Machine-learning-based models in particle-in-cell codes for advanced physics extensions

In this paper we propose a methodology for the efficient implementation of machine learning (ML)-based methods in particle-in-cell (PIC) codes, with a focus on Monte Carlo or statistical extensions to the PIC algorithm. The presented approach allows for neural networks to be developed in a Python en...

Full description

Saved in:
Bibliographic Details
Published inJournal of plasma physics Vol. 88; no. 6
Main Authors Badiali, Chiara, Bilbao, Pablo J., Cruz, Fábio, Silva, Luís O.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.12.2022
Subjects
Online AccessGet full text
ISSN0022-3778
1469-7807
DOI10.1017/S0022377822001180

Cover

Abstract In this paper we propose a methodology for the efficient implementation of machine learning (ML)-based methods in particle-in-cell (PIC) codes, with a focus on Monte Carlo or statistical extensions to the PIC algorithm. The presented approach allows for neural networks to be developed in a Python environment, where advanced ML tools are readily available to proficiently train and test them. Those models are then efficiently deployed within highly scalable and fully parallelized PIC simulations during runtime. We demonstrate this methodology with a proof-of-concept implementation within the PIC code OSIRIS, where a fully connected neural network is used to replace a section of a Compton scattering module. We demonstrate that the ML-based method reproduces the results obtained with the conventional method and achieves better computational performance. These results offer a promising avenue for future applications of ML-based methods in PIC, particularly for physics extensions where a ML-based approach can provide a higher performance increase.
AbstractList In this paper we propose a methodology for the efficient implementation of machine learning (ML)-based methods in particle-in-cell (PIC) codes, with a focus on Monte Carlo or statistical extensions to the PIC algorithm. The presented approach allows for neural networks to be developed in a Python environment, where advanced ML tools are readily available to proficiently train and test them. Those models are then efficiently deployed within highly scalable and fully parallelized PIC simulations during runtime. We demonstrate this methodology with a proof-of-concept implementation within the PIC code OSIRIS, where a fully connected neural network is used to replace a section of a Compton scattering module. We demonstrate that the ML-based method reproduces the results obtained with the conventional method and achieves better computational performance. These results offer a promising avenue for future applications of ML-based methods in PIC, particularly for physics extensions where a ML-based approach can provide a higher performance increase.
ArticleNumber 895880602
Author Cruz, Fábio
Bilbao, Pablo J.
Silva, Luís O.
Badiali, Chiara
Author_xml – sequence: 1
  givenname: Chiara
  orcidid: 0000-0001-6450-7511
  surname: Badiali
  fullname: Badiali, Chiara
  email: chiara.badiali@tecnico.ulisboa.pt
  organization: 1GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
– sequence: 2
  givenname: Pablo J.
  orcidid: 0000-0002-1841-4397
  surname: Bilbao
  fullname: Bilbao, Pablo J.
  organization: 1GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
– sequence: 3
  givenname: Fábio
  orcidid: 0000-0003-0761-6628
  surname: Cruz
  fullname: Cruz, Fábio
  organization: 1GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
– sequence: 4
  givenname: Luís O.
  orcidid: 0000-0003-2906-924X
  surname: Silva
  fullname: Silva, Luís O.
  email: chiara.badiali@tecnico.ulisboa.pt
  organization: 1GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
BookMark eNp9kE9LAzEQxYNUsK1-AG8LnqOTzXZnc5TiP6h4UPG4ZLOTNmWbrclW7Ld3SwuCoqc5vPd783gjNvCtJ8bOBVwKEHj1DJCmErFIUwAhCjhiQ5HlimMBOGDDncx3-gkbxbgEAAkpDtnbozYL54k3pIN3fs4rHalOVm1NTUycT9Y6dM40xJ3nhpomMb0UE9uGRNcf2pvevV5sozMxoc-OfHStj6fs2Oom0tnhjtnr7c3L9J7Pnu4eptczbqTAjqvKVJaqyURaqpVVkJrCSlmgNqKmXGWqVqhzRZKyidG5LqDO0eREhJZIyTG72OeuQ_u-odiVy3YTfP-yTDHDHFFl0Ltw7zKhjTGQLY3rdNcX7YJ2TSmg3K1Y_lqxJ8UPch3cSoftv4w8MHpVBVfP6bvU39QXp22GOg
CitedBy_id crossref_primary_10_1088_1361_6587_ad2975
crossref_primary_10_1155_admp_8639482
crossref_primary_10_1088_1361_6463_ada167
crossref_primary_10_1088_2632_2153_ad4ba6
Cites_doi 10.1029/94GL01835
10.1145/3323057.3323059
10.1016/j.jcp.2007.11.037
10.1088/1367-2630/18/7/073035
10.1088/0741-3335/50/12/124034
10.1016/j.jcp.2017.08.016
10.1103/RevModPhys.42.237
10.1103/RevModPhys.55.403
10.1063/1.1814367
10.1103/PhysRev.21.483
10.1103/PhysRevLett.122.035101
10.1073/pnas.1611835114
10.1016/j.cpc.2016.04.002
10.1007/978-3-030-01424-7_27
10.1103/PhysRevResearch.3.023103
10.3847/1538-4365/aac9ca
10.1007/s41781-021-00059-x
10.1887/0852743920
10.1109/TSSC.1969.300225
10.1109/Cluster48925.2021.00103
10.1016/0021-9991(77)90099-7
10.1103/PhysRevE.55.4642
10.1088/0741-3335/57/11/113001
10.1103/PhysRevResearch.2.023129
10.1007/3-540-47789-6_36
10.1088/1367-2630/ac2004
10.1016/j.cpc.2007.02.092
10.1007/3-540-59497-3_175
10.1017/S002237782000118X
10.1155/2020/8888811
ContentType Journal Article
Copyright Copyright © The Author(s), 2022. Published by Cambridge University Press
Copyright_xml – notice: Copyright © The Author(s), 2022. Published by Cambridge University Press
DBID AAYXX
CITATION
3V.
7U5
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
H8D
HCIFZ
L7M
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1017/S0022377822001180
DatabaseName CrossRef
ProQuest Central (Corporate)
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Science Database
Advanced Technologies & Aerospace Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
ProQuest Central Student
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1469-7807
ExternalDocumentID 10_1017_S0022377822001180
GroupedDBID -1D
-1F
-2P
-2V
-E.
-~6
-~N
-~X
.FH
09C
09E
0E1
0R~
29L
3V.
4.4
5GY
5VS
6~7
74X
74Y
7~V
88I
8FE
8FG
8FH
8R4
8R5
8WZ
9M5
A6W
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABBZL
ABEFU
ABITZ
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVFV
ABXAU
ABZCX
ABZUI
ACBMC
ACCHT
ACETC
ACGFS
ACGOD
ACIMK
ACMRT
ACNCT
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADGEJ
ADKIL
ADOCW
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMTW
AENCP
AENEX
AENGE
AEYYC
AFFNX
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFUTZ
AGABE
AGBYD
AGJUD
AGLWM
AGOOT
AHQXX
AHRGI
AI.
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BHPHI
BJBOZ
BKSAR
BLZWO
BMAJL
BPHCQ
BQFHP
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
GNUQQ
HCIFZ
HG-
HST
HZ~
I.6
I.7
I.9
IH6
IOEEP
IOO
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KAFGG
KC5
KCGVB
KFECR
L98
LHUNA
LK5
LW7
M-V
M2P
M7R
M7~
M8.
NIKVX
NMFBF
NZEOI
O9-
OYBOY
P2P
P62
PCBAR
PQQKQ
PROAC
PYCCK
Q2X
RAMDC
RCA
RIG
ROL
RR0
S6-
S6U
SAAAG
T9M
UT1
VH1
VOH
WFFJZ
WH7
WQ3
WXU
WXY
WYP
ZCG
ZDLDU
ZJOSE
ZMEZD
ZYDXJ
~V1
AAKNA
AATMM
AAYXX
ABGDZ
ABVKB
ABVZP
ABXHF
ACDLN
ACEJA
ACRPL
ADMLS
ADNMO
AEMFK
AEUYN
AFZFC
AGQPQ
AKMAY
ANOYL
CITATION
IPYYG
PHGZM
PHGZT
PQGLB
PUEGO
7U5
7XB
8FD
8FK
H8D
L7M
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c317t-9bcbfeb553fed9f902c8f3387ac1de6949d97a69e3e45ca6a80d67c6eee7fee93
IEDL.DBID BENPR
ISSN 0022-3778
IngestDate Sat Jul 26 01:22:55 EDT 2025
Thu Apr 24 23:12:07 EDT 2025
Wed Oct 01 03:07:57 EDT 2025
Wed Mar 13 05:54:02 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords plasma simulation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c317t-9bcbfeb553fed9f902c8f3387ac1de6949d97a69e3e45ca6a80d67c6eee7fee93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0761-6628
0000-0003-2906-924X
0000-0002-1841-4397
0000-0001-6450-7511
PQID 2747677940
PQPubID 47771
PageCount 12
ParticipantIDs proquest_journals_2747677940
crossref_citationtrail_10_1017_S0022377822001180
crossref_primary_10_1017_S0022377822001180
cambridge_journals_10_1017_S0022377822001180
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 20221201
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Journal of plasma physics
PublicationTitleAlternate J. Plasma Phys
PublicationYear 2022
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 2015; 57
2004; 11
2021; 5
1989; 117
2021; 3
2021; 23
2020; 2
2020; 86
1997; 55
2018; 237
1977; 25
1969; 5
2007; 177
1970; 42
2008; 227
1923; 21
2016; 204
2008; 50
2016; 18
2017; 114
2019; 122
1983; 55
1994; 21
2017; 349
Kirkpatrick (S0022377822001180_ref26) 2017; 114
Del Gaudio (S0022377822001180_ref16) 2020; 86
Sherlock (S0022377822001180_ref33) 2008; 227
Blumenthal (S0022377822001180_ref8) 1970; 42
Arrowsmith (S0022377822001180_ref4) 2021; 3
Decyk (S0022377822001180_ref15) 2007; 177
Fukushima (S0022377822001180_ref19) 1969; 5
S0022377822001180_ref27
Compton (S0022377822001180_ref12) 1923; 21
S0022377822001180_ref25
S0022377822001180_ref24
S0022377822001180_ref21
Dawson (S0022377822001180_ref14) 1983; 55
Grismayer (S0022377822001180_ref20) 2021; 23
S0022377822001180_ref9
Hockney (S0022377822001180_ref23) 1988
Chollet (S0022377822001180_ref10) 2017
Bacchini (S0022377822001180_ref5) 2018; 237
Miller (S0022377822001180_ref28) 1994; 21
Fonseca (S0022377822001180_ref17) 2008; 50
Bello (S0022377822001180_ref6) 2021; 5
Higginson (S0022377822001180_ref22) 2017; 349
Bird (S0022377822001180_ref7) 1989; 117
Arber (S0022377822001180_ref3) 2015; 57
S0022377822001180_ref38
S0022377822001180_ref37
S0022377822001180_ref18
S0022377822001180_ref1
S0022377822001180_ref34
Nanbu (S0022377822001180_ref29) 1997; 55
Chollet (S0022377822001180_ref11) 2018
S0022377822001180_ref36
S0022377822001180_ref2
S0022377822001180_ref13
S0022377822001180_ref35
S0022377822001180_ref30
S0022377822001180_ref32
S0022377822001180_ref31
References_xml – volume: 237
  start-page: 6
  issue: 1
  year: 2018
  article-title: Generalized, energy-conserving numerical simulations of particles in general relativity. I. Time-like and null geodesics
  publication-title: Astrophys. J. Suppl. Ser
– volume: 177
  start-page: 95
  issue: 1–2
  year: 2007
  end-page: 97
  article-title: Upic: a framework for massively parallel particle-in-cell codes
  publication-title: Comput. Phys. Commun
– volume: 117
  start-page: 211
  year: 1989
  end-page: 226
  article-title: Perception of numerical methods in rarefied gasdynamics
  publication-title: Prog. Astronaut. Aeronaut
– volume: 21
  start-page: 1735
  issue: 16
  year: 1994
  end-page: 1738
  article-title: A Coulomb collision algorithm for weighted particle simulations
  publication-title: Geophys. Res. Lett
– volume: 55
  start-page: 403
  issue: 2
  year: 1983
  article-title: Particle simulation of plasmas
  publication-title: Rev. Mod. Phys
– volume: 122
  start-page: 035101
  issue: 3
  year: 2019
  article-title: First-principles plasma simulations of black-hole jet launching
  publication-title: Phys. Rev. Lett
– volume: 5
  start-page: 1
  issue: 1
  year: 2021
  end-page: 12
  article-title: Efficiency parameterization with neural networks
  publication-title: Comput. Softw. Big Sci
– volume: 23
  start-page: 095005
  issue: 9
  year: 2021
  article-title: Quantum electrodynamics vacuum polarization solver
  publication-title: New J. Phys
– volume: 114
  start-page: 3521
  issue: 13
  year: 2017
  end-page: 3526
  article-title: Overcoming catastrophic forgetting in neural networks
  publication-title: Proc. Natl Acad. Sci
– volume: 204
  start-page: 141
  year: 2016
  end-page: 151
  article-title: Classical radiation reaction in particle-in-cell simulations
  publication-title: Comput. Phys. Commun
– volume: 50
  start-page: 124034
  issue: 12
  year: 2008
  article-title: One-to-one direct modeling of experiments and astrophysical scenarios: pushing the envelope on kinetic plasma simulations
  publication-title: Plasma Phys. Control. Fusion
– volume: 55
  start-page: 4642
  issue: 4
  year: 1997
  article-title: Theory of cumulative small-angle collisions in plasmas
  publication-title: Phys. Rev. E
– volume: 227
  start-page: 2286
  issue: 4
  year: 2008
  end-page: 2292
  article-title: A Monte-Carlo method for Coulomb collisions in hybrid plasma models
  publication-title: J. Comput. Phys
– volume: 5
  start-page: 322
  issue: 4
  year: 1969
  end-page: 333
  article-title: Visual feature extraction by a multilayered network of analog threshold elements
  publication-title: IEEE Trans. Syst. Sci. Cybern
– volume: 57
  start-page: 113001
  issue: 11
  year: 2015
  article-title: Contemporary particle-in-cell approach to laser-plasma modelling
  publication-title: Plasma Phys. Control. Fusion
– volume: 349
  start-page: 589
  year: 2017
  end-page: 603
  article-title: A full-angle Monte-Carlo scattering technique including cumulative and single-event Rutherford scattering in plasmas
  publication-title: J. Comput. Phys
– volume: 25
  start-page: 205
  issue: 3
  year: 1977
  end-page: 219
  article-title: A binary collision model for plasma simulation with a particle code
  publication-title: J. Comput. Phys
– volume: 18
  start-page: 073035
  issue: 7
  year: 2016
  article-title: Quantum radiation reaction in head-on laser-electron beam interaction
  publication-title: New J. Phys
– volume: 3
  start-page: 023103
  issue: 2
  year: 2021
  article-title: Generating ultradense pair beams using 400 GeV/c protons
  publication-title: Phys. Rev. Res
– volume: 2
  start-page: 023129
  issue: 2
  year: 2020
  article-title: Interplay between the Weibel instability and the Biermann battery in realistic laser-solid interactions
  publication-title: Phys. Rev. Res
– volume: 86
  issue: 5
  year: 2020
  article-title: Compton scattering in particle-in-cell codes
  publication-title: J. Plasma Phys
– volume: 11
  start-page: 5648
  issue: 12
  year: 2004
  end-page: 5657
  article-title: Modeling ultrafast laser-driven ionization dynamics with monte carlo collisional particle-in-cell simulations
  publication-title: Phys. Plasmas
– volume: 42
  start-page: 237
  issue: 2
  year: 1970
  article-title: Bremsstrahlung, synchrotron radiation, and compton scattering of high-energy electrons traversing dilute gases
  publication-title: Rev. Mod. Phys
– volume: 21
  start-page: 483
  issue: 5
  year: 1923
  article-title: A quantum theory of the scattering of x-rays by light elements
  publication-title: Phys. Rev
– volume: 21
  start-page: 1735
  year: 1994
  ident: S0022377822001180_ref28
  article-title: A Coulomb collision algorithm for weighted particle simulations
  publication-title: Geophys. Res. Lett
  doi: 10.1029/94GL01835
– ident: S0022377822001180_ref13
  doi: 10.1145/3323057.3323059
– volume: 227
  start-page: 2286
  year: 2008
  ident: S0022377822001180_ref33
  article-title: A Monte-Carlo method for Coulomb collisions in hybrid plasma models
  publication-title: J. Comput. Phys
  doi: 10.1016/j.jcp.2007.11.037
– ident: S0022377822001180_ref37
  doi: 10.1088/1367-2630/18/7/073035
– volume: 50
  start-page: 124034
  year: 2008
  ident: S0022377822001180_ref17
  article-title: One-to-one direct modeling of experiments and astrophysical scenarios: pushing the envelope on kinetic plasma simulations
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/50/12/124034
– volume: 349
  start-page: 589
  year: 2017
  ident: S0022377822001180_ref22
  article-title: A full-angle Monte-Carlo scattering technique including cumulative and single-event Rutherford scattering in plasmas
  publication-title: J. Comput. Phys
  doi: 10.1016/j.jcp.2017.08.016
– volume: 42
  start-page: 237
  year: 1970
  ident: S0022377822001180_ref8
  article-title: Bremsstrahlung, synchrotron radiation, and compton scattering of high-energy electrons traversing dilute gases
  publication-title: Rev. Mod. Phys
  doi: 10.1103/RevModPhys.42.237
– volume: 55
  start-page: 403
  year: 1983
  ident: S0022377822001180_ref14
  article-title: Particle simulation of plasmas
  publication-title: Rev. Mod. Phys
  doi: 10.1103/RevModPhys.55.403
– ident: S0022377822001180_ref24
  doi: 10.1063/1.1814367
– volume: 21
  start-page: 483
  year: 1923
  ident: S0022377822001180_ref12
  article-title: A quantum theory of the scattering of x-rays by light elements
  publication-title: Phys. Rev
  doi: 10.1103/PhysRev.21.483
– ident: S0022377822001180_ref31
  doi: 10.1103/PhysRevLett.122.035101
– volume: 114
  start-page: 3521
  year: 2017
  ident: S0022377822001180_ref26
  article-title: Overcoming catastrophic forgetting in neural networks
  publication-title: Proc. Natl Acad. Sci
  doi: 10.1073/pnas.1611835114
– ident: S0022377822001180_ref25
– ident: S0022377822001180_ref27
– ident: S0022377822001180_ref38
  doi: 10.1016/j.cpc.2016.04.002
– ident: S0022377822001180_ref36
  doi: 10.1007/978-3-030-01424-7_27
– ident: S0022377822001180_ref32
– volume: 3
  start-page: 023103
  year: 2021
  ident: S0022377822001180_ref4
  article-title: Generating ultradense pair beams using 400 GeV/c protons
  publication-title: Phys. Rev. Res
  doi: 10.1103/PhysRevResearch.3.023103
– volume: 237
  start-page: 6
  year: 2018
  ident: S0022377822001180_ref5
  article-title: Generalized, energy-conserving numerical simulations of particles in general relativity. I. Time-like and null geodesics
  publication-title: Astrophys. J. Suppl. Ser
  doi: 10.3847/1538-4365/aac9ca
– volume: 5
  start-page: 1
  year: 2021
  ident: S0022377822001180_ref6
  article-title: Efficiency parameterization with neural networks
  publication-title: Comput. Softw. Big Sci
  doi: 10.1007/s41781-021-00059-x
– volume: 117
  start-page: 211
  year: 1989
  ident: S0022377822001180_ref7
  article-title: Perception of numerical methods in rarefied gasdynamics
  publication-title: Prog. Astronaut. Aeronaut
– volume-title: Computer Simulation Using Particles
  year: 1988
  ident: S0022377822001180_ref23
  doi: 10.1887/0852743920
– volume: 5
  start-page: 322
  year: 1969
  ident: S0022377822001180_ref19
  article-title: Visual feature extraction by a multilayered network of analog threshold elements
  publication-title: IEEE Trans. Syst. Sci. Cybern
  doi: 10.1109/TSSC.1969.300225
– ident: S0022377822001180_ref2
  doi: 10.1109/Cluster48925.2021.00103
– ident: S0022377822001180_ref35
  doi: 10.1016/0021-9991(77)90099-7
– volume: 55
  start-page: 4642
  year: 1997
  ident: S0022377822001180_ref29
  article-title: Theory of cumulative small-angle collisions in plasmas
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.55.4642
– volume: 57
  start-page: 113001
  year: 2015
  ident: S0022377822001180_ref3
  article-title: Contemporary particle-in-cell approach to laser-plasma modelling
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/57/11/113001
– volume-title: Keras: The Python Deep Learning Library
  year: 2018
  ident: S0022377822001180_ref11
– ident: S0022377822001180_ref34
  doi: 10.1103/PhysRevResearch.2.023129
– ident: S0022377822001180_ref18
  doi: 10.1007/3-540-47789-6_36
– volume: 23
  start-page: 095005
  year: 2021
  ident: S0022377822001180_ref20
  article-title: Quantum electrodynamics vacuum polarization solver
  publication-title: New J. Phys
  doi: 10.1088/1367-2630/ac2004
– volume-title: Deep Learning with Python
  year: 2017
  ident: S0022377822001180_ref10
– ident: S0022377822001180_ref9
– volume: 177
  start-page: 95
  year: 2007
  ident: S0022377822001180_ref15
  article-title: Upic: a framework for massively parallel particle-in-cell codes
  publication-title: Comput. Phys. Commun
  doi: 10.1016/j.cpc.2007.02.092
– ident: S0022377822001180_ref21
  doi: 10.1007/3-540-59497-3_175
– volume: 86
  year: 2020
  ident: S0022377822001180_ref16
  article-title: Compton scattering in particle-in-cell codes
  publication-title: J. Plasma Phys
  doi: 10.1017/S002237782000118X
– ident: S0022377822001180_ref1
– ident: S0022377822001180_ref30
  doi: 10.1155/2020/8888811
SSID ssj0003027
Score 2.3634849
Snippet In this paper we propose a methodology for the efficient implementation of machine learning (ML)-based methods in particle-in-cell (PIC) codes, with a focus on...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Codes
Elastic scattering
Libraries
Machine learning
Machine Learning for Plasma Physics and Fusion Energy
Methods
Neural networks
Partial differential equations
Particle in cell technique
Physics
Plasma
Plasma physics
Simulation
Title Machine-learning-based models in particle-in-cell codes for advanced physics extensions
URI https://www.cambridge.org/core/product/identifier/S0022377822001180/type/journal_article
https://www.proquest.com/docview/2747677940
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1469-7807
  dateEnd: 20241103
  omitProxy: false
  ssIdentifier: ssj0003027
  issn: 0022-3778
  databaseCode: ADMLS
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1469-7807
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0003027
  issn: 0022-3778
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1469-7807
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0003027
  issn: 0022-3778
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB5qi-BFfGK1lhw8icHtPpLNQUSltQgWEYu9lU0ykYJsq1v_v5vsoxah12wCSzKZmUy-fB_ABZMmQOFr2pNc0lAlSIXgETWxZExz5QWJA8iO2HAcPk2iSQNG1VsYC6usfKJz1HqubI382p6eGM-tx7tdfFGrGmVvVysJjaSUVtA3jmJsC1q-ZcZqQuu-P3p5rX2zvaWr-cM5j6t7TkcinTfaNt8viNH-si2sR611p-0i0WAPdssUktwVa74PDUwPYNtBOVV2CO_PDh-JtBSE-KA2UmniNG8yMkvJojQXOkupLdwT-649I3n6SipIACkqHhlxRXJbUcuOYDzovz0MaSmfQFWeFCypkEoalFEUGNTCCM9XsclPpDxRPY1MhEILnjCBAYaRSlgSe5pxxRCRG0QRHEMznad4AiQK8n6xMSgkhswY4XuSB4rJOMnXWIVtuKqnalpugmxaAMj49N_MtsGrZnOqSipyq4jxuWnIZT1kUfBwbOrcqZZo9TcrAzrd_PkMdnxrHw6z0oHm8vsHz_PMYym7sBUPHrulUf0CzLnU4w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS8QwFA6iiF7EFcc1B72IwdolaQ4ibsO4zCCi6K02yYsIUkc7Iv45f5tJmo4OwtzmmjZQXr7m5S35PoS2qNAR8FCRfcEEiWUOhHOWEJ0KShWTQZS7BtkObd3FFw_Jwxj6ru_C2LbKek90G7V6lTZHvmejJ8oMeoLD7huxqlG2ulpLaOReWkEdOIoxf7HjEr4-TQhXHpyfmvXeDsPm2e1Ji3iVASKN7-wRLqTQIJIk0qC45kEoU20CN5bLfQWUx1xxllMOEcSJzGmeBooySQGAaQBLxmRcwEQcxdwEfxPHZ53rm74vsFXBPl85Y2ldV3Wk1WbQjoVhRcT2l91h0EsOOgnn-ZqzaMYfWfFRhbE5NAbFPJp0raOyXED3bdePCcQLUDwR6xkVdho7JX4ucNfDkzwXxBYKsL1HX2JzXMZ1CwKuMiwldkl5m8ErF9HdSAy5hMaL1wKWEU4i816qNXABMdWah4FgkaQizQ2mZNxAu31TZf6nK7OqYY1l_yzbQEFtzUx66nOrwPEybMpOf0q34v0Y9vJavUS_X_ML2JXhjzfRVOu2fZVdnXcuV9F0aLHi-mXW0Hjv_QPWzamnJzY8tDB6HDWafwDcdhPQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine-learning-based+models+in+particle-in-cell+codes+for+advanced+physics+extensions&rft.jtitle=Journal+of+plasma+physics&rft.au=Badiali%2C+Chiara&rft.au=Bilbao%2C+Pablo+J.&rft.au=Cruz%2C+F%C3%A1bio&rft.au=Silva%2C+Lu%C3%ADs+O.&rft.date=2022-12-01&rft.pub=Cambridge+University+Press&rft.issn=0022-3778&rft.eissn=1469-7807&rft.volume=88&rft.issue=6&rft_id=info:doi/10.1017%2FS0022377822001180&rft.externalDocID=10_1017_S0022377822001180
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3778&client=summon