Oxygen Vacancies‐Rich Metal Oxide for Electrocatalytic Nitrogen Cycle
The development of industry and agriculture has been accompanied by an artificially imbalanced nitrogen cycle, which threatens human health and ecological environments. Electrocatalytic systems have emerged as a sustainable way of converting nitrogen‐containing molecules into high value‐added chemic...
Saved in:
Published in | Advanced energy materials Vol. 14; no. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.01.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1614-6832 1614-6840 |
DOI | 10.1002/aenm.202303027 |
Cover
Abstract | The development of industry and agriculture has been accompanied by an artificially imbalanced nitrogen cycle, which threatens human health and ecological environments. Electrocatalytic systems have emerged as a sustainable way of converting nitrogen‐containing molecules into high value‐added chemicals. However, the construction of high‐performance electrocatalysts remains challenging. The development of oxygen vacancy engineering strategy has promoted more research efforts to explore the structure‐activity relationship between catalytic activity and oxygen vacancies. This review systematically summarizes the recent development of oxygen vacancies‐rich metal oxides for electro‐catalyzing nitrogen cycling systems, involving electrocatalytic nitrate reduction reaction, nitric oxide reduction reaction, nitrogen reduction reaction, C─N coupling, urea oxidation reaction, and nitrogen oxidation reaction. First, the construction methods and characterization methods of oxygen vacancies are summarized. Then, the effect of oxygen vacancy on electrocatalytic activity of metal oxides is discussed in terms of regulating the electronic structures of electrocatalysts, improving the electroconductivity of catalysts, lowing the energy barrier, and strengthening adsorption and activation of intermediate species. Finally, future directions for oxygen vacancy engineering and electrocatalytic nitrogen cycle are anticipated.
The applications of oxygen vacancy (Ov)‐rich metal oxides in the reactions related to the electrocatalytic nitrogen cycle are reviewed, involving the nitrate reduction reaction, nitric oxide reduction reaction, nitrogen reduction reaction, C‐N coupling reaction, urea oxidation reaction and nitrogen oxidation reaction. Ov engineering promotes the activity and stability of metal oxides by optimizing the adsorption of reactants and pivotal intermediate species. |
---|---|
AbstractList | The development of industry and agriculture has been accompanied by an artificially imbalanced nitrogen cycle, which threatens human health and ecological environments. Electrocatalytic systems have emerged as a sustainable way of converting nitrogen‐containing molecules into high value‐added chemicals. However, the construction of high‐performance electrocatalysts remains challenging. The development of oxygen vacancy engineering strategy has promoted more research efforts to explore the structure‐activity relationship between catalytic activity and oxygen vacancies. This review systematically summarizes the recent development of oxygen vacancies‐rich metal oxides for electro‐catalyzing nitrogen cycling systems, involving electrocatalytic nitrate reduction reaction, nitric oxide reduction reaction, nitrogen reduction reaction, C─N coupling, urea oxidation reaction, and nitrogen oxidation reaction. First, the construction methods and characterization methods of oxygen vacancies are summarized. Then, the effect of oxygen vacancy on electrocatalytic activity of metal oxides is discussed in terms of regulating the electronic structures of electrocatalysts, improving the electroconductivity of catalysts, lowing the energy barrier, and strengthening adsorption and activation of intermediate species. Finally, future directions for oxygen vacancy engineering and electrocatalytic nitrogen cycle are anticipated.
The applications of oxygen vacancy (Ov)‐rich metal oxides in the reactions related to the electrocatalytic nitrogen cycle are reviewed, involving the nitrate reduction reaction, nitric oxide reduction reaction, nitrogen reduction reaction, C‐N coupling reaction, urea oxidation reaction and nitrogen oxidation reaction. Ov engineering promotes the activity and stability of metal oxides by optimizing the adsorption of reactants and pivotal intermediate species. The development of industry and agriculture has been accompanied by an artificially imbalanced nitrogen cycle, which threatens human health and ecological environments. Electrocatalytic systems have emerged as a sustainable way of converting nitrogen‐containing molecules into high value‐added chemicals. However, the construction of high‐performance electrocatalysts remains challenging. The development of oxygen vacancy engineering strategy has promoted more research efforts to explore the structure‐activity relationship between catalytic activity and oxygen vacancies. This review systematically summarizes the recent development of oxygen vacancies‐rich metal oxides for electro‐catalyzing nitrogen cycling systems, involving electrocatalytic nitrate reduction reaction, nitric oxide reduction reaction, nitrogen reduction reaction, C─N coupling, urea oxidation reaction, and nitrogen oxidation reaction. First, the construction methods and characterization methods of oxygen vacancies are summarized. Then, the effect of oxygen vacancy on electrocatalytic activity of metal oxides is discussed in terms of regulating the electronic structures of electrocatalysts, improving the electroconductivity of catalysts, lowing the energy barrier, and strengthening adsorption and activation of intermediate species. Finally, future directions for oxygen vacancy engineering and electrocatalytic nitrogen cycle are anticipated. |
Author | Wang, Shuangyin Chen, Chen Fu, Xian‐Zhu Wei, Xiaoxiao |
Author_xml | – sequence: 1 givenname: Xiaoxiao surname: Wei fullname: Wei, Xiaoxiao organization: Hunan University – sequence: 2 givenname: Chen surname: Chen fullname: Chen, Chen email: chenc@hnu.edu.cn organization: Hunan University – sequence: 3 givenname: Xian‐Zhu surname: Fu fullname: Fu, Xian‐Zhu email: xz.fu@szu.edu.cn organization: Shenzhen University – sequence: 4 givenname: Shuangyin orcidid: 0000-0001-7185-9857 surname: Wang fullname: Wang, Shuangyin email: shuangyinwang@hnu.edu.cn organization: Hunan University |
BookMark | eNqFkE1Lw0AQhhepYK29eg54bp3NpsnusZRahX6AqNdlO5nVLWlSNyk2N3-Cv9FfYkqlgiDOZT54nxnmPWetvMiJsUsOfQ4QXhvK1_0QQgECwuSEtXnMo14sI2gdaxGesW5ZrqCJSHEQos0mi139THnwZNDk6Kj8fP-4d_gSzKgyWbDYuZQCW_hgnBFWvkDTjOvKYTB3TbtHRzVmdMFOrclK6n7nDnu8GT-MbnvTxeRuNJz2UPAk6cUDbrgFmSoUmNpwOYhTK5QgpVIpkSxEqYpkjAgmNhLAxktF0gAmEQKXosOuDns3vnjdUlnpVbH1eXNSh81LkCQJ8EYVHVToi7L0ZDW6ylSuyCtvXKY56L1reu-aPrrWYP1f2Ma7tfH134A6AG8uo_oftR6O57Mf9gse5YIc |
CitedBy_id | crossref_primary_10_1039_D4DT03404J crossref_primary_10_1021_acs_inorgchem_4c01018 crossref_primary_10_1039_D4RA00927D crossref_primary_10_1016_j_jece_2024_115143 crossref_primary_10_1016_j_nanoen_2024_110216 crossref_primary_10_1002_adfm_202425503 crossref_primary_10_1002_sus2_226 crossref_primary_10_1007_s40242_024_4118_1 crossref_primary_10_1016_j_jcis_2025_137281 crossref_primary_10_1016_j_jece_2024_114959 crossref_primary_10_1002_idm2_12152 crossref_primary_10_1038_s41467_025_56566_7 crossref_primary_10_1002_aenm_202402970 crossref_primary_10_1016_j_apsusc_2024_160975 crossref_primary_10_1039_D4CS00563E crossref_primary_10_1016_j_jphotochem_2025_116330 crossref_primary_10_1021_acsnano_4c02231 crossref_primary_10_1002_ece2_72 crossref_primary_10_1016_j_jcis_2024_06_016 crossref_primary_10_12677_MS_2024_142018 crossref_primary_10_1002_adfm_202424142 crossref_primary_10_1021_acssuschemeng_4c07167 crossref_primary_10_1002_ece2_26 crossref_primary_10_1007_s41918_025_00241_4 crossref_primary_10_1002_smll_202400732 crossref_primary_10_1016_j_susmat_2025_e01370 crossref_primary_10_1021_acsami_4c19888 crossref_primary_10_1002_adfm_202408834 crossref_primary_10_1039_D4CS00217B crossref_primary_10_1021_acsnano_4c03995 crossref_primary_10_1002_adma_202416483 crossref_primary_10_1039_D4SE00565A crossref_primary_10_1007_s40820_025_01695_3 crossref_primary_10_1016_j_cej_2024_154455 crossref_primary_10_1016_j_jechem_2024_05_001 crossref_primary_10_1016_j_ceramint_2024_10_343 crossref_primary_10_1002_cjoc_202400442 crossref_primary_10_1016_j_apcatb_2024_124837 crossref_primary_10_1016_j_apcatb_2024_124453 crossref_primary_10_1002_adfm_202500351 crossref_primary_10_1016_j_cej_2024_152659 crossref_primary_10_1021_acsanm_4c05946 crossref_primary_10_1021_acs_energyfuels_4c02080 crossref_primary_10_1002_adfm_202315773 crossref_primary_10_1002_cssc_202401301 |
Cites_doi | 10.1002/anie.202300387 10.1038/s41557-023-01163-8 10.1021/jacs.8b07472 10.1021/jp205432r 10.1007/s40843-020-1305-6 10.1016/S0013-4686(00)00678-2 10.1038/s41467-022-35533-6 10.1016/j.cej.2020.127831 10.1002/smll.202205625 10.1021/acsenergylett.0c02074 10.1039/D2TA04611C 10.1021/cr8003696 10.1039/D0TA01346C 10.1016/j.apcatb.2017.02.016 10.1038/srep11712 10.1038/s41893-021-00741-3 10.1021/acscatal.7b03177 10.1016/j.electacta.2022.140757 10.1016/j.ssi.2006.07.045 10.1021/acs.chemrev.9b00613 10.1016/S0269-7491(00)00147-0 10.1002/aenm.202103022 10.1021/acscatal.9b05260 10.1021/acscatal.8b01014 10.1002/cctc.202300076 10.1016/j.susc.2005.08.041 10.1039/D2MH01440H 10.1038/s41929-022-00833-z 10.1039/D1CS00857A 10.1021/acscatal.3c00113 10.1039/C3EE43886D 10.1002/aenm.202003799 10.1016/j.susc.2005.08.015 10.1021/acssuschemeng.1c03353 10.1002/adfm.202306098 10.31635/ccschem.023.202202408 10.1126/science.aar6611 10.1002/adfm.202008533 10.1002/advs.201901970 10.1006/jcat.2001.3275 10.3390/w7010051 10.1039/D0CS00923G 10.1002/aenm.202102389 10.1002/adma.202205814 10.1002/smll.202102396 10.1002/adma.202107185 10.1002/smll.202201343 10.1039/D0EE03903A 10.1016/j.mattod.2019.05.021 10.1016/0043-1354(88)90178-9 10.1016/j.cej.2022.134847 10.1002/anie.202015773 10.1038/s41929-021-00599-w 10.1038/s41467-021-24400-5 10.1007/s12274-022-4147-3 10.1002/adfm.201502217 10.1021/acs.chemmater.2c02043 10.1039/D2SC06599A 10.1073/pnas.2306673120 10.1002/anie.201900167 10.1126/science.287.5457.1474 10.1021/acsnano.2c01956 10.1002/anie.202213711 10.1126/science.1239879 10.1007/s11426-021-1073-5 10.3389/fmats.2019.00260 10.1002/adma.202202222 10.1038/s41467-022-33066-6 10.1021/jacs.2c03452 10.1002/adma.202108180 10.1016/j.scib.2022.08.008 10.1021/acs.est.2c09147 10.1021/acscatal.1c00564 10.1021/jacs.3c06402 10.1016/j.jechem.2021.06.039 10.1080/10408430903368401 10.1007/s12274-023-5384-9 10.26599/NRE.2022.9120010 10.1002/smsc.202100070 10.1021/jacs.2c01245 10.1021/acsnano.2c06747 10.1021/acs.chemrev.0c00396 10.1002/anie.202217449 10.1126/science.aao2109 10.1016/j.apcatb.2022.121879 10.1002/cite.330611023 10.1002/adfm.202109503 10.1063/1.370831 10.1021/acs.jpcc.7b03155 10.1002/adfm.202008983 10.1021/ja808433d 10.1016/j.jcis.2020.05.014 10.1038/s41586-022-05011-6 10.1002/anie.202204541 10.1002/aenm.201700005 10.1002/adfm.201902449 10.1126/science.286.5445.1719 10.1021/acs.inorgchem.9b00007 10.1038/s41467-022-29045-6 10.1039/D3QI00225J 10.1002/smll.202300291 10.1002/adfm.202111084 10.1039/C9CS00159J 10.1002/sstr.202300158 10.1021/acscatal.9b03864 10.1039/D1TA03128G 10.1021/acscatal.3c00333 10.1016/S0961-1290(00)86708-3 10.1002/adfm.201200615 10.1002/adfm.202009070 10.1126/science.1113955 10.1002/smll.202101605 10.1021/jacs.0c00257 10.1016/j.apsusc.2022.156321 10.1002/aenm.202204126 10.1002/adma.202300020 10.1126/science.aac8703 10.1098/rstb.2013.0164 10.1021/acssuschemeng.0c06775 10.1103/PhysRevLett.87.266104 10.1002/smll.202201200 10.1016/j.nanoen.2020.104761 10.1021/acscatal.8b00415 10.1016/S0011-9164(03)00235-2 10.1016/S0360-0564(08)60018-8 10.1021/ie50151a009 10.1002/aenm.202200101 10.1021/acs.jpclett.1c01691 10.1038/s41929-019-0282-y 10.1016/j.xcrp.2021.100378 10.1038/s41467-023-36263-z 10.1103/PhysRevLett.102.026101 10.1039/D0EE03596C 10.1007/s12274-022-5117-5 10.1002/advs.202104183 10.1016/j.apsusc.2021.151807 10.1002/aenm.202201466 10.1002/adfm.202209698 10.1002/anie.202215782 10.1002/aenm.202301730 10.1002/anie.202217635 10.1038/s41467-020-15153-8 10.1002/adma.201405763 10.1038/nrmicro.2018.9 10.1038/s41467-023-38603-5 10.1021/acs.chemrev.9b00439 10.1021/jacs.3c00276 10.1021/acs.est.1c00264 10.1016/j.ceramint.2023.04.141 10.1021/acs.est.2c07661 10.1002/adfm.202214470 10.1016/j.electacta.2022.141333 10.1002/anie.202202604 10.1016/j.joule.2021.05.005 10.1038/s41467-023-37008-8 10.1038/s41467-023-37679-3 10.1002/adfm.202209843 10.1016/j.apcatb.2022.121301 10.1016/j.trac.2019.05.002 10.1002/anie.202107390 10.1002/anie.202009050 10.1002/adfm.202204499 10.1126/science.1186120 10.1039/C8TA00875B 10.1038/s41560-021-00832-7 10.1002/aenm.202300615 10.1007/s12274-023-6126-8 10.1007/s11426-022-1419-y 10.1021/acs.jpclett.5b00710 10.1016/j.apcatb.2017.06.071 10.1021/cr200346z 10.1002/ange.202110158 10.1021/cm401977p 10.1021/jp408221x 10.1021/acsenergylett.0c00924 10.1021/jacs.8b05134 10.1002/anie.202214881 10.1002/eom2.12075 10.1002/adfm.202305659 10.1021/acsami.1c11249 10.1021/acsami.6b16856 10.1126/science.1136674 10.1002/smll.202200173 10.1021/acsenergylett.2c00207 10.1039/D1CS00116G 10.1016/j.cej.2022.140376 10.1002/aenm.202204231 10.1038/s41557-020-0481-9 10.1002/cnl2.8 10.1038/186003a0 10.1002/adfm.202107260 10.1016/j.mtphys.2021.100586 10.1016/j.apcatb.2023.122509 10.1002/ange.202305447 10.1093/nsr/nwz019 10.1038/s41467-023-36322-5 10.1002/adma.201907879 10.1002/cite.201400064 10.1002/adma.202304646 10.1021/acscatal.2c06228 10.1007/s12274-022-4747-y 10.1007/s12274-022-4863-8 10.1002/adfm.202214613 10.1002/anie.202101522 10.1038/s41467-021-21901-1 10.31635/ccschem.023.202302903 10.1002/anie.202104001 10.1007/s11426-021-9967-9 10.1002/cey2.279 10.1039/D2EE01149B 10.1002/anie.202219230 10.1007/s40820-022-00832-6 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202303027 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202303027 AENM202303027 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22102054; 21573066; 21902047; 21825201; U1932212; 22250006:22261160640: – fundername: National Key R&D Program of China funderid: 2020YFA0710000 – fundername: the Hunan Provincial Science Fund for Distinguished Young Scholars funderid: 2023JJ10002 – fundername: China Postdoctoral Science Foundation funderid: BX20200116; 2020M682540 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AAMMB AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF LH4 7SP 7TB 8FD F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3177-651a1f08d9c3cdf2b56df393e99d88cef04d9486cc0a6a800f6b9e8a0c74c0183 |
ISSN | 1614-6832 |
IngestDate | Tue Aug 12 22:25:09 EDT 2025 Thu Apr 24 22:59:50 EDT 2025 Wed Oct 01 02:27:55 EDT 2025 Wed Jan 22 17:14:04 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3177-651a1f08d9c3cdf2b56df393e99d88cef04d9486cc0a6a800f6b9e8a0c74c0183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7185-9857 |
PQID | 2910077701 |
PQPubID | 886389 |
PageCount | 26 |
ParticipantIDs | proquest_journals_2910077701 crossref_citationtrail_10_1002_aenm_202303027 crossref_primary_10_1002_aenm_202303027 wiley_primary_10_1002_aenm_202303027_AENM202303027 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 1922; 86 14 2018 2017 2017; 223 121 9 2010 2008; 330 320 2020; 10 2022; 22 2023 2001 2023; 16 202 19 2017; 207 2017 2009 2019 2020 2023 2022; 358 131 2 7 14 13 2023 2022; 13 15 2023; 62 2018; 8 2021 2022; 13 15 2001 2005; 87 598 2009 2023 2021 2022; 109 145 50 51 2020; 577 2021 2021; 60 4 2009 2021 2021; 102 60 11 1988 2014; 60 7 2021 2023; 60 13 2022 1997; 134 25 1989; 61 2023; 57 2013 2019; 368 48 2023 2022; 62 13 2022 2023; 34 62 2022 2021 2021; 10 31 55 2011 2022 2022 2020; 115 12 32 8 2022 2012 2020; 13 112 59 2023 2021; 62 9 2022 2022; 34 34 2021 2021 2020 2022; 31 1 12 61 2022 2022; 144 310 2023; 49 2022; 7 2020 2020 2021; 142 8 421 2022; 14 2022; 15 2021; 60 1989 2019; 36 6 2018; 16 2015 2022 2020; 350 15 5 2022; 16 2023 2021; 66 50 2022; 18 2023 2022; 135 13 2022 2023; 12 15 2017; 7 2023; 35 2022 2023; 1 14 2023; 33 2023 2021 2023 2023; 454 6 13 2013 2022; 25 426 2020 2022; 120 5 2023; 5 2019 2020; 31 32 2019 2022 2023 2023; 6 34 2023; 145 2019; 58 2022; 67 2023 2023 2023 2021 2018; 62 10 10 17 6 2018 2022; 140 9 2020 2021 2001; 5 64 46 2022 2021 2022; 32 11 18 2023 2021; 15 12 2013; 16 2018 2022; 360 609 2021 2020; 31 63 2020 2021 2021; 120 121 14 2019 2023 2019; 58 615 29 2019; 116 2006 1999 2005; 177 86 595 2005; 309 2000; 287 2021 2022; 5 1 2023 2018; 328 140 2014; 118 2021; 9 2023; 13 2023; 14 2015; 5 2021; 4 2014 2021 2015 2022; 7 17 25 12 2021; 2 2021 2023 2023; 31 33 62 2023; 120 2023; 16 2022 2021 1999; 578 64 12 2023; 19 2021 2012; 3 22 2013 2022 1999; 341 318 286 2022; 435 2001 2001; 202 46 2009; 34 2021; 14 2022; 144 2020 2022 2022; 11 435 65 2015; 27 2021; 12 2021; 11 2023 2020; 73 2022; 61 1960; 186 2022 2015; 32 6 1988 2001 2003; 22 112 155 2023 2023 2023; 14 5 62 e_1_2_7_3_2 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_19_4 e_1_2_7_19_3 e_1_2_7_19_2 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_11_2 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_116_1 e_1_2_7_94_2 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_23_3 e_1_2_7_23_2 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_79_2 e_1_2_7_56_1 e_1_2_7_79_1 e_1_2_7_105_4 e_1_2_7_4_2 e_1_2_7_4_1 e_1_2_7_105_2 e_1_2_7_105_3 e_1_2_7_105_1 e_1_2_7_82_2 e_1_2_7_82_3 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_67_1 e_1_2_7_29_1 e_1_2_7_29_2 e_1_2_7_29_3 Hou Q. (e_1_2_7_126_1) 2013; 16 e_1_2_7_117_1 e_1_2_7_93_3 e_1_2_7_93_2 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_70_2 e_1_2_7_24_2 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_32_2 e_1_2_7_32_3 e_1_2_7_55_3 e_1_2_7_78_3 e_1_2_7_55_2 e_1_2_7_78_4 e_1_2_7_78_2 e_1_2_7_78_5 Zhang H. (e_1_2_7_78_1) 2023; 62 e_1_2_7_106_1 e_1_2_7_9_2 e_1_2_7_9_1 e_1_2_7_121_1 e_1_2_7_1_2 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_43_2 e_1_2_7_66_3 e_1_2_7_66_2 e_1_2_7_89_1 e_1_2_7_28_1 e_1_2_7_28_2 e_1_2_7_118_1 Dahab M. F. (e_1_2_7_65_1) 1988; 60 e_1_2_7_92_2 e_1_2_7_110_1 e_1_2_7_25_3 e_1_2_7_92_1 e_1_2_7_25_2 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_31_2 e_1_2_7_31_3 e_1_2_7_54_1 e_1_2_7_77_2 e_1_2_7_77_3 e_1_2_7_39_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_122_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_42_2 e_1_2_7_65_2 e_1_2_7_42_3 e_1_2_7_27_1 e_1_2_7_27_2 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_30_2 e_1_2_7_76_2 e_1_2_7_53_3 e_1_2_7_53_2 e_1_2_7_38_1 e_1_2_7_108_1 e_1_2_7_7_4 e_1_2_7_7_3 e_1_2_7_7_2 e_1_2_7_7_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_100_2 e_1_2_7_15_2 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_87_2 e_1_2_7_64_3 e_1_2_7_64_2 e_1_2_7_26_1 e_1_2_7_26_2 e_1_2_7_49_1 Huang R. (e_1_2_7_61_1) 2023 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_75_2 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_75_1 e_1_2_7_37_1 Yuan X. (e_1_2_7_111_1) 2023; 62 e_1_2_7_109_1 e_1_2_7_8_3 e_1_2_7_8_2 e_1_2_7_8_1 e_1_2_7_101_2 e_1_2_7_124_1 e_1_2_7_16_4 Zhou J. (e_1_2_7_81_1) 2023; 62 e_1_2_7_16_3 e_1_2_7_101_1 e_1_2_7_16_2 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_86_2 e_1_2_7_63_1 e_1_2_7_86_1 e_1_2_7_48_1 e_1_2_7_8_4 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_51_3 e_1_2_7_51_2 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_3 e_1_2_7_20_2 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_36_2 e_1_2_7_36_3 e_1_2_7_36_4 e_1_2_7_5_2 e_1_2_7_5_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_17_2 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_47_2 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_50_2 e_1_2_7_50_1 e_1_2_7_50_3 e_1_2_7_96_2 e_1_2_7_96_1 e_1_2_7_21_2 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_6_1 e_1_2_7_18_6 e_1_2_7_18_5 e_1_2_7_18_4 e_1_2_7_6_2 e_1_2_7_18_3 e_1_2_7_103_1 e_1_2_7_18_2 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_2 e_1_2_7_69_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_95_2 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_34_2 e_1_2_7_34_3 e_1_2_7_57_3 e_1_2_7_57_2 |
References_xml | – volume: 18 year: 2022 publication-title: Small – volume: 7 17 25 12 start-page: 2535 5799 year: 2014 2021 2015 2022 publication-title: Energy Environ. Sci. Small Adv. Funct. Mater. Adv. Energy Mater. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 66 50 start-page: 1052 3640 year: 2023 2021 publication-title: Sci China Chem Chem. Soc. Rev. – volume: 328 140 year: 2023 2018 publication-title: Appl Catal B J. Am. Chem. Soc. – volume: 2 year: 2021 publication-title: Cell Rep. Phys. Sci. – volume: 8 start-page: 1 year: 2018 publication-title: ACS Catal. – volume: 5 1 start-page: 1704 6 year: 2021 2022 publication-title: Joule Carbon Neutralization – volume: 36 6 start-page: 173 260 year: 1989 2019 publication-title: Adv. Catal. Front. Mater. – volume: 120 5 start-page: 5308 798 year: 2020 2022 publication-title: Chem. Rev. Nat. Catal. – volume: 578 64 12 start-page: 953 24 year: 2022 2021 1999 publication-title: Appl. Surf. Sci. Sci China Chem III‐Vs Review – volume: 120 121 14 start-page: 4056 882 1928 year: 2020 2021 2021 publication-title: Chem. Rev. Chem. Rev. Energy Environ. Sci. – volume: 25 426 start-page: 4690 year: 2013 2022 publication-title: Chem. Mater. Electrochim. Acta – volume: 8 start-page: 7113 year: 2018 publication-title: ACS Catal. – volume: 5 64 46 start-page: 2095 1493 923 year: 2020 2021 2001 publication-title: ACS Energy Lett. Sci China Chem Electrochim. Acta – volume: 223 121 9 start-page: 91 year: 2018 2017 2017 publication-title: Appl Catal B J. Phys. Chem. C ACS Appl. Mater. Interfaces – volume: 368 48 start-page: 5658 year: 2013 2019 publication-title: Philos Trans R Soc Lond B Biol Sci Chem. Soc. Rev. – volume: 454 6 13 start-page: 642 4021 year: 2023 2021 2023 2023 publication-title: Chem. Eng. J. Nat. Energy ACS Catal. Adv. Mater. – year: 2023 publication-title: Small Struct. – volume: 86 14 start-page: 2180 611 year: 2014 1922 publication-title: Chem. Ing. Tech. Ind Eng Chem – volume: 287 start-page: 1474 year: 2000 publication-title: Science – volume: 4 start-page: 868 year: 2021 publication-title: Nat. Sustain. – volume: 186 start-page: 3 year: 1960 publication-title: Nature – volume: 135 13 start-page: 5337 year: 2023 2022 publication-title: Angew. Chem., Int. Ed. Nat. Commun. – volume: 14 start-page: 751 year: 2023 publication-title: Nat. Commun. – volume: 34 start-page: 89 year: 2009 publication-title: Crit. Rev. Solid State Mater. Sci. – volume: 62 13 start-page: 7899 year: 2023 2022 publication-title: Angew. Chem., Int. Ed. Nat. Commun. – volume: 134 25 year: 2022 1997 publication-title: Angew. Chem., Int. Ed. – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – volume: 14 start-page: 1878 year: 2023 publication-title: Chem. Sci. – volume: 10 31 55 year: 2022 2021 2021 publication-title: J. Mater. Chem. A Adv. Funct. Mater. Environ. Sci. Technol. – volume: 22 112 155 start-page: 679 351 15 year: 1988 2001 2003 publication-title: Water Res. Environ. pollut. Desalination – start-page: 1 year: 2023 publication-title: CCS Chem. – volume: 207 start-page: 42 year: 2017 publication-title: Appl Catal B – volume: 177 86 595 start-page: 3069 956 223 year: 2006 1999 2005 publication-title: Solid State Ionics J. Appl. Phys. Surf. Sci. – volume: 350 15 5 start-page: 417 3275 3848 year: 2015 2022 2020 publication-title: Science Energy Environ. Sci. ACS Energy Lett. – volume: 144 310 year: 2022 2022 publication-title: J. Am. Chem. Soc. Appl Catal B – volume: 5 year: 2015 publication-title: Sci. Rep. – volume: 14 5 62 start-page: 2870 2617 year: 2023 2023 2023 publication-title: Nat. Commun. CCS Chem. Angew. Chem., Int. Ed. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 32 6 start-page: 1948 year: 2022 2015 publication-title: Adv. Funct. Mater. J. Phys. Chem. Lett. – volume: 31 63 start-page: 2089 year: 2021 2020 publication-title: Adv. Funct. Mater. Sci. China Mater. – volume: 10 start-page: 3533 year: 2020 publication-title: ACS Catal. – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 13 year: 2023 publication-title: Adv. Energy Mater. – volume: 61 start-page: 836 year: 1989 publication-title: Chem. Ing. Tech. – year: 2023 publication-title: Chin. J. Struch. Chem. – volume: 13 15 start-page: 8914 year: 2021 2022 publication-title: ACS Appl. Mater. Interfaces Nano Res. – volume: 57 start-page: 3893 year: 2023 publication-title: Environ. Sci. Technol. – volume: 62 year: 2023 publication-title: Angew. Chem., Int. Ed. – volume: 14 start-page: 90 year: 2022 publication-title: Nano‐Micro Lett. – volume: 49 year: 2023 publication-title: Ceram. Int. – volume: 435 year: 2022 publication-title: Electrochim. Acta – volume: 577 start-page: 109 year: 2020 publication-title: J. Colloid. Interface. Sci. – volume: 13 start-page: 3444 year: 2023 publication-title: ACS Catal. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 6 34 start-page: 730 year: 2019 2022 2023 2023 publication-title: Natl Sci Rev Adv. Mater. Adv. Funct. Mater. Adv. Energy Mater. – volume: 13 112 59 start-page: 1457 2714 year: 2022 2012 2020 publication-title: Nat. Commun. Chem. Rev. Angew. Chem., Int. Ed. – volume: 16 year: 2023 publication-title: Nano Res. – volume: 58 615 29 start-page: 4989 year: 2019 2023 2019 publication-title: Inorg. Chem. Appl. Surf. Sci. Adv. Funct. Mater. – volume: 12 start-page: 6988 year: 2021 publication-title: J. Phys. Chem. Lett. – volume: 12 15 year: 2022 2023 publication-title: Adv. Energy Mater. ChemCatChem – volume: 14 start-page: 1412 year: 2023 publication-title: Nat. Commun. – volume: 15 start-page: 5123 year: 2022 publication-title: Nano Res. – volume: 60 13 start-page: 7297 4091 year: 2021 2023 publication-title: Angew. Chem., Int. Ed. ACS Catal. – volume: 1 14 start-page: 792 year: 2022 2023 publication-title: Nano Res. Energy Nat. Commun. – volume: 15 12 start-page: 705 1580 year: 2023 2021 publication-title: Nat. Chem. Nat. Commun. – volume: 11 435 65 start-page: 1371 623 year: 2020 2022 2022 publication-title: Nat. Commun. Chem. Eng. J. J Energy Chem – volume: 145 year: 2023 publication-title: J. Am. Chem. Soc. – volume: 16 start-page: 263 year: 2018 publication-title: Nat. Rev. Microbiol. – volume: 60 4 start-page: 322 year: 2021 2021 publication-title: Angew Chem Int Ed Engl Nat. Catal. – volume: 34 34 year: 2022 2022 publication-title: Adv. Mater. Adv. Mater. – volume: 144 start-page: 9344 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 115 12 32 8 year: 2011 2022 2022 2020 publication-title: J. Phys. Chem. C Adv. Energy Mater. Adv. Funct. Mater. ACS Sustainable Chem. Eng. – volume: 102 60 11 year: 2009 2021 2021 publication-title: Phys. Rev. Lett. Angew. Chem., Int. Ed. Adv. Energy Mater. – volume: 3 22 start-page: 4557 year: 2021 2012 publication-title: EcoMat. Adv. Funct. Mater. – volume: 34 62 year: 2022 2023 publication-title: Chem. Mater. Angew. Chem., Int. Ed. – volume: 12 start-page: 4080 year: 2021 publication-title: Nat. Commun. – volume: 27 start-page: 2589 year: 2015 publication-title: Adv. Mater. – volume: 87 598 start-page: 226 year: 2001 2005 publication-title: Phys. Rev. Lett. Surf. Sci. – volume: 142 8 421 start-page: 8383 year: 2020 2020 2021 publication-title: J. Am. Chem. Soc. J. Mater. Chem. A Chem. Eng. J. – volume: 8 year: 2018 publication-title: ACS Catal. – volume: 31 32 start-page: 47 year: 2019 2020 publication-title: Mater. Today Adv. Mater. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 35 year: 2023 publication-title: Adv Mater – volume: 120 year: 2023 publication-title: Proc. Natl. Acad. Sci. USA – volume: 60 7 start-page: 1670 51 year: 1988 2014 publication-title: J Water Pollut Control Fed Water – volume: 202 46 start-page: 387 923 year: 2001 2001 publication-title: J. Catal. Electrochim. Acta – volume: 109 145 50 51 start-page: 2209 6899 6720 2710 year: 2009 2023 2021 2022 publication-title: Chem. Rev. J. Am. Chem. Soc. Chem. Soc. Rev. Chem. Soc. Rev. – volume: 358 131 2 7 14 13 start-page: 1419 3140 590 2040 year: 2017 2009 2019 2020 2023 2022 publication-title: Science J. Am. Chem. Soc. Nat. Catal. Adv. Sci. Nat. Commun. Adv. Energy Mater. – volume: 19 year: 2023 publication-title: Small – volume: 118 start-page: 3471 year: 2014 publication-title: J. Phys. Chem. C – volume: 32 11 18 start-page: 5614 year: 2022 2021 2022 publication-title: Adv. Funct. Mater. ACS Catal. Small – volume: 14 start-page: 1176 year: 2021 publication-title: Energy Environ. Sci. – volume: 330 320 start-page: 192 889 year: 2010 2008 publication-title: Science Science – volume: 5 year: 2023 publication-title: Carbon Energy – volume: 140 9 year: 2018 2022 publication-title: J. Am. Chem. Soc. Adv. Sci. – volume: 13 15 start-page: 8890 year: 2023 2022 publication-title: Advan. Energy Mater. Nano Res. – volume: 16 start-page: 4664 year: 2022 publication-title: Nano Res. – volume: 67 start-page: 1763 year: 2022 publication-title: Sci. Bull. – volume: 16 year: 2022 publication-title: ACS Nano – volume: 16 year: 2013 publication-title: Acta Phys. Sin. – volume: 10 start-page: 1077 year: 2020 publication-title: ACS Catal. – volume: 62 10 10 17 6 start-page: 2677 2160 7547 year: 2023 2023 2023 2021 2018 publication-title: Angew. Chem., Int. Ed. Inorg. Chem. Front. Mater. Horiz. Small J. Mater. Chem. A – volume: 58 start-page: 5609 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 7 start-page: 1187 year: 2022 publication-title: ACS Energy Lett. – volume: 73 year: 2020 publication-title: Nano Energy – volume: 22 year: 2022 publication-title: Mater. Today Phys. – volume: 341 318 286 start-page: 988 1719 year: 2013 2022 1999 publication-title: Science Appl Catal B Science – volume: 16 start-page: 8213 year: 2022 publication-title: ACS Nano – volume: 57 start-page: 2918 year: 2023 publication-title: Environ. Sci. Technol. – volume: 31 1 12 61 start-page: 717 year: 2021 2021 2020 2022 publication-title: Adv. Funct. Mater. Small Sci. Nat. Chem. Angew. Chem., Int. Ed. – volume: 16 202 19 start-page: 5857 387 year: 2023 2001 2023 publication-title: Nano Res. J. Catal. Small – volume: 62 9 year: 2023 2021 publication-title: Angew. Chem., Int. Ed. ACS Sustainable Chem. Eng. – volume: 116 start-page: 102 year: 2019 publication-title: TrAC, Trends Anal. Chem. – volume: 360 609 start-page: 71 year: 2018 2022 publication-title: Science Nature – volume: 309 start-page: 713 year: 2005 publication-title: Science – volume: 31 33 62 year: 2021 2023 2023 publication-title: Adv. Funct. Mater. Adv. Funct. Mater. Angew. Chem., Int. Ed. – volume: 11 year: 2021 publication-title: Advan. Energy Mater. – ident: e_1_2_7_93_3 doi: 10.1002/anie.202300387 – ident: e_1_2_7_92_1 doi: 10.1038/s41557-023-01163-8 – ident: e_1_2_7_87_1 doi: 10.1021/jacs.8b07472 – ident: e_1_2_7_36_1 doi: 10.1021/jp205432r – ident: e_1_2_7_11_2 doi: 10.1007/s40843-020-1305-6 – ident: e_1_2_7_82_3 doi: 10.1016/S0013-4686(00)00678-2 – ident: e_1_2_7_69_2 doi: 10.1038/s41467-022-35533-6 – ident: e_1_2_7_32_3 doi: 10.1016/j.cej.2020.127831 – ident: e_1_2_7_110_1 doi: 10.1002/smll.202205625 – ident: e_1_2_7_50_3 doi: 10.1021/acsenergylett.0c02074 – ident: e_1_2_7_64_1 doi: 10.1039/D2TA04611C – ident: e_1_2_7_7_1 doi: 10.1021/cr8003696 – ident: e_1_2_7_32_2 doi: 10.1039/D0TA01346C – ident: e_1_2_7_68_1 doi: 10.1016/j.apcatb.2017.02.016 – ident: e_1_2_7_44_1 doi: 10.1038/srep11712 – ident: e_1_2_7_122_1 doi: 10.1038/s41893-021-00741-3 – ident: e_1_2_7_103_1 doi: 10.1021/acscatal.7b03177 – ident: e_1_2_7_47_2 doi: 10.1016/j.electacta.2022.140757 – ident: e_1_2_7_34_1 doi: 10.1016/j.ssi.2006.07.045 – ident: e_1_2_7_3_1 doi: 10.1021/acs.chemrev.9b00613 – ident: e_1_2_7_66_2 doi: 10.1016/S0269-7491(00)00147-0 – ident: e_1_2_7_86_1 doi: 10.1002/aenm.202103022 – ident: e_1_2_7_71_1 doi: 10.1021/acscatal.9b05260 – ident: e_1_2_7_39_1 doi: 10.1021/acscatal.8b01014 – year: 2023 ident: e_1_2_7_61_1 publication-title: Chin. J. Struch. Chem. – ident: e_1_2_7_86_2 doi: 10.1002/cctc.202300076 – ident: e_1_2_7_15_2 doi: 10.1016/j.susc.2005.08.041 – ident: e_1_2_7_78_3 doi: 10.1039/D2MH01440H – ident: e_1_2_7_3_2 doi: 10.1038/s41929-022-00833-z – ident: e_1_2_7_7_4 doi: 10.1039/D1CS00857A – ident: e_1_2_7_100_2 doi: 10.1021/acscatal.3c00113 – ident: e_1_2_7_19_1 doi: 10.1039/C3EE43886D – ident: e_1_2_7_91_1 doi: 10.1002/aenm.202003799 – ident: e_1_2_7_34_3 doi: 10.1016/j.susc.2005.08.015 – ident: e_1_2_7_101_2 doi: 10.1021/acssuschemeng.1c03353 – ident: e_1_2_7_105_3 doi: 10.1002/adfm.202306098 – ident: e_1_2_7_93_2 doi: 10.31635/ccschem.023.202202408 – ident: e_1_2_7_6_1 doi: 10.1126/science.aar6611 – ident: e_1_2_7_64_2 doi: 10.1002/adfm.202008533 – ident: e_1_2_7_18_4 doi: 10.1002/advs.201901970 – ident: e_1_2_7_79_1 doi: 10.1006/jcat.2001.3275 – volume: 60 start-page: 1670 year: 1988 ident: e_1_2_7_65_1 publication-title: J Water Pollut Control Fed – ident: e_1_2_7_65_2 doi: 10.3390/w7010051 – ident: e_1_2_7_5_2 doi: 10.1039/D0CS00923G – ident: e_1_2_7_25_3 doi: 10.1002/aenm.202102389 – ident: e_1_2_7_16_4 doi: 10.1002/adma.202205814 – ident: e_1_2_7_78_4 doi: 10.1002/smll.202102396 – ident: e_1_2_7_28_2 doi: 10.1002/adma.202107185 – ident: e_1_2_7_115_1 doi: 10.1002/smll.202201343 – ident: e_1_2_7_55_3 doi: 10.1039/D0EE03903A – ident: e_1_2_7_43_1 doi: 10.1016/j.mattod.2019.05.021 – ident: e_1_2_7_66_1 doi: 10.1016/0043-1354(88)90178-9 – ident: e_1_2_7_42_2 doi: 10.1016/j.cej.2022.134847 – ident: e_1_2_7_100_1 doi: 10.1002/anie.202015773 – ident: e_1_2_7_75_2 doi: 10.1038/s41929-021-00599-w – ident: e_1_2_7_97_1 doi: 10.1038/s41467-021-24400-5 – ident: e_1_2_7_62_1 doi: 10.1007/s12274-022-4147-3 – ident: e_1_2_7_19_3 doi: 10.1002/adfm.201502217 – ident: e_1_2_7_26_1 doi: 10.1021/acs.chemmater.2c02043 – ident: e_1_2_7_123_1 doi: 10.1039/D2SC06599A – ident: e_1_2_7_112_1 doi: 10.1073/pnas.2306673120 – ident: e_1_2_7_35_1 doi: 10.1002/anie.201900167 – ident: e_1_2_7_14_1 doi: 10.1126/science.287.5457.1474 – ident: e_1_2_7_98_1 doi: 10.1021/acsnano.2c01956 – ident: e_1_2_7_69_1 doi: 10.1002/anie.202213711 – ident: e_1_2_7_57_1 doi: 10.1126/science.1239879 – ident: e_1_2_7_82_2 doi: 10.1007/s11426-021-1073-5 – ident: e_1_2_7_24_2 doi: 10.3389/fmats.2019.00260 – ident: e_1_2_7_28_1 doi: 10.1002/adma.202202222 – ident: e_1_2_7_94_2 doi: 10.1038/s41467-022-33066-6 – ident: e_1_2_7_27_1 doi: 10.1021/jacs.2c03452 – ident: e_1_2_7_105_2 doi: 10.1002/adma.202108180 – ident: e_1_2_7_102_1 doi: 10.1016/j.scib.2022.08.008 – ident: e_1_2_7_109_1 doi: 10.1021/acs.est.2c09147 – ident: e_1_2_7_31_2 doi: 10.1021/acscatal.1c00564 – ident: e_1_2_7_108_1 doi: 10.1021/jacs.3c06402 – ident: e_1_2_7_42_3 doi: 10.1016/j.jechem.2021.06.039 – ident: e_1_2_7_22_1 doi: 10.1080/10408430903368401 – ident: e_1_2_7_77_1 doi: 10.1007/s12274-023-5384-9 – ident: e_1_2_7_9_1 doi: 10.26599/NRE.2022.9120010 – ident: e_1_2_7_8_2 doi: 10.1002/smsc.202100070 – ident: e_1_2_7_85_1 doi: 10.1021/jacs.2c01245 – ident: e_1_2_7_74_1 doi: 10.1021/acsnano.2c06747 – ident: e_1_2_7_55_2 doi: 10.1021/acs.chemrev.0c00396 – ident: e_1_2_7_101_1 doi: 10.1002/anie.202217449 – ident: e_1_2_7_18_1 doi: 10.1126/science.aao2109 – ident: e_1_2_7_57_2 doi: 10.1016/j.apcatb.2022.121879 – ident: e_1_2_7_67_1 doi: 10.1002/cite.330611023 – volume: 62 year: 2023 ident: e_1_2_7_78_1 publication-title: Angew. Chem., Int. Ed. – volume: 16 year: 2013 ident: e_1_2_7_126_1 publication-title: Acta Phys. Sin. – ident: e_1_2_7_17_1 doi: 10.1002/adfm.202109503 – ident: e_1_2_7_34_2 doi: 10.1063/1.370831 – ident: e_1_2_7_51_2 doi: 10.1021/acs.jpcc.7b03155 – ident: e_1_2_7_96_2 – ident: e_1_2_7_8_1 doi: 10.1002/adfm.202008983 – ident: e_1_2_7_18_2 doi: 10.1021/ja808433d – ident: e_1_2_7_120_1 doi: 10.1016/j.jcis.2020.05.014 – ident: e_1_2_7_6_2 doi: 10.1038/s41586-022-05011-6 – ident: e_1_2_7_8_4 doi: 10.1002/anie.202204541 – ident: e_1_2_7_59_1 doi: 10.1002/aenm.201700005 – ident: e_1_2_7_20_3 doi: 10.1002/adfm.201902449 – ident: e_1_2_7_57_3 doi: 10.1126/science.286.5445.1719 – ident: e_1_2_7_20_1 doi: 10.1021/acs.inorgchem.9b00007 – ident: e_1_2_7_23_1 doi: 10.1038/s41467-022-29045-6 – ident: e_1_2_7_78_2 doi: 10.1039/D3QI00225J – ident: e_1_2_7_77_3 doi: 10.1002/smll.202300291 – ident: e_1_2_7_31_1 doi: 10.1002/adfm.202111084 – ident: e_1_2_7_1_2 doi: 10.1039/C9CS00159J – ident: e_1_2_7_114_1 doi: 10.1002/sstr.202300158 – ident: e_1_2_7_113_1 doi: 10.1021/acscatal.9b03864 – ident: e_1_2_7_107_1 doi: 10.1039/D1TA03128G – ident: e_1_2_7_52_1 doi: 10.1021/acscatal.3c00333 – ident: e_1_2_7_53_3 doi: 10.1016/S0961-1290(00)86708-3 – ident: e_1_2_7_13_2 doi: 10.1002/adfm.201200615 – ident: e_1_2_7_11_1 doi: 10.1002/adfm.202009070 – ident: e_1_2_7_12_1 doi: 10.1126/science.1113955 – ident: e_1_2_7_19_2 doi: 10.1002/smll.202101605 – ident: e_1_2_7_32_1 doi: 10.1021/jacs.0c00257 – ident: e_1_2_7_20_2 doi: 10.1016/j.apsusc.2022.156321 – ident: e_1_2_7_18_6 doi: 10.1002/aenm.202204126 – ident: e_1_2_7_121_1 doi: 10.1002/adma.202300020 – ident: e_1_2_7_50_1 doi: 10.1126/science.aac8703 – ident: e_1_2_7_1_1 doi: 10.1098/rstb.2013.0164 – ident: e_1_2_7_36_4 doi: 10.1021/acssuschemeng.0c06775 – ident: e_1_2_7_15_1 doi: 10.1103/PhysRevLett.87.266104 – ident: e_1_2_7_89_1 doi: 10.1002/smll.202201200 – ident: e_1_2_7_33_1 doi: 10.1016/j.nanoen.2020.104761 – ident: e_1_2_7_49_1 doi: 10.1021/acscatal.8b00415 – ident: e_1_2_7_66_3 doi: 10.1016/S0011-9164(03)00235-2 – ident: e_1_2_7_24_1 doi: 10.1016/S0360-0564(08)60018-8 – ident: e_1_2_7_95_2 doi: 10.1021/ie50151a009 – ident: e_1_2_7_36_2 doi: 10.1002/aenm.202200101 – ident: e_1_2_7_79_2 doi: 10.1016/S0013-4686(00)00678-2 – ident: e_1_2_7_80_1 doi: 10.1021/acs.jpclett.1c01691 – ident: e_1_2_7_18_3 doi: 10.1038/s41929-019-0282-y – ident: e_1_2_7_99_1 doi: 10.1016/j.xcrp.2021.100378 – ident: e_1_2_7_56_1 doi: 10.1038/s41467-023-36263-z – ident: e_1_2_7_25_1 doi: 10.1103/PhysRevLett.102.026101 – ident: e_1_2_7_84_1 doi: 10.1039/D0EE03596C – ident: e_1_2_7_88_1 doi: 10.1007/s12274-022-5117-5 – ident: e_1_2_7_87_2 doi: 10.1002/advs.202104183 – ident: e_1_2_7_53_1 doi: 10.1016/j.apsusc.2021.151807 – ident: e_1_2_7_19_4 doi: 10.1002/aenm.202201466 – ident: e_1_2_7_104_1 doi: 10.1002/adfm.202209698 – ident: e_1_2_7_73_1 doi: 10.1002/anie.202215782 – ident: e_1_2_7_63_1 doi: 10.1002/aenm.202301730 – volume: 62 year: 2023 ident: e_1_2_7_81_1 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_7_106_1 doi: 10.1002/anie.202217635 – ident: e_1_2_7_42_1 doi: 10.1038/s41467-020-15153-8 – ident: e_1_2_7_45_1 doi: 10.1002/adma.201405763 – volume: 62 year: 2023 ident: e_1_2_7_111_1 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_7_2_1 doi: 10.1038/nrmicro.2018.9 – ident: e_1_2_7_93_1 doi: 10.1038/s41467-023-38603-5 – ident: e_1_2_7_55_1 doi: 10.1021/acs.chemrev.9b00439 – ident: e_1_2_7_7_2 doi: 10.1021/jacs.3c00276 – ident: e_1_2_7_64_3 doi: 10.1021/acs.est.1c00264 – ident: e_1_2_7_118_1 doi: 10.1016/j.ceramint.2023.04.141 – ident: e_1_2_7_54_1 doi: 10.1021/acs.est.2c07661 – ident: e_1_2_7_29_2 doi: 10.1002/adfm.202214470 – ident: e_1_2_7_124_1 doi: 10.1016/j.electacta.2022.141333 – ident: e_1_2_7_72_1 doi: 10.1002/anie.202202604 – ident: e_1_2_7_21_1 doi: 10.1016/j.joule.2021.05.005 – ident: e_1_2_7_37_1 doi: 10.1038/s41467-023-37008-8 – ident: e_1_2_7_18_5 doi: 10.1038/s41467-023-37679-3 – ident: e_1_2_7_90_1 doi: 10.1002/adfm.202209843 – ident: e_1_2_7_27_2 doi: 10.1016/j.apcatb.2022.121301 – ident: e_1_2_7_46_1 doi: 10.1016/j.trac.2019.05.002 – ident: e_1_2_7_48_1 doi: 10.1002/anie.202107390 – ident: e_1_2_7_23_3 doi: 10.1002/anie.202009050 – ident: e_1_2_7_36_3 doi: 10.1002/adfm.202204499 – ident: e_1_2_7_4_1 doi: 10.1126/science.1186120 – ident: e_1_2_7_78_5 doi: 10.1039/C8TA00875B – ident: e_1_2_7_16_2 doi: 10.1038/s41560-021-00832-7 – ident: e_1_2_7_105_4 doi: 10.1002/aenm.202300615 – ident: e_1_2_7_125_1 doi: 10.1007/s12274-023-6126-8 – ident: e_1_2_7_5_1 doi: 10.1007/s11426-022-1419-y – ident: e_1_2_7_17_2 doi: 10.1021/acs.jpclett.5b00710 – ident: e_1_2_7_51_1 doi: 10.1016/j.apcatb.2017.06.071 – ident: e_1_2_7_23_2 doi: 10.1021/cr200346z – ident: e_1_2_7_96_1 doi: 10.1002/ange.202110158 – ident: e_1_2_7_47_1 doi: 10.1021/cm401977p – ident: e_1_2_7_58_1 doi: 10.1021/jp408221x – ident: e_1_2_7_82_1 doi: 10.1021/acsenergylett.0c00924 – ident: e_1_2_7_30_2 doi: 10.1021/jacs.8b05134 – ident: e_1_2_7_26_2 doi: 10.1002/anie.202214881 – ident: e_1_2_7_13_1 doi: 10.1002/eom2.12075 – ident: e_1_2_7_60_1 doi: 10.1002/adfm.202305659 – ident: e_1_2_7_70_1 doi: 10.1021/acsami.1c11249 – ident: e_1_2_7_51_3 doi: 10.1021/acsami.6b16856 – ident: e_1_2_7_4_2 doi: 10.1126/science.1136674 – ident: e_1_2_7_31_3 doi: 10.1002/smll.202200173 – ident: e_1_2_7_117_1 doi: 10.1021/acsenergylett.2c00207 – ident: e_1_2_7_7_3 doi: 10.1039/D1CS00116G – ident: e_1_2_7_16_1 doi: 10.1016/j.cej.2022.140376 – ident: e_1_2_7_76_1 doi: 10.1002/aenm.202204231 – ident: e_1_2_7_8_3 doi: 10.1038/s41557-020-0481-9 – ident: e_1_2_7_21_2 doi: 10.1002/cnl2.8 – ident: e_1_2_7_10_1 doi: 10.1038/186003a0 – ident: e_1_2_7_29_1 doi: 10.1002/adfm.202107260 – ident: e_1_2_7_83_1 doi: 10.1016/j.mtphys.2021.100586 – ident: e_1_2_7_77_2 doi: 10.1006/jcat.2001.3275 – ident: e_1_2_7_30_1 doi: 10.1016/j.apcatb.2023.122509 – ident: e_1_2_7_94_1 doi: 10.1002/ange.202305447 – ident: e_1_2_7_105_1 doi: 10.1093/nsr/nwz019 – ident: e_1_2_7_9_2 doi: 10.1038/s41467-023-36322-5 – ident: e_1_2_7_43_2 doi: 10.1002/adma.201907879 – ident: e_1_2_7_95_1 doi: 10.1002/cite.201400064 – ident: e_1_2_7_116_1 doi: 10.1002/adma.202304646 – ident: e_1_2_7_16_3 doi: 10.1021/acscatal.2c06228 – ident: e_1_2_7_76_2 doi: 10.1007/s12274-022-4747-y – ident: e_1_2_7_70_2 doi: 10.1007/s12274-022-4863-8 – ident: e_1_2_7_38_1 doi: 10.1002/adfm.202214613 – ident: e_1_2_7_75_1 doi: 10.1002/anie.202101522 – ident: e_1_2_7_92_2 doi: 10.1038/s41467-021-21901-1 – ident: e_1_2_7_119_1 doi: 10.31635/ccschem.023.202302903 – ident: e_1_2_7_25_2 doi: 10.1002/anie.202104001 – ident: e_1_2_7_53_2 doi: 10.1007/s11426-021-9967-9 – ident: e_1_2_7_40_1 doi: 10.1002/cey2.279 – ident: e_1_2_7_50_2 doi: 10.1039/D2EE01149B – ident: e_1_2_7_29_3 doi: 10.1002/anie.202219230 – ident: e_1_2_7_41_1 doi: 10.1007/s40820-022-00832-6 |
SSID | ssj0000491033 |
Score | 2.6339593 |
SecondaryResourceType | review_article |
Snippet | The development of industry and agriculture has been accompanied by an artificially imbalanced nitrogen cycle, which threatens human health and ecological... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Catalytic activity Chemical reduction C─N coupling electrocatalysis Electrocatalysts electrosynthesis Industrial development Metal oxides Nitric oxide Nitrogen nitrogen cycle Oxidation Oxygen oxygen vacancy engineering |
Title | Oxygen Vacancies‐Rich Metal Oxide for Electrocatalytic Nitrogen Cycle |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202303027 https://www.proquest.com/docview/2910077701 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1614-6840 dateEnd: 20241001 omitProxy: false ssIdentifier: ssj0000491033 issn: 1614-6832 databaseCode: ADMLS dateStart: 20130501 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BeoED4ikKBe0BiUNl2KztXfsYlZQKkfRAiyIu1r6sRkIuoomUcOIn8Bv5Jcw-nYYiCodY9ma9tnc-j3dmZ75F6AVo_JJpRTKdC5uSw2UmGZM2wQcQU2oQu01OnkzZ0WnxblbO-nBbl12ykK_UtyvzSv5HqlAGcrVZsv8g2dQoFMA-yBe2IGHYXkvGx6s1_Lf_USi3xu5Filyw6fL7E2MTHY9Xc-2Jvcd-xRvnsFlbntbpHA5tAwfr2HDko42RAcanBsKw1j9PP5HjogBmc3G-gl8fJGDCJH6fYXa4DDW7dHufzpa9Iz_4q8-WsLcOPODBDUGLDTeE15wg9YxVwVlpNss8H1NSt8U2rH7T4p4VVpjOUgWAjWTnVvvvVZyj3_qMpeBCT8RMG3t-k86_iXYoZ4wO0M7ozeT9h-SIAxNpSHKXiBEfIZJ7Evr68k1cHrz0FsmmXeMGJid30Z1gUeCRh8c9dMN099HtDZ7JB-itBwpOQPn5_YeFCHYQwQ4iGCCCtyGCI0Swg8hDdHo4Pjk4ysIKGpmCcSHPWDkUw5ZUula50i2V8F62eZ2butZVpUxLCl0XFVOKCCbAdmiZrE0liOKFIqDtH6FBd96Zxwi3BamFkVSXShZc5VCNaqW4IaVUkg93URa7plGBXt6ucvK5uVoeu-hlqv_FE6v8seZe7OkmvHwXDa1teA_nBC5MXe__pZVmNJ5O0tGTa1_9KbrVw30PDRZfl-YZjEMX8nlA0i-q_IJ7 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxygen+Vacancies%E2%80%90Rich+Metal+Oxide+for+Electrocatalytic+Nitrogen+Cycle&rft.jtitle=Advanced+energy+materials&rft.au=Wei%2C+Xiaoxiao&rft.au=Chen%2C+Chen&rft.au=Fu%2C+Xian%E2%80%90Zhu&rft.au=Wang%2C+Shuangyin&rft.date=2024-01-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1002%2Faenm.202303027&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_202303027 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |