Self‐Assembled/Drug‐Composed Nanomedicine for Synergistic Photonic Hyperthermia and Targeted Therapy of Breast Cancer by Inhibiting ERK, AKT, and STAT3 Signaling Cascades
Superior to chemotherapy, photonic hyperthermia and targeted therapy have made attractive impacts on cancer treatment by virtue of their profound advantages such as high specificity and minimal invasiveness, but the rational integration of corresponding therapeutic drugs for achieving concurrent pho...
Saved in:
Published in | Advanced functional materials Vol. 30; no. 10 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.03.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1616-301X 1616-3028 |
DOI | 10.1002/adfm.201908907 |
Cover
Abstract | Superior to chemotherapy, photonic hyperthermia and targeted therapy have made attractive impacts on cancer treatment by virtue of their profound advantages such as high specificity and minimal invasiveness, but the rational integration of corresponding therapeutic drugs for achieving concurrent photothermal ablation/targeted therapy is still challenging. Herein, a self‐assembled nanomedicine Anlotinib@IR820 is constructed with drug formulations for highly efficient and synergistic photonic hyperthermia and targeted therapy against breast cancer. Specifically, the constructed Anlotinib@IR820 nanomedicine presents high accumulation at the tumor site owing to the enhanced permeability and retention effect and simultaneously overcomes the obstacles of poor water solubility of Anlotinib (for targeted therapy) and the short lifetime of IR820 (for photonic ablation). The photothermal ablation as activated by near‐infrared laser can not only irradiate cancer cells but also promote the cellular uptake of Anlotinib, which presents a profound synergistic function both in vitro and in vivo. Mechanically, Anlotinib@IR820 nanomedicine can induce apoptosis and cause cell cycle arrest in breast cancer through inhibiting ERK, AKT, and STAT3 pathways. Therefore, the rationally designed drug‐composed Anlotinib@IR820 nanomedicine exhibits high clinical translation potential because of its therapeutic nanoformulation, which provides an alternative option for efficient combinational therapy of breast cancer.
Herein, a self‐assembled nanomedicine Anlotinib@IR820 with drug formulations for synergistic photonic hyperthermia and targeted therapy is introduced into the treatment of breast cancer. Mechanically, the nanomedicine can induce apoptosis and cause cell cycle arrest in breast cancer by inhibiting the ERK, AKT, and STAT3 pathways that exhibit high clinical translation potential. |
---|---|
AbstractList | Superior to chemotherapy, photonic hyperthermia and targeted therapy have made attractive impacts on cancer treatment by virtue of their profound advantages such as high specificity and minimal invasiveness, but the rational integration of corresponding therapeutic drugs for achieving concurrent photothermal ablation/targeted therapy is still challenging. Herein, a self‐assembled nanomedicine Anlotinib@IR820 is constructed with drug formulations for highly efficient and synergistic photonic hyperthermia and targeted therapy against breast cancer. Specifically, the constructed Anlotinib@IR820 nanomedicine presents high accumulation at the tumor site owing to the enhanced permeability and retention effect and simultaneously overcomes the obstacles of poor water solubility of Anlotinib (for targeted therapy) and the short lifetime of IR820 (for photonic ablation). The photothermal ablation as activated by near‐infrared laser can not only irradiate cancer cells but also promote the cellular uptake of Anlotinib, which presents a profound synergistic function both in vitro and in vivo. Mechanically, Anlotinib@IR820 nanomedicine can induce apoptosis and cause cell cycle arrest in breast cancer through inhibiting ERK, AKT, and STAT3 pathways. Therefore, the rationally designed drug‐composed Anlotinib@IR820 nanomedicine exhibits high clinical translation potential because of its therapeutic nanoformulation, which provides an alternative option for efficient combinational therapy of breast cancer. Superior to chemotherapy, photonic hyperthermia and targeted therapy have made attractive impacts on cancer treatment by virtue of their profound advantages such as high specificity and minimal invasiveness, but the rational integration of corresponding therapeutic drugs for achieving concurrent photothermal ablation/targeted therapy is still challenging. Herein, a self‐assembled nanomedicine Anlotinib@IR820 is constructed with drug formulations for highly efficient and synergistic photonic hyperthermia and targeted therapy against breast cancer. Specifically, the constructed Anlotinib@IR820 nanomedicine presents high accumulation at the tumor site owing to the enhanced permeability and retention effect and simultaneously overcomes the obstacles of poor water solubility of Anlotinib (for targeted therapy) and the short lifetime of IR820 (for photonic ablation). The photothermal ablation as activated by near‐infrared laser can not only irradiate cancer cells but also promote the cellular uptake of Anlotinib, which presents a profound synergistic function both in vitro and in vivo. Mechanically, Anlotinib@IR820 nanomedicine can induce apoptosis and cause cell cycle arrest in breast cancer through inhibiting ERK, AKT, and STAT3 pathways. Therefore, the rationally designed drug‐composed Anlotinib@IR820 nanomedicine exhibits high clinical translation potential because of its therapeutic nanoformulation, which provides an alternative option for efficient combinational therapy of breast cancer. Herein, a self‐assembled nanomedicine Anlotinib@IR820 with drug formulations for synergistic photonic hyperthermia and targeted therapy is introduced into the treatment of breast cancer. Mechanically, the nanomedicine can induce apoptosis and cause cell cycle arrest in breast cancer by inhibiting the ERK, AKT, and STAT3 pathways that exhibit high clinical translation potential. |
Author | Hao, Yongqiang Yu, Luodan Ding, Li Chen, Yu He, Chao |
Author_xml | – sequence: 1 givenname: Chao surname: He fullname: He, Chao organization: Shanghai Jiao Tong University School of Medicine – sequence: 2 givenname: Luodan surname: Yu fullname: Yu, Luodan email: yuluodan@mail.sic.ac.cn organization: Chinese Academy of Sciences – sequence: 3 givenname: Li surname: Ding fullname: Ding, Li organization: Chinese Academy of Sciences – sequence: 4 givenname: Yu orcidid: 0000-0002-8206-3325 surname: Chen fullname: Chen, Yu email: chenyu@mail.sic.ac.cn organization: Chinese Academy of Sciences – sequence: 5 givenname: Yongqiang surname: Hao fullname: Hao, Yongqiang email: haoyq1664@sh9hospital.org organization: Shanghai Jiao Tong University School of Medicine |
BookMark | eNqFkc1q3DAUhUVJoUmabdeCbjMTyRr_aOk6SROS_tBxoTsjS9ceBVtyJA3Fuz5Cn6QP1SeJJhNSKJSudDg6n7hX5wgdGGsAoTeULCkhyZlQ3bhMCOWk4CR_gQ5pRrMFI0lx8Kzpt1foyPs7Qmies9Uh-rWGofv942fpPYztAOrs3G37aFR2nKwHhT8KY0dQWmoDuLMOr2cDrtc-aIk_b2ywJoqreQIXNuBGLbAwCtfC9RAiX0dTTDO2HX7nQPiAK2EkONzO-NpsdKuDNj2--HJzisub-vSRXtdlzfBa90YMu9tKeCkU-NfoZScGDydP5zH6enlRV1eL20_vr6vydiFZXGwh0y5tmWRKUJEmsuCctykraDRkS1TKVl3CJF8BafMkZZSzNCMZbSnjXaGYYsfo7f7dydn7LfjQ3Nmti8P4JmEZz1MW_zWmVvuUdNZ7B10jdRBBWxOc0ENDSbNrptk10zw3E7HlX9jk9Cjc_G-A74HveoD5P-mmPL_88Id9AE50plA |
CitedBy_id | crossref_primary_10_1016_j_jcis_2023_11_066 crossref_primary_10_1021_acsanm_4c04932 crossref_primary_10_1016_j_ijpharm_2020_119556 crossref_primary_10_3390_polym13213764 crossref_primary_10_1021_acsami_2c00574 crossref_primary_10_1021_acsnano_4c09027 crossref_primary_10_1002_adtp_202000186 crossref_primary_10_1039_D1RA00579K crossref_primary_10_1016_j_bioactmat_2024_07_010 crossref_primary_10_1039_D1CC02755G crossref_primary_10_1016_j_dyepig_2022_110174 crossref_primary_10_1016_j_mtbio_2023_100887 crossref_primary_10_1016_j_biomaterials_2024_122537 crossref_primary_10_1039_D1TB01820E |
Cites_doi | 10.1126/scitranslmed.aav0936 10.1016/j.actbio.2018.05.006 10.1021/acsnano.7b09210 10.20892/j.issn.2095-3941.2016.0052 10.1039/C4NR03753G 10.1021/am5004393 10.1038/nbt0206-163 10.2217/nnm-2016-0438 10.1016/j.biomaterials.2011.07.071 10.1016/j.bbrc.2018.08.098 10.1126/scitranslmed.aad6645 10.1021/nn400334y 10.1038/s41467-018-07882-8 10.1038/nrc3566 10.1038/28412 10.1021/nn201560b 10.1039/C5NR06734K 10.1186/s13045-016-0332-8 10.18632/oncotarget.6901 10.1021/acsami.8b09098 10.1038/nrc.2016.108 10.1002/adhm.201700073 10.1038/nrclinonc.2018.29 10.1126/scitranslmed.3008455 10.1186/s13148-018-0605-x 10.1038/nrm1911 10.2310/7290.2011.00031 10.1126/scitranslmed.3001577 10.1002/smll.201704247 10.1158/0008-5472.CAN-09-1947 10.1039/C8BM00399H 10.1016/j.gene.2018.02.026 10.1002/smll.201202538 10.1016/j.biomaterials.2014.04.073 10.1016/j.addr.2013.11.009 10.1007/s12274-014-0493-0 10.1200/JCO.2016.34.15_suppl.11005 10.1038/s41578-019-0108-1 10.1002/ijc.32180 10.1039/C6BM00600K 10.1007/s10549-016-4013-7 10.1038/nrclinonc.2014.3 10.1002/adma.201301232 10.1021/nn900215k 10.7326/0003-4819-151-6-200909150-00006 10.1021/nn4017179 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201908907 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_201908907 ADFM201908907 |
Genre | article |
GrantInformation_xml | – fundername: Program of Shanghai Subject Chief Scientist funderid: 18XD1404300 – fundername: National Key R&D Program of China funderid: 2016YFC1100600; 2016YFA0203700 – fundername: National Natural Science Foundation of China funderid: 51672303 – fundername: National Science Foundation for Young Scientists of China funderid: 51902334 – fundername: Excellent Young Scientist Foundation of NSFC funderid: 51722211 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3177-c5f5b3c3da1a52c8999b53813dacb0d534f23c94e0b725319356061b139f8d3d3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 04:39:46 EDT 2025 Tue Jul 01 04:12:08 EDT 2025 Thu Apr 24 23:10:37 EDT 2025 Wed Jan 22 16:36:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3177-c5f5b3c3da1a52c8999b53813dacb0d534f23c94e0b725319356061b139f8d3d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8206-3325 |
PQID | 2369753302 |
PQPubID | 2045204 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2369753302 crossref_citationtrail_10_1002_adfm_201908907 crossref_primary_10_1002_adfm_201908907 wiley_primary_10_1002_adfm_201908907_ADFM201908907 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2017; 6 2019; 4 2013; 25 2017; 2017 2019; 11 2018; 503 2019; 10 2006; 7 2011; 32 2009; 151 2013; 7 2016; 160 2011; 3 2012; 11 2015; 7 2011; 5 2016; 13 2014; 66 2019; 145 2016; 34 2013; 9 1998; 394 2018; 6 2016; 7 2006; 24 2013; 13 2017; 17 2018; 654 2017; 12 2014; 35 2018; 74 2009; 3 2018; 12 2010; 70 2018; 10 2014; 7 2014; 6 2016; 8 2014; 11 2018; 15 2016; 9 2018; 14 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Sun W. (e_1_2_7_7_1) 2017; 2017 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 25 start-page: 4452 year: 2013 publication-title: Adv. Mater. – volume: 503 start-page: 3093 year: 2018 publication-title: Biochem. Biophys. Res. Commun. – volume: 8 start-page: 283 year: 2016 publication-title: Nanoscale – volume: 12 start-page: 2789 year: 2018 publication-title: ACS Nano – volume: 6 start-page: 6709 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 653 year: 2013 publication-title: Nat. Rev. Cancer – volume: 5 start-page: 190 year: 2017 publication-title: Biomater. Sci. – volume: 14 year: 2018 publication-title: Small – volume: 17 start-page: 20 year: 2017 publication-title: Nat. Rev. Cancer – volume: 6 year: 2017 publication-title: Adv. Healthcare Mater. – volume: 7 start-page: 6782 year: 2013 publication-title: ACS Nano – volume: 3 start-page: 2919 year: 2009 publication-title: ACS Nano – volume: 9 start-page: 1989 year: 2013 publication-title: Small – volume: 145 start-page: 979 year: 2019 publication-title: Int. J. Cancer – volume: 4 start-page: 398 year: 2019 publication-title: Nat. Rev. Mater. – volume: 15 start-page: 325 year: 2018 publication-title: Nat. Rev. Clin. Oncol. – volume: 6 year: 2014 publication-title: Nanoscale – volume: 151 start-page: 414 year: 2009 publication-title: Ann. Intern. Med. – volume: 32 start-page: 8555 year: 2011 publication-title: Biomaterials – volume: 7 start-page: 6878 year: 2016 publication-title: Oncotarget – volume: 24 start-page: 163 year: 2006 publication-title: Nat. Biotechnol. – volume: 7 start-page: 2056 year: 2013 publication-title: ACS Nano – volume: 11 start-page: 99 year: 2012 publication-title: Mol. Imaging – volume: 11 start-page: 157 year: 2014 publication-title: Nat. Rev. Clin. Oncol. – volume: 6 year: 2014 publication-title: Sci. Transl. Med. – volume: 3 year: 2011 publication-title: Sci. Transl. Med. – volume: 7 year: 2015 publication-title: Sci. Transl. Med. – volume: 394 start-page: 287 year: 1998 publication-title: Nature – volume: 11 year: 2019 publication-title: Sci. Transl. Med. – volume: 34 year: 2016 publication-title: J. Clin. Oncol. – volume: 11 start-page: 8 year: 2019 publication-title: Clin. Epigenet. – volume: 654 start-page: 77 year: 2018 publication-title: Gene – volume: 70 start-page: 440 year: 2010 publication-title: Cancer Res. – volume: 12 start-page: 1511 year: 2017 publication-title: Nanomedicine – volume: 74 start-page: 374 year: 2018 publication-title: Acta Biomater. – volume: 10 start-page: 1 year: 2019 publication-title: Nat. Commun. – volume: 160 start-page: 439 year: 2016 publication-title: Breast Cancer Res. Treat. – volume: 7 start-page: 359 year: 2006 publication-title: Nat. Rev. Mol. Cell Biol. – volume: 5 start-page: 7000 year: 2011 publication-title: ACS Nano – volume: 7 start-page: 1291 year: 2014 publication-title: Nano Res. – volume: 2017 year: 2017 publication-title: Biomed Res. Int. – volume: 13 start-page: 299 year: 2016 publication-title: Cancer Biol. Med. – volume: 6 start-page: 2925 year: 2018 publication-title: Biomater. Sci. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 105 year: 2016 publication-title: J. Hematol. Oncol. – volume: 35 start-page: 6646 year: 2014 publication-title: Biomaterials – volume: 66 start-page: 2 year: 2014 publication-title: Adv. Drug Delivery Rev. – ident: e_1_2_7_4_1 doi: 10.1126/scitranslmed.aav0936 – ident: e_1_2_7_14_1 doi: 10.1016/j.actbio.2018.05.006 – ident: e_1_2_7_42_1 doi: 10.1021/acsnano.7b09210 – ident: e_1_2_7_11_1 doi: 10.20892/j.issn.2095-3941.2016.0052 – ident: e_1_2_7_31_1 doi: 10.1039/C4NR03753G – ident: e_1_2_7_16_1 doi: 10.1021/am5004393 – ident: e_1_2_7_39_1 doi: 10.1038/nbt0206-163 – ident: e_1_2_7_33_1 doi: 10.2217/nnm-2016-0438 – ident: e_1_2_7_37_1 doi: 10.1016/j.biomaterials.2011.07.071 – ident: e_1_2_7_34_1 doi: 10.1016/j.bbrc.2018.08.098 – ident: e_1_2_7_25_1 doi: 10.1126/scitranslmed.aad6645 – ident: e_1_2_7_36_1 doi: 10.1021/nn400334y – ident: e_1_2_7_43_1 doi: 10.1038/s41467-018-07882-8 – volume: 2017 start-page: 3619723 year: 2017 ident: e_1_2_7_7_1 publication-title: Biomed Res. Int. – ident: e_1_2_7_18_1 doi: 10.1038/nrc3566 – ident: e_1_2_7_41_1 doi: 10.1038/28412 – ident: e_1_2_7_29_1 doi: 10.1021/nn201560b – ident: e_1_2_7_20_1 doi: 10.1039/C5NR06734K – ident: e_1_2_7_8_1 doi: 10.1186/s13045-016-0332-8 – ident: e_1_2_7_19_1 doi: 10.18632/oncotarget.6901 – ident: e_1_2_7_21_1 doi: 10.1021/acsami.8b09098 – ident: e_1_2_7_24_1 doi: 10.1038/nrc.2016.108 – ident: e_1_2_7_12_1 doi: 10.1002/adhm.201700073 – ident: e_1_2_7_1_1 – ident: e_1_2_7_3_1 doi: 10.1038/nrclinonc.2018.29 – ident: e_1_2_7_6_1 doi: 10.1126/scitranslmed.3008455 – ident: e_1_2_7_48_1 doi: 10.1186/s13148-018-0605-x – ident: e_1_2_7_46_1 doi: 10.1038/nrm1911 – ident: e_1_2_7_22_1 doi: 10.2310/7290.2011.00031 – ident: e_1_2_7_17_1 doi: 10.1126/scitranslmed.3001577 – ident: e_1_2_7_15_1 doi: 10.1002/smll.201704247 – ident: e_1_2_7_44_1 doi: 10.1158/0008-5472.CAN-09-1947 – ident: e_1_2_7_13_1 doi: 10.1039/C8BM00399H – ident: e_1_2_7_5_1 doi: 10.1016/j.gene.2018.02.026 – ident: e_1_2_7_27_1 doi: 10.1002/smll.201202538 – ident: e_1_2_7_23_1 doi: 10.1016/j.biomaterials.2014.04.073 – ident: e_1_2_7_26_1 doi: 10.1016/j.addr.2013.11.009 – ident: e_1_2_7_38_1 doi: 10.1007/s12274-014-0493-0 – ident: e_1_2_7_9_1 doi: 10.1200/JCO.2016.34.15_suppl.11005 – ident: e_1_2_7_10_1 doi: 10.1038/s41578-019-0108-1 – ident: e_1_2_7_47_1 doi: 10.1002/ijc.32180 – ident: e_1_2_7_32_1 doi: 10.1039/C6BM00600K – ident: e_1_2_7_35_1 doi: 10.1007/s10549-016-4013-7 – ident: e_1_2_7_2_1 doi: 10.1038/nrclinonc.2014.3 – ident: e_1_2_7_30_1 doi: 10.1002/adma.201301232 – ident: e_1_2_7_40_1 doi: 10.1021/nn900215k – ident: e_1_2_7_45_1 doi: 10.7326/0003-4819-151-6-200909150-00006 – ident: e_1_2_7_28_1 doi: 10.1021/nn4017179 |
SSID | ssj0017734 |
Score | 2.4143345 |
Snippet | Superior to chemotherapy, photonic hyperthermia and targeted therapy have made attractive impacts on cancer treatment by virtue of their profound advantages... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Ablation Anlotinib Apoptosis Breast cancer Cancer therapies Cell cycle Chemotherapy Fever Hyperthermia Infrared lasers IR820 Materials science Photonics photothermal therapy targeted therapy |
Title | Self‐Assembled/Drug‐Composed Nanomedicine for Synergistic Photonic Hyperthermia and Targeted Therapy of Breast Cancer by Inhibiting ERK, AKT, and STAT3 Signaling Cascades |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201908907 https://www.proquest.com/docview/2369753302 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQT3AAyo9YaJEPSFyabmznb4_LblcLqAh1U2lvkR3b7arbBG2yh_bUR-BJeKg-SWecTbpFQkhwjOOxEs14_Nkz85mQD0b5WqjA95JQB14QRwNPCWs8oWQE5mU0i7E4-fhbND0NvszD-VYVf8MP0R244cxw_honuFRV_540VGqLleQMA1eunJyJCMnzxycdfxSL4yasHDFM8GLzlrXR5_2H4g9XpXuouQ1Y3YozeUZk-61NosnF4bpWh_n1bzSO__Mzz8nTDRylw8Z-dskjU7wgT7ZICl-SXzOztLc3PzE8fKmWRvfHq_UZNKArKSujKXjoso3RUwDBdHaFFYWOApp-Py9rpN-lU9jxrhBuXi4klYWmqUtCB_m0YTagpaWfMEe-piO0xRVVV_Rzcb5QC8zNpkcnXw8oYNIDJz1Lh6mgs8UZ7iTg7UhWmOpfvSKnk6N0NPU2tzx4OWCX2MtDGyqRCy2ZDHkO-7-BAi_MoCEHQwpFYLnIB4HxVczRYwgAaRFTAF1tooUWr8lOURbmDaFhmMMoPFES62ttIpkvrI4TK2L4gIj1iNdqOcs3FOh4E8cya8ibeYZ6yDo99MjHrv-Phvzjjz33WqPJNk6gyriIsGxZ-LxHuNP-X0bJhuPJcff09l-E3pHHHE8EXJbcHtmpV2uzD7CpVu_d1LgDX5wR0A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYqemh7KP0VW2jrQ6VeCBvb-dvjdmG1FBZVbJC4RXZsw6pLUu1mD_TEI_AkPBRP0hlnE6BSVak9xvFYiWY8_uyZ-UzIJ6N8LVTge0moAy-Io56nhDWeUDIC8zKaxVicPD6KRifB19OwySbEWpiaH6I9cMOZ4fw1TnA8kO7esYZKbbGUnGHkCuvJH7sgHeKi45ZBisVxHViOGKZ4sdOGt9Hn3YfyD9elO7B5H7K6NWe4TlTztXWqyfedZaV28p-_ETn-1--8IM9XiJT2axN6SR6Z4hV5do-n8DW5mZiZvb26xgjxhZoZ3d2dL8-gAb1JuTCagpMumzA9BRxMJ5dYVOhYoOm387JCBl46gk3vHBHnxVRSWWiaujx0kE9rcgNaWvoF0-QrOkBznFN1SfeL86maYno23Ts-2KYAS7ed9CTtp4JOpme4mYC3A7nAbP_FG3Iy3EsHI2910YOXA3yJvTy0oRK50JLJkOewBewpcMQMGnKwpVAElou8FxhfxRydhgCcFjEF6NUmWmjxlqwVZWE2CA3DHEbhiZJYYmsTyXxhdZxYEcMHRKxDvEbNWb5iQcfLOGZZzd_MM9RD1uqhQz63_X_U_B9_7LnVWE228gOLjIsIK5eFzzuEO_X_ZZSsvzsct0_v_kXoI3kySseH2eH-0cEmecrxgMAlzW2RtWq-NO8BRVXqg5snvwB4jRXu |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEF6hIiE4UH5FaIE9IHGpG--u_3IMSaOU0qpqXCk3a3_biNSuEudQTjwCT8JD8STM2LGbIiEkOHq9s7I1s7Pf7sx8S8h7q3wjVOB7SWgCL4ijnqeEs55QMgLzsobFWJx8fBKNz4NP03C6UcVf80O0B244Myp_jRP82rjuLWmoNA4ryRkGrrCc_H4QwVqJsOisJZBicVzHlSOGGV5s2tA2-rx7V_7usnSLNTcRa7XkjLaJbD62zjT5sr8q1b7--huP4__8zRPyeI1Hab82oKfkns2fkUcbLIXPyY-Jnbuf375jfPhKza3pDherC2hAX1IsraHgoosmSE8BBdPJDZYUVhzQ9PSyKJF_l45hy7tAvHk1k1TmhqZVFjrIpzW1AS0c_YhJ8iUdoDEuqLqhh_nlTM0wOZsenB3tUQCle5X0JO2ngk5mF7iVgLcDucRc_-ULcj46SAdjb33Ng6cBvMSeDl2ohBZGMhlyDRvAngI3zKBBgyWFInBc6F5gfRVzdBkCUFrEFGBXlxhhxEuylRe5fUVoGGoYhSdKYoGtSyTzhTNx4kQMHxCxDvEaLWd6zYGOV3HMs5q9mWeoh6zVQ4d8aPtf1-wff-y52xhNtvYCy4yLCOuWhc87hFfa_8soWX84Om6fXv-L0Dvy4HQ4yj4fnhztkIccTweqjLldslUuVvYNQKhSva1myS8lwxSd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self%E2%80%90Assembled%2FDrug%E2%80%90Composed+Nanomedicine+for+Synergistic+Photonic+Hyperthermia+and+Targeted+Therapy+of+Breast+Cancer+by+Inhibiting+ERK%2C+AKT%2C+and+STAT3+Signaling+Cascades&rft.jtitle=Advanced+functional+materials&rft.au=He%2C+Chao&rft.au=Yu%2C+Luodan&rft.au=Ding%2C+Li&rft.au=Chen%2C+Yu&rft.date=2020-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=10&rft_id=info:doi/10.1002%2Fadfm.201908907&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |