Image Segmentation Combining Pulse Coupled Neural Network and Adaptive Glowworm Algorithm

Image segmentation is one of the key steps of target recognition. In order to improve the accuracy of image segmentation, an image segmentation algorithm combining Pulse Coupled Neural Network(PCNN) and adaptive Glowworm Algorithm(GA) is proposed. The algorithm retains the advantages of the GA. Intr...

Full description

Saved in:
Bibliographic Details
Published inInformation technology and control Vol. 52; no. 2; pp. 487 - 499
Main Authors Zhu, Juan, Ma, Yuqing, Huang, Jipeng, Wang, Lianming
Format Journal Article
LanguageEnglish
Published Kaunas University of Technology 15.07.2023
Subjects
Online AccessGet full text
ISSN1392-124X
2335-884X
2335-884X
DOI10.5755/j01.itc.52.2.33415

Cover

Abstract Image segmentation is one of the key steps of target recognition. In order to improve the accuracy of image segmentation, an image segmentation algorithm combining Pulse Coupled Neural Network(PCNN) and adaptive Glowworm Algorithm(GA) is proposed. The algorithm retains the advantages of the GA. Introduce the adaptive moving step size and the population optimal value as adjustment factors. Enhance the ability to solve the global optimal value, and takes the weighted sum of the cross entropy, information entropy and compactness of the image as the fitness function of the GA. Maintain the diversity of image features and improving the accuracy of image segmentation. Experimental results show that compared with other algorithms, the segmented image obtained by this algorithm has better visual effect and the segmentation performance has the best comprehensive performance. For the seven gray-scale images in the Berkeley segmentation dataset, the segmentation effect is improved by 10.85% compared with TDE algorithm, 9.22% compared with GA algorithm, and 22.58% compared with AUTO algorithm.
AbstractList Image segmentation is one of the key steps of target recognition. In order to improve the accuracy of image segmentation, an image segmentation algorithm combining Pulse Coupled Neural Network(PCNN) and adaptive Glowworm Algorithm(GA) is proposed. The algorithm retains the advantages of the GA. Introduce the adaptive moving step size and the population optimal value as adjustment factors. Enhance the ability to solve the global optimal value, and takes the weighted sum of the cross entropy, information entropy and compactness of the image as the fitness function of the GA. Maintain the diversity of image features and improving the accuracy of image segmentation. Experimental results show that compared with other algorithms, the segmented image obtained by this algorithm has better visual effect and the segmentation performance has the best comprehensive performance. For the seven gray-scale images in the Berkeley segmentation dataset, the segmentation effect is improved by 10.85% compared with TDE algorithm, 9.22% compared with GA algorithm, and 22.58% compared with AUTO algorithm.
Author Ma, Yuqing
Huang, Jipeng
Wang, Lianming
Zhu, Juan
Author_xml – sequence: 1
  givenname: Juan
  surname: Zhu
  fullname: Zhu, Juan
  organization: School of Mechatronic Engineering, Changchun University of Technology, Changchun 130022, China
– sequence: 2
  givenname: Yuqing
  surname: Ma
  fullname: Ma, Yuqing
  organization: School of Physics, Northeast Normal University, Changchun 130024, China
– sequence: 3
  givenname: Jipeng
  surname: Huang
  fullname: Huang, Jipeng
  organization: School of Physics, Northeast Normal University, Changchun, China
– sequence: 4
  givenname: Lianming
  surname: Wang
  fullname: Wang, Lianming
  organization: School of Marine Science and Technology, Hainan Tropical Ocean University, Hainan, 572022, China
BookMark eNqNkE1LAzEQhoMoWLV_wNP6A3bNx2abHkvxC0QFFeopTDezNTWbLdmsxX9vtJ48iKdhhveZYZ4jsu87j4ScMlrIiZTna8oKG-tC8oIXQpRM7pERF0LmSpWLfTJiYspzxsvFIRn3_ZpSyiWVKTgiLzctrDB7xFWLPkK0nc_mXbu03vpV9jC4HlM_bBya7A6HAC6VuO3CWwbeZDMDm2jfMbty3TZN22zmVl2w8bU9IQcNJHz8U4_J8-XF0_w6v72_upnPbvNasEnMK1TCsEmDaDg1MK1KwVBVpmymvGFMIBcUUHFZldDAhClgZQ2VaYxSFS6X4piI3d7Bb-BjC87pTbAthA_NqP4SpJMgnQRpyTXX34ISpXZUHbq-D9jo2u7ejwGs-xvlv9B_3TvbQW9x0OtuCD450RCirR3-ZD4B73qMaw
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3326369
crossref_primary_10_1007_s11517_025_03342_w
crossref_primary_10_32604_cmc_2025_059709
ContentType Journal Article
Copyright Copyright (c) 2023 Information Technology and Control
Copyright_xml – notice: Copyright (c) 2023 Information Technology and Control
DBID AJMEP
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.5755/j01.itc.52.2.33415
DatabaseName Kaunas University of Technology Press Journals
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2335-884X
EndPage 499
ExternalDocumentID 10.5755/j01.itc.52.2.33415
10_5755_j01_itc_52_2_33415
33415
GroupedDBID 5GY
AAKPC
AENEX
AJMEP
ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
OK1
TR2
AAYXX
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c317t-6e83d17feed20da96431e86d4f92f113e230ae82564afa718a14ca6dfd886ebb3
IEDL.DBID UNPAY
ISSN 1392-124X
2335-884X
IngestDate Mon Sep 15 08:21:37 EDT 2025
Thu Apr 24 22:56:40 EDT 2025
Tue Jul 01 02:40:41 EDT 2025
Tue Jul 08 22:49:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
IssueTitle Articles
Keywords image segmentation
pulse coupled neural network
fitness function
glowworm swarm optimization algorithm
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c317t-6e83d17feed20da96431e86d4f92f113e230ae82564afa718a14ca6dfd886ebb3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://itc.ktu.lt/index.php/ITC/article/download/33415/15955
PageCount 13
ParticipantIDs unpaywall_primary_10_5755_j01_itc_52_2_33415
crossref_citationtrail_10_5755_j01_itc_52_2_33415
crossref_primary_10_5755_j01_itc_52_2_33415
ktu_journals_article_33415
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230715
PublicationDateYYYYMMDD 2023-07-15
PublicationDate_xml – month: 07
  year: 2023
  text: 20230715
  day: 15
PublicationDecade 2020
PublicationTitle Information technology and control
PublicationTitleAbbrev ITC
PublicationYear 2023
Publisher Kaunas University of Technology
Publisher_xml – name: Kaunas University of Technology
SSID ssj0002505341
Score 2.3058178
Snippet Image segmentation is one of the key steps of target recognition. In order to improve the accuracy of image segmentation, an image segmentation algorithm...
SourceID unpaywall
crossref
ktu
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 487
Title Image Segmentation Combining Pulse Coupled Neural Network and Adaptive Glowworm Algorithm
URI https://itc.ktu.lt/index.php/ITC/article/view/33415
https://itc.ktu.lt/index.php/ITC/article/download/33415/15955
UnpaywallVersion publishedVersion
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2335-884X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002505341
  issn: 2335-884X
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbKcmg5QJ8qT_nQG83Die11jivEq1JXSGWl5WQ5sc0rm11BIkR_fceOQbQHBD0mcZzEE8_3jeX5BqFvhdN4yxSJNKBHRIURMOdg4jEAo9QCwSWVy0b-OeZHE_pjyqZhb47PhWmr-Lrt4rpNvFyg04hIjk_3kjCQiXYa8nOlkxz8L0sAjRlbQsucARUfoOXJ-GR05oOswhXtoFNfXC5nkRB02ifNAEFhyVVKYvcslsVZ7Lv6C5iW4B1W0NuuWaj7O1XXTzDnYK0vrHrrpQrdVpPruGvLuPr9j5Djf3_Oe7Qa2Cge9c0-oDem-YhWnmgUfkJnxzNwOfiXOZ-FNKUGgxMpfWEJfNIBtMJxt6iNxk7pA7ob91vLsWo0Hmm1cB4VH9bzOzg7w6P6fH5z2V7MPqPJwf7p3lEU6jFEFbCMNuJG5JoMLcBqlmrllLyIEVxTW2SWkNxAOKMMhJycKqsA9BShleLaaiG4Kcv8Cxo088Z8RRhIi-HOoxgI15zGn7VDSykdFmkhUm7WEXkwhqyCWLmrmVFLCFqcASUYUMLoSpbJTPrBW0e7j_cseqmOZ1tvgGFkmLG3Mhjk4eL3R9O_oK-N1zXfRO9c0Xq3QkzYFhq0N53ZBmrTljt-SWAn_MZ_AKRn9bo
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELVgOQCHlq-qSynyoTfIhxPb6xxXCApIXSHBSsvJcmKbtmSzK0i0an99x4lBwAEVjkkcx_HE895EnjcIfcucxluiSKABPQIqjIA1BwuPARjFFgguKVw28o8RPx3T8wmb-L05bS5MXYS3dROWddTKBTqNiOjs6ijyExlppyE_UzpKwf-yCNCYsWW0whlQ8R5aGY8uhtdtkJW5oh100haXS1kgBJ10STNAUFj0OyahexZLwiRsu3oGTMswhnW02lRz9WehyvIJ5px87Aqr3rdShW6ryW3Y1HlY_H0h5Pju19lAHzwbxcOu2SZaMtUWWn-iUbiNrs-m4HLwpbmZ-jSlCoMTydvCEviiAWiF42ZeGo2d0gd0N-q2lmNVaTzUau48Kv5ezhZwdoqH5c3s7lf9c7qDxifHV0enga_HEBTAMuqAG5FqMrAAq0mslVPyIkZwTW2WWEJSA-GMMhBycqqsAtBThBaKa6uF4CbP00-oV80q8xlhIC2GO49iIFxzGn_WDiyldJDFmYi56SPyYAxZeLFyVzOjlBC0OANKMKCE2ZUskYlsJ6-PDh7vmXdSHa-23gXDSL9i76U3yMPFw0fT_0dfu29r_gWtuaL17g8xYXuoV9815itQmzrf9x_wP-d89MU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+Segmentation+Combining+Pulse+Coupled+Neural+Network+and+Adaptive+Glowworm+Algorithm&rft.jtitle=Information+technology+and+control&rft.au=Zhu%2C+Juan&rft.au=Ma%2C+Yuqing&rft.au=Huang%2C+Jipeng&rft.au=Wang%2C+Lianming&rft.date=2023-07-15&rft.issn=1392-124X&rft.eissn=2335-884X&rft.volume=52&rft.issue=2&rft.spage=487&rft.epage=499&rft_id=info:doi/10.5755%2Fj01.itc.52.2.33415&rft.externalDBID=n%2Fa&rft.externalDocID=10_5755_j01_itc_52_2_33415
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1392-124X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1392-124X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1392-124X&client=summon