Intelligent approach of score-based artificial fish swarm algorithm (SAFSA) for Parkinson's disease diagnosis

PurposeConventional diagnostic techniques, on the other hand, may be prone to subjectivity since they depend on assessment of motions that are often subtle to individual eyes and hence hard to classify, potentially resulting in misdiagnosis. Meanwhile, early nonmotor signs of Parkinson’s disease (PD...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of intelligent computing and cybernetics Vol. 15; no. 4; pp. 540 - 561
Main Authors Abdul Gafoor, Syed Haroon, Theagarajan, Padma
Format Journal Article
LanguageEnglish
Published Bingley Emerald Publishing Limited 22.09.2022
Emerald Group Publishing Limited
Subjects
Online AccessGet full text
ISSN1756-378X
1756-3798
DOI10.1108/IJICC-10-2021-0226

Cover

Abstract PurposeConventional diagnostic techniques, on the other hand, may be prone to subjectivity since they depend on assessment of motions that are often subtle to individual eyes and hence hard to classify, potentially resulting in misdiagnosis. Meanwhile, early nonmotor signs of Parkinson’s disease (PD) can be mild and may be due to variety of other conditions. As a result, these signs are usually ignored, making early PD diagnosis difficult. Machine learning approaches for PD classification and healthy controls or individuals with similar medical symptoms have been introduced to solve these problems and to enhance the diagnostic and assessment processes of PD (like, movement disorders or other Parkinsonian syndromes).Design/methodology/approachMedical observations and evaluation of medical symptoms, including characterization of a wide range of motor indications, are commonly used to diagnose PD. The quantity of the data being processed has grown in the last five years; feature selection has become a prerequisite before any classification. This study introduces a feature selection method based on the score-based artificial fish swarm algorithm (SAFSA) to overcome this issue.FindingsThis study adds to the accuracy of PD identification by reducing the amount of chosen vocal features while to use the most recent and largest publicly accessible database. Feature subset selection in PD detection techniques starts by eliminating features that are not relevant or redundant. According to a few objective functions, features subset chosen should provide the best performance.Research limitations/implicationsIn many situations, this is an Nondeterministic Polynomial Time (NP-Hard) issue. This method enhances the PD detection rate by selecting the most essential features from the database. To begin, the data set's dimensionality is reduced using Singular Value Decomposition dimensionality technique. Next, Biogeography-Based Optimization (BBO) for feature selection; the weight value is a vital parameter for finding the best features in PD classification.Originality/valuePD classification is done by using ensemble learning classification approaches such as hybrid classifier of fuzzy K-nearest neighbor, kernel support vector machines, fuzzy convolutional neural network and random forest. The suggested classifiers are trained using data from UCI ML repository, and their results are verified using leave-one-person-out cross validation. The measures employed to assess the classifier efficiency include accuracy, F-measure, Matthews correlation coefficient.
AbstractList Purpose>Conventional diagnostic techniques, on the other hand, may be prone to subjectivity since they depend on assessment of motions that are often subtle to individual eyes and hence hard to classify, potentially resulting in misdiagnosis. Meanwhile, early nonmotor signs of Parkinson’s disease (PD) can be mild and may be due to variety of other conditions. As a result, these signs are usually ignored, making early PD diagnosis difficult. Machine learning approaches for PD classification and healthy controls or individuals with similar medical symptoms have been introduced to solve these problems and to enhance the diagnostic and assessment processes of PD (like, movement disorders or other Parkinsonian syndromes).Design/methodology/approach>Medical observations and evaluation of medical symptoms, including characterization of a wide range of motor indications, are commonly used to diagnose PD. The quantity of the data being processed has grown in the last five years; feature selection has become a prerequisite before any classification. This study introduces a feature selection method based on the score-based artificial fish swarm algorithm (SAFSA) to overcome this issue.Findings>This study adds to the accuracy of PD identification by reducing the amount of chosen vocal features while to use the most recent and largest publicly accessible database. Feature subset selection in PD detection techniques starts by eliminating features that are not relevant or redundant. According to a few objective functions, features subset chosen should provide the best performance.Research limitations/implications>In many situations, this is an Nondeterministic Polynomial Time (NP-Hard) issue. This method enhances the PD detection rate by selecting the most essential features from the database. To begin, the data set's dimensionality is reduced using Singular Value Decomposition dimensionality technique. Next, Biogeography-Based Optimization (BBO) for feature selection; the weight value is a vital parameter for finding the best features in PD classification.Originality/value>PD classification is done by using ensemble learning classification approaches such as hybrid classifier of fuzzy K-nearest neighbor, kernel support vector machines, fuzzy convolutional neural network and random forest. The suggested classifiers are trained using data from UCI ML repository, and their results are verified using leave-one-person-out cross validation. The measures employed to assess the classifier efficiency include accuracy, F-measure, Matthews correlation coefficient.
PurposeConventional diagnostic techniques, on the other hand, may be prone to subjectivity since they depend on assessment of motions that are often subtle to individual eyes and hence hard to classify, potentially resulting in misdiagnosis. Meanwhile, early nonmotor signs of Parkinson’s disease (PD) can be mild and may be due to variety of other conditions. As a result, these signs are usually ignored, making early PD diagnosis difficult. Machine learning approaches for PD classification and healthy controls or individuals with similar medical symptoms have been introduced to solve these problems and to enhance the diagnostic and assessment processes of PD (like, movement disorders or other Parkinsonian syndromes).Design/methodology/approachMedical observations and evaluation of medical symptoms, including characterization of a wide range of motor indications, are commonly used to diagnose PD. The quantity of the data being processed has grown in the last five years; feature selection has become a prerequisite before any classification. This study introduces a feature selection method based on the score-based artificial fish swarm algorithm (SAFSA) to overcome this issue.FindingsThis study adds to the accuracy of PD identification by reducing the amount of chosen vocal features while to use the most recent and largest publicly accessible database. Feature subset selection in PD detection techniques starts by eliminating features that are not relevant or redundant. According to a few objective functions, features subset chosen should provide the best performance.Research limitations/implicationsIn many situations, this is an Nondeterministic Polynomial Time (NP-Hard) issue. This method enhances the PD detection rate by selecting the most essential features from the database. To begin, the data set's dimensionality is reduced using Singular Value Decomposition dimensionality technique. Next, Biogeography-Based Optimization (BBO) for feature selection; the weight value is a vital parameter for finding the best features in PD classification.Originality/valuePD classification is done by using ensemble learning classification approaches such as hybrid classifier of fuzzy K-nearest neighbor, kernel support vector machines, fuzzy convolutional neural network and random forest. The suggested classifiers are trained using data from UCI ML repository, and their results are verified using leave-one-person-out cross validation. The measures employed to assess the classifier efficiency include accuracy, F-measure, Matthews correlation coefficient.
Author Abdul Gafoor, Syed Haroon
Theagarajan, Padma
Author_xml – sequence: 1
  givenname: Syed Haroon
  orcidid: 0000-0003-0207-9990
  surname: Abdul Gafoor
  fullname: Abdul Gafoor, Syed Haroon
  email: syedharoon.abdul@gmail.com
– sequence: 2
  givenname: Padma
  orcidid: 0000-0001-8213-5985
  surname: Theagarajan
  fullname: Theagarajan, Padma
  email: padmatheagarajan@gmail.com
BookMark eNp9UU1LAzEQDaJgW_0DngIe1MNqPrrZ3WMpVisFhSp4W2bTpE3dTWqSIv57d60Iinh6M_A-mDd9tG-dVQidUHJJKcmvpnfT8TihJGGE0YQwJvZQj2apSHhW5Pvfc_58iPohrAkReZrzHmqmNqq6NktlI4bNxjuQK-w0DtJ5lVQQ1AKDj0YbaaDG2oQVDm_gGwz10nkTVw0-n48m89EF1s7jB_AvxgZnzwJemKBagxZhaV0w4QgdaKiDOv7CAXqaXD-Ob5PZ_c10PJolktMsJlynnFBaCcI0GbK8IKLglMCwAFGQrFCQclkBFZWuJBVyIXSasSpXbAigmOIDdLrzbe953aoQy7XbettGliyjacE4KWjLYjuW9C4Er3S58aYB_15SUna1lp-1dltXa9nV2oryXyJpIkTjbPRg6v-ldCdVjfJQL_6O-_FF_gF5KY2B
CitedBy_id crossref_primary_10_1016_j_sasc_2024_200160
crossref_primary_10_1016_j_bspc_2023_105467
crossref_primary_10_1007_s42235_023_00478_z
crossref_primary_10_2196_46105
Cites_doi 10.1371/journal.pone.0185613
10.1371/journal.pone.0182428
10.1142/S0218213018500112
10.1016/j.eswa.2012.07.014
10.1111/jnc.13691
10.1109/5.237532
10.1007/s00521-015-2142-2
10.1016/j.patrec.2020.05.035
10.1016/j.parkreldis.2006.05.033
10.1016/j.bspc.2013.02.006
10.1016/S0004-3702(97)00043-X
10.1002/mds.27670
10.1109/JBHI.2013.2245674
10.1155/2017/6209703
10.1016/j.eswa.2018.06.003
10.1155/2014/985789
10.1007/s10916-016-0477-6
10.1080/00207721.2012.724114
10.1016/j.asoc.2018.10.022
10.1016/j.eswa.2019.113075
10.1016/j.compbiomed.2018.09.008
10.1007/s00441-004-0956-9
10.3233/NRE-130887
10.1109/TSP.2011.2143711
10.32604/cmc.2021.016489
ContentType Journal Article
Copyright Emerald Publishing Limited
Emerald Publishing Limited.
Copyright_xml – notice: Emerald Publishing Limited
– notice: Emerald Publishing Limited.
DBID AAYXX
CITATION
0U~
1-H
7SC
7WY
7WZ
7XB
8FD
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
F~G
GNUQQ
HCIFZ
JQ2
K6~
K7-
L.-
L.0
L7M
L~C
L~D
M0C
M0N
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQEST
PQGLB
PQQKQ
PQUKI
PYYUZ
Q9U
DOI 10.1108/IJICC-10-2021-0226
DatabaseName CrossRef
Global News & ABI/Inform Professional
Trade PRO
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
Trade PRO
ABI/INFORM Complete
ProQuest Central
Global News & ABI/Inform Professional
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ABI/INFORM Professional Standard
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1756-3798
EndPage 561
ExternalDocumentID 10_1108_IJICC_10_2021_0226
10.1108/IJICC-10-2021-0226
GroupedDBID 0R~
29J
4.4
5GY
5VS
70U
7WY
AADTA
AADXL
AAGBP
AAMCF
AAPBV
AATHL
AAUDR
ABIJV
ABKQV
ABSDC
ACGFS
ACGOD
ADOMW
AEBVX
AEBZA
AEUCW
AFYHH
AFZLO
AJEBP
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASMFL
AUCOK
BENPR
BPQFQ
CS3
EBS
ECCUG
FNNZZ
GEI
GEL
GQ.
H13
HCIFZ
HZ~
J9A
JI-
JL0
KBGRL
O9-
RIG
V1G
8FE
8FG
8R4
8R5
AAYXX
ABJNI
ABYQI
ACZLT
AFKRA
AHMHQ
AODMV
AZQEC
BEZIV
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
K6V
K6~
K7-
M0C
M2P
M42
P62
PHGZM
PHGZT
PQBIZ
PQGLB
PQQKQ
PROAC
PUEGO
Q2X
SBBZN
0U~
1-H
7SC
7XB
8FD
AFNTC
JQ2
L.-
L.0
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c317t-3f53011b602f04289069310a49a69079ea53cba16bfbc16cd6f572b8e24aae2e3
IEDL.DBID GEI
ISSN 1756-378X
IngestDate Fri Jul 25 22:56:26 EDT 2025
Wed Oct 01 05:40:56 EDT 2025
Thu Apr 24 22:59:22 EDT 2025
Thu Feb 16 12:19:43 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Feature subset selection
Parkinson disease dysphonia features
Score-based artificial fish swarm algorithm (SAFSA)
Singular value decomposition (SVD)
Classification
Language English
License Licensed re-use rights only
https://www.emerald.com/insight/site-policies
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c317t-3f53011b602f04289069310a49a69079ea53cba16bfbc16cd6f572b8e24aae2e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0207-9990
0000-0001-8213-5985
PQID 2715923091
PQPubID 52453
PageCount 22
ParticipantIDs crossref_primary_10_1108_IJICC_10_2021_0226
proquest_journals_2715923091
crossref_citationtrail_10_1108_IJICC_10_2021_0226
emerald_primary_10_1108_IJICC-10-2021-0226
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-22
PublicationDateYYYYMMDD 2022-09-22
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-22
  day: 22
PublicationDecade 2020
PublicationPlace Bingley
PublicationPlace_xml – name: Bingley
PublicationTitle International journal of intelligent computing and cybernetics
PublicationYear 2022
Publisher Emerald Publishing Limited
Emerald Group Publishing Limited
Publisher_xml – name: Emerald Publishing Limited
– name: Emerald Group Publishing Limited
References (key2022092105490417800_ref028) 2011; 59
(key2022092105490417800_ref037) 2017; 2017
(key2022092105490417800_ref030) 2014; 4
(key2022092105490417800_ref004) 2018; 102
(key2022092105490417800_ref032) 2006
(key2022092105490417800_ref034) 2018; 27
(key2022092105490417800_ref035) 2017; 12
(key2022092105490417800_ref003) 2000; 54
(key2022092105490417800_ref031) 2011
(key2022092105490417800_ref010) 2017; 28
(key2022092105490417800_ref015) 2019
(key2022092105490417800_ref025) 2019
(key2022092105490417800_ref036) 2020; 136
(key2022092105490417800_ref001) 2016
(key2022092105490417800_ref023) 1993; 81
(key2022092105490417800_ref013) 2011; 2
(key2022092105490417800_ref014) 1997; 97
(key2022092105490417800_ref029) 2007; 13
(key2022092105490417800_ref019) 2010
(key2022092105490417800_ref020) 2018; 110
(key2022092105490417800_ref002) 2013; 32
(key2022092105490417800_ref022) 2015
(key2022092105490417800_ref038) 2013; 8
(key2022092105490417800_ref018) 2021; 68
key2022092105490417800_ref012
(key2022092105490417800_ref024) 2019; 34
(key2022092105490417800_ref033) 2016; 139
key2022092105490417800_ref011
(key2022092105490417800_ref009) 2017; 12
(key2022092105490417800_ref021) 2016; 40
(key2022092105490417800_ref016) 2014; 2014
(key2022092105490417800_ref017) 2014; 45
(key2022092105490417800_ref026) 2013; 17
(key2022092105490417800_ref005) 2004; 318
(key2022092105490417800_ref006) 2013; 40
(key2022092105490417800_ref007) 2000; 54
(key2022092105490417800_ref027) 2019; 74
(key2022092105490417800_ref008) 2020; 143
References_xml – volume: 12
  start-page: e0185613
  issue: 10
  year: 2017
  ident: key2022092105490417800_ref035
  article-title: Detecting Parkinson's disease from sustained phonation and speech signals
  publication-title: PloS One
  doi: 10.1371/journal.pone.0185613
– ident: key2022092105490417800_ref011
– volume: 12
  start-page: e0182428
  issue: 8
  year: 2017
  ident: key2022092105490417800_ref009
  article-title: Analyzing the effectiveness of vocal features in early telediagnosis of Parkinson's disease
  publication-title: PloS One
  doi: 10.1371/journal.pone.0182428
– volume: 27
  start-page: 1850011
  issue: 03
  year: 2018
  ident: key2022092105490417800_ref034
  article-title: Machine learning for neurodegenerative disorder diagnosis—survey of practices and launch of benchmark dataset
  publication-title: International Journal on Artificial Intelligence Tools
  doi: 10.1142/S0218213018500112
– start-page: 278
  year: 2011
  ident: key2022092105490417800_ref031
  article-title: Voice analysis for detecting Parkinson's disease using genetic algorithm and KNN classification method
– volume: 40
  start-page: 263
  issue: 1
  year: 2013
  ident: key2022092105490417800_ref006
  article-title: An efficient diagnosis system for detection of Parkinson's disease using fuzzy k-nearest neighbor approach
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.07.014
– start-page: 1
  year: 2019
  ident: key2022092105490417800_ref015
  article-title: Predicting Parkinson's disease using latent information extracted from deep neural networks
– volume: 139
  start-page: 318
  year: 2016
  ident: key2022092105490417800_ref033
  article-title: The clinical symptoms of Parkinson's disease
  publication-title: Journal of Neurochemistry
  doi: 10.1111/jnc.13691
– volume: 81
  start-page: 1215
  issue: 9
  year: 1993
  ident: key2022092105490417800_ref023
  article-title: Signal modeling techniques in speech recognition
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.237532
– volume: 54
  start-page: S24
  issue: 11 (Suppl 5)
  year: 2000
  ident: key2022092105490417800_ref003
  article-title: Prognosis with Parkinson's disease in europe: a collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group
  publication-title: Neurology
– volume: 28
  start-page: 1657
  issue: 7
  year: 2017
  ident: key2022092105490417800_ref010
  article-title: A novel diagnosis system for Parkinson's disease using complex-valued artificial neural network with k-means clustering feature weighting method
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-015-2142-2
– volume: 136
  start-page: 190
  year: 2020
  ident: key2022092105490417800_ref036
  article-title: Imbalance-XGBoost: leveraging weighted and focal losses for binary label-imbalanced classification with XGBoost
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2020.05.035
– volume: 2
  start-page: 12
  issue: 3
  year: 2011
  ident: key2022092105490417800_ref013
  article-title: Diagnosis of Parkinson's disease in human using voice signals
  publication-title: Basic and Clinical Neuroscience
– volume: 13
  start-page: 67
  issue: 2
  year: 2007
  ident: key2022092105490417800_ref029
  article-title: Exploring the relationship between essential tremor and Parkinson's disease
  publication-title: Parkinsonism and Related Disorders
  doi: 10.1016/j.parkreldis.2006.05.033
– volume: 8
  start-page: 364
  issue: 4
  year: 2013
  ident: key2022092105490417800_ref038
  article-title: Effective detection of Parkinson's disease using an adaptive fuzzy k-nearest neighbor approach
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2013.02.006
– volume: 97
  start-page: 273
  issue: 1-2
  year: 1997
  ident: key2022092105490417800_ref014
  article-title: Wrappers for feature subset selection
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(97)00043-X
– volume: 34
  start-page: 665
  issue: 5
  year: 2019
  ident: key2022092105490417800_ref024
  article-title: Prodromal Parkinson's disease: the decade past, the decade to come
  publication-title: Movement Disorders
  doi: 10.1002/mds.27670
– start-page: 286
  volume-title: ISMIR
  year: 2006
  ident: key2022092105490417800_ref032
  article-title: Mel frequency cepstral coefficients: an evaluation of robustness of MP3 encoded music
– start-page: 1
  volume-title: International Journal of Academic Health and Medical Research (IJAHMR)
  year: 2019
  ident: key2022092105490417800_ref025
  article-title: Parkinson’s disease prediction using artificial neural network
– volume: 17
  start-page: 828
  issue: 4
  year: 2013
  ident: key2022092105490417800_ref026
  article-title: Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2013.2245674
– volume: 2017
  start-page: 1
  year: 2017
  ident: key2022092105490417800_ref037
  article-title: Can a smartphone diagnose Parkinson disease? A deep neural network method and telediagnosis system implementation
  publication-title: Parkinson's Disease
  doi: 10.1155/2017/6209703
– start-page: 138
  volume-title: Journal of Computing, arXiv preprint arXiv:1003.4083
  year: 2010
  ident: key2022092105490417800_ref019
  article-title: Voice recognition algorithms using mel frequency cepstral coefficient (MFCC) and dynamic time warping (DTW) techniques
– volume: 110
  start-page: 182
  year: 2018
  ident: key2022092105490417800_ref020
  article-title: Feature-driven machine learning to improve early diagnosis of Parkinson's disease
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.06.003
– start-page: 171
  year: 2015
  ident: key2022092105490417800_ref022
  article-title: A step towards the automated diagnosis of Parkinson's disease: analyzing handwriting movements
– volume: 2014
  start-page: 1
  year: 2014
  ident: key2022092105490417800_ref016
  article-title: An efficient diagnosis system for Parkinson's disease using kernel-based extreme learning machine with subtractive clustering features weighting approach
  publication-title: Computational and Mathematical Methods in Medicine
  doi: 10.1155/2014/985789
– volume: 40
  start-page: 116
  issue: 5
  year: 2016
  ident: key2022092105490417800_ref021
  article-title: A decision support system to improve medical diagnosis using a combination of k-medoids clustering based attribute weighting and SVM
  publication-title: Journal of Medical Systems
  doi: 10.1007/s10916-016-0477-6
– volume: 45
  start-page: 647
  issue: 3
  year: 2014
  ident: key2022092105490417800_ref017
  article-title: New machine-learning algorithms for prediction of Parkinson's disease
  publication-title: International Journal of Systems Science
  doi: 10.1080/00207721.2012.724114
– volume: 74
  start-page: 255
  year: 2019
  ident: key2022092105490417800_ref027
  article-title: A comparative analysis of speech signal processing algorithms for Parkinson's disease classification and the use of the tunable Q-factor wavelet transform
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.10.022
– volume: 143
  start-page: 113075
  year: 2020
  ident: key2022092105490417800_ref008
  article-title: Deep 1D-Convnet for accurate Parkinson disease detection and severity prediction from gait
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.113075
– ident: key2022092105490417800_ref012
– volume: 102
  start-page: 234
  year: 2018
  ident: key2022092105490417800_ref004
  article-title: Parkinson's disease: cause factors, measurable indicators, and early diagnosis
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2018.09.008
– volume: 4
  start-page: 2278
  issue: 3
  year: 2014
  ident: key2022092105490417800_ref030
  article-title: Automatic recognition of Parkinson's Disease via artificial neural network and support vector machine
  publication-title: International Journal of Innovative Technology and Exploring Engineering (IJITEE)
– volume: 54
  start-page: S21
  issue: 11 (Suppl 5)
  year: 2000
  ident: key2022092105490417800_ref007
  article-title: Prevalence of Parkinson's disease in Europe: a collaborative study of population-based cohorts. Neurologic diseases in the elderly research group
  publication-title: Neurology
– volume: 318
  start-page: 121
  issue: 1
  year: 2004
  ident: key2022092105490417800_ref005
  article-title: Stages in the development of Parkinson's disease-related pathology
  publication-title: Cell and Tissue Research
  doi: 10.1007/s00441-004-0956-9
– start-page: 1324
  year: 2016
  ident: key2022092105490417800_ref001
  article-title: Efficient diagnosis system for Parkinson's disease using deep belief network
– volume: 32
  start-page: 649
  issue: 3
  year: 2013
  ident: key2022092105490417800_ref002
  article-title: Acoustic characteristics of vowel sounds in patients with Parkinson disease
  publication-title: NeuroRehabilitation
  doi: 10.3233/NRE-130887
– volume: 59
  start-page: 3560
  issue: 8
  year: 2011
  ident: key2022092105490417800_ref028
  article-title: Wavelet transform with tunable Q-factor
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2011.2143711
– volume: 68
  start-page: 3101
  issue: 3
  year: 2021
  ident: key2022092105490417800_ref018
  article-title: Prediction of Parkinson's disease using improved radial basis function neural network
  publication-title: CMC-Computers Materials and Continua
  doi: 10.32604/cmc.2021.016489
SSID ssj0068583
ssib035523659
Score 2.2659976
Snippet PurposeConventional diagnostic techniques, on the other hand, may be prone to subjectivity since they depend on assessment of motions that are often subtle to...
Purpose>Conventional diagnostic techniques, on the other hand, may be prone to subjectivity since they depend on assessment of motions that are often subtle to...
SourceID proquest
crossref
emerald
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 540
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Classification
Classifiers
Correlation coefficients
Diagnosis
Diagnostic systems
Feature selection
Fuzzy logic
Identification
Kernel functions
Machine learning
Mathematical analysis
Methods
Neural networks
Optimization
Parkinson's disease
Polynomials
Signal processing
Signs and symptoms
Singular value decomposition
Support vector machines
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED-x8sLLNjamdTDkh0kMUETiJG7yMKFSUVEkKkRB6ltkOw5U6geQIP793bk2FQjxkiiy83LfZ9_9DuBPKMsME2WDaYmOg0QnPJCxLAOUDVOlHS1CQwf6F0NxdpOcj9PxGgx9LwyVVXqbaA11udB0Rn7EO-h4MV7Oo-P7h4CmRtHtqh-hId1ohfKfhRj7BOuckLFasH5yOry88hKGzpXHFh99aasJfN2W4HdSgaqWjX1bTZgdDc4HvR5ZKU5VDOjqxCvX9aZ_d2XDrWPqf4XPLqJk3aUIbMKamX-DL35aA3PK-x1mgxf0zYZ5KHG2qFhNSJYBubOSkSAtMSVYNanvWP0sH2dMTm-RFM3djP0ddfuj7j7DUJdRw7TtHdurmbvnwbet3JvUW3DTP73unQVu2EKgMYRogrhKSdeVCHlFeVQeihxDP5nkkhLo3Mg01kpGQlVKR0KXAlnJVWZ4IqXhJv4Brflibn4Ci7RQcaqUzjOVZAk-YlHyjkZilzRBoQ2Rp2OhHRI5DcSYFjYjCbPC0p6-iPYF0b4Nhy__3C9xOD7cfeDY8_7mV2xtw47nYOEUuC5W4vbr4-Vt2ODUEUEXVXwHWs3jk_mNcUqjdp3w_QdKKOAU
  priority: 102
  providerName: ProQuest
Title Intelligent approach of score-based artificial fish swarm algorithm (SAFSA) for Parkinson's disease diagnosis
URI https://www.emerald.com/insight/content/doi/10.1108/IJICC-10-2021-0226/full/html
https://www.proquest.com/docview/2715923091
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVMCB
  databaseName: Emerald A-Z Complete All Journals Journals
  customDbUrl:
  eissn: 1756-3798
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0068583
  issn: 1756-378X
  databaseCode: GEI
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.emerald.com/insight
  providerName: Emerald
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1756-3798
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0068583
  issn: 1756-378X
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1756-3798
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0068583
  issn: 1756-378X
  databaseCode: 8FG
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB58XLz4Fqu17EHwRWyySbbJsRarFRTxAb2F3c3GFvvQJkXw17uzSSqKCIKXhMBmITuTb2Z2Z74B2Ld5HOhAWemwRLqWJz1qcZfHltYNlfgNyWyFG_rXN-zy0bvq-t05uC1rYUxaZb4dY3C6P0oxSK1j4rZG4RnhAHav6Vx1Wi3EEYp5BtoYsTruWdd72XAwD4tYbxuW5b85NiPZukm5b_hM_1pBtyyj-XG2L6bqW73uJ2YbQ9RegdfyE_L8k-fTaSZO5fs3dsf__MZVWC68VtLM1WwN5tRoHVbKjhCkAIgNGHZmDJ8ZKenKyTghKbJlWmgyY4LKmvNWkKSf9kj6xidDwgdP40k_6w3J4X2zfd88ItqdJliUberTDlJSnCXpu8kO7Keb8Ng-f2hdWkVDB0tqNyWz3MRHPBHMpgnGaqHNQu1eci_kGKSHivuuFNxhIhHSYTJmWl2oCBT1OFdUuVuwMBqP1DYQRzLh-kLIMBBe4OmLy2LakFrAMXZpqIBTyi6SBds5Nt0YRCbqsYPIrCw-4cpGuLIVOJm985Jzffw6-rgQ4s-DvwitAtVSa6ICJNKINrQvqUPA0Nn5y1y7sESxBgOPxmgVFrLJVO1pzygTNZgP2hc1WDw7v7m9qxnV_wAuEgVh
linkProvider Emerald
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAX3oiFAj6AeClqYife5FChZelq08cK0VbaW7Adh1bq7pYmqOLP8duY8dqtilBvvSSK4kTKzGS-GdvzDcDrWNU5JsoW0xIjotSkPFJC1RHahm2yvpGxpQn9vYkcH6bb02y6An9CLQxtqww-0TnqemFojnyD9xF4MV4ukk-nPyPqGkWrq6GFhvKtFepNRzHmCzt27O9zTOHazfIL6vsN56Otg-E48l0GIoPY2UWiycjItYx5QwlEEcsCYx6VFooyx8KqTBitEqkbbRJpaonfwHVueaqU5Vbge2_BWirSApO_tc9bk6_fgkUjmHPh-NiX2EBk727Lfz-T-Gvn01DGE-cb5XY5HJJX5LRrAqFVXoHKf-qFLzHDAeHoPtz1ESwbLE3uAazY-UO4F7pDMO8sHsGsvGD77FigLmeLhrXEnBkRfNaMDHfJYcGa4_aItefqbMbUyQ8UfXc0Y-_2B6P9wXuGoTWjAm1Xq_a2ZX5dCc9up-Bx-xgOb0TsT2B1vpjbp8ASI7XItDZFrtM8xYOQNe8bFHZNHRt6kAQ5VsYzn1MDjpPKZUBxXjnZ0xXJviLZ9-DjxTOnS96Pa0d_8Or5_-Arau3BetBg5R1GW12a97Prb7-C2-ODvd1qt5zsPIc7nKoxaJGMr8Nqd_bLvsAYqdMvvSEy-H7Ttv8XNh0cUQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9RAEJ4gJsYXRcVwiroPGH-luXbbbtsHQi6HhYISEyS5t7K73Xok3B3SGuK_5l_HzLYLgRjeeOmluba5zH4330x35huADV9WKSbKBtMSHXqRjrgnQ1l5iA1Tx4kWvqEX-t8PxO5RtDeJJ0vwz_XCUFml84nWUVcLTe_IhzxB4sV4OQuGdV8W8WM73zr77dEEKdppdeM0Oojsm78XmL41m8U2rvV7zvOvP8e7Xj9hwNPIm60X1jEBXAmf15Q8ZL7IMN6RUSYpa8yMjEOtZCBUrXQgdCXw93OVGh5JabgJ8bkP4GFCKu7UpZ7vOCwjjfPQKrF3rEAy77bYP4kF_qnTiWvg8dNhsVeMx-QPOdVLIKmKGyR5q1P4mi0sBeYr8KSPXdmoA9szWDLz5_DUzYVgvZt4AbPiSuezZU60nC1q1pBmpkfEWTGCbKdeweqTZsqaC3k-Y_L0Fxq6nc7Yx8NRfjj6xDCoZtSabbvUPjSs31HCT1sjeNKswtG9GP0lLM8Xc7MGLNBChbFSOktVlEZ4CEXFE43GrmhWwwACZ8dS95rnNHrjtLS5j5-W1vZ0RrYvyfYD-HJ1z1mn-HHn1Z_75fn_xTeWdQDrbgXL3lU05TWwX9399Tt4hIgvvxUH-6_hMac2DNod4-uw3J7_MW8wOGrVW4tCBsf3DftLUXMZ6w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+approach+of+score-based+artificial+fish+swarm+algorithm+%28SAFSA%29+for+Parkinson%27s+disease+diagnosis&rft.jtitle=International+journal+of+intelligent+computing+and+cybernetics&rft.au=Abdul+Gafoor%2C+Syed+Haroon&rft.au=Theagarajan%2C+Padma&rft.date=2022-09-22&rft.pub=Emerald+Publishing+Limited&rft.issn=1756-378X&rft.volume=15&rft.issue=4&rft.spage=540&rft.epage=561&rft_id=info:doi/10.1108%2FIJICC-10-2021-0226&rft.externalDocID=10.1108%2FIJICC-10-2021-0226
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-378X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-378X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-378X&client=summon