Application of Local Outlier Factor Algorithm to Detect Anomalies in Computer Network

Gap between the new attack appearance and signature creation for this attack may be critical. During this time, many computer systems may be affected and valuable resources may be lost. Even after signature creation, many computer systems still stay vulnerable because of bad security practice, i.e....

Full description

Saved in:
Bibliographic Details
Published inElektronika ir elektrotechnika Vol. 24; no. 3; pp. 96 - 99
Main Authors Auskalnis, Juozas, Paulauskas, Nerijus, Baskys, Algirdas
Format Journal Article
LanguageEnglish
Published Kaunas University of Technology 18.06.2018
Subjects
Online AccessGet full text
ISSN1392-1215
2029-5731
2029-5731
DOI10.5755/j01.eie.24.3.20972

Cover

Abstract Gap between the new attack appearance and signature creation for this attack may be critical. During this time, many computer systems may be affected and valuable resources may be lost. Even after signature creation, many computer systems still stay vulnerable because of bad security practice, i.e. patches and updates are not installed as needed. Therefore, anomaly intrusion detection system (IDS) that is capable to detect new unknown attacks is valuable security tool. This paper analyses the use of Local Outlier Factor (LOF) to detect anomalies in the computer network. The application of the LOF algorithm for the detection of anomalies when only normal network data are used for the model training has been demonstrated. Experimental results of different threshold values influence on the anomaly detection accuracy using NSL-KDD dataset is presented. DOI: http://dx.doi.org/10.5755/j01.eie.24.3.20972
AbstractList Gap between the new attack appearance and signature creation for this attack may be critical. During this time, many computer systems may be affected and valuable resources may be lost. Even after signature creation, many computer systems still stay vulnerable because of bad security practice, i.e. patches and updates are not installed as needed. Therefore, anomaly intrusion detection system (IDS) that is capable to detect new unknown attacks is valuable security tool. This paper analyses the use of Local Outlier Factor (LOF) to detect anomalies in the computer network. The application of the LOF algorithm for the detection of anomalies when only normal network data are used for the model training has been demonstrated. Experimental results of different threshold values influence on the anomaly detection accuracy using NSL-KDD dataset is presented. DOI: http://dx.doi.org/10.5755/j01.eie.24.3.20972
Gap between the new attack appearance and signature creation for this attack may be critical. During this time, many computer systems may be affected and valuable resources may be lost. Even after signature creation, many computer systems still stay vulnerable because of bad security practice, i.e. patches and updates are not installed as needed. Therefore, anomaly intrusion detection system (IDS) that is capable to detect new unknown attacks is valuable security tool. This paper analyses the use of Local Outlier Factor (LOF) to detect anomalies in the computer network. The application of the LOF algorithm for the detection of anomalies when only normal network data are used for the model training has been demonstrated. Experimental results of different threshold values influence on the anomaly detection accuracy using NSL-KDD dataset is presented.DOI: http://dx.doi.org/10.5755/j01.eie.24.3.20972
Author Baskys, Algirdas
Auskalnis, Juozas
Paulauskas, Nerijus
Author_xml – sequence: 1
  givenname: Juozas
  surname: Auskalnis
  fullname: Auskalnis, Juozas
– sequence: 2
  givenname: Nerijus
  surname: Paulauskas
  fullname: Paulauskas, Nerijus
– sequence: 3
  givenname: Algirdas
  surname: Baskys
  fullname: Baskys, Algirdas
BookMark eNqNkLtOwzAYhS1UJErpCzCZB0jwNZcxKrQgVXShs-UYG9w6ceQ4qvr2hLYTA2I6y_n-_-i7BZPWtxqAe4xSnnP-uEM41VanhKU0JajMyRWYEkTKhOcUT8AU05IkmGB-A-Z9b2uEESGUYjYF26rrnFUyWt9Cb-DaK-ngZojO6gCXUkUfYOU-fbDxq4HRwycdtYqwan0jx1IPbQsXvumGOAJvOh582N-BayNdr-eXnIHt8vl98ZKsN6vXRbVOFMV5TLiUphj3FkzVpdFcKfZBJEMZooYXRjGaMV1LXGcKoYIjxrKSKJ4RpjLDZElngJ7vDm0njwfpnOiCbWQ4CozEjxwxyhGjHEGYoOIkZ6SKM6WC7_ugjVA2ngzEIK37GyW_0H_9ezhD-ziInR9COzoRMkSrnL50vgH96YmO
CitedBy_id crossref_primary_10_1088_1361_6501_accbda
crossref_primary_10_1016_j_cose_2024_104190
crossref_primary_10_1155_2022_1036293
crossref_primary_10_1016_j_knosys_2023_110558
crossref_primary_10_1016_j_watres_2024_121499
crossref_primary_10_1155_2022_9139321
crossref_primary_10_1016_j_eswa_2022_118904
crossref_primary_10_1038_s41598_023_42618_9
crossref_primary_10_2478_ijssis_2024_0016
crossref_primary_10_1016_j_jpdc_2024_104923
crossref_primary_10_1177_03611981231182429
ContentType Journal Article
Copyright The copyright for the paper in this journal is retained by the author(s) with the first publication right granted to the journal. The authors agree to the Creative Commons Attribution 4.0 (CC BY 4.0) agreement under which the paper in the Journal is licensed. By virtue of their appearance in this open access journal, papers are free to use with proper attribution in educational and other non-commercial settings with an acknowledgement of the initial publication in the journal.
Copyright_xml – notice: The copyright for the paper in this journal is retained by the author(s) with the first publication right granted to the journal. The authors agree to the Creative Commons Attribution 4.0 (CC BY 4.0) agreement under which the paper in the Journal is licensed. By virtue of their appearance in this open access journal, papers are free to use with proper attribution in educational and other non-commercial settings with an acknowledgement of the initial publication in the journal.
DBID AJMEP
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.5755/j01.eie.24.3.20972
DatabaseName Kaunas University of Technology Press Journals
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2029-5731
EndPage 99
ExternalDocumentID 10.5755/j01.eie.24.3.20972
10_5755_j01_eie_24_3_20972
20972
GroupedDBID .4S
.DC
5GY
ADMLS
AENEX
AJMEP
ALMA_UNASSIGNED_HOLDINGS
ARCSS
EBS
EDO
EJD
EN8
EOJEC
GROUPED_DOAJ
I-F
IAO
ITC
L8X
MK~
ML~
OBODZ
OK1
P2P
PV9
RZL
TUS
AAYXX
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c317t-5aaf809784cb9fe5cc4d2a40603f58fc4364eba1b6c0085044692c5624c6f4a93
IEDL.DBID UNPAY
ISSN 1392-1215
2029-5731
IngestDate Wed Oct 15 13:40:16 EDT 2025
Thu Oct 16 04:36:52 EDT 2025
Thu Apr 24 22:59:49 EDT 2025
Tue Jul 08 22:49:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
IssueTitle TELECOMMUNICATIONS ENGINEERING
Keywords Local outlier factor
Intrusion detection
Anomaly detection
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c317t-5aaf809784cb9fe5cc4d2a40603f58fc4364eba1b6c0085044692c5624c6f4a93
OpenAccessLink https://proxy.k.utb.cz/login?url=http://eejournal.ktu.lt/index.php/elt/article/download/20972/9447
PageCount 4
ParticipantIDs unpaywall_primary_10_5755_j01_eie_24_3_20972
crossref_citationtrail_10_5755_j01_eie_24_3_20972
crossref_primary_10_5755_j01_eie_24_3_20972
ktu_journals_article_20972
PublicationCentury 2000
PublicationDate 20180618
PublicationDateYYYYMMDD 2018-06-18
PublicationDate_xml – month: 06
  year: 2018
  text: 20180618
  day: 18
PublicationDecade 2010
PublicationTitle Elektronika ir elektrotechnika
PublicationTitleAbbrev EiE
PublicationYear 2018
Publisher Kaunas University of Technology
Publisher_xml – name: Kaunas University of Technology
SSID ssib010223314
ssib059977293
ssj0057036
Score 2.2643793
Snippet Gap between the new attack appearance and signature creation for this attack may be critical. During this time, many computer systems may be affected and...
SourceID unpaywall
crossref
ktu
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 96
Title Application of Local Outlier Factor Algorithm to Detect Anomalies in Computer Network
URI https://eejournal.ktu.lt/index.php/elt/article/view/20972
http://eejournal.ktu.lt/index.php/elt/article/download/20972/9447
UnpaywallVersion publishedVersion
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2029-5731
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057036
  issn: 1392-1215
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2029-5731
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057036
  issn: 1392-1215
  databaseCode: ADMLS
  dateStart: 20070301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELXa7QF64BvRQisfuEGSjePEyTGCripUFg6sBCfLdsZlaZpUW0cIfj3jJFu2QqpajlHGVjIv0ryJZ94Q8toIDBKWQ2ArUQXI_1mgjYJAgJ3mBWOxjX3v8Md5drzgH76mG9WEAKMLwzPXhbWLes1ALxQRAV6N3owqLyTfqgpT90KwqOBcbJOdLEU6PiE7i_nn8lufaBV-cEc_xYD5Mo9UJPHQOIMkJY1-TOMQlhAyHiZhv9O14LSNj7BL7nXNhfr1U9X1RtyZPSR63b0zlJuchZ3Tofn9r5jj_7_SI_JgZKW0HKweky1onpDdDa3Cp2RR_j3qpq2lJz4I0k-dQxK7orN-bA8t69N2tXTfz6lr6XvwBxS0bNpzJPtwSZcNXQ-RoPOh_PwZWcyOvrw7DsaZDIFBpuGCVCmb-94PbnRhITWGV0whK5gmNs2t4UnGQatYZ6ZXw8Nss2AGSRY3meWqSJ6TSdM28ILQKuf51MvtASt4niBYPNMVLtRKQCrEHonXYEgzCpb7uRm1xMTFAygRQIkASsZlInu_7ZE3V2suBrmOG633ERM54nMpRyzWN99eQX-LvfbvZv6S3Efqlfuiszh_RSZu1cEB0hunD_vfAofjZ_wHfvn5Ng
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB3R7QF6KN-iLVQ-cIMkG8eJk2NUWFVVu_TQleBk2Y4NS9Ok2jpC5dczTrJlERICjlHGVjLP0ryRZ94AvNYcg4RlJrAVrwLk_zRQWpqAGzvNC0pjG_ve4bN5drxgJx_TjWpCY0YXhpeuC2sX9ZqBXigiMvg0ejOqvJB8KytM3QtOo4IxvgXbWYp0fALbi_l5-alPtAo_uKOfYkB9mUfKk3honEGSkkZfp3FoliakLEzCfqdfgtMWfsIO3O-aa3n7Tdb1RtyZPQS17t4Zyk0uw86pUH__Xczx_3_pEeyOrJSUg9VjuGeaJ7CzoVX4FBblz6tu0lpy6oMg-dA5JLErMuvH9pCy_tyulu7LFXEteWf8BQUpm_YKyb65IcuGrIdIkPlQfv4MFrP3F0fHwTiTIdDINFyQSmlz3_vBtCqsSbVmFZXICqaJTXOrWZIxo2SsMt2r4WG2WVCNJIvpzDJZJM9h0rSNeQGkylk-9XJ7hhYsTxAslqkKFyrJTcr5HsRrMIQeBcv93IxaYOLiARQIoEAABWUiEb3f9uDN3ZrrQa7jj9b7iIkY8bkRIxbrl2_voP-Lvfb_zfwAHiD1yn3RWZy_hIlbdeYV0hunDscD_AOtJvhB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Local+Outlier+Factor+Algorithm+to+Detect+Anomalies+in+Computer+Network&rft.jtitle=Elektronika+ir+elektrotechnika&rft.au=Auskalnis%2C+Juozas&rft.au=Paulauskas%2C+Nerijus&rft.au=Baskys%2C+Algirdas&rft.date=2018-06-18&rft.pub=Kaunas+University+of+Technology&rft.issn=1392-1215&rft.eissn=2029-5731&rft.volume=24&rft.issue=3&rft.spage=96&rft.epage=99&rft_id=info:doi/10.5755%2Fj01.eie.24.3.20972&rft.externalDBID=https%3A%2F%2Feejournal.ktu.lt%2Findex.php%2Felt%2Farticle%2Fdownload%2F20972%2F9447&rft.externalDocID=20972
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1392-1215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1392-1215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1392-1215&client=summon