Machine-learning-based models in particle-in-cell codes for advanced physics extensions
In this paper we propose a methodology for the efficient implementation of machine learning (ML)-based methods in particle-in-cell (PIC) codes, with a focus on Monte Carlo or statistical extensions to the PIC algorithm. The presented approach allows for neural networks to be developed in a Python en...
Saved in:
| Published in | Journal of plasma physics Vol. 88; no. 6 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cambridge, UK
Cambridge University Press
01.12.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0022-3778 1469-7807 |
| DOI | 10.1017/S0022377822001180 |
Cover
| Abstract | In this paper we propose a methodology for the efficient implementation of machine learning (ML)-based methods in particle-in-cell (PIC) codes, with a focus on Monte Carlo or statistical extensions to the PIC algorithm. The presented approach allows for neural networks to be developed in a Python environment, where advanced ML tools are readily available to proficiently train and test them. Those models are then efficiently deployed within highly scalable and fully parallelized PIC simulations during runtime. We demonstrate this methodology with a proof-of-concept implementation within the PIC code OSIRIS, where a fully connected neural network is used to replace a section of a Compton scattering module. We demonstrate that the ML-based method reproduces the results obtained with the conventional method and achieves better computational performance. These results offer a promising avenue for future applications of ML-based methods in PIC, particularly for physics extensions where a ML-based approach can provide a higher performance increase. |
|---|---|
| AbstractList | In this paper we propose a methodology for the efficient implementation of machine learning (ML)-based methods in particle-in-cell (PIC) codes, with a focus on Monte Carlo or statistical extensions to the PIC algorithm. The presented approach allows for neural networks to be developed in a Python environment, where advanced ML tools are readily available to proficiently train and test them. Those models are then efficiently deployed within highly scalable and fully parallelized PIC simulations during runtime. We demonstrate this methodology with a proof-of-concept implementation within the PIC code OSIRIS, where a fully connected neural network is used to replace a section of a Compton scattering module. We demonstrate that the ML-based method reproduces the results obtained with the conventional method and achieves better computational performance. These results offer a promising avenue for future applications of ML-based methods in PIC, particularly for physics extensions where a ML-based approach can provide a higher performance increase. |
| ArticleNumber | 895880602 |
| Author | Cruz, Fábio Bilbao, Pablo J. Silva, Luís O. Badiali, Chiara |
| Author_xml | – sequence: 1 givenname: Chiara orcidid: 0000-0001-6450-7511 surname: Badiali fullname: Badiali, Chiara email: chiara.badiali@tecnico.ulisboa.pt organization: 1GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal – sequence: 2 givenname: Pablo J. orcidid: 0000-0002-1841-4397 surname: Bilbao fullname: Bilbao, Pablo J. organization: 1GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal – sequence: 3 givenname: Fábio orcidid: 0000-0003-0761-6628 surname: Cruz fullname: Cruz, Fábio organization: 1GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal – sequence: 4 givenname: Luís O. orcidid: 0000-0003-2906-924X surname: Silva fullname: Silva, Luís O. email: chiara.badiali@tecnico.ulisboa.pt organization: 1GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal |
| BookMark | eNp9kE9LAzEQxYNUsK1-AG8LnqOTzXZnc5TiP6h4UPG4ZLOTNmWbrclW7Ld3SwuCoqc5vPd783gjNvCtJ8bOBVwKEHj1DJCmErFIUwAhCjhiQ5HlimMBOGDDncx3-gkbxbgEAAkpDtnbozYL54k3pIN3fs4rHalOVm1NTUycT9Y6dM40xJ3nhpomMb0UE9uGRNcf2pvevV5sozMxoc-OfHStj6fs2Oom0tnhjtnr7c3L9J7Pnu4eptczbqTAjqvKVJaqyURaqpVVkJrCSlmgNqKmXGWqVqhzRZKyidG5LqDO0eREhJZIyTG72OeuQ_u-odiVy3YTfP-yTDHDHFFl0Ltw7zKhjTGQLY3rdNcX7YJ2TSmg3K1Y_lqxJ8UPch3cSoftv4w8MHpVBVfP6bvU39QXp22GOg |
| CitedBy_id | crossref_primary_10_1088_1361_6587_ad2975 crossref_primary_10_1155_admp_8639482 crossref_primary_10_1088_1361_6463_ada167 crossref_primary_10_1088_2632_2153_ad4ba6 |
| Cites_doi | 10.1029/94GL01835 10.1145/3323057.3323059 10.1016/j.jcp.2007.11.037 10.1088/1367-2630/18/7/073035 10.1088/0741-3335/50/12/124034 10.1016/j.jcp.2017.08.016 10.1103/RevModPhys.42.237 10.1103/RevModPhys.55.403 10.1063/1.1814367 10.1103/PhysRev.21.483 10.1103/PhysRevLett.122.035101 10.1073/pnas.1611835114 10.1016/j.cpc.2016.04.002 10.1007/978-3-030-01424-7_27 10.1103/PhysRevResearch.3.023103 10.3847/1538-4365/aac9ca 10.1007/s41781-021-00059-x 10.1887/0852743920 10.1109/TSSC.1969.300225 10.1109/Cluster48925.2021.00103 10.1016/0021-9991(77)90099-7 10.1103/PhysRevE.55.4642 10.1088/0741-3335/57/11/113001 10.1103/PhysRevResearch.2.023129 10.1007/3-540-47789-6_36 10.1088/1367-2630/ac2004 10.1016/j.cpc.2007.02.092 10.1007/3-540-59497-3_175 10.1017/S002237782000118X 10.1155/2020/8888811 |
| ContentType | Journal Article |
| Copyright | Copyright © The Author(s), 2022. Published by Cambridge University Press |
| Copyright_xml | – notice: Copyright © The Author(s), 2022. Published by Cambridge University Press |
| DBID | AAYXX CITATION 3V. 7U5 7XB 88I 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO GNUQQ H8D HCIFZ L7M M2P P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U |
| DOI | 10.1017/S0022377822001180 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science ProQuest One Community College ProQuest Central Korea ProQuest Central Student Aerospace Database SciTech Premium Collection Advanced Technologies Database with Aerospace Science Database Advanced Technologies & Aerospace Database (ProQuest) ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | ProQuest Central Student CrossRef |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1469-7807 |
| ExternalDocumentID | 10_1017_S0022377822001180 |
| GroupedDBID | -1D -1F -2P -2V -E. -~6 -~N -~X .FH 09C 09E 0E1 0R~ 29L 3V. 4.4 5GY 5VS 6~7 74X 74Y 7~V 88I 8FE 8FG 8FH 8R4 8R5 8WZ 9M5 A6W AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AANRG AARAB AASVR AAUIS AAUKB ABBXD ABBZL ABEFU ABITZ ABJNI ABKKG ABMWE ABMYL ABQTM ABQWD ABROB ABTCQ ABUWG ABVFV ABXAU ABZCX ABZUI ACBMC ACCHT ACETC ACGFS ACGOD ACIMK ACMRT ACNCT ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADGEJ ADKIL ADOCW ADOVH ADOVT ADVJH AEBAK AEBPU AEHGV AEMTW AENCP AENEX AENGE AEYYC AFFNX AFFUJ AFKQG AFKRA AFKSM AFLOS AFLVW AFUTZ AGABE AGBYD AGJUD AGLWM AGOOT AHQXX AHRGI AI. AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS AKZCZ ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ARZZG ATUCA AUXHV AYIQA AZQEC BBLKV BCGOX BENPR BESQT BGHMG BGLVJ BHPHI BJBOZ BKSAR BLZWO BMAJL BPHCQ BQFHP C0O CAG CBIIA CCPQU CCQAD CCUQV CDIZJ CFAFE CFBFF CGQII CHEAL CJCSC COF CS3 DC4 DOHLZ DU5 DWQXO EBS EGQIC EJD GNUQQ HCIFZ HG- HST HZ~ I.6 I.7 I.9 IH6 IOEEP IOO IS6 I~P J36 J38 J3A JHPGK JQKCU KAFGG KC5 KCGVB KFECR L98 LHUNA LK5 LW7 M-V M2P M7R M7~ M8. NIKVX NMFBF NZEOI O9- OYBOY P2P P62 PCBAR PQQKQ PROAC PYCCK Q2X RAMDC RCA RIG ROL RR0 S6- S6U SAAAG T9M UT1 VH1 VOH WFFJZ WH7 WQ3 WXU WXY WYP ZCG ZDLDU ZJOSE ZMEZD ZYDXJ ~V1 AAKNA AATMM AAYXX ABGDZ ABVKB ABVZP ABXHF ACDLN ACEJA ACRPL ADMLS ADNMO AEMFK AEUYN AFZFC AGQPQ AKMAY ANOYL CITATION IPYYG PHGZM PHGZT PQGLB PUEGO 7U5 7XB 8FD 8FK H8D L7M PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c317t-9bcbfeb553fed9f902c8f3387ac1de6949d97a69e3e45ca6a80d67c6eee7fee93 |
| IEDL.DBID | BENPR |
| ISSN | 0022-3778 |
| IngestDate | Sat Jul 26 01:22:55 EDT 2025 Thu Apr 24 23:12:07 EDT 2025 Wed Oct 01 03:07:57 EDT 2025 Wed Mar 13 05:54:02 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | plasma simulation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c317t-9bcbfeb553fed9f902c8f3387ac1de6949d97a69e3e45ca6a80d67c6eee7fee93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0761-6628 0000-0003-2906-924X 0000-0002-1841-4397 0000-0001-6450-7511 |
| PQID | 2747677940 |
| PQPubID | 47771 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2747677940 crossref_citationtrail_10_1017_S0022377822001180 crossref_primary_10_1017_S0022377822001180 cambridge_journals_10_1017_S0022377822001180 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20221201 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 20221201 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cambridge, UK |
| PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
| PublicationTitle | Journal of plasma physics |
| PublicationTitleAlternate | J. Plasma Phys |
| PublicationYear | 2022 |
| Publisher | Cambridge University Press |
| Publisher_xml | – name: Cambridge University Press |
| References | 2015; 57 2004; 11 2021; 5 1989; 117 2021; 3 2021; 23 2020; 2 2020; 86 1997; 55 2018; 237 1977; 25 1969; 5 2007; 177 1970; 42 2008; 227 1923; 21 2016; 204 2008; 50 2016; 18 2017; 114 2019; 122 1983; 55 1994; 21 2017; 349 Kirkpatrick (S0022377822001180_ref26) 2017; 114 Del Gaudio (S0022377822001180_ref16) 2020; 86 Sherlock (S0022377822001180_ref33) 2008; 227 Blumenthal (S0022377822001180_ref8) 1970; 42 Arrowsmith (S0022377822001180_ref4) 2021; 3 Decyk (S0022377822001180_ref15) 2007; 177 Fukushima (S0022377822001180_ref19) 1969; 5 S0022377822001180_ref27 Compton (S0022377822001180_ref12) 1923; 21 S0022377822001180_ref25 S0022377822001180_ref24 S0022377822001180_ref21 Dawson (S0022377822001180_ref14) 1983; 55 Grismayer (S0022377822001180_ref20) 2021; 23 S0022377822001180_ref9 Hockney (S0022377822001180_ref23) 1988 Chollet (S0022377822001180_ref10) 2017 Bacchini (S0022377822001180_ref5) 2018; 237 Miller (S0022377822001180_ref28) 1994; 21 Fonseca (S0022377822001180_ref17) 2008; 50 Bello (S0022377822001180_ref6) 2021; 5 Higginson (S0022377822001180_ref22) 2017; 349 Bird (S0022377822001180_ref7) 1989; 117 Arber (S0022377822001180_ref3) 2015; 57 S0022377822001180_ref38 S0022377822001180_ref37 S0022377822001180_ref18 S0022377822001180_ref1 S0022377822001180_ref34 Nanbu (S0022377822001180_ref29) 1997; 55 Chollet (S0022377822001180_ref11) 2018 S0022377822001180_ref36 S0022377822001180_ref2 S0022377822001180_ref13 S0022377822001180_ref35 S0022377822001180_ref30 S0022377822001180_ref32 S0022377822001180_ref31 |
| References_xml | – volume: 237 start-page: 6 issue: 1 year: 2018 article-title: Generalized, energy-conserving numerical simulations of particles in general relativity. I. Time-like and null geodesics publication-title: Astrophys. J. Suppl. Ser – volume: 177 start-page: 95 issue: 1–2 year: 2007 end-page: 97 article-title: Upic: a framework for massively parallel particle-in-cell codes publication-title: Comput. Phys. Commun – volume: 117 start-page: 211 year: 1989 end-page: 226 article-title: Perception of numerical methods in rarefied gasdynamics publication-title: Prog. Astronaut. Aeronaut – volume: 21 start-page: 1735 issue: 16 year: 1994 end-page: 1738 article-title: A Coulomb collision algorithm for weighted particle simulations publication-title: Geophys. Res. Lett – volume: 55 start-page: 403 issue: 2 year: 1983 article-title: Particle simulation of plasmas publication-title: Rev. Mod. Phys – volume: 122 start-page: 035101 issue: 3 year: 2019 article-title: First-principles plasma simulations of black-hole jet launching publication-title: Phys. Rev. Lett – volume: 5 start-page: 1 issue: 1 year: 2021 end-page: 12 article-title: Efficiency parameterization with neural networks publication-title: Comput. Softw. Big Sci – volume: 23 start-page: 095005 issue: 9 year: 2021 article-title: Quantum electrodynamics vacuum polarization solver publication-title: New J. Phys – volume: 114 start-page: 3521 issue: 13 year: 2017 end-page: 3526 article-title: Overcoming catastrophic forgetting in neural networks publication-title: Proc. Natl Acad. Sci – volume: 204 start-page: 141 year: 2016 end-page: 151 article-title: Classical radiation reaction in particle-in-cell simulations publication-title: Comput. Phys. Commun – volume: 50 start-page: 124034 issue: 12 year: 2008 article-title: One-to-one direct modeling of experiments and astrophysical scenarios: pushing the envelope on kinetic plasma simulations publication-title: Plasma Phys. Control. Fusion – volume: 55 start-page: 4642 issue: 4 year: 1997 article-title: Theory of cumulative small-angle collisions in plasmas publication-title: Phys. Rev. E – volume: 227 start-page: 2286 issue: 4 year: 2008 end-page: 2292 article-title: A Monte-Carlo method for Coulomb collisions in hybrid plasma models publication-title: J. Comput. Phys – volume: 5 start-page: 322 issue: 4 year: 1969 end-page: 333 article-title: Visual feature extraction by a multilayered network of analog threshold elements publication-title: IEEE Trans. Syst. Sci. Cybern – volume: 57 start-page: 113001 issue: 11 year: 2015 article-title: Contemporary particle-in-cell approach to laser-plasma modelling publication-title: Plasma Phys. Control. Fusion – volume: 349 start-page: 589 year: 2017 end-page: 603 article-title: A full-angle Monte-Carlo scattering technique including cumulative and single-event Rutherford scattering in plasmas publication-title: J. Comput. Phys – volume: 25 start-page: 205 issue: 3 year: 1977 end-page: 219 article-title: A binary collision model for plasma simulation with a particle code publication-title: J. Comput. Phys – volume: 18 start-page: 073035 issue: 7 year: 2016 article-title: Quantum radiation reaction in head-on laser-electron beam interaction publication-title: New J. Phys – volume: 3 start-page: 023103 issue: 2 year: 2021 article-title: Generating ultradense pair beams using 400 GeV/c protons publication-title: Phys. Rev. Res – volume: 2 start-page: 023129 issue: 2 year: 2020 article-title: Interplay between the Weibel instability and the Biermann battery in realistic laser-solid interactions publication-title: Phys. Rev. Res – volume: 86 issue: 5 year: 2020 article-title: Compton scattering in particle-in-cell codes publication-title: J. Plasma Phys – volume: 11 start-page: 5648 issue: 12 year: 2004 end-page: 5657 article-title: Modeling ultrafast laser-driven ionization dynamics with monte carlo collisional particle-in-cell simulations publication-title: Phys. Plasmas – volume: 42 start-page: 237 issue: 2 year: 1970 article-title: Bremsstrahlung, synchrotron radiation, and compton scattering of high-energy electrons traversing dilute gases publication-title: Rev. Mod. Phys – volume: 21 start-page: 483 issue: 5 year: 1923 article-title: A quantum theory of the scattering of x-rays by light elements publication-title: Phys. Rev – volume: 21 start-page: 1735 year: 1994 ident: S0022377822001180_ref28 article-title: A Coulomb collision algorithm for weighted particle simulations publication-title: Geophys. Res. Lett doi: 10.1029/94GL01835 – ident: S0022377822001180_ref13 doi: 10.1145/3323057.3323059 – volume: 227 start-page: 2286 year: 2008 ident: S0022377822001180_ref33 article-title: A Monte-Carlo method for Coulomb collisions in hybrid plasma models publication-title: J. Comput. Phys doi: 10.1016/j.jcp.2007.11.037 – ident: S0022377822001180_ref37 doi: 10.1088/1367-2630/18/7/073035 – volume: 50 start-page: 124034 year: 2008 ident: S0022377822001180_ref17 article-title: One-to-one direct modeling of experiments and astrophysical scenarios: pushing the envelope on kinetic plasma simulations publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/50/12/124034 – volume: 349 start-page: 589 year: 2017 ident: S0022377822001180_ref22 article-title: A full-angle Monte-Carlo scattering technique including cumulative and single-event Rutherford scattering in plasmas publication-title: J. Comput. Phys doi: 10.1016/j.jcp.2017.08.016 – volume: 42 start-page: 237 year: 1970 ident: S0022377822001180_ref8 article-title: Bremsstrahlung, synchrotron radiation, and compton scattering of high-energy electrons traversing dilute gases publication-title: Rev. Mod. Phys doi: 10.1103/RevModPhys.42.237 – volume: 55 start-page: 403 year: 1983 ident: S0022377822001180_ref14 article-title: Particle simulation of plasmas publication-title: Rev. Mod. Phys doi: 10.1103/RevModPhys.55.403 – ident: S0022377822001180_ref24 doi: 10.1063/1.1814367 – volume: 21 start-page: 483 year: 1923 ident: S0022377822001180_ref12 article-title: A quantum theory of the scattering of x-rays by light elements publication-title: Phys. Rev doi: 10.1103/PhysRev.21.483 – ident: S0022377822001180_ref31 doi: 10.1103/PhysRevLett.122.035101 – volume: 114 start-page: 3521 year: 2017 ident: S0022377822001180_ref26 article-title: Overcoming catastrophic forgetting in neural networks publication-title: Proc. Natl Acad. Sci doi: 10.1073/pnas.1611835114 – ident: S0022377822001180_ref25 – ident: S0022377822001180_ref27 – ident: S0022377822001180_ref38 doi: 10.1016/j.cpc.2016.04.002 – ident: S0022377822001180_ref36 doi: 10.1007/978-3-030-01424-7_27 – ident: S0022377822001180_ref32 – volume: 3 start-page: 023103 year: 2021 ident: S0022377822001180_ref4 article-title: Generating ultradense pair beams using 400 GeV/c protons publication-title: Phys. Rev. Res doi: 10.1103/PhysRevResearch.3.023103 – volume: 237 start-page: 6 year: 2018 ident: S0022377822001180_ref5 article-title: Generalized, energy-conserving numerical simulations of particles in general relativity. I. Time-like and null geodesics publication-title: Astrophys. J. Suppl. Ser doi: 10.3847/1538-4365/aac9ca – volume: 5 start-page: 1 year: 2021 ident: S0022377822001180_ref6 article-title: Efficiency parameterization with neural networks publication-title: Comput. Softw. Big Sci doi: 10.1007/s41781-021-00059-x – volume: 117 start-page: 211 year: 1989 ident: S0022377822001180_ref7 article-title: Perception of numerical methods in rarefied gasdynamics publication-title: Prog. Astronaut. Aeronaut – volume-title: Computer Simulation Using Particles year: 1988 ident: S0022377822001180_ref23 doi: 10.1887/0852743920 – volume: 5 start-page: 322 year: 1969 ident: S0022377822001180_ref19 article-title: Visual feature extraction by a multilayered network of analog threshold elements publication-title: IEEE Trans. Syst. Sci. Cybern doi: 10.1109/TSSC.1969.300225 – ident: S0022377822001180_ref2 doi: 10.1109/Cluster48925.2021.00103 – ident: S0022377822001180_ref35 doi: 10.1016/0021-9991(77)90099-7 – volume: 55 start-page: 4642 year: 1997 ident: S0022377822001180_ref29 article-title: Theory of cumulative small-angle collisions in plasmas publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.55.4642 – volume: 57 start-page: 113001 year: 2015 ident: S0022377822001180_ref3 article-title: Contemporary particle-in-cell approach to laser-plasma modelling publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/57/11/113001 – volume-title: Keras: The Python Deep Learning Library year: 2018 ident: S0022377822001180_ref11 – ident: S0022377822001180_ref34 doi: 10.1103/PhysRevResearch.2.023129 – ident: S0022377822001180_ref18 doi: 10.1007/3-540-47789-6_36 – volume: 23 start-page: 095005 year: 2021 ident: S0022377822001180_ref20 article-title: Quantum electrodynamics vacuum polarization solver publication-title: New J. Phys doi: 10.1088/1367-2630/ac2004 – volume-title: Deep Learning with Python year: 2017 ident: S0022377822001180_ref10 – ident: S0022377822001180_ref9 – volume: 177 start-page: 95 year: 2007 ident: S0022377822001180_ref15 article-title: Upic: a framework for massively parallel particle-in-cell codes publication-title: Comput. Phys. Commun doi: 10.1016/j.cpc.2007.02.092 – ident: S0022377822001180_ref21 doi: 10.1007/3-540-59497-3_175 – volume: 86 year: 2020 ident: S0022377822001180_ref16 article-title: Compton scattering in particle-in-cell codes publication-title: J. Plasma Phys doi: 10.1017/S002237782000118X – ident: S0022377822001180_ref1 – ident: S0022377822001180_ref30 doi: 10.1155/2020/8888811 |
| SSID | ssj0003027 |
| Score | 2.3634849 |
| Snippet | In this paper we propose a methodology for the efficient implementation of machine learning (ML)-based methods in particle-in-cell (PIC) codes, with a focus on... |
| SourceID | proquest crossref cambridge |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Codes Elastic scattering Libraries Machine learning Machine Learning for Plasma Physics and Fusion Energy Methods Neural networks Partial differential equations Particle in cell technique Physics Plasma Plasma physics Simulation |
| Title | Machine-learning-based models in particle-in-cell codes for advanced physics extensions |
| URI | https://www.cambridge.org/core/product/identifier/S0022377822001180/type/journal_article https://www.proquest.com/docview/2747677940 |
| Volume | 88 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1469-7807 dateEnd: 20241103 omitProxy: false ssIdentifier: ssj0003027 issn: 0022-3778 databaseCode: ADMLS dateStart: 19670101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1469-7807 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0003027 issn: 0022-3778 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1469-7807 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0003027 issn: 0022-3778 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB5qi-BFfGK1lhw8icHtPpLNQUSltQgWEYu9lU0ykYJsq1v_v5vsoxah12wCSzKZmUy-fB_ABZMmQOFr2pNc0lAlSIXgETWxZExz5QWJA8iO2HAcPk2iSQNG1VsYC6usfKJz1HqubI382p6eGM-tx7tdfFGrGmVvVysJjaSUVtA3jmJsC1q-ZcZqQuu-P3p5rX2zvaWr-cM5j6t7TkcinTfaNt8viNH-si2sR611p-0i0WAPdssUktwVa74PDUwPYNtBOVV2CO_PDh-JtBSE-KA2UmniNG8yMkvJojQXOkupLdwT-649I3n6SipIACkqHhlxRXJbUcuOYDzovz0MaSmfQFWeFCypkEoalFEUGNTCCM9XsclPpDxRPY1MhEILnjCBAYaRSlgSe5pxxRCRG0QRHEMznad4AiQK8n6xMSgkhswY4XuSB4rJOMnXWIVtuKqnalpugmxaAMj49N_MtsGrZnOqSipyq4jxuWnIZT1kUfBwbOrcqZZo9TcrAzrd_PkMdnxrHw6z0oHm8vsHz_PMYym7sBUPHrulUf0CzLnU4w |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS8QwFA6iiF7EFcc1B72IwdolaQ4ibsO4zCCi6K02yYsIUkc7Iv45f5tJmo4OwtzmmjZQXr7m5S35PoS2qNAR8FCRfcEEiWUOhHOWEJ0KShWTQZS7BtkObd3FFw_Jwxj6ru_C2LbKek90G7V6lTZHvmejJ8oMeoLD7huxqlG2ulpLaOReWkEdOIoxf7HjEr4-TQhXHpyfmvXeDsPm2e1Ji3iVASKN7-wRLqTQIJIk0qC45kEoU20CN5bLfQWUx1xxllMOEcSJzGmeBooySQGAaQBLxmRcwEQcxdwEfxPHZ53rm74vsFXBPl85Y2ldV3Wk1WbQjoVhRcT2l91h0EsOOgnn-ZqzaMYfWfFRhbE5NAbFPJp0raOyXED3bdePCcQLUDwR6xkVdho7JX4ucNfDkzwXxBYKsL1HX2JzXMZ1CwKuMiwldkl5m8ErF9HdSAy5hMaL1wKWEU4i816qNXABMdWah4FgkaQizQ2mZNxAu31TZf6nK7OqYY1l_yzbQEFtzUx66nOrwPEybMpOf0q34v0Y9vJavUS_X_ML2JXhjzfRVOu2fZVdnXcuV9F0aLHi-mXW0Hjv_QPWzamnJzY8tDB6HDWafwDcdhPQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine-learning-based+models+in+particle-in-cell+codes+for+advanced+physics+extensions&rft.jtitle=Journal+of+plasma+physics&rft.au=Badiali%2C+Chiara&rft.au=Bilbao%2C+Pablo+J.&rft.au=Cruz%2C+F%C3%A1bio&rft.au=Silva%2C+Lu%C3%ADs+O.&rft.date=2022-12-01&rft.pub=Cambridge+University+Press&rft.issn=0022-3778&rft.eissn=1469-7807&rft.volume=88&rft.issue=6&rft_id=info:doi/10.1017%2FS0022377822001180&rft.externalDocID=10_1017_S0022377822001180 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3778&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3778&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3778&client=summon |