Improved gray wolf optimization algorithm integrating A algorithm for path planning of mobile charging robots
With the popularization of electric vehicles, early built parking lots cannot solve the charging problem of a large number of electric vehicles. Mobile charging robots have autonomous navigation and complete charging functions, which make up for this deficiency. However, there are static obstacles i...
Saved in:
| Published in | Robotica Vol. 42; no. 2; pp. 536 - 559 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Cambridge, UK
Cambridge University Press
01.02.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0263-5747 1469-8668 |
| DOI | 10.1017/S0263574723001625 |
Cover
| Abstract | With the popularization of electric vehicles, early built parking lots cannot solve the charging problem of a large number of electric vehicles. Mobile charging robots have autonomous navigation and complete charging functions, which make up for this deficiency. However, there are static obstacles in the parking lot that are random and constantly changing their position, which requires a stable and fast iterative path planning method. The gray wolf optimization (GWO) algorithm is one of the optimization algorithms, which has the advantages of fast iteration speed and stability, but it has the drawback of easily falling into local optimization problems. This article first addresses this issue by improving the fitness function and position update of the GWO algorithm and then optimizing the convergence factor. Subsequently, the fitness function of the improved gray wolf optimization (IGWO) algorithm was further improved based on the minimum cost equation of the A* algorithm. The key coefficients AC
1 and AC
2 of two different fitness functions, Fitness
1 and Fitness
2, were discussed. The improved gray wolf optimization algorithm integrating A* algorithm (A*-IGWO) has improved the number of iterations and path length compared to the GWO algorithm in parking lots path planning problems. |
|---|---|
| AbstractList | With the popularization of electric vehicles, early built parking lots cannot solve the charging problem of a large number of electric vehicles. Mobile charging robots have autonomous navigation and complete charging functions, which make up for this deficiency. However, there are static obstacles in the parking lot that are random and constantly changing their position, which requires a stable and fast iterative path planning method. The gray wolf optimization (GWO) algorithm is one of the optimization algorithms, which has the advantages of fast iteration speed and stability, but it has the drawback of easily falling into local optimization problems. This article first addresses this issue by improving the fitness function and position update of the GWO algorithm and then optimizing the convergence factor. Subsequently, the fitness function of the improved gray wolf optimization (IGWO) algorithm was further improved based on the minimum cost equation of the A* algorithm. The key coefficients AC
1 and AC
2 of two different fitness functions, Fitness
1 and Fitness
2, were discussed. The improved gray wolf optimization algorithm integrating A* algorithm (A*-IGWO) has improved the number of iterations and path length compared to the GWO algorithm in parking lots path planning problems. With the popularization of electric vehicles, early built parking lots cannot solve the charging problem of a large number of electric vehicles. Mobile charging robots have autonomous navigation and complete charging functions, which make up for this deficiency. However, there are static obstacles in the parking lot that are random and constantly changing their position, which requires a stable and fast iterative path planning method. The gray wolf optimization (GWO) algorithm is one of the optimization algorithms, which has the advantages of fast iteration speed and stability, but it has the drawback of easily falling into local optimization problems. This article first addresses this issue by improving the fitness function and position update of the GWO algorithm and then optimizing the convergence factor. Subsequently, the fitness function of the improved gray wolf optimization (IGWO) algorithm was further improved based on the minimum cost equation of the A* algorithm. The key coefficients AC 1 and AC 2 of two different fitness functions, Fitness 1 and Fitness 2 , were discussed. The improved gray wolf optimization algorithm integrating A* algorithm (A*-IGWO) has improved the number of iterations and path length compared to the GWO algorithm in parking lots path planning problems. With the popularization of electric vehicles, early built parking lots cannot solve the charging problem of a large number of electric vehicles. Mobile charging robots have autonomous navigation and complete charging functions, which make up for this deficiency. However, there are static obstacles in the parking lot that are random and constantly changing their position, which requires a stable and fast iterative path planning method. The gray wolf optimization (GWO) algorithm is one of the optimization algorithms, which has the advantages of fast iteration speed and stability, but it has the drawback of easily falling into local optimization problems. This article first addresses this issue by improving the fitness function and position update of the GWO algorithm and then optimizing the convergence factor. Subsequently, the fitness function of the improved gray wolf optimization (IGWO) algorithm was further improved based on the minimum cost equation of the A* algorithm. The key coefficients AC1 and AC2 of two different fitness functions, Fitness1 and Fitness2, were discussed. The improved gray wolf optimization algorithm integrating A* algorithm (A*-IGWO) has improved the number of iterations and path length compared to the GWO algorithm in parking lots path planning problems. |
| Author | Liu, Shuhai Xiao, Huaping Liu, Shangjunnan |
| Author_xml | – sequence: 1 givenname: Shangjunnan orcidid: 0000-0002-2563-0864 surname: Liu fullname: Liu, Shangjunnan organization: College of Mechanical and Storage and Transportation Engineering, China University of Petroleum-Beijing, Beijing, 102249, China – sequence: 2 givenname: Shuhai surname: Liu fullname: Liu, Shuhai email: liu_shu_hai@163.com organization: College of Mechanical and Storage and Transportation Engineering, China University of Petroleum-Beijing, Beijing, 102249, China – sequence: 3 givenname: Huaping surname: Xiao fullname: Xiao, Huaping organization: College of Mechanical and Storage and Transportation Engineering, China University of Petroleum-Beijing, Beijing, 102249, China |
| BookMark | eNp9kFtLwzAYhoNMcFN_gHcBr6s5NWkux_AwGHihXpe0TbqMNqlppsxfb-sGiqJXH3zv-3yHdwYmzjsNwAVGVxhhcf2ICKepYIJQhDAn6RGYYsZlknGeTcB0lJNRPwGzvt8MHoqZmIJ22XbBv-oK1kHt4JtvDPRdtK19V9F6B1VT-2DjuoXWRT2YonU1nH_rGx9gp-Iado1yblS9ga0vbKNhuVahHlvBFz72Z-DYqKbX54d6Cp5vb54W98nq4W65mK-SkmIRk8qwKs0EY1oxXlJZSEkIMUQyQyUSVCmMNNMoNRVjGS9kxjjmQguUIVRIRk_B5X7u8NvLVvcx3_htcMPKnEg8MpKlgwvvXWXwfR-0ybtgWxV2OUb5mGr-K9WBET-Y0sbPpGJQtvmXpAdStUWwVa2_jvqb-gCR34y0 |
| CitedBy_id | crossref_primary_10_1017_S0263574725000049 crossref_primary_10_1177_00202940241268612 crossref_primary_10_3390_act13100399 crossref_primary_10_3390_agriculture15060578 crossref_primary_10_1017_S0263574724001954 crossref_primary_10_1007_s10586_024_04811_x crossref_primary_10_1017_S0263574724001930 crossref_primary_10_3390_agriculture14081372 |
| Cites_doi | 10.1007/s10898-007-9149-x 10.1016/j.cie.2022.108123 10.1016/j.oceaneng.2022.112809 10.1017/S0263574719000572 10.1016/j.future.2019.02.028 10.1093/comjnl/11.3.299 10.1007/s00521-015-1923-y 10.1016/j.eswa.2022.116516 10.1016/j.actaastro.2021.02.026 10.1109/TASE.2018.2880245 10.1007/s00521-014-1640-y 10.1007/978-3-642-32894-7_27 10.1016/j.advengsoft.2016.05.015 10.1016/j.neucom.2023.02.010 10.1145/3339311.3339314 10.1007/s42235-021-0050-y 10.1016/j.eswa.2023.120254 10.1017/S0263574716000321 10.3233/JIFS-201926 10.1016/j.eswa.2021.114864 10.1016/j.knosys.2020.105530 10.1016/j.apor.2012.06.002 10.1109/TPAMI.1984.4767480 10.1007/s12293-016-0212-3 10.1016/j.advengsoft.2013.12.007 10.1504/IJAAC.2015.068041 10.1016/j.ast.2021.106640 10.1007/s11370-018-0254-0 10.1109/IAEAC50856.2021.9390601 10.1016/j.ast.2018.02.031 10.1080/0952813X.2015.1042530 10.1016/j.eswa.2015.04.026 10.1017/S0263574718001236 10.1109/ICRA40945.2020.9197226 10.1016/j.future.2020.03.055 10.1016/j.apor.2022.103163 |
| ContentType | Journal Article |
| Copyright | The Author(s), 2023. Published by Cambridge University Press |
| Copyright_xml | – notice: The Author(s), 2023. Published by Cambridge University Press |
| DBID | AAYXX CITATION 3V. 7SC 7SP 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO F28 FR3 GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1017/S0263574723001625 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (Proquest) ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Computer Science Database |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1469-8668 |
| EndPage | 559 |
| ExternalDocumentID | 10_1017_S0263574723001625 |
| GroupedDBID | -1D -1F -2P -2V -E. -~6 -~N -~X .DC .FH 09C 09E 0E1 0R~ 123 29P 3V. 4.4 5VS 6~7 74X 74Y 7~V 8FE 8FG 8R4 8R5 9M5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AANRG AARAB AASVR AAUIS AAUKB ABBXD ABBZL ABITZ ABJCF ABJNI ABKKG ABMWE ABMYL ABQTM ABQWD ABROB ABTCQ ABUWG ABVFV ABXAU ABZCX ACBMC ACCHT ACETC ACGFS ACIMK ACIWK ACMRT ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADGEJ ADKIL ADOCW ADOVH ADOVT ADVJH AEBAK AEBPU AEHGV AEMTW AENCP AENEX AENGE AEYYC AFFNX AFFUJ AFKQG AFKRA AFKSM AFLOS AFLVW AFUTZ AGABE AGBYD AGJUD AGLWM AGOOT AHQXX AHRGI AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS AKZCZ ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ARZZG ATUCA AUXHV AYIQA AZQEC BBLKV BCGOX BENPR BESQT BGHMG BGLVJ BJBOZ BLZWO BMAJL BPHCQ C0O CAG CBIIA CCPQU CCQAD CCUQV CDIZJ CFAFE CFBFF CGQII CHEAL CJCSC COF CS3 DC4 DOHLZ DU5 DWQXO EBS EGQIC EJD F5P GNUQQ HCIFZ HG- HST HZ~ I.6 I.7 I.9 IH6 IOEEP IOO IS6 I~P J36 J38 J3A JHPGK JQKCU K6V K7- KAFGG KC5 KCGVB KFECR L6V L98 LHUNA LW7 M-V M0N M7S M7~ M8. MVM NIKVX NMFBF NZEOI O9- OYBOY P2P P62 PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RNS ROL RR0 S6- S6U SAAAG T9M TN5 UT1 VOH WFFJZ WH7 WQ3 WXU WXY WYP ZDLDU ZJOSE ZMEZD ZYDXJ ~V1 AAKNA AAYXX ABGDZ ABVKB ABVZP ABXHF ACDLN ACEJA ADMLS AFZFC AKMAY ANOYL CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7SP 7TB 7XB 8AL 8FD 8FK F28 FR3 JQ2 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c317t-df4d58744ea46c39b99222f294f39073aa10e4e05fd4486b9846167e70800b943 |
| IEDL.DBID | BENPR |
| ISSN | 0263-5747 |
| IngestDate | Sat Aug 23 14:50:04 EDT 2025 Thu Apr 24 23:12:07 EDT 2025 Wed Oct 01 01:40:36 EDT 2025 Wed Mar 13 05:46:37 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | A algorithm mobile charging robots parking lots path planning GWO |
| Language | English |
| License | https://www.cambridge.org/core/terms |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c317t-df4d58744ea46c39b99222f294f39073aa10e4e05fd4486b9846167e70800b943 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2563-0864 |
| PQID | 2914486945 |
| PQPubID | 37292 |
| PageCount | 24 |
| ParticipantIDs | proquest_journals_2914486945 crossref_primary_10_1017_S0263574723001625 crossref_citationtrail_10_1017_S0263574723001625 cambridge_journals_10_1017_S0263574723001625 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-02-01 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cambridge, UK |
| PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
| PublicationTitle | Robotica |
| PublicationTitleAlternate | Robotica |
| PublicationYear | 2024 |
| Publisher | Cambridge University Press |
| Publisher_xml | – name: Cambridge University Press |
| References | 2007; 39 2022; 195 2000; 6 2019; 97 2017; 1864 2019; 37 2023; 227 2020; 38 2014; 25 2014; 69 2021; 183 2022; 41 2012; 38 2015; 9 2016; 99 2021; 36 2022; 266 2022; 123 2018; 5 2020; 31 2021; 112 1984; 1 2021; 18 2015; 42 2017; 35 2020; 194 2022; 56 2022; 34 2023; 532 2022; 15 2020; 111 2021; 177 2018; 11 2016; 28 2018; 77 2018; 10 2021; 40 2018; 16 1968; 11 2022; 168 Yang (S0263574723001625_ref23) 2009 Martins (S0263574723001625_ref43) 2022; 15 Zhu (S0263574723001625_ref38) 2021; 36 Xiao (S0263574723001625_ref39) 2022; 41 Guivant (S0263574723001625_ref12) 2000; 6 S0263574723001625_ref2 S0263574723001625_ref3 Zhuo (S0263574723001625_ref45) 2019; 37 S0263574723001625_ref1 S0263574723001625_ref44 S0263574723001625_ref22 Su (S0263574723001625_ref41) 2022; 34 S0263574723001625_ref25 S0263574723001625_ref24 S0263574723001625_ref21 S0263574723001625_ref42 S0263574723001625_ref20 S0263574723001625_ref27 S0263574723001625_ref26 Wang (S0263574723001625_ref30) 2017; 1864 S0263574723001625_ref29 S0263574723001625_ref28 Kazemi (S0263574723001625_ref35) 2018; 5 S0263574723001625_ref34 S0263574723001625_ref6 S0263574723001625_ref33 S0263574723001625_ref11 S0263574723001625_ref4 S0263574723001625_ref14 S0263574723001625_ref36 S0263574723001625_ref5 S0263574723001625_ref10 S0263574723001625_ref8 S0263574723001625_ref32 S0263574723001625_ref31 S0263574723001625_ref9 S0263574723001625_ref19 Raouf (S0263574723001625_ref7) 2020; 38 S0263574723001625_ref16 Xiao (S0263574723001625_ref13) 2018; 11 S0263574723001625_ref37 S0263574723001625_ref15 S0263574723001625_ref18 S0263574723001625_ref17 Zhiqiang (S0263574723001625_ref40) 2022; 56 |
| References_xml | – volume: 195 start-page: 116516 issue: 11 year: 2022 article-title: INFO: An efficient optimization algorithm based on weighted mean of vectors publication-title: Expert Syst. Appl. – volume: 194 start-page: 105530 issue: 17 year: 2020 article-title: A novel hybrid grey wolf optimizer algorithm for unmanned aerial vehicle (UAV) path planning publication-title: Knowl.-BASED Syst. – volume: 15 start-page: e01068 issue: 22 year: 2022 article-title: An improved multi-objective a-star algorithm for path planning in a large workspace: Design, implementation, and evaluation publication-title: Sci. Afr. – volume: 6 start-page: 581 issue: 1 year: 2000 end-page: 586 article-title: Simultaneous localization and map building using natural features in outdoor environments publication-title: Intell. Auto. Syst. – volume: 69 start-page: 46 issue: 6 year: 2014 end-page: 61 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. – volume: 36 start-page: 2562 issue: 10 year: 2021 end-page: 2568 article-title: Grey wolf optimization algorithm based on adaptive normal cloud model publication-title: Control Decis. (China) – volume: 35 start-page: 1585 issue: 7 year: 2017 end-page: 1597 article-title: Path planning in distorted configuration space publication-title: ROBOTICA – volume: 37 start-page: 641 issue: 4 year: 2019 end-page: 655 article-title: RimJump: Edge-based shortest path planning for a 2D map publication-title: ROBOTICA – volume: 227 start-page: 12025 issue: 40 year: 2023 article-title: Path planning techniques for mobile robots: Review and prospect publication-title: Expert Syst. Appl. – volume: 77 start-page: 168 issue: 16 year: 2018 end-page: 179 article-title: Grey wolf optimization based sense and avoid algorithm in a Bayesian framework for multiple UAV path planning in an uncertain environment publication-title: Aerospace Sci. Technol. – volume: 177 start-page: 114864 issue: 4 year: 2021 article-title: Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts publication-title: Expert Syst. Appl. – volume: 38 start-page: 235 issue: 2 year: 2020 end-page: 255 article-title: Investigating reduced path planning strategy for differential wheeled mobile robot publication-title: ROBOTICA – volume: 56 start-page: 49 issue: 10 year: 2022 end-page: 56 article-title: Path planing of mobile robot based on TGWO algorithm publication-title: J. XI’An JIAOTONG Univ. (China) – volume: 112 start-page: 106640 issue: 49 year: 2021 article-title: Hybrid path planning using positioning risk and artificial potential fields publication-title: Aerospace Sci. Technol. – volume: 532 start-page: 183 issue: 14 year: 2023 end-page: 214 article-title: RIME: A physics-based optimization publication-title: Neurocomputing – volume: 99 start-page: 121 issue: 13 year: 2016 end-page: 136 article-title: Grey wolf optimizer for unmanned combat aerial vehicle path planning publication-title: Adv. Eng. Softw. – volume: 31 start-page: 1995 issue: 1 year: 2020 end-page: 2014 article-title: Monarch butterfly optimization publication-title: Neural Comput. Appl. – volume: 111 start-page: 300 issue: 9 year: 2020 end-page: 323 article-title: Slime mould algorithm: A new method for stochastic optimization publication-title: Future Gener. Comput. Syst. – volume: 28 start-page: 1 issue: 4 year: 2016 end-page: 15 article-title: A new bio-inspired optimisation algorithm: Bird Swarm algorithm publication-title: J. Exp. Theor. Artif. Intell. – volume: 123 start-page: 103163 issue: 19 year: 2022 article-title: A new coverage path planning algorithm for unmanned surface mapping vehicle based on A-star based searching publication-title: Appl. Ocean Res. – volume: 25 start-page: 1569 issue: 7-8 year: 2014 end-page: 1584 article-title: Adaptive Gbest-guided gravitational search algorithm publication-title: Neural Comput. Appl. – volume: 41 start-page: 23 issue: 12 year: 2022 end-page: 27 article-title: Path planning method of warehouse logistics robot based on improved gray wolf optimization algorithm publication-title: Control Theory Appl. (China) – volume: 40 start-page: 9453 issue: 5 year: 2021 end-page: 9470 article-title: Path planning for the autonomous robots using modified grey wolf optimization approach publication-title: J. Intell. Fuzzy Syst. – volume: 168 start-page: 108123 issue: 80 year: 2022 article-title: Global path planning based on a bidirectional alternating search A* algorithm for mobile robots publication-title: Comput. Ind. Eng. – volume: 5 start-page: 99 issue: 2 year: 2018 end-page: 115 article-title: Economic order quantity models for items with imperfect quality and emission considerations publication-title: Int. J. Syst. Sci. Oper. Logist. – volume: 266 start-page: 112809 issue: 70 year: 2022 article-title: Global path planning algorithm based on double DQN for multi-tasks amphibious unmanned surface vehicle publication-title: Ocean Eng. – volume: 38 start-page: 48 issue: 6 year: 2012 end-page: 62 article-title: 3D path planning for underwater vehicles using five evolutionary optimization algorithms avoiding static and energetic obstacles publication-title: Appl. Ocean Res. – volume: 1 start-page: 91 issue: 1 year: 1984 end-page: 96 article-title: Planning collision-free paths for robotic arm among obstacles publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 42 start-page: 6350 issue: 17 year: 2015 end-page: 6364 article-title: A novel bat algorithm with habitat selection and Doppler effect in echoes for optimization publication-title: Expert Syst. Appl. – volume: 18 start-page: 674 issue: 3 year: 2021 end-page: 710 article-title: The colony predation algorithm publication-title: J. Bionic Eng. – volume: 34 start-page: 67 issue: 15 year: 2022 end-page: 70 article-title: Robot path planning based on improved gray wolf optimization algorithm publication-title: Inf. Comput. (China) – volume: 11 start-page: 299 issue: 3 year: 1968 end-page: 301 article-title: The sofa problem publication-title: Comput. J. – volume: 10 start-page: 151 issue: 2 year: 2018 end-page: 164 article-title: Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems publication-title: Memet. Comput. – volume: 11 start-page: 301 issue: 3 year: 2018 end-page: 312 article-title: A geometrical path planning method for unmanned aerial vehicle in 2D/3D complex environment publication-title: Intell. Serv. Robot. – volume: 183 start-page: 11 issue: 2 year: 2021 end-page: 22 article-title: A star identification algorithm based on simplest general subgraph publication-title: Acta Astronautica – volume: 16 start-page: 1244 issue: 3 year: 2018 end-page: 1258 article-title: Multilevel humanlike motion planning for mobile robots in complex indoor environments publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 97 start-page: 849 issue: 16 year: 2019 end-page: 872 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Gener. Comput. Syst. – volume: 39 start-page: 459 issue: 3 year: 2007 end-page: 471 article-title: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm publication-title: J. Global Optim. – volume: 1864 start-page: 20 issue: 1 year: 2017 end-page: 24 article-title: Dynamic path planning for mobile robot based on particle swarm optimization publication-title: AIP Conf. Proc. – volume: 9 start-page: 50 issue: 1 year: 2015 end-page: 60 article-title: The path planning for mobile robot based on bat algorithm publication-title: Int. J. Autom. Control – ident: S0263574723001625_ref27 doi: 10.1007/s10898-007-9149-x – ident: S0263574723001625_ref2 doi: 10.1016/j.cie.2022.108123 – ident: S0263574723001625_ref3 doi: 10.1016/j.oceaneng.2022.112809 – volume: 38 start-page: 235 year: 2020 ident: S0263574723001625_ref7 article-title: Investigating reduced path planning strategy for differential wheeled mobile robot publication-title: ROBOTICA doi: 10.1017/S0263574719000572 – ident: S0263574723001625_ref15 doi: 10.1016/j.future.2019.02.028 – ident: S0263574723001625_ref5 doi: 10.1093/comjnl/11.3.299 – ident: S0263574723001625_ref16 doi: 10.1007/s00521-015-1923-y – ident: S0263574723001625_ref20 doi: 10.1016/j.eswa.2022.116516 – ident: S0263574723001625_ref42 doi: 10.1016/j.actaastro.2021.02.026 – ident: S0263574723001625_ref6 doi: 10.1109/TASE.2018.2880245 – ident: S0263574723001625_ref28 doi: 10.1007/s00521-014-1640-y – volume: 34 start-page: 67 year: 2022 ident: S0263574723001625_ref41 article-title: Robot path planning based on improved gray wolf optimization algorithm publication-title: Inf. Comput. (China) – ident: S0263574723001625_ref24 doi: 10.1007/978-3-642-32894-7_27 – volume: 36 start-page: 2562 year: 2021 ident: S0263574723001625_ref38 article-title: Grey wolf optimization algorithm based on adaptive normal cloud model publication-title: Control Decis. (China) – ident: S0263574723001625_ref22 doi: 10.1016/j.advengsoft.2016.05.015 – volume: 41 start-page: 23 year: 2022 ident: S0263574723001625_ref39 article-title: Path planning method of warehouse logistics robot based on improved gray wolf optimization algorithm publication-title: Control Theory Appl. (China) – ident: S0263574723001625_ref21 doi: 10.1016/j.neucom.2023.02.010 – volume: 1864 start-page: 20 year: 2017 ident: S0263574723001625_ref30 article-title: Dynamic path planning for mobile robot based on particle swarm optimization publication-title: AIP Conf. Proc. – volume: 5 start-page: 99 year: 2018 ident: S0263574723001625_ref35 article-title: Economic order quantity models for items with imperfect quality and emission considerations publication-title: Int. J. Syst. Sci. Oper. Logist. – ident: S0263574723001625_ref33 doi: 10.1145/3339311.3339314 – ident: S0263574723001625_ref18 doi: 10.1007/s42235-021-0050-y – volume: 15 start-page: e01068 year: 2022 ident: S0263574723001625_ref43 article-title: An improved multi-objective a-star algorithm for path planning in a large workspace: Design, implementation, and evaluation publication-title: Sci. Afr. – ident: S0263574723001625_ref1 doi: 10.1016/j.eswa.2023.120254 – ident: S0263574723001625_ref4 doi: 10.1017/S0263574716000321 – ident: S0263574723001625_ref29 doi: 10.3233/JIFS-201926 – ident: S0263574723001625_ref19 doi: 10.1016/j.eswa.2021.114864 – ident: S0263574723001625_ref32 doi: 10.1016/j.knosys.2020.105530 – ident: S0263574723001625_ref36 doi: 10.1016/j.apor.2012.06.002 – ident: S0263574723001625_ref9 doi: 10.1109/TPAMI.1984.4767480 – ident: S0263574723001625_ref14 doi: 10.1007/s12293-016-0212-3 – volume: 6 start-page: 581 year: 2000 ident: S0263574723001625_ref12 article-title: Simultaneous localization and map building using natural features in outdoor environments publication-title: Intell. Auto. Syst. – volume: 56 start-page: 49 year: 2022 ident: S0263574723001625_ref40 article-title: Path planing of mobile robot based on TGWO algorithm publication-title: J. XI’An JIAOTONG Univ. (China) – ident: S0263574723001625_ref37 doi: 10.1016/j.advengsoft.2013.12.007 – ident: S0263574723001625_ref31 doi: 10.1504/IJAAC.2015.068041 – ident: S0263574723001625_ref11 doi: 10.1016/j.ast.2021.106640 – start-page: 210 volume-title: World Congress on Nature and Biologically Inspired Computing year: 2009 ident: S0263574723001625_ref23 – volume: 11 start-page: 301 year: 2018 ident: S0263574723001625_ref13 article-title: A geometrical path planning method for unmanned aerial vehicle in 2D/3D complex environment publication-title: Intell. Serv. Robot. doi: 10.1007/s11370-018-0254-0 – ident: S0263574723001625_ref8 doi: 10.1109/IAEAC50856.2021.9390601 – ident: S0263574723001625_ref34 doi: 10.1016/j.ast.2018.02.031 – ident: S0263574723001625_ref26 doi: 10.1080/0952813X.2015.1042530 – ident: S0263574723001625_ref25 doi: 10.1016/j.eswa.2015.04.026 – volume: 37 start-page: 641 year: 2019 ident: S0263574723001625_ref45 article-title: RimJump: Edge-based shortest path planning for a 2D map publication-title: ROBOTICA doi: 10.1017/S0263574718001236 – ident: S0263574723001625_ref10 doi: 10.1109/ICRA40945.2020.9197226 – ident: S0263574723001625_ref17 doi: 10.1016/j.future.2020.03.055 – ident: S0263574723001625_ref44 doi: 10.1016/j.apor.2022.103163 |
| SSID | ssj0013147 |
| Score | 2.4164512 |
| Snippet | With the popularization of electric vehicles, early built parking lots cannot solve the charging problem of a large number of electric vehicles. Mobile... |
| SourceID | proquest crossref cambridge |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 536 |
| SubjectTerms | Algorithms Artificial intelligence Automobiles Autonomous navigation Charging Electric vehicles Fitness Heuristic Local optimization Minimum cost Mold Optimization techniques Parking facilities Path planning Robots |
| Title | Improved gray wolf optimization algorithm integrating A algorithm for path planning of mobile charging robots |
| URI | https://www.cambridge.org/core/product/identifier/S0263574723001625/type/journal_article https://www.proquest.com/docview/2914486945 |
| Volume | 42 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1469-8668 dateEnd: 20241101 omitProxy: false ssIdentifier: ssj0013147 issn: 0263-5747 databaseCode: ADMLS dateStart: 19830101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1469-8668 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0013147 issn: 0263-5747 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1469-8668 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0013147 issn: 0263-5747 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60XvQgPrFayx48icEku8kmB5Eq1iJYRCz0Vvaph7apbUT8987mYRWh10kWktnd2W93Z74P4ExE2ijJfY_xhOIGxReeSALhhcoqGcehVcJVIz_2496APQyj4Rr061oYl1ZZx8QiUOtMuTPyyzBF6J_EKYuuZ--eU41yt6u1hIaopBX0VUExtg4boWPGasDGzV3_6Xl5rxAUkmO48aBehEi6vucsSKQdLwvaEJQjDnLa2Uu2hb-r1t-gXaxE3R3YriAk6ZR9vgtrZroHW7-IBfdhUp4VGE1e5-KLfGZjSzIMDpOq6pKI8Sv-XP42ITVfBLYjnV92BLPEyRWTWSVrRDJLJpnEKEIKeiVnmmcyyxcHMOjevdz2vEpYwVMIF3JPW6Yjx3tvBIsVTaUjpw1tmDJLcbNMhQh8w4wfWe18LlMEKUHMDXfwUqaMHkJjmk3NERBmg0AyhTiDK8Z5lCbUUhvphOuEBoI34eLHiaNqeixGZWoZH_3zeRP82s8jVZGUO62M8aom5z9NZiVDx6qXW3XnLb9mObSOVz8-gc0QMU2ZtN2CRj7_MKeISXLZhvWke9-uhts3dq7cMQ |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOBQOqIVW5Vkf4IKImsROnBwQohS0vFYVAolb6uf2sLtZdoMQf66_rePEYUGV9sbViSNrPJn5xo_vA9gViTZK8jBgPKNYoIQiEFkkglhZJdM0tkq428jX3bRzxy7uk_s5-NvehXHHKtuYWAdqXSq3Rv49zhH6Z2nOkqPRQ-BUo9zuaiuhIby0gj6sKcb8xY5L8_yEJdzk8PwnzvdeHJ-d3p50Aq8yECjMnVWgLdOJI4E3gqWK5tIxtcY2zpmlWDlSIaLQMBMmVrsByBwzdpRywx3Wkjmj-N15WGSU5Vj8Lf447f66me5jRLXEGRY6NEgQubf7qjVpteOBwTYsAhB3Oa3uKbvD2yz5NknUme_sI6x4yEqOGx_7BHNmuArLr4gM12DQrE0YTXpj8Uyeyr4lJQajgb_lSUS_h8as_gxIy0-B_cjxq3YEz8TJI5ORl1EipSWDUmLUIjWdk2sal7KsJp_h7l1M_AUWhuXQfAXCbBRJphDXcMU4T_KMWmoTnXGd0UjwdTh4MWLhf8dJ0Rxl48V_Nl-HsLVzoTwputPm6M_qsv_SZdQwgsx6eaudvOlopq68MfvxN_jQub2-Kq7Ou5ebsBQjnmoOjG_BQjV-NNuIhyq5452OwO_39vN__vMWBA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+gray+wolf+optimization+algorithm+integrating+A+algorithm+for+path+planning+of+mobile+charging+robots&rft.jtitle=Robotica&rft.au=Liu%2C+Shangjunnan&rft.au=Liu%2C+Shuhai&rft.au=Xiao%2C+Huaping&rft.date=2024-02-01&rft.pub=Cambridge+University+Press&rft.issn=0263-5747&rft.eissn=1469-8668&rft.volume=42&rft.issue=2&rft.spage=536&rft.epage=559&rft_id=info:doi/10.1017%2FS0263574723001625 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-5747&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-5747&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-5747&client=summon |