Image Segmentation Combining Pulse Coupled Neural Network and Adaptive Glowworm Algorithm
Image segmentation is one of the key steps of target recognition. In order to improve the accuracy of image segmentation, an image segmentation algorithm combining Pulse Coupled Neural Network(PCNN) and adaptive Glowworm Algorithm(GA) is proposed. The algorithm retains the advantages of the GA. Intr...
Saved in:
| Published in | Information technology and control Vol. 52; no. 2; pp. 487 - 499 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Kaunas University of Technology
15.07.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1392-124X 2335-884X 2335-884X |
| DOI | 10.5755/j01.itc.52.2.33415 |
Cover
| Abstract | Image segmentation is one of the key steps of target recognition. In order to improve the accuracy of image segmentation, an image segmentation algorithm combining Pulse Coupled Neural Network(PCNN) and adaptive Glowworm Algorithm(GA) is proposed. The algorithm retains the advantages of the GA. Introduce the adaptive moving step size and the population optimal value as adjustment factors. Enhance the ability to solve the global optimal value, and takes the weighted sum of the cross entropy, information entropy and compactness of the image as the fitness function of the GA. Maintain the diversity of image features and improving the accuracy of image segmentation. Experimental results show that compared with other algorithms, the segmented image obtained by this algorithm has better visual effect and the segmentation performance has the best comprehensive performance. For the seven gray-scale images in the Berkeley segmentation dataset, the segmentation effect is improved by 10.85% compared with TDE algorithm, 9.22% compared with GA algorithm, and 22.58% compared with AUTO algorithm. |
|---|---|
| AbstractList | Image segmentation is one of the key steps of target recognition. In order to improve the accuracy of image segmentation, an image segmentation algorithm combining Pulse Coupled Neural Network(PCNN) and adaptive Glowworm Algorithm(GA) is proposed. The algorithm retains the advantages of the GA. Introduce the adaptive moving step size and the population optimal value as adjustment factors. Enhance the ability to solve the global optimal value, and takes the weighted sum of the cross entropy, information entropy and compactness of the image as the fitness function of the GA. Maintain the diversity of image features and improving the accuracy of image segmentation. Experimental results show that compared with other algorithms, the segmented image obtained by this algorithm has better visual effect and the segmentation performance has the best comprehensive performance. For the seven gray-scale images in the Berkeley segmentation dataset, the segmentation effect is improved by 10.85% compared with TDE algorithm, 9.22% compared with GA algorithm, and 22.58% compared with AUTO algorithm. |
| Author | Ma, Yuqing Huang, Jipeng Wang, Lianming Zhu, Juan |
| Author_xml | – sequence: 1 givenname: Juan surname: Zhu fullname: Zhu, Juan organization: School of Mechatronic Engineering, Changchun University of Technology, Changchun 130022, China – sequence: 2 givenname: Yuqing surname: Ma fullname: Ma, Yuqing organization: School of Physics, Northeast Normal University, Changchun 130024, China – sequence: 3 givenname: Jipeng surname: Huang fullname: Huang, Jipeng organization: School of Physics, Northeast Normal University, Changchun, China – sequence: 4 givenname: Lianming surname: Wang fullname: Wang, Lianming organization: School of Marine Science and Technology, Hainan Tropical Ocean University, Hainan, 572022, China |
| BookMark | eNqNkE1LAzEQhoMoWLV_wNP6A3bNx2abHkvxC0QFFeopTDezNTWbLdmsxX9vtJ48iKdhhveZYZ4jsu87j4ScMlrIiZTna8oKG-tC8oIXQpRM7pERF0LmSpWLfTJiYspzxsvFIRn3_ZpSyiWVKTgiLzctrDB7xFWLPkK0nc_mXbu03vpV9jC4HlM_bBya7A6HAC6VuO3CWwbeZDMDm2jfMbty3TZN22zmVl2w8bU9IQcNJHz8U4_J8-XF0_w6v72_upnPbvNasEnMK1TCsEmDaDg1MK1KwVBVpmymvGFMIBcUUHFZldDAhClgZQ2VaYxSFS6X4piI3d7Bb-BjC87pTbAthA_NqP4SpJMgnQRpyTXX34ISpXZUHbq-D9jo2u7ejwGs-xvlv9B_3TvbQW9x0OtuCD450RCirR3-ZD4B73qMaw |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3326369 crossref_primary_10_1007_s11517_025_03342_w crossref_primary_10_32604_cmc_2025_059709 |
| ContentType | Journal Article |
| Copyright | Copyright (c) 2023 Information Technology and Control |
| Copyright_xml | – notice: Copyright (c) 2023 Information Technology and Control |
| DBID | AJMEP AAYXX CITATION ADTOC UNPAY |
| DOI | 10.5755/j01.itc.52.2.33415 |
| DatabaseName | Kaunas University of Technology Press Journals CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2335-884X |
| EndPage | 499 |
| ExternalDocumentID | 10.5755/j01.itc.52.2.33415 10_5755_j01_itc_52_2_33415 33415 |
| GroupedDBID | 5GY AAKPC AENEX AJMEP ALMA_UNASSIGNED_HOLDINGS GROUPED_DOAJ OK1 TR2 AAYXX CITATION ADTOC UNPAY |
| ID | FETCH-LOGICAL-c317t-6e83d17feed20da96431e86d4f92f113e230ae82564afa718a14ca6dfd886ebb3 |
| IEDL.DBID | UNPAY |
| ISSN | 1392-124X 2335-884X |
| IngestDate | Mon Sep 15 08:21:37 EDT 2025 Thu Apr 24 22:56:40 EDT 2025 Tue Jul 01 02:40:41 EDT 2025 Tue Jul 08 22:49:19 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| IssueTitle | Articles |
| Keywords | image segmentation pulse coupled neural network fitness function glowworm swarm optimization algorithm |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c317t-6e83d17feed20da96431e86d4f92f113e230ae82564afa718a14ca6dfd886ebb3 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://itc.ktu.lt/index.php/ITC/article/download/33415/15955 |
| PageCount | 13 |
| ParticipantIDs | unpaywall_primary_10_5755_j01_itc_52_2_33415 crossref_citationtrail_10_5755_j01_itc_52_2_33415 crossref_primary_10_5755_j01_itc_52_2_33415 ktu_journals_article_33415 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20230715 |
| PublicationDateYYYYMMDD | 2023-07-15 |
| PublicationDate_xml | – month: 07 year: 2023 text: 20230715 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Information technology and control |
| PublicationTitleAbbrev | ITC |
| PublicationYear | 2023 |
| Publisher | Kaunas University of Technology |
| Publisher_xml | – name: Kaunas University of Technology |
| SSID | ssj0002505341 |
| Score | 2.3058178 |
| Snippet | Image segmentation is one of the key steps of target recognition. In order to improve the accuracy of image segmentation, an image segmentation algorithm... |
| SourceID | unpaywall crossref ktu |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 487 |
| Title | Image Segmentation Combining Pulse Coupled Neural Network and Adaptive Glowworm Algorithm |
| URI | https://itc.ktu.lt/index.php/ITC/article/view/33415 https://itc.ktu.lt/index.php/ITC/article/download/33415/15955 |
| UnpaywallVersion | publishedVersion |
| Volume | 52 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2335-884X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002505341 issn: 2335-884X databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbKcmg5QJ8qT_nQG83Die11jivEq1JXSGWl5WQ5sc0rm11BIkR_fceOQbQHBD0mcZzEE8_3jeX5BqFvhdN4yxSJNKBHRIURMOdg4jEAo9QCwSWVy0b-OeZHE_pjyqZhb47PhWmr-Lrt4rpNvFyg04hIjk_3kjCQiXYa8nOlkxz8L0sAjRlbQsucARUfoOXJ-GR05oOswhXtoFNfXC5nkRB02ifNAEFhyVVKYvcslsVZ7Lv6C5iW4B1W0NuuWaj7O1XXTzDnYK0vrHrrpQrdVpPruGvLuPr9j5Djf3_Oe7Qa2Cge9c0-oDem-YhWnmgUfkJnxzNwOfiXOZ-FNKUGgxMpfWEJfNIBtMJxt6iNxk7pA7ob91vLsWo0Hmm1cB4VH9bzOzg7w6P6fH5z2V7MPqPJwf7p3lEU6jFEFbCMNuJG5JoMLcBqlmrllLyIEVxTW2SWkNxAOKMMhJycKqsA9BShleLaaiG4Kcv8Cxo088Z8RRhIi-HOoxgI15zGn7VDSykdFmkhUm7WEXkwhqyCWLmrmVFLCFqcASUYUMLoSpbJTPrBW0e7j_cseqmOZ1tvgGFkmLG3Mhjk4eL3R9O_oK-N1zXfRO9c0Xq3QkzYFhq0N53ZBmrTljt-SWAn_MZ_AKRn9bo |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELVgOQCHlq-qSynyoTfIhxPb6xxXCApIXSHBSsvJcmKbtmSzK0i0an99x4lBwAEVjkkcx_HE895EnjcIfcucxluiSKABPQIqjIA1BwuPARjFFgguKVw28o8RPx3T8wmb-L05bS5MXYS3dROWddTKBTqNiOjs6ijyExlppyE_UzpKwf-yCNCYsWW0whlQ8R5aGY8uhtdtkJW5oh100haXS1kgBJ10STNAUFj0OyahexZLwiRsu3oGTMswhnW02lRz9WehyvIJ5px87Aqr3rdShW6ryW3Y1HlY_H0h5Pju19lAHzwbxcOu2SZaMtUWWn-iUbiNrs-m4HLwpbmZ-jSlCoMTydvCEviiAWiF42ZeGo2d0gd0N-q2lmNVaTzUau48Kv5ezhZwdoqH5c3s7lf9c7qDxifHV0enga_HEBTAMuqAG5FqMrAAq0mslVPyIkZwTW2WWEJSA-GMMhBycqqsAtBThBaKa6uF4CbP00-oV80q8xlhIC2GO49iIFxzGn_WDiyldJDFmYi56SPyYAxZeLFyVzOjlBC0OANKMKCE2ZUskYlsJ6-PDh7vmXdSHa-23gXDSL9i76U3yMPFw0fT_0dfu29r_gWtuaL17g8xYXuoV9815itQmzrf9x_wP-d89MU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+Segmentation+Combining+Pulse+Coupled+Neural+Network+and+Adaptive+Glowworm+Algorithm&rft.jtitle=Information+technology+and+control&rft.au=Zhu%2C+Juan&rft.au=Ma%2C+Yuqing&rft.au=Huang%2C+Jipeng&rft.au=Wang%2C+Lianming&rft.date=2023-07-15&rft.issn=1392-124X&rft.eissn=2335-884X&rft.volume=52&rft.issue=2&rft.spage=487&rft.epage=499&rft_id=info:doi/10.5755%2Fj01.itc.52.2.33415&rft.externalDBID=n%2Fa&rft.externalDocID=10_5755_j01_itc_52_2_33415 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1392-124X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1392-124X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1392-124X&client=summon |