Improved gray wolf optimization algorithm integrating A algorithm for path planning of mobile charging robots

With the popularization of electric vehicles, early built parking lots cannot solve the charging problem of a large number of electric vehicles. Mobile charging robots have autonomous navigation and complete charging functions, which make up for this deficiency. However, there are static obstacles i...

Full description

Saved in:
Bibliographic Details
Published inRobotica Vol. 42; no. 2; pp. 536 - 559
Main Authors Liu, Shangjunnan, Liu, Shuhai, Xiao, Huaping
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.02.2024
Subjects
Online AccessGet full text
ISSN0263-5747
1469-8668
DOI10.1017/S0263574723001625

Cover

Abstract With the popularization of electric vehicles, early built parking lots cannot solve the charging problem of a large number of electric vehicles. Mobile charging robots have autonomous navigation and complete charging functions, which make up for this deficiency. However, there are static obstacles in the parking lot that are random and constantly changing their position, which requires a stable and fast iterative path planning method. The gray wolf optimization (GWO) algorithm is one of the optimization algorithms, which has the advantages of fast iteration speed and stability, but it has the drawback of easily falling into local optimization problems. This article first addresses this issue by improving the fitness function and position update of the GWO algorithm and then optimizing the convergence factor. Subsequently, the fitness function of the improved gray wolf optimization (IGWO) algorithm was further improved based on the minimum cost equation of the A* algorithm. The key coefficients AC 1 and AC 2 of two different fitness functions, Fitness 1 and Fitness 2, were discussed. The improved gray wolf optimization algorithm integrating A* algorithm (A*-IGWO) has improved the number of iterations and path length compared to the GWO algorithm in parking lots path planning problems.
AbstractList With the popularization of electric vehicles, early built parking lots cannot solve the charging problem of a large number of electric vehicles. Mobile charging robots have autonomous navigation and complete charging functions, which make up for this deficiency. However, there are static obstacles in the parking lot that are random and constantly changing their position, which requires a stable and fast iterative path planning method. The gray wolf optimization (GWO) algorithm is one of the optimization algorithms, which has the advantages of fast iteration speed and stability, but it has the drawback of easily falling into local optimization problems. This article first addresses this issue by improving the fitness function and position update of the GWO algorithm and then optimizing the convergence factor. Subsequently, the fitness function of the improved gray wolf optimization (IGWO) algorithm was further improved based on the minimum cost equation of the A* algorithm. The key coefficients AC 1 and AC 2 of two different fitness functions, Fitness 1 and Fitness 2, were discussed. The improved gray wolf optimization algorithm integrating A* algorithm (A*-IGWO) has improved the number of iterations and path length compared to the GWO algorithm in parking lots path planning problems.
With the popularization of electric vehicles, early built parking lots cannot solve the charging problem of a large number of electric vehicles. Mobile charging robots have autonomous navigation and complete charging functions, which make up for this deficiency. However, there are static obstacles in the parking lot that are random and constantly changing their position, which requires a stable and fast iterative path planning method. The gray wolf optimization (GWO) algorithm is one of the optimization algorithms, which has the advantages of fast iteration speed and stability, but it has the drawback of easily falling into local optimization problems. This article first addresses this issue by improving the fitness function and position update of the GWO algorithm and then optimizing the convergence factor. Subsequently, the fitness function of the improved gray wolf optimization (IGWO) algorithm was further improved based on the minimum cost equation of the A* algorithm. The key coefficients AC 1 and AC 2 of two different fitness functions, Fitness 1 and Fitness 2 , were discussed. The improved gray wolf optimization algorithm integrating A* algorithm (A*-IGWO) has improved the number of iterations and path length compared to the GWO algorithm in parking lots path planning problems.
With the popularization of electric vehicles, early built parking lots cannot solve the charging problem of a large number of electric vehicles. Mobile charging robots have autonomous navigation and complete charging functions, which make up for this deficiency. However, there are static obstacles in the parking lot that are random and constantly changing their position, which requires a stable and fast iterative path planning method. The gray wolf optimization (GWO) algorithm is one of the optimization algorithms, which has the advantages of fast iteration speed and stability, but it has the drawback of easily falling into local optimization problems. This article first addresses this issue by improving the fitness function and position update of the GWO algorithm and then optimizing the convergence factor. Subsequently, the fitness function of the improved gray wolf optimization (IGWO) algorithm was further improved based on the minimum cost equation of the A* algorithm. The key coefficients AC1 and AC2 of two different fitness functions, Fitness1 and Fitness2, were discussed. The improved gray wolf optimization algorithm integrating A* algorithm (A*-IGWO) has improved the number of iterations and path length compared to the GWO algorithm in parking lots path planning problems.
Author Liu, Shuhai
Xiao, Huaping
Liu, Shangjunnan
Author_xml – sequence: 1
  givenname: Shangjunnan
  orcidid: 0000-0002-2563-0864
  surname: Liu
  fullname: Liu, Shangjunnan
  organization: College of Mechanical and Storage and Transportation Engineering, China University of Petroleum-Beijing, Beijing, 102249, China
– sequence: 2
  givenname: Shuhai
  surname: Liu
  fullname: Liu, Shuhai
  email: liu_shu_hai@163.com
  organization: College of Mechanical and Storage and Transportation Engineering, China University of Petroleum-Beijing, Beijing, 102249, China
– sequence: 3
  givenname: Huaping
  surname: Xiao
  fullname: Xiao, Huaping
  organization: College of Mechanical and Storage and Transportation Engineering, China University of Petroleum-Beijing, Beijing, 102249, China
BookMark eNp9kFtLwzAYhoNMcFN_gHcBr6s5NWkux_AwGHihXpe0TbqMNqlppsxfb-sGiqJXH3zv-3yHdwYmzjsNwAVGVxhhcf2ICKepYIJQhDAn6RGYYsZlknGeTcB0lJNRPwGzvt8MHoqZmIJ22XbBv-oK1kHt4JtvDPRdtK19V9F6B1VT-2DjuoXWRT2YonU1nH_rGx9gp-Iado1yblS9ga0vbKNhuVahHlvBFz72Z-DYqKbX54d6Cp5vb54W98nq4W65mK-SkmIRk8qwKs0EY1oxXlJZSEkIMUQyQyUSVCmMNNMoNRVjGS9kxjjmQguUIVRIRk_B5X7u8NvLVvcx3_htcMPKnEg8MpKlgwvvXWXwfR-0ybtgWxV2OUb5mGr-K9WBET-Y0sbPpGJQtvmXpAdStUWwVa2_jvqb-gCR34y0
CitedBy_id crossref_primary_10_1017_S0263574725000049
crossref_primary_10_1177_00202940241268612
crossref_primary_10_3390_act13100399
crossref_primary_10_3390_agriculture15060578
crossref_primary_10_1017_S0263574724001954
crossref_primary_10_1007_s10586_024_04811_x
crossref_primary_10_1017_S0263574724001930
crossref_primary_10_3390_agriculture14081372
Cites_doi 10.1007/s10898-007-9149-x
10.1016/j.cie.2022.108123
10.1016/j.oceaneng.2022.112809
10.1017/S0263574719000572
10.1016/j.future.2019.02.028
10.1093/comjnl/11.3.299
10.1007/s00521-015-1923-y
10.1016/j.eswa.2022.116516
10.1016/j.actaastro.2021.02.026
10.1109/TASE.2018.2880245
10.1007/s00521-014-1640-y
10.1007/978-3-642-32894-7_27
10.1016/j.advengsoft.2016.05.015
10.1016/j.neucom.2023.02.010
10.1145/3339311.3339314
10.1007/s42235-021-0050-y
10.1016/j.eswa.2023.120254
10.1017/S0263574716000321
10.3233/JIFS-201926
10.1016/j.eswa.2021.114864
10.1016/j.knosys.2020.105530
10.1016/j.apor.2012.06.002
10.1109/TPAMI.1984.4767480
10.1007/s12293-016-0212-3
10.1016/j.advengsoft.2013.12.007
10.1504/IJAAC.2015.068041
10.1016/j.ast.2021.106640
10.1007/s11370-018-0254-0
10.1109/IAEAC50856.2021.9390601
10.1016/j.ast.2018.02.031
10.1080/0952813X.2015.1042530
10.1016/j.eswa.2015.04.026
10.1017/S0263574718001236
10.1109/ICRA40945.2020.9197226
10.1016/j.future.2020.03.055
10.1016/j.apor.2022.103163
ContentType Journal Article
Copyright The Author(s), 2023. Published by Cambridge University Press
Copyright_xml – notice: The Author(s), 2023. Published by Cambridge University Press
DBID AAYXX
CITATION
3V.
7SC
7SP
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
F28
FR3
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1017/S0263574723001625
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (Proquest)
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1469-8668
EndPage 559
ExternalDocumentID 10_1017_S0263574723001625
GroupedDBID -1D
-1F
-2P
-2V
-E.
-~6
-~N
-~X
.DC
.FH
09C
09E
0E1
0R~
123
29P
3V.
4.4
5VS
6~7
74X
74Y
7~V
8FE
8FG
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABBZL
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVFV
ABXAU
ABZCX
ACBMC
ACCHT
ACETC
ACGFS
ACIMK
ACIWK
ACMRT
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADGEJ
ADKIL
ADOCW
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMTW
AENCP
AENEX
AENGE
AEYYC
AFFNX
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFUTZ
AGABE
AGBYD
AGJUD
AGLWM
AGOOT
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BPHCQ
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
F5P
GNUQQ
HCIFZ
HG-
HST
HZ~
I.6
I.7
I.9
IH6
IOEEP
IOO
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
K6V
K7-
KAFGG
KC5
KCGVB
KFECR
L6V
L98
LHUNA
LW7
M-V
M0N
M7S
M7~
M8.
MVM
NIKVX
NMFBF
NZEOI
O9-
OYBOY
P2P
P62
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RNS
ROL
RR0
S6-
S6U
SAAAG
T9M
TN5
UT1
VOH
WFFJZ
WH7
WQ3
WXU
WXY
WYP
ZDLDU
ZJOSE
ZMEZD
ZYDXJ
~V1
AAKNA
AAYXX
ABGDZ
ABVKB
ABVZP
ABXHF
ACDLN
ACEJA
ADMLS
AFZFC
AKMAY
ANOYL
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7SP
7TB
7XB
8AL
8FD
8FK
F28
FR3
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c317t-df4d58744ea46c39b99222f294f39073aa10e4e05fd4486b9846167e70800b943
IEDL.DBID BENPR
ISSN 0263-5747
IngestDate Sat Aug 23 14:50:04 EDT 2025
Thu Apr 24 23:12:07 EDT 2025
Wed Oct 01 01:40:36 EDT 2025
Wed Mar 13 05:46:37 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords A algorithm
mobile charging robots
parking lots
path planning
GWO
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c317t-df4d58744ea46c39b99222f294f39073aa10e4e05fd4486b9846167e70800b943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2563-0864
PQID 2914486945
PQPubID 37292
PageCount 24
ParticipantIDs proquest_journals_2914486945
crossref_primary_10_1017_S0263574723001625
crossref_citationtrail_10_1017_S0263574723001625
cambridge_journals_10_1017_S0263574723001625
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Robotica
PublicationTitleAlternate Robotica
PublicationYear 2024
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 2007; 39
2022; 195
2000; 6
2019; 97
2017; 1864
2019; 37
2023; 227
2020; 38
2014; 25
2014; 69
2021; 183
2022; 41
2012; 38
2015; 9
2016; 99
2021; 36
2022; 266
2022; 123
2018; 5
2020; 31
2021; 112
1984; 1
2021; 18
2015; 42
2017; 35
2020; 194
2022; 56
2022; 34
2023; 532
2022; 15
2020; 111
2021; 177
2018; 11
2016; 28
2018; 77
2018; 10
2021; 40
2018; 16
1968; 11
2022; 168
Yang (S0263574723001625_ref23) 2009
Martins (S0263574723001625_ref43) 2022; 15
Zhu (S0263574723001625_ref38) 2021; 36
Xiao (S0263574723001625_ref39) 2022; 41
Guivant (S0263574723001625_ref12) 2000; 6
S0263574723001625_ref2
S0263574723001625_ref3
Zhuo (S0263574723001625_ref45) 2019; 37
S0263574723001625_ref1
S0263574723001625_ref44
S0263574723001625_ref22
Su (S0263574723001625_ref41) 2022; 34
S0263574723001625_ref25
S0263574723001625_ref24
S0263574723001625_ref21
S0263574723001625_ref42
S0263574723001625_ref20
S0263574723001625_ref27
S0263574723001625_ref26
Wang (S0263574723001625_ref30) 2017; 1864
S0263574723001625_ref29
S0263574723001625_ref28
Kazemi (S0263574723001625_ref35) 2018; 5
S0263574723001625_ref34
S0263574723001625_ref6
S0263574723001625_ref33
S0263574723001625_ref11
S0263574723001625_ref4
S0263574723001625_ref14
S0263574723001625_ref36
S0263574723001625_ref5
S0263574723001625_ref10
S0263574723001625_ref8
S0263574723001625_ref32
S0263574723001625_ref31
S0263574723001625_ref9
S0263574723001625_ref19
Raouf (S0263574723001625_ref7) 2020; 38
S0263574723001625_ref16
Xiao (S0263574723001625_ref13) 2018; 11
S0263574723001625_ref37
S0263574723001625_ref15
S0263574723001625_ref18
S0263574723001625_ref17
Zhiqiang (S0263574723001625_ref40) 2022; 56
References_xml – volume: 195
  start-page: 116516
  issue: 11
  year: 2022
  article-title: INFO: An efficient optimization algorithm based on weighted mean of vectors
  publication-title: Expert Syst. Appl.
– volume: 194
  start-page: 105530
  issue: 17
  year: 2020
  article-title: A novel hybrid grey wolf optimizer algorithm for unmanned aerial vehicle (UAV) path planning
  publication-title: Knowl.-BASED Syst.
– volume: 15
  start-page: e01068
  issue: 22
  year: 2022
  article-title: An improved multi-objective a-star algorithm for path planning in a large workspace: Design, implementation, and evaluation
  publication-title: Sci. Afr.
– volume: 6
  start-page: 581
  issue: 1
  year: 2000
  end-page: 586
  article-title: Simultaneous localization and map building using natural features in outdoor environments
  publication-title: Intell. Auto. Syst.
– volume: 69
  start-page: 46
  issue: 6
  year: 2014
  end-page: 61
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
– volume: 36
  start-page: 2562
  issue: 10
  year: 2021
  end-page: 2568
  article-title: Grey wolf optimization algorithm based on adaptive normal cloud model
  publication-title: Control Decis. (China)
– volume: 35
  start-page: 1585
  issue: 7
  year: 2017
  end-page: 1597
  article-title: Path planning in distorted configuration space
  publication-title: ROBOTICA
– volume: 37
  start-page: 641
  issue: 4
  year: 2019
  end-page: 655
  article-title: RimJump: Edge-based shortest path planning for a 2D map
  publication-title: ROBOTICA
– volume: 227
  start-page: 12025
  issue: 40
  year: 2023
  article-title: Path planning techniques for mobile robots: Review and prospect
  publication-title: Expert Syst. Appl.
– volume: 77
  start-page: 168
  issue: 16
  year: 2018
  end-page: 179
  article-title: Grey wolf optimization based sense and avoid algorithm in a Bayesian framework for multiple UAV path planning in an uncertain environment
  publication-title: Aerospace Sci. Technol.
– volume: 177
  start-page: 114864
  issue: 4
  year: 2021
  article-title: Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts
  publication-title: Expert Syst. Appl.
– volume: 38
  start-page: 235
  issue: 2
  year: 2020
  end-page: 255
  article-title: Investigating reduced path planning strategy for differential wheeled mobile robot
  publication-title: ROBOTICA
– volume: 56
  start-page: 49
  issue: 10
  year: 2022
  end-page: 56
  article-title: Path planing of mobile robot based on TGWO algorithm
  publication-title: J. XI’An JIAOTONG Univ. (China)
– volume: 112
  start-page: 106640
  issue: 49
  year: 2021
  article-title: Hybrid path planning using positioning risk and artificial potential fields
  publication-title: Aerospace Sci. Technol.
– volume: 532
  start-page: 183
  issue: 14
  year: 2023
  end-page: 214
  article-title: RIME: A physics-based optimization
  publication-title: Neurocomputing
– volume: 99
  start-page: 121
  issue: 13
  year: 2016
  end-page: 136
  article-title: Grey wolf optimizer for unmanned combat aerial vehicle path planning
  publication-title: Adv. Eng. Softw.
– volume: 31
  start-page: 1995
  issue: 1
  year: 2020
  end-page: 2014
  article-title: Monarch butterfly optimization
  publication-title: Neural Comput. Appl.
– volume: 111
  start-page: 300
  issue: 9
  year: 2020
  end-page: 323
  article-title: Slime mould algorithm: A new method for stochastic optimization
  publication-title: Future Gener. Comput. Syst.
– volume: 28
  start-page: 1
  issue: 4
  year: 2016
  end-page: 15
  article-title: A new bio-inspired optimisation algorithm: Bird Swarm algorithm
  publication-title: J. Exp. Theor. Artif. Intell.
– volume: 123
  start-page: 103163
  issue: 19
  year: 2022
  article-title: A new coverage path planning algorithm for unmanned surface mapping vehicle based on A-star based searching
  publication-title: Appl. Ocean Res.
– volume: 25
  start-page: 1569
  issue: 7-8
  year: 2014
  end-page: 1584
  article-title: Adaptive Gbest-guided gravitational search algorithm
  publication-title: Neural Comput. Appl.
– volume: 41
  start-page: 23
  issue: 12
  year: 2022
  end-page: 27
  article-title: Path planning method of warehouse logistics robot based on improved gray wolf optimization algorithm
  publication-title: Control Theory Appl. (China)
– volume: 40
  start-page: 9453
  issue: 5
  year: 2021
  end-page: 9470
  article-title: Path planning for the autonomous robots using modified grey wolf optimization approach
  publication-title: J. Intell. Fuzzy Syst.
– volume: 168
  start-page: 108123
  issue: 80
  year: 2022
  article-title: Global path planning based on a bidirectional alternating search A* algorithm for mobile robots
  publication-title: Comput. Ind. Eng.
– volume: 5
  start-page: 99
  issue: 2
  year: 2018
  end-page: 115
  article-title: Economic order quantity models for items with imperfect quality and emission considerations
  publication-title: Int. J. Syst. Sci. Oper. Logist.
– volume: 266
  start-page: 112809
  issue: 70
  year: 2022
  article-title: Global path planning algorithm based on double DQN for multi-tasks amphibious unmanned surface vehicle
  publication-title: Ocean Eng.
– volume: 38
  start-page: 48
  issue: 6
  year: 2012
  end-page: 62
  article-title: 3D path planning for underwater vehicles using five evolutionary optimization algorithms avoiding static and energetic obstacles
  publication-title: Appl. Ocean Res.
– volume: 1
  start-page: 91
  issue: 1
  year: 1984
  end-page: 96
  article-title: Planning collision-free paths for robotic arm among obstacles
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 42
  start-page: 6350
  issue: 17
  year: 2015
  end-page: 6364
  article-title: A novel bat algorithm with habitat selection and Doppler effect in echoes for optimization
  publication-title: Expert Syst. Appl.
– volume: 18
  start-page: 674
  issue: 3
  year: 2021
  end-page: 710
  article-title: The colony predation algorithm
  publication-title: J. Bionic Eng.
– volume: 34
  start-page: 67
  issue: 15
  year: 2022
  end-page: 70
  article-title: Robot path planning based on improved gray wolf optimization algorithm
  publication-title: Inf. Comput. (China)
– volume: 11
  start-page: 299
  issue: 3
  year: 1968
  end-page: 301
  article-title: The sofa problem
  publication-title: Comput. J.
– volume: 10
  start-page: 151
  issue: 2
  year: 2018
  end-page: 164
  article-title: Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems
  publication-title: Memet. Comput.
– volume: 11
  start-page: 301
  issue: 3
  year: 2018
  end-page: 312
  article-title: A geometrical path planning method for unmanned aerial vehicle in 2D/3D complex environment
  publication-title: Intell. Serv. Robot.
– volume: 183
  start-page: 11
  issue: 2
  year: 2021
  end-page: 22
  article-title: A star identification algorithm based on simplest general subgraph
  publication-title: Acta Astronautica
– volume: 16
  start-page: 1244
  issue: 3
  year: 2018
  end-page: 1258
  article-title: Multilevel humanlike motion planning for mobile robots in complex indoor environments
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 97
  start-page: 849
  issue: 16
  year: 2019
  end-page: 872
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Gener. Comput. Syst.
– volume: 39
  start-page: 459
  issue: 3
  year: 2007
  end-page: 471
  article-title: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm
  publication-title: J. Global Optim.
– volume: 1864
  start-page: 20
  issue: 1
  year: 2017
  end-page: 24
  article-title: Dynamic path planning for mobile robot based on particle swarm optimization
  publication-title: AIP Conf. Proc.
– volume: 9
  start-page: 50
  issue: 1
  year: 2015
  end-page: 60
  article-title: The path planning for mobile robot based on bat algorithm
  publication-title: Int. J. Autom. Control
– ident: S0263574723001625_ref27
  doi: 10.1007/s10898-007-9149-x
– ident: S0263574723001625_ref2
  doi: 10.1016/j.cie.2022.108123
– ident: S0263574723001625_ref3
  doi: 10.1016/j.oceaneng.2022.112809
– volume: 38
  start-page: 235
  year: 2020
  ident: S0263574723001625_ref7
  article-title: Investigating reduced path planning strategy for differential wheeled mobile robot
  publication-title: ROBOTICA
  doi: 10.1017/S0263574719000572
– ident: S0263574723001625_ref15
  doi: 10.1016/j.future.2019.02.028
– ident: S0263574723001625_ref5
  doi: 10.1093/comjnl/11.3.299
– ident: S0263574723001625_ref16
  doi: 10.1007/s00521-015-1923-y
– ident: S0263574723001625_ref20
  doi: 10.1016/j.eswa.2022.116516
– ident: S0263574723001625_ref42
  doi: 10.1016/j.actaastro.2021.02.026
– ident: S0263574723001625_ref6
  doi: 10.1109/TASE.2018.2880245
– ident: S0263574723001625_ref28
  doi: 10.1007/s00521-014-1640-y
– volume: 34
  start-page: 67
  year: 2022
  ident: S0263574723001625_ref41
  article-title: Robot path planning based on improved gray wolf optimization algorithm
  publication-title: Inf. Comput. (China)
– ident: S0263574723001625_ref24
  doi: 10.1007/978-3-642-32894-7_27
– volume: 36
  start-page: 2562
  year: 2021
  ident: S0263574723001625_ref38
  article-title: Grey wolf optimization algorithm based on adaptive normal cloud model
  publication-title: Control Decis. (China)
– ident: S0263574723001625_ref22
  doi: 10.1016/j.advengsoft.2016.05.015
– volume: 41
  start-page: 23
  year: 2022
  ident: S0263574723001625_ref39
  article-title: Path planning method of warehouse logistics robot based on improved gray wolf optimization algorithm
  publication-title: Control Theory Appl. (China)
– ident: S0263574723001625_ref21
  doi: 10.1016/j.neucom.2023.02.010
– volume: 1864
  start-page: 20
  year: 2017
  ident: S0263574723001625_ref30
  article-title: Dynamic path planning for mobile robot based on particle swarm optimization
  publication-title: AIP Conf. Proc.
– volume: 5
  start-page: 99
  year: 2018
  ident: S0263574723001625_ref35
  article-title: Economic order quantity models for items with imperfect quality and emission considerations
  publication-title: Int. J. Syst. Sci. Oper. Logist.
– ident: S0263574723001625_ref33
  doi: 10.1145/3339311.3339314
– ident: S0263574723001625_ref18
  doi: 10.1007/s42235-021-0050-y
– volume: 15
  start-page: e01068
  year: 2022
  ident: S0263574723001625_ref43
  article-title: An improved multi-objective a-star algorithm for path planning in a large workspace: Design, implementation, and evaluation
  publication-title: Sci. Afr.
– ident: S0263574723001625_ref1
  doi: 10.1016/j.eswa.2023.120254
– ident: S0263574723001625_ref4
  doi: 10.1017/S0263574716000321
– ident: S0263574723001625_ref29
  doi: 10.3233/JIFS-201926
– ident: S0263574723001625_ref19
  doi: 10.1016/j.eswa.2021.114864
– ident: S0263574723001625_ref32
  doi: 10.1016/j.knosys.2020.105530
– ident: S0263574723001625_ref36
  doi: 10.1016/j.apor.2012.06.002
– ident: S0263574723001625_ref9
  doi: 10.1109/TPAMI.1984.4767480
– ident: S0263574723001625_ref14
  doi: 10.1007/s12293-016-0212-3
– volume: 6
  start-page: 581
  year: 2000
  ident: S0263574723001625_ref12
  article-title: Simultaneous localization and map building using natural features in outdoor environments
  publication-title: Intell. Auto. Syst.
– volume: 56
  start-page: 49
  year: 2022
  ident: S0263574723001625_ref40
  article-title: Path planing of mobile robot based on TGWO algorithm
  publication-title: J. XI’An JIAOTONG Univ. (China)
– ident: S0263574723001625_ref37
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: S0263574723001625_ref31
  doi: 10.1504/IJAAC.2015.068041
– ident: S0263574723001625_ref11
  doi: 10.1016/j.ast.2021.106640
– start-page: 210
  volume-title: World Congress on Nature and Biologically Inspired Computing
  year: 2009
  ident: S0263574723001625_ref23
– volume: 11
  start-page: 301
  year: 2018
  ident: S0263574723001625_ref13
  article-title: A geometrical path planning method for unmanned aerial vehicle in 2D/3D complex environment
  publication-title: Intell. Serv. Robot.
  doi: 10.1007/s11370-018-0254-0
– ident: S0263574723001625_ref8
  doi: 10.1109/IAEAC50856.2021.9390601
– ident: S0263574723001625_ref34
  doi: 10.1016/j.ast.2018.02.031
– ident: S0263574723001625_ref26
  doi: 10.1080/0952813X.2015.1042530
– ident: S0263574723001625_ref25
  doi: 10.1016/j.eswa.2015.04.026
– volume: 37
  start-page: 641
  year: 2019
  ident: S0263574723001625_ref45
  article-title: RimJump: Edge-based shortest path planning for a 2D map
  publication-title: ROBOTICA
  doi: 10.1017/S0263574718001236
– ident: S0263574723001625_ref10
  doi: 10.1109/ICRA40945.2020.9197226
– ident: S0263574723001625_ref17
  doi: 10.1016/j.future.2020.03.055
– ident: S0263574723001625_ref44
  doi: 10.1016/j.apor.2022.103163
SSID ssj0013147
Score 2.4164512
Snippet With the popularization of electric vehicles, early built parking lots cannot solve the charging problem of a large number of electric vehicles. Mobile...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 536
SubjectTerms Algorithms
Artificial intelligence
Automobiles
Autonomous navigation
Charging
Electric vehicles
Fitness
Heuristic
Local optimization
Minimum cost
Mold
Optimization techniques
Parking facilities
Path planning
Robots
Title Improved gray wolf optimization algorithm integrating A algorithm for path planning of mobile charging robots
URI https://www.cambridge.org/core/product/identifier/S0263574723001625/type/journal_article
https://www.proquest.com/docview/2914486945
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1469-8668
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0013147
  issn: 0263-5747
  databaseCode: ADMLS
  dateStart: 19830101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1469-8668
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0013147
  issn: 0263-5747
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1469-8668
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0013147
  issn: 0263-5747
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60XvQgPrFayx48icEku8kmB5Eq1iJYRCz0Vvaph7apbUT8987mYRWh10kWktnd2W93Z74P4ExE2ijJfY_xhOIGxReeSALhhcoqGcehVcJVIz_2496APQyj4Rr061oYl1ZZx8QiUOtMuTPyyzBF6J_EKYuuZ--eU41yt6u1hIaopBX0VUExtg4boWPGasDGzV3_6Xl5rxAUkmO48aBehEi6vucsSKQdLwvaEJQjDnLa2Uu2hb-r1t-gXaxE3R3YriAk6ZR9vgtrZroHW7-IBfdhUp4VGE1e5-KLfGZjSzIMDpOq6pKI8Sv-XP42ITVfBLYjnV92BLPEyRWTWSVrRDJLJpnEKEIKeiVnmmcyyxcHMOjevdz2vEpYwVMIF3JPW6Yjx3tvBIsVTaUjpw1tmDJLcbNMhQh8w4wfWe18LlMEKUHMDXfwUqaMHkJjmk3NERBmg0AyhTiDK8Z5lCbUUhvphOuEBoI34eLHiaNqeixGZWoZH_3zeRP82s8jVZGUO62M8aom5z9NZiVDx6qXW3XnLb9mObSOVz8-gc0QMU2ZtN2CRj7_MKeISXLZhvWke9-uhts3dq7cMQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOBQOqIVW5Vkf4IKImsROnBwQohS0vFYVAolb6uf2sLtZdoMQf66_rePEYUGV9sbViSNrPJn5xo_vA9gViTZK8jBgPKNYoIQiEFkkglhZJdM0tkq428jX3bRzxy7uk_s5-NvehXHHKtuYWAdqXSq3Rv49zhH6Z2nOkqPRQ-BUo9zuaiuhIby0gj6sKcb8xY5L8_yEJdzk8PwnzvdeHJ-d3p50Aq8yECjMnVWgLdOJI4E3gqWK5tIxtcY2zpmlWDlSIaLQMBMmVrsByBwzdpRywx3Wkjmj-N15WGSU5Vj8Lf447f66me5jRLXEGRY6NEgQubf7qjVpteOBwTYsAhB3Oa3uKbvD2yz5NknUme_sI6x4yEqOGx_7BHNmuArLr4gM12DQrE0YTXpj8Uyeyr4lJQajgb_lSUS_h8as_gxIy0-B_cjxq3YEz8TJI5ORl1EipSWDUmLUIjWdk2sal7KsJp_h7l1M_AUWhuXQfAXCbBRJphDXcMU4T_KMWmoTnXGd0UjwdTh4MWLhf8dJ0Rxl48V_Nl-HsLVzoTwputPm6M_qsv_SZdQwgsx6eaudvOlopq68MfvxN_jQub2-Kq7Ou5ebsBQjnmoOjG_BQjV-NNuIhyq5452OwO_39vN__vMWBA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+gray+wolf+optimization+algorithm+integrating+A+algorithm+for+path+planning+of+mobile+charging+robots&rft.jtitle=Robotica&rft.au=Liu%2C+Shangjunnan&rft.au=Liu%2C+Shuhai&rft.au=Xiao%2C+Huaping&rft.date=2024-02-01&rft.pub=Cambridge+University+Press&rft.issn=0263-5747&rft.eissn=1469-8668&rft.volume=42&rft.issue=2&rft.spage=536&rft.epage=559&rft_id=info:doi/10.1017%2FS0263574723001625
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-5747&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-5747&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-5747&client=summon