Self‐Assembled/Drug‐Composed Nanomedicine for Synergistic Photonic Hyperthermia and Targeted Therapy of Breast Cancer by Inhibiting ERK, AKT, and STAT3 Signaling Cascades

Superior to chemotherapy, photonic hyperthermia and targeted therapy have made attractive impacts on cancer treatment by virtue of their profound advantages such as high specificity and minimal invasiveness, but the rational integration of corresponding therapeutic drugs for achieving concurrent pho...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 30; no. 10
Main Authors He, Chao, Yu, Luodan, Ding, Li, Chen, Yu, Hao, Yongqiang
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.03.2020
Subjects
Online AccessGet full text
ISSN1616-301X
1616-3028
DOI10.1002/adfm.201908907

Cover

Abstract Superior to chemotherapy, photonic hyperthermia and targeted therapy have made attractive impacts on cancer treatment by virtue of their profound advantages such as high specificity and minimal invasiveness, but the rational integration of corresponding therapeutic drugs for achieving concurrent photothermal ablation/targeted therapy is still challenging. Herein, a self‐assembled nanomedicine Anlotinib@IR820 is constructed with drug formulations for highly efficient and synergistic photonic hyperthermia and targeted therapy against breast cancer. Specifically, the constructed Anlotinib@IR820 nanomedicine presents high accumulation at the tumor site owing to the enhanced permeability and retention effect and simultaneously overcomes the obstacles of poor water solubility of Anlotinib (for targeted therapy) and the short lifetime of IR820 (for photonic ablation). The photothermal ablation as activated by near‐infrared laser can not only irradiate cancer cells but also promote the cellular uptake of Anlotinib, which presents a profound synergistic function both in vitro and in vivo. Mechanically, Anlotinib@IR820 nanomedicine can induce apoptosis and cause cell cycle arrest in breast cancer through inhibiting ERK, AKT, and STAT3 pathways. Therefore, the rationally designed drug‐composed Anlotinib@IR820 nanomedicine exhibits high clinical translation potential because of its therapeutic nanoformulation, which provides an alternative option for efficient combinational therapy of breast cancer. Herein, a self‐assembled nanomedicine Anlotinib@IR820 with drug formulations for synergistic photonic hyperthermia and targeted therapy is introduced into the treatment of breast cancer. Mechanically, the nanomedicine can induce apoptosis and cause cell cycle arrest in breast cancer by inhibiting the ERK, AKT, and STAT3 pathways that exhibit high clinical translation potential.
AbstractList Superior to chemotherapy, photonic hyperthermia and targeted therapy have made attractive impacts on cancer treatment by virtue of their profound advantages such as high specificity and minimal invasiveness, but the rational integration of corresponding therapeutic drugs for achieving concurrent photothermal ablation/targeted therapy is still challenging. Herein, a self‐assembled nanomedicine Anlotinib@IR820 is constructed with drug formulations for highly efficient and synergistic photonic hyperthermia and targeted therapy against breast cancer. Specifically, the constructed Anlotinib@IR820 nanomedicine presents high accumulation at the tumor site owing to the enhanced permeability and retention effect and simultaneously overcomes the obstacles of poor water solubility of Anlotinib (for targeted therapy) and the short lifetime of IR820 (for photonic ablation). The photothermal ablation as activated by near‐infrared laser can not only irradiate cancer cells but also promote the cellular uptake of Anlotinib, which presents a profound synergistic function both in vitro and in vivo. Mechanically, Anlotinib@IR820 nanomedicine can induce apoptosis and cause cell cycle arrest in breast cancer through inhibiting ERK, AKT, and STAT3 pathways. Therefore, the rationally designed drug‐composed Anlotinib@IR820 nanomedicine exhibits high clinical translation potential because of its therapeutic nanoformulation, which provides an alternative option for efficient combinational therapy of breast cancer.
Superior to chemotherapy, photonic hyperthermia and targeted therapy have made attractive impacts on cancer treatment by virtue of their profound advantages such as high specificity and minimal invasiveness, but the rational integration of corresponding therapeutic drugs for achieving concurrent photothermal ablation/targeted therapy is still challenging. Herein, a self‐assembled nanomedicine Anlotinib@IR820 is constructed with drug formulations for highly efficient and synergistic photonic hyperthermia and targeted therapy against breast cancer. Specifically, the constructed Anlotinib@IR820 nanomedicine presents high accumulation at the tumor site owing to the enhanced permeability and retention effect and simultaneously overcomes the obstacles of poor water solubility of Anlotinib (for targeted therapy) and the short lifetime of IR820 (for photonic ablation). The photothermal ablation as activated by near‐infrared laser can not only irradiate cancer cells but also promote the cellular uptake of Anlotinib, which presents a profound synergistic function both in vitro and in vivo. Mechanically, Anlotinib@IR820 nanomedicine can induce apoptosis and cause cell cycle arrest in breast cancer through inhibiting ERK, AKT, and STAT3 pathways. Therefore, the rationally designed drug‐composed Anlotinib@IR820 nanomedicine exhibits high clinical translation potential because of its therapeutic nanoformulation, which provides an alternative option for efficient combinational therapy of breast cancer. Herein, a self‐assembled nanomedicine Anlotinib@IR820 with drug formulations for synergistic photonic hyperthermia and targeted therapy is introduced into the treatment of breast cancer. Mechanically, the nanomedicine can induce apoptosis and cause cell cycle arrest in breast cancer by inhibiting the ERK, AKT, and STAT3 pathways that exhibit high clinical translation potential.
Author Hao, Yongqiang
Yu, Luodan
Ding, Li
Chen, Yu
He, Chao
Author_xml – sequence: 1
  givenname: Chao
  surname: He
  fullname: He, Chao
  organization: Shanghai Jiao Tong University School of Medicine
– sequence: 2
  givenname: Luodan
  surname: Yu
  fullname: Yu, Luodan
  email: yuluodan@mail.sic.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Li
  surname: Ding
  fullname: Ding, Li
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Yu
  orcidid: 0000-0002-8206-3325
  surname: Chen
  fullname: Chen, Yu
  email: chenyu@mail.sic.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Yongqiang
  surname: Hao
  fullname: Hao, Yongqiang
  email: haoyq1664@sh9hospital.org
  organization: Shanghai Jiao Tong University School of Medicine
BookMark eNqFkc1q3DAUhUVJoUmabdeCbjMTyRr_aOk6SROS_tBxoTsjS9ceBVtyJA3Fuz5Cn6QP1SeJJhNSKJSudDg6n7hX5wgdGGsAoTeULCkhyZlQ3bhMCOWk4CR_gQ5pRrMFI0lx8Kzpt1foyPs7Qmies9Uh-rWGofv942fpPYztAOrs3G37aFR2nKwHhT8KY0dQWmoDuLMOr2cDrtc-aIk_b2ywJoqreQIXNuBGLbAwCtfC9RAiX0dTTDO2HX7nQPiAK2EkONzO-NpsdKuDNj2--HJzisub-vSRXtdlzfBa90YMu9tKeCkU-NfoZScGDydP5zH6enlRV1eL20_vr6vydiFZXGwh0y5tmWRKUJEmsuCctykraDRkS1TKVl3CJF8BafMkZZSzNCMZbSnjXaGYYsfo7f7dydn7LfjQ3Nmti8P4JmEZz1MW_zWmVvuUdNZ7B10jdRBBWxOc0ENDSbNrptk10zw3E7HlX9jk9Cjc_G-A74HveoD5P-mmPL_88Id9AE50plA
CitedBy_id crossref_primary_10_1016_j_jcis_2023_11_066
crossref_primary_10_1021_acsanm_4c04932
crossref_primary_10_1016_j_ijpharm_2020_119556
crossref_primary_10_3390_polym13213764
crossref_primary_10_1021_acsami_2c00574
crossref_primary_10_1021_acsnano_4c09027
crossref_primary_10_1002_adtp_202000186
crossref_primary_10_1039_D1RA00579K
crossref_primary_10_1016_j_bioactmat_2024_07_010
crossref_primary_10_1039_D1CC02755G
crossref_primary_10_1016_j_dyepig_2022_110174
crossref_primary_10_1016_j_mtbio_2023_100887
crossref_primary_10_1016_j_biomaterials_2024_122537
crossref_primary_10_1039_D1TB01820E
Cites_doi 10.1126/scitranslmed.aav0936
10.1016/j.actbio.2018.05.006
10.1021/acsnano.7b09210
10.20892/j.issn.2095-3941.2016.0052
10.1039/C4NR03753G
10.1021/am5004393
10.1038/nbt0206-163
10.2217/nnm-2016-0438
10.1016/j.biomaterials.2011.07.071
10.1016/j.bbrc.2018.08.098
10.1126/scitranslmed.aad6645
10.1021/nn400334y
10.1038/s41467-018-07882-8
10.1038/nrc3566
10.1038/28412
10.1021/nn201560b
10.1039/C5NR06734K
10.1186/s13045-016-0332-8
10.18632/oncotarget.6901
10.1021/acsami.8b09098
10.1038/nrc.2016.108
10.1002/adhm.201700073
10.1038/nrclinonc.2018.29
10.1126/scitranslmed.3008455
10.1186/s13148-018-0605-x
10.1038/nrm1911
10.2310/7290.2011.00031
10.1126/scitranslmed.3001577
10.1002/smll.201704247
10.1158/0008-5472.CAN-09-1947
10.1039/C8BM00399H
10.1016/j.gene.2018.02.026
10.1002/smll.201202538
10.1016/j.biomaterials.2014.04.073
10.1016/j.addr.2013.11.009
10.1007/s12274-014-0493-0
10.1200/JCO.2016.34.15_suppl.11005
10.1038/s41578-019-0108-1
10.1002/ijc.32180
10.1039/C6BM00600K
10.1007/s10549-016-4013-7
10.1038/nrclinonc.2014.3
10.1002/adma.201301232
10.1021/nn900215k
10.7326/0003-4819-151-6-200909150-00006
10.1021/nn4017179
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201908907
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201908907
ADFM201908907
Genre article
GrantInformation_xml – fundername: Program of Shanghai Subject Chief Scientist
  funderid: 18XD1404300
– fundername: National Key R&D Program of China
  funderid: 2016YFC1100600; 2016YFA0203700
– fundername: National Natural Science Foundation of China
  funderid: 51672303
– fundername: National Science Foundation for Young Scientists of China
  funderid: 51902334
– fundername: Excellent Young Scientist Foundation of NSFC
  funderid: 51722211
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3177-c5f5b3c3da1a52c8999b53813dacb0d534f23c94e0b725319356061b139f8d3d3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 04:39:46 EDT 2025
Tue Jul 01 04:12:08 EDT 2025
Thu Apr 24 23:10:37 EDT 2025
Wed Jan 22 16:36:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3177-c5f5b3c3da1a52c8999b53813dacb0d534f23c94e0b725319356061b139f8d3d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8206-3325
PQID 2369753302
PQPubID 2045204
PageCount 13
ParticipantIDs proquest_journals_2369753302
crossref_citationtrail_10_1002_adfm_201908907
crossref_primary_10_1002_adfm_201908907
wiley_primary_10_1002_adfm_201908907_ADFM201908907
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2017; 6
2019; 4
2013; 25
2017; 2017
2019; 11
2018; 503
2019; 10
2006; 7
2011; 32
2009; 151
2013; 7
2016; 160
2011; 3
2012; 11
2015; 7
2011; 5
2016; 13
2014; 66
2019; 145
2016; 34
2013; 9
1998; 394
2018; 6
2016; 7
2006; 24
2013; 13
2017; 17
2018; 654
2017; 12
2014; 35
2018; 74
2009; 3
2018; 12
2010; 70
2018; 10
2014; 7
2014; 6
2016; 8
2014; 11
2018; 15
2016; 9
2018; 14
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Sun W. (e_1_2_7_7_1) 2017; 2017
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 25
  start-page: 4452
  year: 2013
  publication-title: Adv. Mater.
– volume: 503
  start-page: 3093
  year: 2018
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 8
  start-page: 283
  year: 2016
  publication-title: Nanoscale
– volume: 12
  start-page: 2789
  year: 2018
  publication-title: ACS Nano
– volume: 6
  start-page: 6709
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 653
  year: 2013
  publication-title: Nat. Rev. Cancer
– volume: 5
  start-page: 190
  year: 2017
  publication-title: Biomater. Sci.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 17
  start-page: 20
  year: 2017
  publication-title: Nat. Rev. Cancer
– volume: 6
  year: 2017
  publication-title: Adv. Healthcare Mater.
– volume: 7
  start-page: 6782
  year: 2013
  publication-title: ACS Nano
– volume: 3
  start-page: 2919
  year: 2009
  publication-title: ACS Nano
– volume: 9
  start-page: 1989
  year: 2013
  publication-title: Small
– volume: 145
  start-page: 979
  year: 2019
  publication-title: Int. J. Cancer
– volume: 4
  start-page: 398
  year: 2019
  publication-title: Nat. Rev. Mater.
– volume: 15
  start-page: 325
  year: 2018
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 6
  year: 2014
  publication-title: Nanoscale
– volume: 151
  start-page: 414
  year: 2009
  publication-title: Ann. Intern. Med.
– volume: 32
  start-page: 8555
  year: 2011
  publication-title: Biomaterials
– volume: 7
  start-page: 6878
  year: 2016
  publication-title: Oncotarget
– volume: 24
  start-page: 163
  year: 2006
  publication-title: Nat. Biotechnol.
– volume: 7
  start-page: 2056
  year: 2013
  publication-title: ACS Nano
– volume: 11
  start-page: 99
  year: 2012
  publication-title: Mol. Imaging
– volume: 11
  start-page: 157
  year: 2014
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 6
  year: 2014
  publication-title: Sci. Transl. Med.
– volume: 3
  year: 2011
  publication-title: Sci. Transl. Med.
– volume: 7
  year: 2015
  publication-title: Sci. Transl. Med.
– volume: 394
  start-page: 287
  year: 1998
  publication-title: Nature
– volume: 11
  year: 2019
  publication-title: Sci. Transl. Med.
– volume: 34
  year: 2016
  publication-title: J. Clin. Oncol.
– volume: 11
  start-page: 8
  year: 2019
  publication-title: Clin. Epigenet.
– volume: 654
  start-page: 77
  year: 2018
  publication-title: Gene
– volume: 70
  start-page: 440
  year: 2010
  publication-title: Cancer Res.
– volume: 12
  start-page: 1511
  year: 2017
  publication-title: Nanomedicine
– volume: 74
  start-page: 374
  year: 2018
  publication-title: Acta Biomater.
– volume: 10
  start-page: 1
  year: 2019
  publication-title: Nat. Commun.
– volume: 160
  start-page: 439
  year: 2016
  publication-title: Breast Cancer Res. Treat.
– volume: 7
  start-page: 359
  year: 2006
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 5
  start-page: 7000
  year: 2011
  publication-title: ACS Nano
– volume: 7
  start-page: 1291
  year: 2014
  publication-title: Nano Res.
– volume: 2017
  year: 2017
  publication-title: Biomed Res. Int.
– volume: 13
  start-page: 299
  year: 2016
  publication-title: Cancer Biol. Med.
– volume: 6
  start-page: 2925
  year: 2018
  publication-title: Biomater. Sci.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 105
  year: 2016
  publication-title: J. Hematol. Oncol.
– volume: 35
  start-page: 6646
  year: 2014
  publication-title: Biomaterials
– volume: 66
  start-page: 2
  year: 2014
  publication-title: Adv. Drug Delivery Rev.
– ident: e_1_2_7_4_1
  doi: 10.1126/scitranslmed.aav0936
– ident: e_1_2_7_14_1
  doi: 10.1016/j.actbio.2018.05.006
– ident: e_1_2_7_42_1
  doi: 10.1021/acsnano.7b09210
– ident: e_1_2_7_11_1
  doi: 10.20892/j.issn.2095-3941.2016.0052
– ident: e_1_2_7_31_1
  doi: 10.1039/C4NR03753G
– ident: e_1_2_7_16_1
  doi: 10.1021/am5004393
– ident: e_1_2_7_39_1
  doi: 10.1038/nbt0206-163
– ident: e_1_2_7_33_1
  doi: 10.2217/nnm-2016-0438
– ident: e_1_2_7_37_1
  doi: 10.1016/j.biomaterials.2011.07.071
– ident: e_1_2_7_34_1
  doi: 10.1016/j.bbrc.2018.08.098
– ident: e_1_2_7_25_1
  doi: 10.1126/scitranslmed.aad6645
– ident: e_1_2_7_36_1
  doi: 10.1021/nn400334y
– ident: e_1_2_7_43_1
  doi: 10.1038/s41467-018-07882-8
– volume: 2017
  start-page: 3619723
  year: 2017
  ident: e_1_2_7_7_1
  publication-title: Biomed Res. Int.
– ident: e_1_2_7_18_1
  doi: 10.1038/nrc3566
– ident: e_1_2_7_41_1
  doi: 10.1038/28412
– ident: e_1_2_7_29_1
  doi: 10.1021/nn201560b
– ident: e_1_2_7_20_1
  doi: 10.1039/C5NR06734K
– ident: e_1_2_7_8_1
  doi: 10.1186/s13045-016-0332-8
– ident: e_1_2_7_19_1
  doi: 10.18632/oncotarget.6901
– ident: e_1_2_7_21_1
  doi: 10.1021/acsami.8b09098
– ident: e_1_2_7_24_1
  doi: 10.1038/nrc.2016.108
– ident: e_1_2_7_12_1
  doi: 10.1002/adhm.201700073
– ident: e_1_2_7_1_1
– ident: e_1_2_7_3_1
  doi: 10.1038/nrclinonc.2018.29
– ident: e_1_2_7_6_1
  doi: 10.1126/scitranslmed.3008455
– ident: e_1_2_7_48_1
  doi: 10.1186/s13148-018-0605-x
– ident: e_1_2_7_46_1
  doi: 10.1038/nrm1911
– ident: e_1_2_7_22_1
  doi: 10.2310/7290.2011.00031
– ident: e_1_2_7_17_1
  doi: 10.1126/scitranslmed.3001577
– ident: e_1_2_7_15_1
  doi: 10.1002/smll.201704247
– ident: e_1_2_7_44_1
  doi: 10.1158/0008-5472.CAN-09-1947
– ident: e_1_2_7_13_1
  doi: 10.1039/C8BM00399H
– ident: e_1_2_7_5_1
  doi: 10.1016/j.gene.2018.02.026
– ident: e_1_2_7_27_1
  doi: 10.1002/smll.201202538
– ident: e_1_2_7_23_1
  doi: 10.1016/j.biomaterials.2014.04.073
– ident: e_1_2_7_26_1
  doi: 10.1016/j.addr.2013.11.009
– ident: e_1_2_7_38_1
  doi: 10.1007/s12274-014-0493-0
– ident: e_1_2_7_9_1
  doi: 10.1200/JCO.2016.34.15_suppl.11005
– ident: e_1_2_7_10_1
  doi: 10.1038/s41578-019-0108-1
– ident: e_1_2_7_47_1
  doi: 10.1002/ijc.32180
– ident: e_1_2_7_32_1
  doi: 10.1039/C6BM00600K
– ident: e_1_2_7_35_1
  doi: 10.1007/s10549-016-4013-7
– ident: e_1_2_7_2_1
  doi: 10.1038/nrclinonc.2014.3
– ident: e_1_2_7_30_1
  doi: 10.1002/adma.201301232
– ident: e_1_2_7_40_1
  doi: 10.1021/nn900215k
– ident: e_1_2_7_45_1
  doi: 10.7326/0003-4819-151-6-200909150-00006
– ident: e_1_2_7_28_1
  doi: 10.1021/nn4017179
SSID ssj0017734
Score 2.4143345
Snippet Superior to chemotherapy, photonic hyperthermia and targeted therapy have made attractive impacts on cancer treatment by virtue of their profound advantages...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Ablation
Anlotinib
Apoptosis
Breast cancer
Cancer therapies
Cell cycle
Chemotherapy
Fever
Hyperthermia
Infrared lasers
IR820
Materials science
Photonics
photothermal therapy
targeted therapy
Title Self‐Assembled/Drug‐Composed Nanomedicine for Synergistic Photonic Hyperthermia and Targeted Therapy of Breast Cancer by Inhibiting ERK, AKT, and STAT3 Signaling Cascades
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201908907
https://www.proquest.com/docview/2369753302
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQT3AAyo9YaJEPSFyabmznb4_LblcLqAh1U2lvkR3b7arbBG2yh_bUR-BJeKg-SWecTbpFQkhwjOOxEs14_Nkz85mQD0b5WqjA95JQB14QRwNPCWs8oWQE5mU0i7E4-fhbND0NvszD-VYVf8MP0R244cxw_honuFRV_540VGqLleQMA1eunJyJCMnzxycdfxSL4yasHDFM8GLzlrXR5_2H4g9XpXuouQ1Y3YozeUZk-61NosnF4bpWh_n1bzSO__Mzz8nTDRylw8Z-dskjU7wgT7ZICl-SXzOztLc3PzE8fKmWRvfHq_UZNKArKSujKXjoso3RUwDBdHaFFYWOApp-Py9rpN-lU9jxrhBuXi4klYWmqUtCB_m0YTagpaWfMEe-piO0xRVVV_Rzcb5QC8zNpkcnXw8oYNIDJz1Lh6mgs8UZ7iTg7UhWmOpfvSKnk6N0NPU2tzx4OWCX2MtDGyqRCy2ZDHkO-7-BAi_MoCEHQwpFYLnIB4HxVczRYwgAaRFTAF1tooUWr8lOURbmDaFhmMMoPFES62ttIpkvrI4TK2L4gIj1iNdqOcs3FOh4E8cya8ibeYZ6yDo99MjHrv-Phvzjjz33WqPJNk6gyriIsGxZ-LxHuNP-X0bJhuPJcff09l-E3pHHHE8EXJbcHtmpV2uzD7CpVu_d1LgDX5wR0A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYqemh7KP0VW2jrQ6VeCBvb-dvjdmG1FBZVbJC4RXZsw6pLUu1mD_TEI_AkPBRP0hlnE6BSVak9xvFYiWY8_uyZ-UzIJ6N8LVTge0moAy-Io56nhDWeUDIC8zKaxVicPD6KRifB19OwySbEWpiaH6I9cMOZ4fw1TnA8kO7esYZKbbGUnGHkCuvJH7sgHeKi45ZBisVxHViOGKZ4sdOGt9Hn3YfyD9elO7B5H7K6NWe4TlTztXWqyfedZaV28p-_ETn-1--8IM9XiJT2axN6SR6Z4hV5do-n8DW5mZiZvb26xgjxhZoZ3d2dL8-gAb1JuTCagpMumzA9BRxMJ5dYVOhYoOm387JCBl46gk3vHBHnxVRSWWiaujx0kE9rcgNaWvoF0-QrOkBznFN1SfeL86maYno23Ts-2KYAS7ed9CTtp4JOpme4mYC3A7nAbP_FG3Iy3EsHI2910YOXA3yJvTy0oRK50JLJkOewBewpcMQMGnKwpVAElou8FxhfxRydhgCcFjEF6NUmWmjxlqwVZWE2CA3DHEbhiZJYYmsTyXxhdZxYEcMHRKxDvEbNWb5iQcfLOGZZzd_MM9RD1uqhQz63_X_U_B9_7LnVWE228gOLjIsIK5eFzzuEO_X_ZZSsvzsct0_v_kXoI3kySseH2eH-0cEmecrxgMAlzW2RtWq-NO8BRVXqg5snvwB4jRXu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEF6hIiE4UH5FaIE9IHGpG--u_3IMSaOU0qpqXCk3a3_biNSuEudQTjwCT8JD8STM2LGbIiEkOHq9s7I1s7Pf7sx8S8h7q3wjVOB7SWgCL4ijnqeEs55QMgLzsobFWJx8fBKNz4NP03C6UcVf80O0B244Myp_jRP82rjuLWmoNA4ryRkGrrCc_H4QwVqJsOisJZBicVzHlSOGGV5s2tA2-rx7V_7usnSLNTcRa7XkjLaJbD62zjT5sr8q1b7--huP4__8zRPyeI1Hab82oKfkns2fkUcbLIXPyY-Jnbuf375jfPhKza3pDherC2hAX1IsraHgoosmSE8BBdPJDZYUVhzQ9PSyKJF_l45hy7tAvHk1k1TmhqZVFjrIpzW1AS0c_YhJ8iUdoDEuqLqhh_nlTM0wOZsenB3tUQCle5X0JO2ngk5mF7iVgLcDucRc_-ULcj46SAdjb33Ng6cBvMSeDl2ohBZGMhlyDRvAngI3zKBBgyWFInBc6F5gfRVzdBkCUFrEFGBXlxhhxEuylRe5fUVoGGoYhSdKYoGtSyTzhTNx4kQMHxCxDvEaLWd6zYGOV3HMs5q9mWeoh6zVQ4d8aPtf1-wff-y52xhNtvYCy4yLCOuWhc87hFfa_8soWX84Om6fXv-L0Dvy4HQ4yj4fnhztkIccTweqjLldslUuVvYNQKhSva1myS8lwxSd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self%E2%80%90Assembled%2FDrug%E2%80%90Composed+Nanomedicine+for+Synergistic+Photonic+Hyperthermia+and+Targeted+Therapy+of+Breast+Cancer+by+Inhibiting+ERK%2C+AKT%2C+and+STAT3+Signaling+Cascades&rft.jtitle=Advanced+functional+materials&rft.au=He%2C+Chao&rft.au=Yu%2C+Luodan&rft.au=Ding%2C+Li&rft.au=Chen%2C+Yu&rft.date=2020-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=10&rft_id=info:doi/10.1002%2Fadfm.201908907&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon