Tight frames and related geometric problems

A tight frame is the orthogonal projection of some orthonormal basis of $\mathbb {R}^n$ onto $\mathbb {R}^k.$ We show that a set of vectors is a tight frame if and only if the set of all cross products of these vectors is a tight frame. We reformulate a range of problems on the volume of projections...

Full description

Saved in:
Bibliographic Details
Published inCanadian mathematical bulletin Vol. 64; no. 4; pp. 942 - 963
Main Author Ivanov, Grigory
Format Journal Article
LanguageEnglish
Published Canada Canadian Mathematical Society 01.12.2021
Cambridge University Press
Subjects
Online AccessGet full text
ISSN0008-4395
1496-4287
DOI10.4153/S000843952000096X

Cover

Abstract A tight frame is the orthogonal projection of some orthonormal basis of $\mathbb {R}^n$ onto $\mathbb {R}^k.$ We show that a set of vectors is a tight frame if and only if the set of all cross products of these vectors is a tight frame. We reformulate a range of problems on the volume of projections (or sections) of regular polytopes in terms of tight frames and write a first-order necessary condition for local extrema of these problems. As applications, we prove new results for the problem of maximization of the volume of zonotopes.
AbstractList A tight frame is the orthogonal projection of some orthonormal basis of $\mathbb {R}^n$ onto $\mathbb {R}^k.$ We show that a set of vectors is a tight frame if and only if the set of all cross products of these vectors is a tight frame. We reformulate a range of problems on the volume of projections (or sections) of regular polytopes in terms of tight frames and write a first-order necessary condition for local extrema of these problems. As applications, we prove new results for the problem of maximization of the volume of zonotopes.
A tight frame is the orthogonal projection of some orthonormal basis of $\mathbb {R}^n$ onto $\mathbb {R}^k.$ We show that a set of vectors is a tight frame if and only if the set of all cross products of these vectors is a tight frame. We reformulate a range of problems on the volume of projections (or sections) of regular polytopes in terms of tight frames and write a first-order necessary condition for local extrema of these problems. As applications, we prove new results for the problem of maximization of the volume of zonotopes.
Author Ivanov, Grigory
Author_xml – sequence: 1
  givenname: Grigory
  surname: Ivanov
  fullname: Ivanov, Grigory
  email: grimivanov@gmail.com
  organization: Institute of Science and Technology Austria (IST Austria), Am Campus 1, Klosterneuburg 3400, Austria
BookMark eNp9kM1LAzEQxYNUsK3-Ad4WPMrqZJNsdo9S_IKCByt4WybZSd2yHzVJD_73bqkgKHqagfd-8x4zY5N-6Imxcw5Xkitx_QwAhRSlysYFyvz1iE25LPNUZoWesOleTvf6CZuFsAHgWmk1ZZerZv0WE-exo5BgXyeeWoxUJ2saOoq-scnWD6alLpyyY4dtoLOvOWcvd7erxUO6fLp_XNwsUyu4jql2IBG5lU5mhKaw3DhNtURNSoncKVBiLCKgdlaBLKQuKTPGoNQ5ogMxZxeHu2Pw-45CrDbDzvdjZJXlUBaF5nk5uvTBZf0QgidX2SZibIY-emzaikO1_0z16zMjyX-QW9906D_-ZcQXg53xTb2m71J_U5_XpXVw
CitedBy_id crossref_primary_10_1007_s13398_024_01607_x
crossref_primary_10_1112_mtk_12191
Cites_doi 10.1112/blms/16.3.278
10.1007/978-1-4613-9425-9
10.1112/S0025579300001418
10.1007/978-3-0348-5858-8_13
10.4310/jdg/1102536713
10.1007/BFb0090058
10.1007/BF02187792
10.1090/S0002-9947-1990-0989573-6
10.1090/surv/223
10.4153/CJM-1974-032-5
10.1016/0022-1236(88)90068-7
10.1007/978-3-0348-8272-9_20
10.1007/BF02787224
10.1007/s00454-001-0066-3
10.1017/CBO9780511543173
10.1007/978-3-0348-0439-4_9
10.2140/pjm.1979.83.543
ContentType Journal Article
Copyright Canadian Mathematical Society 2020
Copyright_xml – notice: Canadian Mathematical Society 2020
DBID AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
8FQ
8FV
ABJCF
ABUWG
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.4153/S000843952000096X
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Canadian Business & Current Affairs Database
Canadian Business & Current Affairs Database (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
CBCA Complete (Alumni Edition)
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
CBCA Complete
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Engineering Collection
DatabaseTitleList
CrossRef
Engineering Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1496-4287
EndPage 963
ExternalDocumentID 10_4153_S000843952000096X
GroupedDBID --Z
-~X
09C
09E
5.9
69Q
6J9
8FQ
AABWE
AAEED
AAGFV
AANRG
AASVR
AAUKB
AAYEQ
AAYJJ
ABBZL
ABCQX
ABGDZ
ABJCF
ABMYL
ABUWG
ABXAU
ABZCX
ABZEH
ACGFO
ACIPV
ACKIV
ACNCT
ACQFJ
ACYZP
ACZWT
ADDNB
ADGEJ
ADKIL
ADOCW
ADOVH
ADVJH
AEBAK
AEBPU
AENCP
AETEA
AFKQG
AFKRA
AFLVW
AGABE
AGBYD
AGJUD
AGOOT
AHRGI
AI.
AIDBO
AIOIP
AJCYY
AJPFC
ALMA_UNASSIGNED_HOLDINGS
AQJOH
ARZZG
ATUCA
AYIQA
BBLKV
BCGOX
BENPR
BESQT
BGLVJ
BLZWO
CCPQU
CCQAD
CCUQV
CFBFF
CGQII
CHEAL
CJCSC
DOHLZ
DWQXO
EBS
EGQIC
EJD
FRP
HCIFZ
HF~
IH6
IOO
JHPGK
KCGVB
KFECR
L7B
LW7
M7S
MVM
NZEOI
OHT
OK1
P2P
PTHSS
RCA
RCD
ROL
S10
TR2
UPT
VH1
WFFJZ
WH7
XJT
ZCG
ZMEZD
0R~
AAXMD
AAYXX
ABVKB
ABVZP
ABXHF
ACDLN
ADIYS
AFZFC
AKMAY
AMVHM
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
3V.
7XB
8FE
8FG
8FK
L6V
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c317t-7f04aa1c4f42eab8c1bf7ed4a7e5536f505339530dfc5048479e2bbba476aaf03
IEDL.DBID BENPR
ISSN 0008-4395
IngestDate Fri Jul 25 10:54:58 EDT 2025
Wed Oct 01 04:07:43 EDT 2025
Thu Apr 24 23:12:12 EDT 2025
Wed Mar 13 05:54:42 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords volume
52A40
15A45
Tight frame
Grassmannian
52A38
zonotope
49Q20
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c317t-7f04aa1c4f42eab8c1bf7ed4a7e5536f505339530dfc5048479e2bbba476aaf03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2609887169
PQPubID 4573633
PageCount 22
ParticipantIDs proquest_journals_2609887169
crossref_citationtrail_10_4153_S000843952000096X
crossref_primary_10_4153_S000843952000096X
cambridge_journals_10_4153_S000843952000096X
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Canada
PublicationPlace_xml – name: Canada
– name: Montreal
PublicationTitle Canadian mathematical bulletin
PublicationTitleAlternate Can. Math. Bull
PublicationYear 2021
Publisher Canadian Mathematical Society
Cambridge University Press
Publisher_xml – name: Canadian Mathematical Society
– name: Cambridge University Press
References 2002; 27
1974; 26
1990; 317
2017; 63
1986; 21
1984; 16
1988; 27
2004; 68
1988; 64
1988; 80
1990; 5
1958; 5
1979; 83
S000843952000096X_r11
S000843952000096X_r12
S000843952000096X_r20
S000843952000096X_r15
S000843952000096X_r16
Chakerian (S000843952000096X_r4) 1986; 21
S000843952000096X_r13
S000843952000096X_r14
S000843952000096X_r19
S000843952000096X_r2
S000843952000096X_r17
S000843952000096X_r18
S000843952000096X_r3
S000843952000096X_r8
S000843952000096X_r9
S000843952000096X_r6
S000843952000096X_r7
Ivanov (S000843952000096X_r10) 2017; 63
S000843952000096X_r1
Filliman (S000843952000096X_r5) 1988; 27
References_xml – volume: 317
  start-page: 611
  issue: 2
  year: 1990
  end-page: 629
  article-title: The extreme projections of the regular simplex
  publication-title: Trans. Am. Math. Soc
– volume: 26
  start-page: 302
  issue: 2
  year: 1974
  end-page: 321
  article-title: Combinatorial properties of associated zonotopes
  publication-title: Canad. J. Math
– volume: 83
  start-page: 543
  issue: 2
  year: 1979
  end-page: 553
  article-title: A geometric inequality with applications to linear forms
  publication-title: Pac. J. Math
– volume: 16
  start-page: 278
  issue: 3
  year: 1984
  end-page: 280
  article-title: Volumes of projections of unit cubes
  publication-title: Bull. Lond. Math. Soc
– volume: 5
  start-page: 93
  issue: 2
  year: 1958
  end-page: 102
  article-title: Some extremal problems for convex bodies
  publication-title: Mathematika
– volume: 64
  start-page: 207
  issue: 2
  year: 1988
  end-page: 228
  article-title: The largest projections of regular polytopes
  publication-title: Isr. J. Math
– volume: 27
  start-page: 251
  issue: 3
  year: 1988
  end-page: 262
  article-title: Extremum problems for zonotopes
  publication-title: Geom. Dedi
– volume: 63
  start-page: 1
  issue: 2
  year: 2017
  end-page: 5
  article-title: On the volume of the John–Löwner ellipsoid
  publication-title: Discrete Comp. Geom
– volume: 5
  start-page: 305
  issue: 3
  year: 1990
  end-page: 322
  article-title: Exterior algebra and projections of polytopes
  publication-title: Discrete Comput. Geom
– volume: 21
  start-page: 103
  issue: 1–2
  year: 1986
  end-page: 110
  article-title: The measures of the projections of a cube
  publication-title: Studia Sci. Math. Hungar
– volume: 27
  start-page: 215
  issue: 2
  year: 2002
  end-page: 226
  article-title: Hyperplane projections of the unit ball of ℓp n
  publication-title: Discrete Comput. Geom
– volume: 80
  start-page: 109
  issue: 1
  year: 1988
  end-page: 123
  article-title: Sections of the unit ball of ℓp n
  publication-title: J. Funct. Anal
– volume: 68
  start-page: 159
  issue: 1
  year: 2004
  end-page: 184
  article-title: Volume inequalities for subspaces of Lp
  publication-title: J. Differ. Geom
– ident: S000843952000096X_r13
  doi: 10.1112/blms/16.3.278
– ident: S000843952000096X_r9
  doi: 10.1007/978-1-4613-9425-9
– ident: S000843952000096X_r15
  doi: 10.1112/S0025579300001418
– ident: S000843952000096X_r16
  doi: 10.1007/978-3-0348-5858-8_13
– ident: S000843952000096X_r12
  doi: 10.4310/jdg/1102536713
– volume: 21
  start-page: 103
  year: 1986
  ident: S000843952000096X_r4
  article-title: The measures of the projections of a cube
  publication-title: Studia Sci. Math. Hungar
– ident: S000843952000096X_r2
  doi: 10.1007/BFb0090058
– ident: S000843952000096X_r7
  doi: 10.1007/BF02187792
– ident: S000843952000096X_r8
  doi: 10.1090/S0002-9947-1990-0989573-6
– ident: S000843952000096X_r1
  doi: 10.1090/surv/223
– ident: S000843952000096X_r17
  doi: 10.4153/CJM-1974-032-5
– ident: S000843952000096X_r14
  doi: 10.1016/0022-1236(88)90068-7
– ident: S000843952000096X_r19
  doi: 10.1007/978-3-0348-8272-9_20
– volume: 27
  start-page: 251
  year: 1988
  ident: S000843952000096X_r5
  article-title: Extremum problems for zonotopes
  publication-title: Geom. Dedi
– ident: S000843952000096X_r6
  doi: 10.1007/BF02787224
– ident: S000843952000096X_r3
  doi: 10.1007/s00454-001-0066-3
– ident: S000843952000096X_r20
  doi: 10.1017/CBO9780511543173
– ident: S000843952000096X_r11
  doi: 10.1007/978-3-0348-0439-4_9
– ident: S000843952000096X_r18
  doi: 10.2140/pjm.1979.83.543
– volume: 63
  start-page: 1
  year: 2017
  ident: S000843952000096X_r10
  article-title: On the volume of the John–Löwner ellipsoid
  publication-title: Discrete Comp. Geom
SSID ssj0017575
Score 2.269977
Snippet A tight frame is the orthogonal projection of some orthonormal basis of $\mathbb {R}^n$ onto $\mathbb {R}^k.$ We show that a set of vectors is a tight frame if...
A tight frame is the orthogonal projection of some orthonormal basis of $\mathbb {R}^n$ onto $\mathbb {R}^k.$ We show that a set of vectors is a tight frame if...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 942
SubjectTerms Approximation
Polytopes
Title Tight frames and related geometric problems
URI https://www.cambridge.org/core/product/identifier/S000843952000096X/type/journal_article
https://www.proquest.com/docview/2609887169
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1496-4287
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0017575
  issn: 0008-4395
  databaseCode: BENPR
  dateStart: 20190301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB76uOhBfGK1lj14EoPbNNlsDiIqrUVoEbHQ25KnF91Wt_5_k33VIvS4uwksk9nMl52Z7wO45BgzTGWEJNEYEXeJRKQFIjbigmglJPP9zpNpNJ6R5zmdN2Ba9cL4sspqT8w3ar1Q_h_5jcPdPPbont8tv5BXjfLZ1UpCQ5TSCvo2pxhrQht7ZqwWtB-G05fXOq_AKCs0DcIYuVBMizynC2ID3zMcxv4eznFTNP_LtrAZtTY37TwSjfZhr4SQwX2x5gfQMOkh7E5q_tXsCNwSuDN3YH3lVRaIVAd5z4rRwbtZfHoRLRWUUjLZMcxGw7fHMSplEZBywX6FmA2JEH1FLMFGyFj1pWVGE8EMpYPIUt9ey-kg1FZR94ESxg2WUgrCIiFsODiBVrpIzSkEURwbj9lI3BfEcC5cBGfGjQ6lkg77deC6NkFSOneWuHODt1jyz2IdCCsrJaqkGPdKFx_bplzVU5YFv8a2wd3K9Ou3WTvG2fbH57CDfUFKXovShdbq-8dcOESxkj1oxqOnXuksvykWxJQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BOQAHxCqWAjnABWGROnYcHxBiVVlaIQRSb8FbuEALpAjxc3wb4zQpIKTeOCaxo2g88bzxLA9gS1IqKNcx0cxSwvCSqNgqwrJYKmaN0sLXO7facfOOXXR4Zww-q1oYn1ZZ7YnFRm17xp-R7yHulolH9_Lg-YV41igfXa0oNFRJrWD3ixZjZWHHpft4Rxcu3z8_wfXepvTs9Pa4SUqWAWLQdvaJyEKmVMOwjFGndGIaOhPOMiUc51GccV-tKnkU2sxw1HcmpKNaa8VErFQWRvjecZhgEZPo_E0cnbavb4ZxDMHFgEMhTAiafj6Iq6LRjHyNcpj4e7TAaXHnZ3eH31byt5EoLN_ZLMyUkDU4HOjYHIy57jxMt4b9XvMFwCVHHz_IfKZXHqiuDYoaGWeDB9d78qRdJiipa_JFuPsXAS1BrdvrumUI4iRxHiOypKGYk1IhYhAOR4faaMSaK7A7FEFa_kx5in6Kl1j6R2IrEFZSSk3Z0twzazyOmrIznPI86OcxanC9Ev3313wr4urox5sw2bxtXaVX5-3LNZiiPhmmyIOpQ63_-ubWEc309UapMgHc_7eWfgFB0QF9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB58gOhBfOL67EEvYrCbTZr2ICLq-hYPCnurSZp40V21K-Jf89c508eqCHvz2DYpZfI18yWZmQ9gM-FccWkiZkTGmcBLpqNMM-GjRIvMaqMo3_nqOjq9E-cd2RmBzzoXhsIq6zmxmKiznqU98l3k3UlM7D7Z9VVYxM1Re__5hZGCFJ201nIaJUQu3Mc7Lt_yvbMjHOstztvHt4enrFIYYBb9Zp8pHwqtm1Z4wZ02sW0ar1wmtHJStiIvKVM1ka0w81Yi1oVKHDfGaKEirX3YwveOwriiKu6Upd4-GZxgKKlK9YQwZuj0ZXmiiu6yRdnJYUz3eMHQos7Pug6__eNv91D4vPYMTFdkNTgo0TULI647B1NXg0qv-TzgYOPqPvAU45UHupsFRXaMy4IH13siuS4bVKI1-QLc_Yt5FmGs2-u6JQiiOHbEDkXc1MIliUauoBy2Do01yDIbsDMwQVr9RnmKKxSyWPrHYg0IayultipmTpoaj8O6bA-6PJeVPIY1Xq1N__013xBcHv54AyYQm-nl2fXFCkxyioIpAmBWYaz_-ubWkMb0zXqBlwDu_xugXx_J_wg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tight+frames+and+related+geometric+problems&rft.jtitle=Canadian+mathematical+bulletin&rft.au=Ivanov%2C+Grigory&rft.date=2021-12-01&rft.pub=Canadian+Mathematical+Society&rft.issn=0008-4395&rft.eissn=1496-4287&rft.volume=64&rft.issue=4&rft.spage=942&rft.epage=963&rft_id=info:doi/10.4153%2FS000843952000096X&rft.externalDocID=10_4153_S000843952000096X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-4395&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-4395&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-4395&client=summon