_id crossref_primary_10_1038_s41575_025_01045_z
Cites_doi 10.3389/fphar.2022.905126
10.1038/ng.3417
10.1194/jlr.P067454
10.1016/bs.mie.2021.01.011
10.1091/mbc.e07-09-0893
10.1016/j.cell.2018.08.033
10.1016/j.jhep.2016.07.045
10.1136/gutjnl-2019-319226
10.1016/j.gastha.2023.02.004
10.1146/annurev-physiol-020518-114444
10.1016/j.omtm.2023.101165
10.1016/j.jhep.2020.08.027
10.1194/jlr.RA120000856
10.1016/S0021-9258(19)57295-7
10.1016/j.ebiom.2020.102866
10.1073/pnas.0404766101
10.1136/gutjnl-2020-320646
10.1073/pnas.2120411119
10.1136/gutjnl-2020-320853
10.1016/S0021-9258(19)50785-2
10.1073/pnas.1810724115
10.3389/fendo.2023.1199429
10.1038/ncomms12757
10.1016/j.cmet.2020.03.010
10.1038/s41467-022-35158-9
10.1038/nrgastro.2013.149
10.1016/j.cmet.2012.03.002
10.1038/s41591-023-02553-8
10.1097/HEP.0000000000000004
10.1038/s41588-023-01497-6
10.1053/j.gastro.2016.01.032
10.1016/j.jhepr.2023.100716
10.1371/journal.pone.0058425
10.1074/jbc.M009776200
10.1016/j.cmet.2016.09.016
10.1016/S0140-6736(14)61933-4
10.1053/j.gastro.2015.04.043
10.1155/2015/460190
10.1038/modpathol.2017.115
10.1038/s42255-022-00722-6
10.1038/s41467-021-22338-2
10.7554/eLife.49882
10.1128/MCB.00255-20
10.2174/13816128113199990381
10.1002/hep4.1405
10.1016/j.cld.2012.05.002
10.1016/j.jlr.2022.100234
10.1016/j.clinre.2019.12.006
10.3390/ijms21103558
ContentType Journal Article
Copyright Copyright © 2024 American Association for the Study of Liver Diseases.
Copyright_xml – notice: Copyright © 2024 American Association for the Study of Liver Diseases.
DBID RYH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1097/hep.0000000000000933
DatabaseName CiNii Complete
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1527-3350
EndPage 590
ExternalDocumentID 38776184
10_1097_HEP_0000000000000933
Genre Journal Article
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: P30 DK132710
– fundername: NIDDK NIH HHS
  grantid: R01 DK133694
– fundername: NIDDK NIH HHS
  grantid: P30 DK120531
– fundername: NCATS NIH HHS
  grantid: UL1 TR001881
– fundername: NIDDK NIH HHS
  grantid: U01 DK061732
– fundername: NHLBI NIH HHS
  grantid: R01 HL105756
– fundername: NIDDK NIH HHS
  grantid: R01 DK126779
– fundername: NIDDK NIH HHS
  grantid: U24 DK061730
– fundername: NIDDK NIH HHS
  grantid: K99 DK137021
– fundername: NCI NIH HHS
  grantid: P30 CA013696
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OC
1ZS
1~5
33P
3SF
3WU
4.4
4G.
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
7-5
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABXGK
ACAHQ
ACCFJ
ACCZN
ACGFS
ACLDA
ACMXC
ACPOU
ACPRK
ACXBN
ACZKN
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AECAP
AEEZP
AEIMD
AENEX
AEQDE
AFBPY
AFGKR
AFNMH
AFUWQ
AFZJQ
AHMBA
AHQVU
AIACR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
F00
F01
F04
F5P
FD8
FDB
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HHY
HHZ
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MJL
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RX1
RYH
RYL
SUPJJ
TEORI
UB1
V2E
V9Y
W2D
W8V
W99
WBKPD
WH7
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WVDHM
WXI
XG1
XV2
ZZTAW
~IA
~WT
--K
.55
.GJ
.Y3
186
1B1
1CY
31~
3O-
AAEDT
AALRI
AAMMB
AANHP
AAQFI
AAQQT
AAQXK
AASGY
AAXUO
AAYXX
ABEML
ABMAC
ABWVN
ACBWZ
ACRPL
ACSCC
ACXQS
ACYXJ
ADMUD
ADNMO
ADSXY
AEFGJ
AFFNX
AGQPQ
AGXDD
AIDQK
AIDYY
AIURR
AJAOE
ALUQN
ASPBG
AVWKF
AZFZN
BDRZF
CAG
CITATION
COF
EJD
FEDTE
FGOYB
HF~
HVGLF
IHE
J5H
LH4
LW6
M41
M65
MEWTI
N4W
NQ-
PALCI
R2-
RIG
RIWAO
RJQFR
ROL
RPZ
SEW
SSZ
WXSBR
X7M
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c317t-ef6ea0862831d1ad55d21b1b85d472d83bd199ffe11505fb1dd43871d2f71ebf3
ISSN 0270-9139
1527-3350
IngestDate Thu Sep 04 20:24:39 EDT 2025
Wed Jul 23 01:46:38 EDT 2025
Fri Aug 08 06:58:24 EDT 2025
Thu Apr 24 23:02:46 EDT 2025
Fri Jun 27 00:38:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
Japanese
License Copyright © 2024 American Association for the Study of Liver Diseases.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c317t-ef6ea0862831d1ad55d21b1b85d472d83bd199ffe11505fb1dd43871d2f71ebf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9877-0369
0000-0001-6044-914X
0000-0002-6365-7718
0000-0003-3429-1515
0000-0001-6044-914
PMID 38776184
PQID 3059254710
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_3059254710
pubmed_primary_38776184
crossref_primary_10_1097_HEP_0000000000000933
crossref_citationtrail_10_1097_HEP_0000000000000933
nii_cinii_1871710641501680896
PublicationCentury 2000
PublicationDate 2025-Feb-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-Feb-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Hepatology
PublicationTitleAlternate Hepatology
PublicationYear 2025
Publisher Ovid Technologies (Wolters Kluwer Health)
Publisher_xml – name: Ovid Technologies (Wolters Kluwer Health)
References Tanaka (R22-20250116) 2021; 70
Meroni (R11-20250116) 2020; 57
Ray (R5-20250116) 2024; 21
Wang (R26-20250116) 2016; 24
Chen (R17-20250116) 2023; 55
Wang (R27-20250116) 2019; 3
Teo (R14-20250116) 2021; 74
Sharpe (R25-20250116) 2023; 2
Anderson (R18-20250116) 2013; 8
Lange (R44-20250116) 2004; 101
Wang (R42-20250116) 2019; 81
Luukkonen (R9-20250116) 2016; 65
Bohinc (R4-20250116) 2012; 16
Raja (R13-20250116) 2020; 21
Ferrari (R35-20250116) 2020; 40
Sturbois-Balcerzak (R47-20250116) 2001; 276
Lagace (R41-20250116) 2015; 8
Thangapandi (R15-20250116) 2021; 70
Varadharajan (R23-20250116) 2022; 63
Moore (R52-20250116) 2023; 5
Johnson (R34-20250116) 2021; 649
Younossi (R1-20250116) 2023; 77
Baselli (R31-20250116) 2020; 69
Cherubini (R32-20250116) 2023; 29
Kennedy (R48-20250116) 1956; 222
Xia (R24-20250116) 2021; 62
Alharthi (R50-20250116) 2022; 13
Sandhu (R43-20250116) 2018; 175
Lee (R38-20250116) 2014; 7
Trinh (R46-20250116) 2022; 119
Dongiovanni (R40-20250116) 2015; 2015
He (R36-20250116) 2018; 115
Wree (R3-20250116) 2013; 10
Wang (R28-20250116) 2020; 31
Zhao (R39-20250116) 2018; 31
Mancina (R10-20250116) 2016; 150
Angulo (R2-20250116) 2015; 149
Pazoki (R12-20250116) 2021; 12
Helsley (R21-20250116) 2019; 8
Xu (R16-20250116) 2023; 14
Ozcan (R33-20250116) 2012; 15
Thabet (R49-20250116) 2016; 7
Wang (R29-20250116) 2023; 31
Tabas (R45-20250116) 1988; 263
Dongiovanni (R7-20250116) 2013; 19
Xiao (R37-20250116) 2023; 5
Busca (R6-20250116) 2022; 13
Buch (R20-20250116) 2015; 47
Neuschwander-Tetri (R30-20250116) 2015; 385
Lee (R19-20250116) 2008; 19
Freund (R51-20250116) 2020; 44
Krawczyk (R8-20250116) 2017; 58
References_xml – volume: 13
  start-page: 905126
  year: 2022
  ident: R6-20250116
  article-title: Genetic variants associated with steatohepatitis and liver fibrosis in HIV-infected patients with NAFLD
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2022.905126
– volume: 47
  start-page: 1443
  year: 2015
  ident: R20-20250116
  article-title: A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis
  publication-title: Nat Genet
  doi: 10.1038/ng.3417
– volume: 58
  start-page: 247
  year: 2017
  ident: R8-20250116
  article-title: Combined effects of the PNPLA3 rs738409, TM6SF2 rs58542926, and MBOAT7 rs641738 variants on NAFLD severity: A multicenter biopsy-based study
  publication-title: J Lipid Res
  doi: 10.1194/jlr.P067454
– volume: 649
  start-page: 543
  year: 2021
  ident: R34-20250116
  article-title: The use of anthrolysin O and ostreolysin A to study cholesterol in cell membranes
  publication-title: Methods Enzymol
  doi: 10.1016/bs.mie.2021.01.011
– volume: 19
  start-page: 1174
  year: 2008
  ident: R19-20250116
  article-title: Caenorhabditis elegans mboa-7, a member of the MBOAT family, is required for selective incorporation of polyunsaturated fatty acids into phosphatidylinositol
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.e07-09-0893
– volume: 175
  start-page: 514
  year: 2018
  ident: R43-20250116
  article-title: Aster proteins facilitate nonvesicular plasma membrane to ER cholesterol transport in mammalian cells
  publication-title: Cell
  doi: 10.1016/j.cell.2018.08.033
– volume: 65
  start-page: 1263
  year: 2016
  ident: R9-20250116
  article-title: The MBOAT7 variant rs641738 alters hepatic phosphatidylinositols and increases severity of non-alcoholic fatty liver disease in humans
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2016.07.045
– volume: 69
  start-page: 1855
  year: 2020
  ident: R31-20250116
  article-title: Liver transcriptomics highlights interleukin-32 as novel NAFLD-related cytokine and candidate biomarker
  publication-title: Gut
  doi: 10.1136/gutjnl-2019-319226
– volume: 2
  start-page: 558
  year: 2023
  ident: R25-20250116
  article-title: Enhancing hepatic MBOAT7 expression in mice with nonalcoholic steatohepatitis
  publication-title: Gastro Hep Adv
  doi: 10.1016/j.gastha.2023.02.004
– volume: 81
  start-page: 165
  year: 2019
  ident: R42-20250116
  article-title: Phospholipid remodeling in physiology and disease
  publication-title: Annu Rev Physiol
  doi: 10.1146/annurev-physiol-020518-114444
– volume: 31
  start-page: 101165
  year: 2023
  ident: R29-20250116
  article-title: Hepatocyte-targeted siTAZ therapy lowers liver fibrosis in NASH diet-fed chimeric mice with hepatocyte-humanized livers
  publication-title: Mol Ther Methods Clin Dev
  doi: 10.1016/j.omtm.2023.101165
– volume: 74
  start-page: 20
  year: 2021
  ident: R14-20250116
  article-title: rs641738C>T near MBOAT7 is associated with liver fat, ALT and fibrosis in NAFLD: A meta-analysis
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2020.08.027
– volume: 62
  start-page: 100031
  year: 2021
  ident: R24-20250116
  article-title: Hepatic deletion of Mboat7 (LPIAT1) causes activation of SREBP-1c and fatty liver
  publication-title: J Lipid Res
  doi: 10.1194/jlr.RA120000856
– volume: 263
  start-page: 1266
  year: 1988
  ident: R45-20250116
  article-title: Acyl coenzyme A:cholesterol acyl transferase in macrophages utilizes a cellular pool of cholesterol oxidase-accessible cholesterol as substrate
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)57295-7
– volume: 57
  start-page: 102866
  year: 2020
  ident: R11-20250116
  article-title: MBOAT7 down-regulation by genetic and environmental factors predisposes to MAFLD
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2020.102866
– volume: 101
  start-page: 11664
  year: 2004
  ident: R44-20250116
  article-title: How cholesterol homeostasis is regulated by plasma membrane cholesterol in excess of phospholipids
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0404766101
– volume: 70
  start-page: 180
  year: 2021
  ident: R22-20250116
  article-title: LPIAT1/MBOAT7 depletion increases triglyceride synthesis fueled by high phosphatidylinositol turnover
  publication-title: Gut
  doi: 10.1136/gutjnl-2020-320646
– volume: 119
  start-page: e2120411119
  year: 2022
  ident: R46-20250116
  article-title: Interplay between Asters/GRAMD1s and phosphatidylserine in intermembrane transport of LDL cholesterol
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.2120411119
– volume: 70
  start-page: 940
  year: 2021
  ident: R15-20250116
  article-title: Loss of hepatic Mboat7 leads to liver fibrosis
  publication-title: Gut
  doi: 10.1136/gutjnl-2020-320853
– volume: 222
  start-page: 193
  year: 1956
  ident: R48-20250116
  article-title: The function of cytidine coenzymes in the biosynthesis of phospholipides
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)50785-2
– volume: 115
  start-page: E8499
  year: 2018
  ident: R36-20250116
  article-title: Macrophages release plasma membrane-derived particles rich in accessible cholesterol
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1810724115
– volume: 14
  start-page: 1199429
  year: 2023
  ident: R16-20250116
  article-title: MBOAT7 rs641738 (C>T) is associated with NAFLD progression in men and decreased ASCVD risk in elder Chinese population
  publication-title: Front Endocrinol (Lausanne)
  doi: 10.3389/fendo.2023.1199429
– volume: 7
  start-page: 12757
  year: 2016
  ident: R49-20250116
  article-title: MBOAT7 rs641738 increases risk of liver inflammation and transition to fibrosis in chronic hepatitis C
  publication-title: Nat Commun
  doi: 10.1038/ncomms12757
– volume: 31
  start-page: 969
  year: 2020
  ident: R28-20250116
  article-title: Cholesterol stabilizes TAZ in hepatocytes to promote experimental non-alcoholic steatohepatitis
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2020.03.010
– volume: 13
  start-page: 7430
  year: 2022
  ident: R50-20250116
  article-title: A metabolic associated fatty liver disease risk variant in MBOAT7 regulates toll like receptor induced outcomes
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-35158-9
– volume: 10
  start-page: 627
  year: 2013
  ident: R3-20250116
  article-title: From NAFLD to NASH to cirrhosis-new insights into disease mechanisms
  publication-title: Nat Rev Gastroenterol Hepatol
  doi: 10.1038/nrgastro.2013.149
– volume: 15
  start-page: 739
  year: 2012
  ident: R33-20250116
  article-title: Calcium signaling through CaMKII regulates hepatic glucose production in fasting and obesity
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2012.03.002
– volume: 29
  start-page: 2643
  year: 2023
  ident: R32-20250116
  article-title: Interaction between estrogen receptor-α and PNPLA3 p.I148M variant drives fatty liver disease susceptibility in women
  publication-title: Nat Med
  doi: 10.1038/s41591-023-02553-8
– volume: 77
  start-page: 1335
  year: 2023
  ident: R1-20250116
  article-title: The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review
  publication-title: Hepatology
  doi: 10.1097/HEP.0000000000000004
– volume: 55
  start-page: 1640
  year: 2023
  ident: R17-20250116
  article-title: Genome-wide association meta-analysis identifies 17 loci associated with nonalcoholic fatty liver disease
  publication-title: Nat Genet
  doi: 10.1038/s41588-023-01497-6
– volume: 150
  start-page: 1219
  year: 2016
  ident: R10-20250116
  article-title: The MBOAT7-TMC4 variant rs641738 increases risk of nonalcoholic fatty liver disease in individuals of European descent
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2016.01.032
– volume: 8
  start-page: 65
  year: 2015
  ident: R41-20250116
  article-title: Phosphatidylcholine: Greasing the cholesterol transport machinery
  publication-title: Lipid Insights
– volume: 5
  start-page: 100716
  year: 2023
  ident: R52-20250116
  article-title: Circulating Indian hedgehog is a marker of the hepatocyte-TAZ pathway in experimental NASH and is elevated in humans with NASH
  publication-title: JHEP Rep
  doi: 10.1016/j.jhepr.2023.100716
– volume: 8
  start-page: e58425
  year: 2013
  ident: R18-20250116
  article-title: Lysophosphatidylinositol-acyltransferase-1 (LPIAT1) is required to maintain physiological levels of PtdIns and PtdInsP(2) in the mouse
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0058425
– volume: 276
  start-page: 8205
  year: 2001
  ident: R47-20250116
  article-title: Structure and expression of the murine phosphatidylserine synthase-1 gene
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M009776200
– volume: 24
  start-page: 848
  year: 2016
  ident: R26-20250116
  article-title: Hepatocyte TAZ/WWTR1 promotes inflammation and fibrosis in nonalcoholic steatohepatitis
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2016.09.016
– volume: 385
  start-page: 956
  year: 2015
  ident: R30-20250116
  article-title: Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): A multicentre, randomised, placebo-controlled trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(14)61933-4
– volume: 149
  start-page: 389
  year: 2015
  ident: R2-20250116
  article-title: Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2015.04.043
– volume: 2015
  start-page: 460190
  year: 2015
  ident: R40-20250116
  article-title: Genetic factors in the pathogenesis of nonalcoholic fatty liver and steatohepatitis
  publication-title: Biomed Res Int
  doi: 10.1155/2015/460190
– volume: 7
  start-page: 4076
  year: 2014
  ident: R38-20250116
  article-title: Immunohistochemical study for the origin of ductular reaction in chronic liver disease
  publication-title: Int J Clin Exp Pathol
– volume: 31
  start-page: 150
  year: 2018
  ident: R39-20250116
  article-title: Centrilobular ductular reaction correlates with fibrosis stage and fibrosis progression in non-alcoholic steatohepatitis
  publication-title: Mod Pathol
  doi: 10.1038/modpathol.2017.115
– volume: 5
  start-page: 165
  year: 2023
  ident: R37-20250116
  article-title: Hepatic nonvesicular cholesterol transport is critical for systemic lipid homeostasis
  publication-title: Nat Metab
  doi: 10.1038/s42255-022-00722-6
– volume: 12
  start-page: 2579
  year: 2021
  ident: R12-20250116
  article-title: Genetic analysis in European ancestry individuals identifies 517 loci associated with liver enzymes
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-22338-2
– volume: 8
  start-page: e49882
  year: 2019
  ident: R21-20250116
  article-title: Obesity-linked suppression of membrane-bound O-acyltransferase 7 (MBOAT7) drives non-alcoholic fatty liver disease
  publication-title: eLife
  doi: 10.7554/eLife.49882
– volume: 40
  start-page: e00255-20
  year: 2020
  ident: R35-20250116
  article-title: Aster proteins regulate the accessible cholesterol pool in the plasma membrane
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.00255-20
– volume: 21
  start-page: 218
  year: 2024
  ident: R5-20250116
  article-title: Resmetirom proves positive for NASH with liver fibrosis
  publication-title: Nat Rev Gastroenterol Hepatol
– volume: 19
  start-page: 5219
  year: 2013
  ident: R7-20250116
  article-title: Genetic predisposition in NAFLD and NASH: Impact on severity of liver disease and response to treatment
  publication-title: Curr Pharmaceut Des
  doi: 10.2174/13816128113199990381
– volume: 3
  start-page: 1221
  year: 2019
  ident: R27-20250116
  article-title: A therapeutic silencing RNA targeting Hepatocyte TAZ prevents and reverses fibrosis in nonalcoholic steatohepatitis in mice
  publication-title: Hepatol Commun
  doi: 10.1002/hep4.1405
– volume: 16
  start-page: 549
  year: 2012
  ident: R4-20250116
  article-title: Mechanisms of disease progression in NASH: New paradigms
  publication-title: Clin Liver Dis
  doi: 10.1016/j.cld.2012.05.002
– volume: 63
  start-page: 100234
  year: 2022
  ident: R23-20250116
  article-title: Membrane-bound O-acyltransferase 7 (MBOAT7)-driven phosphatidylinositol remodeling in advanced liver disease
  publication-title: J Lipid Res
  doi: 10.1016/j.jlr.2022.100234
– volume: 44
  start-page: 646
  year: 2020
  ident: R51-20250116
  article-title: The MBOAT7 rs641738 variant is associated with an improved outcome in primary sclerosing cholangitis
  publication-title: Clin Res Hepatol Gastroenterol
  doi: 10.1016/j.clinre.2019.12.006
– volume: 21
  start-page: 3558
  year: 2020
  ident: R13-20250116
  article-title: Genetic susceptibility to chronic liver disease in individuals from Pakistan
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms21103558
SSID ssib050995413
ssib001235879
ssib020738549
ssib027715870
ssib008479861
ssib020716532
ssib020716533
ssib001134546
ssib058492862
ssj0009428
ssib026405045
Score 2.505537
Snippet The common genetic variant rs641738 C>T is a risk factor for metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated...
SourceID proquest
pubmed
crossref
nii
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 576
SubjectTerms Acyltransferases - genetics
Acyltransferases - metabolism
Adaptor Proteins, Signal Transducing
Animals
Disease Models, Animal
Genetic Predisposition to Disease
Hepatocytes - metabolism
Humans
Liver Cirrhosis - etiology
Liver Cirrhosis - genetics
Liver Cirrhosis - metabolism
Liver Cirrhosis - pathology
Male
Membrane Proteins
Mice
Mice, Inbred C57BL
Non-alcoholic Fatty Liver Disease - genetics
Trans-Activators - metabolism
Transcriptional Coactivator with PDZ-Binding Motif Proteins
Up-Regulation
Title Low MBOAT7 expression, a genetic risk for MASH, promotes a profibrotic pathway involving hepatocyte TAZ upregulation
URI https://cir.nii.ac.jp/crid/1871710641501680896
https://www.ncbi.nlm.nih.gov/pubmed/38776184
https://www.proquest.com/docview/3059254710
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa6ISFeEPcVGDISb1lGbcex_YJU0FCEKEys0ypeqjh2tqCpmdaUAb-e41wag4oG9CFqUtepe74cf8c-F4ReRJoQlbMoZEaOwshaEmplZCjkSElOrRLUxTtPPsTJcfRuxmeDwSvPa2lV6f3sx8a4kv-RKlwDuboo2X-Q7LpTuADvQb5wBAnD8a9k_L68CiavP46nwmXqbzxaay2SusrItk7P7FzHnSvhZHyUuI8uav87u4Q2db1ufVm6dq4y8VXqggBBX9WLDGcwUVVl9r2ywXT8OVhB_6dtrS-f0SZ1M39tfuIc8Q73QV2UvWftrEhLXQYnaTtTdk47zjOxCQ467x1Lk3Jx-m1lg6Ozwl-VoLxzZO5s2K-F6TcHimYF-aR0DgDLoA0AaOKsugWPRuVRMXK-AGqjcm-SBsPom6ST3UsxtoVuUAHcyZHiT14cMGER981dFxfs7UrCzKxkH9dLgW7FvI-zbc-Zd86ktysKXHLEvWz-VAjCPf0HXEzxqKdLwPUUlXGf3kxFde3f9ai70E4lXm4a5S_UaWtRFH-2imp2NL2DbrdmDR43GL2LBl_Se-jmpHXcuI8qgCpuoIp7qO7hFLdAxQ6oGICKHVD3cAdTaOHBFLcwxWuY4h6mGGCKfZg-QMdvD6ZvkrAt-BFmQGOr0OaxTZ2NLRkxJDWcG0o00ZKbCHSGZNoQpfLcOjOG55oYEzGw-A3NBbE6Zw_R9qJc2B2Eeawpl6CFdB5HRgML51ooYTOrBSMkGyLW_ZfzrM2G74qynM87r4zk4HD-uwSGKFx_66LJBnNN-10QE9zAHQn8UuDzMVBmsLPkSKp4iJ53ApyDWnd7denClqvlHKZhRTkwx9EQPWoku74jDFm4Ok2Pr-n9CbrVP5pP0XZ1ubK7QKEr_ax-Tn4Cz-muPg
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low+MBOAT7+expression%2C+a+genetic+risk+for+MASH%2C+promotes+a+profibrotic+pathway+involving+hepatocyte+TAZ+upregulation&rft.jtitle=Hepatology&rft.au=Mary+P.+Moore&rft.au=Xiaobo+Wang&rft.au=John+Paul+Kennelly&rft.au=Hongxue+Shi&rft.date=2025-02-01&rft.pub=Ovid+Technologies+%28Wolters+Kluwer+Health%29&rft.issn=0270-9139&rft_id=info:doi/10.1097%2Fhep.0000000000000933
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-9139&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-9139&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-9139&client=summon