Oxygen Vacancies‐Rich Metal Oxide for Electrocatalytic Nitrogen Cycle

The development of industry and agriculture has been accompanied by an artificially imbalanced nitrogen cycle, which threatens human health and ecological environments. Electrocatalytic systems have emerged as a sustainable way of converting nitrogen‐containing molecules into high value‐added chemic...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 14; no. 1
Main Authors Wei, Xiaoxiao, Chen, Chen, Fu, Xian‐Zhu, Wang, Shuangyin
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.01.2024
Subjects
Online AccessGet full text
ISSN1614-6832
1614-6840
DOI10.1002/aenm.202303027

Cover

Abstract The development of industry and agriculture has been accompanied by an artificially imbalanced nitrogen cycle, which threatens human health and ecological environments. Electrocatalytic systems have emerged as a sustainable way of converting nitrogen‐containing molecules into high value‐added chemicals. However, the construction of high‐performance electrocatalysts remains challenging. The development of oxygen vacancy engineering strategy has promoted more research efforts to explore the structure‐activity relationship between catalytic activity and oxygen vacancies. This review systematically summarizes the recent development of oxygen vacancies‐rich metal oxides for electro‐catalyzing nitrogen cycling systems, involving electrocatalytic nitrate reduction reaction, nitric oxide reduction reaction, nitrogen reduction reaction, C─N coupling, urea oxidation reaction, and nitrogen oxidation reaction. First, the construction methods and characterization methods of oxygen vacancies are summarized. Then, the effect of oxygen vacancy on electrocatalytic activity of metal oxides is discussed in terms of regulating the electronic structures of electrocatalysts, improving the electroconductivity of catalysts, lowing the energy barrier, and strengthening adsorption and activation of intermediate species. Finally, future directions for oxygen vacancy engineering and electrocatalytic nitrogen cycle are anticipated. The applications of oxygen vacancy (Ov)‐rich metal oxides in the reactions related to the electrocatalytic nitrogen cycle are reviewed, involving the nitrate reduction reaction, nitric oxide reduction reaction, nitrogen reduction reaction, C‐N coupling reaction, urea oxidation reaction and nitrogen oxidation reaction. Ov engineering promotes the activity and stability of metal oxides by optimizing the adsorption of reactants and pivotal intermediate species.
AbstractList The development of industry and agriculture has been accompanied by an artificially imbalanced nitrogen cycle, which threatens human health and ecological environments. Electrocatalytic systems have emerged as a sustainable way of converting nitrogen‐containing molecules into high value‐added chemicals. However, the construction of high‐performance electrocatalysts remains challenging. The development of oxygen vacancy engineering strategy has promoted more research efforts to explore the structure‐activity relationship between catalytic activity and oxygen vacancies. This review systematically summarizes the recent development of oxygen vacancies‐rich metal oxides for electro‐catalyzing nitrogen cycling systems, involving electrocatalytic nitrate reduction reaction, nitric oxide reduction reaction, nitrogen reduction reaction, C─N coupling, urea oxidation reaction, and nitrogen oxidation reaction. First, the construction methods and characterization methods of oxygen vacancies are summarized. Then, the effect of oxygen vacancy on electrocatalytic activity of metal oxides is discussed in terms of regulating the electronic structures of electrocatalysts, improving the electroconductivity of catalysts, lowing the energy barrier, and strengthening adsorption and activation of intermediate species. Finally, future directions for oxygen vacancy engineering and electrocatalytic nitrogen cycle are anticipated. The applications of oxygen vacancy (Ov)‐rich metal oxides in the reactions related to the electrocatalytic nitrogen cycle are reviewed, involving the nitrate reduction reaction, nitric oxide reduction reaction, nitrogen reduction reaction, C‐N coupling reaction, urea oxidation reaction and nitrogen oxidation reaction. Ov engineering promotes the activity and stability of metal oxides by optimizing the adsorption of reactants and pivotal intermediate species.
The development of industry and agriculture has been accompanied by an artificially imbalanced nitrogen cycle, which threatens human health and ecological environments. Electrocatalytic systems have emerged as a sustainable way of converting nitrogen‐containing molecules into high value‐added chemicals. However, the construction of high‐performance electrocatalysts remains challenging. The development of oxygen vacancy engineering strategy has promoted more research efforts to explore the structure‐activity relationship between catalytic activity and oxygen vacancies. This review systematically summarizes the recent development of oxygen vacancies‐rich metal oxides for electro‐catalyzing nitrogen cycling systems, involving electrocatalytic nitrate reduction reaction, nitric oxide reduction reaction, nitrogen reduction reaction, C─N coupling, urea oxidation reaction, and nitrogen oxidation reaction. First, the construction methods and characterization methods of oxygen vacancies are summarized. Then, the effect of oxygen vacancy on electrocatalytic activity of metal oxides is discussed in terms of regulating the electronic structures of electrocatalysts, improving the electroconductivity of catalysts, lowing the energy barrier, and strengthening adsorption and activation of intermediate species. Finally, future directions for oxygen vacancy engineering and electrocatalytic nitrogen cycle are anticipated.
Author Wang, Shuangyin
Chen, Chen
Fu, Xian‐Zhu
Wei, Xiaoxiao
Author_xml – sequence: 1
  givenname: Xiaoxiao
  surname: Wei
  fullname: Wei, Xiaoxiao
  organization: Hunan University
– sequence: 2
  givenname: Chen
  surname: Chen
  fullname: Chen, Chen
  email: chenc@hnu.edu.cn
  organization: Hunan University
– sequence: 3
  givenname: Xian‐Zhu
  surname: Fu
  fullname: Fu, Xian‐Zhu
  email: xz.fu@szu.edu.cn
  organization: Shenzhen University
– sequence: 4
  givenname: Shuangyin
  orcidid: 0000-0001-7185-9857
  surname: Wang
  fullname: Wang, Shuangyin
  email: shuangyinwang@hnu.edu.cn
  organization: Hunan University
BookMark eNqFkE1Lw0AQhhepYK29eg54bp3NpsnusZRahX6AqNdlO5nVLWlSNyk2N3-Cv9FfYkqlgiDOZT54nxnmPWetvMiJsUsOfQ4QXhvK1_0QQgECwuSEtXnMo14sI2gdaxGesW5ZrqCJSHEQos0mi139THnwZNDk6Kj8fP-4d_gSzKgyWbDYuZQCW_hgnBFWvkDTjOvKYTB3TbtHRzVmdMFOrclK6n7nDnu8GT-MbnvTxeRuNJz2UPAk6cUDbrgFmSoUmNpwOYhTK5QgpVIpkSxEqYpkjAgmNhLAxktF0gAmEQKXosOuDns3vnjdUlnpVbH1eXNSh81LkCQJ8EYVHVToi7L0ZDW6ylSuyCtvXKY56L1reu-aPrrWYP1f2Ma7tfH134A6AG8uo_oftR6O57Mf9gse5YIc
CitedBy_id crossref_primary_10_1039_D4DT03404J
crossref_primary_10_1021_acs_inorgchem_4c01018
crossref_primary_10_1039_D4RA00927D
crossref_primary_10_1016_j_jece_2024_115143
crossref_primary_10_1016_j_nanoen_2024_110216
crossref_primary_10_1002_adfm_202425503
crossref_primary_10_1002_sus2_226
crossref_primary_10_1007_s40242_024_4118_1
crossref_primary_10_1016_j_jcis_2025_137281
crossref_primary_10_1016_j_jece_2024_114959
crossref_primary_10_1002_idm2_12152
crossref_primary_10_1038_s41467_025_56566_7
crossref_primary_10_1002_aenm_202402970
crossref_primary_10_1016_j_apsusc_2024_160975
crossref_primary_10_1039_D4CS00563E
crossref_primary_10_1016_j_jphotochem_2025_116330
crossref_primary_10_1021_acsnano_4c02231
crossref_primary_10_1002_ece2_72
crossref_primary_10_1016_j_jcis_2024_06_016
crossref_primary_10_12677_MS_2024_142018
crossref_primary_10_1002_adfm_202424142
crossref_primary_10_1021_acssuschemeng_4c07167
crossref_primary_10_1002_ece2_26
crossref_primary_10_1007_s41918_025_00241_4
crossref_primary_10_1002_smll_202400732
crossref_primary_10_1016_j_susmat_2025_e01370
crossref_primary_10_1021_acsami_4c19888
crossref_primary_10_1002_adfm_202408834
crossref_primary_10_1039_D4CS00217B
crossref_primary_10_1021_acsnano_4c03995
crossref_primary_10_1002_adma_202416483
crossref_primary_10_1039_D4SE00565A
crossref_primary_10_1007_s40820_025_01695_3
crossref_primary_10_1016_j_cej_2024_154455
crossref_primary_10_1016_j_jechem_2024_05_001
crossref_primary_10_1016_j_ceramint_2024_10_343
crossref_primary_10_1002_cjoc_202400442
crossref_primary_10_1016_j_apcatb_2024_124837
crossref_primary_10_1016_j_apcatb_2024_124453
crossref_primary_10_1002_adfm_202500351
crossref_primary_10_1016_j_cej_2024_152659
crossref_primary_10_1021_acsanm_4c05946
crossref_primary_10_1021_acs_energyfuels_4c02080
crossref_primary_10_1002_adfm_202315773
crossref_primary_10_1002_cssc_202401301
Cites_doi 10.1002/anie.202300387
10.1038/s41557-023-01163-8
10.1021/jacs.8b07472
10.1021/jp205432r
10.1007/s40843-020-1305-6
10.1016/S0013-4686(00)00678-2
10.1038/s41467-022-35533-6
10.1016/j.cej.2020.127831
10.1002/smll.202205625
10.1021/acsenergylett.0c02074
10.1039/D2TA04611C
10.1021/cr8003696
10.1039/D0TA01346C
10.1016/j.apcatb.2017.02.016
10.1038/srep11712
10.1038/s41893-021-00741-3
10.1021/acscatal.7b03177
10.1016/j.electacta.2022.140757
10.1016/j.ssi.2006.07.045
10.1021/acs.chemrev.9b00613
10.1016/S0269-7491(00)00147-0
10.1002/aenm.202103022
10.1021/acscatal.9b05260
10.1021/acscatal.8b01014
10.1002/cctc.202300076
10.1016/j.susc.2005.08.041
10.1039/D2MH01440H
10.1038/s41929-022-00833-z
10.1039/D1CS00857A
10.1021/acscatal.3c00113
10.1039/C3EE43886D
10.1002/aenm.202003799
10.1016/j.susc.2005.08.015
10.1021/acssuschemeng.1c03353
10.1002/adfm.202306098
10.31635/ccschem.023.202202408
10.1126/science.aar6611
10.1002/adfm.202008533
10.1002/advs.201901970
10.1006/jcat.2001.3275
10.3390/w7010051
10.1039/D0CS00923G
10.1002/aenm.202102389
10.1002/adma.202205814
10.1002/smll.202102396
10.1002/adma.202107185
10.1002/smll.202201343
10.1039/D0EE03903A
10.1016/j.mattod.2019.05.021
10.1016/0043-1354(88)90178-9
10.1016/j.cej.2022.134847
10.1002/anie.202015773
10.1038/s41929-021-00599-w
10.1038/s41467-021-24400-5
10.1007/s12274-022-4147-3
10.1002/adfm.201502217
10.1021/acs.chemmater.2c02043
10.1039/D2SC06599A
10.1073/pnas.2306673120
10.1002/anie.201900167
10.1126/science.287.5457.1474
10.1021/acsnano.2c01956
10.1002/anie.202213711
10.1126/science.1239879
10.1007/s11426-021-1073-5
10.3389/fmats.2019.00260
10.1002/adma.202202222
10.1038/s41467-022-33066-6
10.1021/jacs.2c03452
10.1002/adma.202108180
10.1016/j.scib.2022.08.008
10.1021/acs.est.2c09147
10.1021/acscatal.1c00564
10.1021/jacs.3c06402
10.1016/j.jechem.2021.06.039
10.1080/10408430903368401
10.1007/s12274-023-5384-9
10.26599/NRE.2022.9120010
10.1002/smsc.202100070
10.1021/jacs.2c01245
10.1021/acsnano.2c06747
10.1021/acs.chemrev.0c00396
10.1002/anie.202217449
10.1126/science.aao2109
10.1016/j.apcatb.2022.121879
10.1002/cite.330611023
10.1002/adfm.202109503
10.1063/1.370831
10.1021/acs.jpcc.7b03155
10.1002/adfm.202008983
10.1021/ja808433d
10.1016/j.jcis.2020.05.014
10.1038/s41586-022-05011-6
10.1002/anie.202204541
10.1002/aenm.201700005
10.1002/adfm.201902449
10.1126/science.286.5445.1719
10.1021/acs.inorgchem.9b00007
10.1038/s41467-022-29045-6
10.1039/D3QI00225J
10.1002/smll.202300291
10.1002/adfm.202111084
10.1039/C9CS00159J
10.1002/sstr.202300158
10.1021/acscatal.9b03864
10.1039/D1TA03128G
10.1021/acscatal.3c00333
10.1016/S0961-1290(00)86708-3
10.1002/adfm.201200615
10.1002/adfm.202009070
10.1126/science.1113955
10.1002/smll.202101605
10.1021/jacs.0c00257
10.1016/j.apsusc.2022.156321
10.1002/aenm.202204126
10.1002/adma.202300020
10.1126/science.aac8703
10.1098/rstb.2013.0164
10.1021/acssuschemeng.0c06775
10.1103/PhysRevLett.87.266104
10.1002/smll.202201200
10.1016/j.nanoen.2020.104761
10.1021/acscatal.8b00415
10.1016/S0011-9164(03)00235-2
10.1016/S0360-0564(08)60018-8
10.1021/ie50151a009
10.1002/aenm.202200101
10.1021/acs.jpclett.1c01691
10.1038/s41929-019-0282-y
10.1016/j.xcrp.2021.100378
10.1038/s41467-023-36263-z
10.1103/PhysRevLett.102.026101
10.1039/D0EE03596C
10.1007/s12274-022-5117-5
10.1002/advs.202104183
10.1016/j.apsusc.2021.151807
10.1002/aenm.202201466
10.1002/adfm.202209698
10.1002/anie.202215782
10.1002/aenm.202301730
10.1002/anie.202217635
10.1038/s41467-020-15153-8
10.1002/adma.201405763
10.1038/nrmicro.2018.9
10.1038/s41467-023-38603-5
10.1021/acs.chemrev.9b00439
10.1021/jacs.3c00276
10.1021/acs.est.1c00264
10.1016/j.ceramint.2023.04.141
10.1021/acs.est.2c07661
10.1002/adfm.202214470
10.1016/j.electacta.2022.141333
10.1002/anie.202202604
10.1016/j.joule.2021.05.005
10.1038/s41467-023-37008-8
10.1038/s41467-023-37679-3
10.1002/adfm.202209843
10.1016/j.apcatb.2022.121301
10.1016/j.trac.2019.05.002
10.1002/anie.202107390
10.1002/anie.202009050
10.1002/adfm.202204499
10.1126/science.1186120
10.1039/C8TA00875B
10.1038/s41560-021-00832-7
10.1002/aenm.202300615
10.1007/s12274-023-6126-8
10.1007/s11426-022-1419-y
10.1021/acs.jpclett.5b00710
10.1016/j.apcatb.2017.06.071
10.1021/cr200346z
10.1002/ange.202110158
10.1021/cm401977p
10.1021/jp408221x
10.1021/acsenergylett.0c00924
10.1021/jacs.8b05134
10.1002/anie.202214881
10.1002/eom2.12075
10.1002/adfm.202305659
10.1021/acsami.1c11249
10.1021/acsami.6b16856
10.1126/science.1136674
10.1002/smll.202200173
10.1021/acsenergylett.2c00207
10.1039/D1CS00116G
10.1016/j.cej.2022.140376
10.1002/aenm.202204231
10.1038/s41557-020-0481-9
10.1002/cnl2.8
10.1038/186003a0
10.1002/adfm.202107260
10.1016/j.mtphys.2021.100586
10.1016/j.apcatb.2023.122509
10.1002/ange.202305447
10.1093/nsr/nwz019
10.1038/s41467-023-36322-5
10.1002/adma.201907879
10.1002/cite.201400064
10.1002/adma.202304646
10.1021/acscatal.2c06228
10.1007/s12274-022-4747-y
10.1007/s12274-022-4863-8
10.1002/adfm.202214613
10.1002/anie.202101522
10.1038/s41467-021-21901-1
10.31635/ccschem.023.202302903
10.1002/anie.202104001
10.1007/s11426-021-9967-9
10.1002/cey2.279
10.1039/D2EE01149B
10.1002/anie.202219230
10.1007/s40820-022-00832-6
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202303027
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Aerospace Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202303027
AENM202303027
Genre reviewArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22102054; 21573066; 21902047; 21825201; U1932212; 22250006:22261160640:
– fundername: National Key R&D Program of China
  funderid: 2020YFA0710000
– fundername: the Hunan Provincial Science Fund for Distinguished Young Scholars
  funderid: 2023JJ10002
– fundername: China Postdoctoral Science Foundation
  funderid: BX20200116; 2020M682540
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AAMMB
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
LH4
7SP
7TB
8FD
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3177-651a1f08d9c3cdf2b56df393e99d88cef04d9486cc0a6a800f6b9e8a0c74c0183
ISSN 1614-6832
IngestDate Tue Aug 12 22:25:09 EDT 2025
Thu Apr 24 22:59:50 EDT 2025
Wed Oct 01 02:27:55 EDT 2025
Wed Jan 22 17:14:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3177-651a1f08d9c3cdf2b56df393e99d88cef04d9486cc0a6a800f6b9e8a0c74c0183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7185-9857
PQID 2910077701
PQPubID 886389
PageCount 26
ParticipantIDs proquest_journals_2910077701
crossref_citationtrail_10_1002_aenm_202303027
crossref_primary_10_1002_aenm_202303027
wiley_primary_10_1002_aenm_202303027_AENM202303027
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 1922; 86 14
2018 2017 2017; 223 121 9
2010 2008; 330 320
2020; 10
2022; 22
2023 2001 2023; 16 202 19
2017; 207
2017 2009 2019 2020 2023 2022; 358 131 2 7 14 13
2023 2022; 13 15
2023; 62
2018; 8
2021 2022; 13 15
2001 2005; 87 598
2009 2023 2021 2022; 109 145 50 51
2020; 577
2021 2021; 60 4
2009 2021 2021; 102 60 11
1988 2014; 60 7
2021 2023; 60 13
2022 1997; 134 25
1989; 61
2023; 57
2013 2019; 368 48
2023 2022; 62 13
2022 2023; 34 62
2022 2021 2021; 10 31 55
2011 2022 2022 2020; 115 12 32 8
2022 2012 2020; 13 112 59
2023 2021; 62 9
2022 2022; 34 34
2021 2021 2020 2022; 31 1 12 61
2022 2022; 144 310
2023; 49
2022; 7
2020 2020 2021; 142 8 421
2022; 14
2022; 15
2021; 60
1989 2019; 36 6
2018; 16
2015 2022 2020; 350 15 5
2022; 16
2023 2021; 66 50
2022; 18
2023 2022; 135 13
2022 2023; 12 15
2017; 7
2023; 35
2022 2023; 1 14
2023; 33
2023 2021 2023 2023; 454 6 13
2013 2022; 25 426
2020 2022; 120 5
2023; 5
2019 2020; 31 32
2019 2022 2023 2023; 6 34
2023; 145
2019; 58
2022; 67
2023 2023 2023 2021 2018; 62 10 10 17 6
2018 2022; 140 9
2020 2021 2001; 5 64 46
2022 2021 2022; 32 11 18
2023 2021; 15 12
2013; 16
2018 2022; 360 609
2021 2020; 31 63
2020 2021 2021; 120 121 14
2019 2023 2019; 58 615 29
2019; 116
2006 1999 2005; 177 86 595
2005; 309
2000; 287
2021 2022; 5 1
2023 2018; 328 140
2014; 118
2021; 9
2023; 13
2023; 14
2015; 5
2021; 4
2014 2021 2015 2022; 7 17 25 12
2021; 2
2021 2023 2023; 31 33 62
2023; 120
2023; 16
2022 2021 1999; 578 64 12
2023; 19
2021 2012; 3 22
2013 2022 1999; 341 318 286
2022; 435
2001 2001; 202 46
2009; 34
2021; 14
2022; 144
2020 2022 2022; 11 435 65
2015; 27
2021; 12
2021; 11
2023
2020; 73
2022; 61
1960; 186
2022 2015; 32 6
1988 2001 2003; 22 112 155
2023 2023 2023; 14 5 62
e_1_2_7_3_2
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_19_4
e_1_2_7_19_3
e_1_2_7_19_2
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_11_2
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_116_1
e_1_2_7_94_2
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_23_3
e_1_2_7_23_2
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_79_2
e_1_2_7_56_1
e_1_2_7_79_1
e_1_2_7_105_4
e_1_2_7_4_2
e_1_2_7_4_1
e_1_2_7_105_2
e_1_2_7_105_3
e_1_2_7_105_1
e_1_2_7_82_2
e_1_2_7_82_3
e_1_2_7_82_1
e_1_2_7_120_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_67_1
e_1_2_7_29_1
e_1_2_7_29_2
e_1_2_7_29_3
Hou Q. (e_1_2_7_126_1) 2013; 16
e_1_2_7_117_1
e_1_2_7_93_3
e_1_2_7_93_2
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_70_2
e_1_2_7_24_2
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_32_2
e_1_2_7_32_3
e_1_2_7_55_3
e_1_2_7_78_3
e_1_2_7_55_2
e_1_2_7_78_4
e_1_2_7_78_2
e_1_2_7_78_5
Zhang H. (e_1_2_7_78_1) 2023; 62
e_1_2_7_106_1
e_1_2_7_9_2
e_1_2_7_9_1
e_1_2_7_121_1
e_1_2_7_1_2
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_43_2
e_1_2_7_66_3
e_1_2_7_66_2
e_1_2_7_89_1
e_1_2_7_28_1
e_1_2_7_28_2
e_1_2_7_118_1
Dahab M. F. (e_1_2_7_65_1) 1988; 60
e_1_2_7_92_2
e_1_2_7_110_1
e_1_2_7_25_3
e_1_2_7_92_1
e_1_2_7_25_2
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_31_2
e_1_2_7_31_3
e_1_2_7_54_1
e_1_2_7_77_2
e_1_2_7_77_3
e_1_2_7_39_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_122_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_42_2
e_1_2_7_65_2
e_1_2_7_42_3
e_1_2_7_27_1
e_1_2_7_27_2
e_1_2_7_119_1
e_1_2_7_91_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_30_2
e_1_2_7_76_2
e_1_2_7_53_3
e_1_2_7_53_2
e_1_2_7_38_1
e_1_2_7_108_1
e_1_2_7_7_4
e_1_2_7_7_3
e_1_2_7_7_2
e_1_2_7_7_1
e_1_2_7_100_1
e_1_2_7_123_1
e_1_2_7_100_2
e_1_2_7_15_2
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_87_2
e_1_2_7_64_3
e_1_2_7_64_2
e_1_2_7_26_1
e_1_2_7_26_2
e_1_2_7_49_1
Huang R. (e_1_2_7_61_1) 2023
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_75_2
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_75_1
e_1_2_7_37_1
Yuan X. (e_1_2_7_111_1) 2023; 62
e_1_2_7_109_1
e_1_2_7_8_3
e_1_2_7_8_2
e_1_2_7_8_1
e_1_2_7_101_2
e_1_2_7_124_1
e_1_2_7_16_4
Zhou J. (e_1_2_7_81_1) 2023; 62
e_1_2_7_16_3
e_1_2_7_101_1
e_1_2_7_16_2
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_86_2
e_1_2_7_63_1
e_1_2_7_86_1
e_1_2_7_48_1
e_1_2_7_8_4
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_51_3
e_1_2_7_51_2
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_3
e_1_2_7_20_2
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_36_2
e_1_2_7_36_3
e_1_2_7_36_4
e_1_2_7_5_2
e_1_2_7_5_1
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_17_2
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_47_2
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_50_2
e_1_2_7_50_1
e_1_2_7_50_3
e_1_2_7_96_2
e_1_2_7_96_1
e_1_2_7_21_2
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_6_1
e_1_2_7_18_6
e_1_2_7_18_5
e_1_2_7_18_4
e_1_2_7_6_2
e_1_2_7_18_3
e_1_2_7_103_1
e_1_2_7_18_2
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_2
e_1_2_7_69_1
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_95_2
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_34_2
e_1_2_7_34_3
e_1_2_7_57_3
e_1_2_7_57_2
References_xml – volume: 18
  year: 2022
  publication-title: Small
– volume: 7 17 25 12
  start-page: 2535 5799
  year: 2014 2021 2015 2022
  publication-title: Energy Environ. Sci. Small Adv. Funct. Mater. Adv. Energy Mater.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 66 50
  start-page: 1052 3640
  year: 2023 2021
  publication-title: Sci China Chem Chem. Soc. Rev.
– volume: 328 140
  year: 2023 2018
  publication-title: Appl Catal B J. Am. Chem. Soc.
– volume: 2
  year: 2021
  publication-title: Cell Rep. Phys. Sci.
– volume: 8
  start-page: 1
  year: 2018
  publication-title: ACS Catal.
– volume: 5 1
  start-page: 1704 6
  year: 2021 2022
  publication-title: Joule Carbon Neutralization
– volume: 36 6
  start-page: 173 260
  year: 1989 2019
  publication-title: Adv. Catal. Front. Mater.
– volume: 120 5
  start-page: 5308 798
  year: 2020 2022
  publication-title: Chem. Rev. Nat. Catal.
– volume: 578 64 12
  start-page: 953 24
  year: 2022 2021 1999
  publication-title: Appl. Surf. Sci. Sci China Chem III‐Vs Review
– volume: 120 121 14
  start-page: 4056 882 1928
  year: 2020 2021 2021
  publication-title: Chem. Rev. Chem. Rev. Energy Environ. Sci.
– volume: 25 426
  start-page: 4690
  year: 2013 2022
  publication-title: Chem. Mater. Electrochim. Acta
– volume: 8
  start-page: 7113
  year: 2018
  publication-title: ACS Catal.
– volume: 5 64 46
  start-page: 2095 1493 923
  year: 2020 2021 2001
  publication-title: ACS Energy Lett. Sci China Chem Electrochim. Acta
– volume: 223 121 9
  start-page: 91
  year: 2018 2017 2017
  publication-title: Appl Catal B J. Phys. Chem. C ACS Appl. Mater. Interfaces
– volume: 368 48
  start-page: 5658
  year: 2013 2019
  publication-title: Philos Trans R Soc Lond B Biol Sci Chem. Soc. Rev.
– volume: 454 6 13
  start-page: 642 4021
  year: 2023 2021 2023 2023
  publication-title: Chem. Eng. J. Nat. Energy ACS Catal. Adv. Mater.
– year: 2023
  publication-title: Small Struct.
– volume: 86 14
  start-page: 2180 611
  year: 2014 1922
  publication-title: Chem. Ing. Tech. Ind Eng Chem
– volume: 287
  start-page: 1474
  year: 2000
  publication-title: Science
– volume: 4
  start-page: 868
  year: 2021
  publication-title: Nat. Sustain.
– volume: 186
  start-page: 3
  year: 1960
  publication-title: Nature
– volume: 135 13
  start-page: 5337
  year: 2023 2022
  publication-title: Angew. Chem., Int. Ed. Nat. Commun.
– volume: 14
  start-page: 751
  year: 2023
  publication-title: Nat. Commun.
– volume: 34
  start-page: 89
  year: 2009
  publication-title: Crit. Rev. Solid State Mater. Sci.
– volume: 62 13
  start-page: 7899
  year: 2023 2022
  publication-title: Angew. Chem., Int. Ed. Nat. Commun.
– volume: 134 25
  year: 2022 1997
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 14
  start-page: 1878
  year: 2023
  publication-title: Chem. Sci.
– volume: 10 31 55
  year: 2022 2021 2021
  publication-title: J. Mater. Chem. A Adv. Funct. Mater. Environ. Sci. Technol.
– volume: 22 112 155
  start-page: 679 351 15
  year: 1988 2001 2003
  publication-title: Water Res. Environ. pollut. Desalination
– start-page: 1
  year: 2023
  publication-title: CCS Chem.
– volume: 207
  start-page: 42
  year: 2017
  publication-title: Appl Catal B
– volume: 177 86 595
  start-page: 3069 956 223
  year: 2006 1999 2005
  publication-title: Solid State Ionics J. Appl. Phys. Surf. Sci.
– volume: 350 15 5
  start-page: 417 3275 3848
  year: 2015 2022 2020
  publication-title: Science Energy Environ. Sci. ACS Energy Lett.
– volume: 144 310
  year: 2022 2022
  publication-title: J. Am. Chem. Soc. Appl Catal B
– volume: 5
  year: 2015
  publication-title: Sci. Rep.
– volume: 14 5 62
  start-page: 2870 2617
  year: 2023 2023 2023
  publication-title: Nat. Commun. CCS Chem. Angew. Chem., Int. Ed.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 32 6
  start-page: 1948
  year: 2022 2015
  publication-title: Adv. Funct. Mater. J. Phys. Chem. Lett.
– volume: 31 63
  start-page: 2089
  year: 2021 2020
  publication-title: Adv. Funct. Mater. Sci. China Mater.
– volume: 10
  start-page: 3533
  year: 2020
  publication-title: ACS Catal.
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  year: 2023
  publication-title: Adv. Energy Mater.
– volume: 61
  start-page: 836
  year: 1989
  publication-title: Chem. Ing. Tech.
– year: 2023
  publication-title: Chin. J. Struch. Chem.
– volume: 13 15
  start-page: 8914
  year: 2021 2022
  publication-title: ACS Appl. Mater. Interfaces Nano Res.
– volume: 57
  start-page: 3893
  year: 2023
  publication-title: Environ. Sci. Technol.
– volume: 62
  year: 2023
  publication-title: Angew. Chem., Int. Ed.
– volume: 14
  start-page: 90
  year: 2022
  publication-title: Nano‐Micro Lett.
– volume: 49
  year: 2023
  publication-title: Ceram. Int.
– volume: 435
  year: 2022
  publication-title: Electrochim. Acta
– volume: 577
  start-page: 109
  year: 2020
  publication-title: J. Colloid. Interface. Sci.
– volume: 13
  start-page: 3444
  year: 2023
  publication-title: ACS Catal.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 6 34
  start-page: 730
  year: 2019 2022 2023 2023
  publication-title: Natl Sci Rev Adv. Mater. Adv. Funct. Mater. Adv. Energy Mater.
– volume: 13 112 59
  start-page: 1457 2714
  year: 2022 2012 2020
  publication-title: Nat. Commun. Chem. Rev. Angew. Chem., Int. Ed.
– volume: 16
  year: 2023
  publication-title: Nano Res.
– volume: 58 615 29
  start-page: 4989
  year: 2019 2023 2019
  publication-title: Inorg. Chem. Appl. Surf. Sci. Adv. Funct. Mater.
– volume: 12
  start-page: 6988
  year: 2021
  publication-title: J. Phys. Chem. Lett.
– volume: 12 15
  year: 2022 2023
  publication-title: Adv. Energy Mater. ChemCatChem
– volume: 14
  start-page: 1412
  year: 2023
  publication-title: Nat. Commun.
– volume: 15
  start-page: 5123
  year: 2022
  publication-title: Nano Res.
– volume: 60 13
  start-page: 7297 4091
  year: 2021 2023
  publication-title: Angew. Chem., Int. Ed. ACS Catal.
– volume: 1 14
  start-page: 792
  year: 2022 2023
  publication-title: Nano Res. Energy Nat. Commun.
– volume: 15 12
  start-page: 705 1580
  year: 2023 2021
  publication-title: Nat. Chem. Nat. Commun.
– volume: 11 435 65
  start-page: 1371 623
  year: 2020 2022 2022
  publication-title: Nat. Commun. Chem. Eng. J. J Energy Chem
– volume: 145
  year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 16
  start-page: 263
  year: 2018
  publication-title: Nat. Rev. Microbiol.
– volume: 60 4
  start-page: 322
  year: 2021 2021
  publication-title: Angew Chem Int Ed Engl Nat. Catal.
– volume: 34 34
  year: 2022 2022
  publication-title: Adv. Mater. Adv. Mater.
– volume: 144
  start-page: 9344
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 115 12 32 8
  year: 2011 2022 2022 2020
  publication-title: J. Phys. Chem. C Adv. Energy Mater. Adv. Funct. Mater. ACS Sustainable Chem. Eng.
– volume: 102 60 11
  year: 2009 2021 2021
  publication-title: Phys. Rev. Lett. Angew. Chem., Int. Ed. Adv. Energy Mater.
– volume: 3 22
  start-page: 4557
  year: 2021 2012
  publication-title: EcoMat. Adv. Funct. Mater.
– volume: 34 62
  year: 2022 2023
  publication-title: Chem. Mater. Angew. Chem., Int. Ed.
– volume: 12
  start-page: 4080
  year: 2021
  publication-title: Nat. Commun.
– volume: 27
  start-page: 2589
  year: 2015
  publication-title: Adv. Mater.
– volume: 87 598
  start-page: 226
  year: 2001 2005
  publication-title: Phys. Rev. Lett. Surf. Sci.
– volume: 142 8 421
  start-page: 8383
  year: 2020 2020 2021
  publication-title: J. Am. Chem. Soc. J. Mater. Chem. A Chem. Eng. J.
– volume: 8
  year: 2018
  publication-title: ACS Catal.
– volume: 31 32
  start-page: 47
  year: 2019 2020
  publication-title: Mater. Today Adv. Mater.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 35
  year: 2023
  publication-title: Adv Mater
– volume: 120
  year: 2023
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 60 7
  start-page: 1670 51
  year: 1988 2014
  publication-title: J Water Pollut Control Fed Water
– volume: 202 46
  start-page: 387 923
  year: 2001 2001
  publication-title: J. Catal. Electrochim. Acta
– volume: 109 145 50 51
  start-page: 2209 6899 6720 2710
  year: 2009 2023 2021 2022
  publication-title: Chem. Rev. J. Am. Chem. Soc. Chem. Soc. Rev. Chem. Soc. Rev.
– volume: 358 131 2 7 14 13
  start-page: 1419 3140 590 2040
  year: 2017 2009 2019 2020 2023 2022
  publication-title: Science J. Am. Chem. Soc. Nat. Catal. Adv. Sci. Nat. Commun. Adv. Energy Mater.
– volume: 19
  year: 2023
  publication-title: Small
– volume: 118
  start-page: 3471
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 32 11 18
  start-page: 5614
  year: 2022 2021 2022
  publication-title: Adv. Funct. Mater. ACS Catal. Small
– volume: 14
  start-page: 1176
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 330 320
  start-page: 192 889
  year: 2010 2008
  publication-title: Science Science
– volume: 5
  year: 2023
  publication-title: Carbon Energy
– volume: 140 9
  year: 2018 2022
  publication-title: J. Am. Chem. Soc. Adv. Sci.
– volume: 13 15
  start-page: 8890
  year: 2023 2022
  publication-title: Advan. Energy Mater. Nano Res.
– volume: 16
  start-page: 4664
  year: 2022
  publication-title: Nano Res.
– volume: 67
  start-page: 1763
  year: 2022
  publication-title: Sci. Bull.
– volume: 16
  year: 2022
  publication-title: ACS Nano
– volume: 16
  year: 2013
  publication-title: Acta Phys. Sin.
– volume: 10
  start-page: 1077
  year: 2020
  publication-title: ACS Catal.
– volume: 62 10 10 17 6
  start-page: 2677 2160 7547
  year: 2023 2023 2023 2021 2018
  publication-title: Angew. Chem., Int. Ed. Inorg. Chem. Front. Mater. Horiz. Small J. Mater. Chem. A
– volume: 58
  start-page: 5609
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 7
  start-page: 1187
  year: 2022
  publication-title: ACS Energy Lett.
– volume: 73
  year: 2020
  publication-title: Nano Energy
– volume: 22
  year: 2022
  publication-title: Mater. Today Phys.
– volume: 341 318 286
  start-page: 988 1719
  year: 2013 2022 1999
  publication-title: Science Appl Catal B Science
– volume: 16
  start-page: 8213
  year: 2022
  publication-title: ACS Nano
– volume: 57
  start-page: 2918
  year: 2023
  publication-title: Environ. Sci. Technol.
– volume: 31 1 12 61
  start-page: 717
  year: 2021 2021 2020 2022
  publication-title: Adv. Funct. Mater. Small Sci. Nat. Chem. Angew. Chem., Int. Ed.
– volume: 16 202 19
  start-page: 5857 387
  year: 2023 2001 2023
  publication-title: Nano Res. J. Catal. Small
– volume: 62 9
  year: 2023 2021
  publication-title: Angew. Chem., Int. Ed. ACS Sustainable Chem. Eng.
– volume: 116
  start-page: 102
  year: 2019
  publication-title: TrAC, Trends Anal. Chem.
– volume: 360 609
  start-page: 71
  year: 2018 2022
  publication-title: Science Nature
– volume: 309
  start-page: 713
  year: 2005
  publication-title: Science
– volume: 31 33 62
  year: 2021 2023 2023
  publication-title: Adv. Funct. Mater. Adv. Funct. Mater. Angew. Chem., Int. Ed.
– volume: 11
  year: 2021
  publication-title: Advan. Energy Mater.
– ident: e_1_2_7_93_3
  doi: 10.1002/anie.202300387
– ident: e_1_2_7_92_1
  doi: 10.1038/s41557-023-01163-8
– ident: e_1_2_7_87_1
  doi: 10.1021/jacs.8b07472
– ident: e_1_2_7_36_1
  doi: 10.1021/jp205432r
– ident: e_1_2_7_11_2
  doi: 10.1007/s40843-020-1305-6
– ident: e_1_2_7_82_3
  doi: 10.1016/S0013-4686(00)00678-2
– ident: e_1_2_7_69_2
  doi: 10.1038/s41467-022-35533-6
– ident: e_1_2_7_32_3
  doi: 10.1016/j.cej.2020.127831
– ident: e_1_2_7_110_1
  doi: 10.1002/smll.202205625
– ident: e_1_2_7_50_3
  doi: 10.1021/acsenergylett.0c02074
– ident: e_1_2_7_64_1
  doi: 10.1039/D2TA04611C
– ident: e_1_2_7_7_1
  doi: 10.1021/cr8003696
– ident: e_1_2_7_32_2
  doi: 10.1039/D0TA01346C
– ident: e_1_2_7_68_1
  doi: 10.1016/j.apcatb.2017.02.016
– ident: e_1_2_7_44_1
  doi: 10.1038/srep11712
– ident: e_1_2_7_122_1
  doi: 10.1038/s41893-021-00741-3
– ident: e_1_2_7_103_1
  doi: 10.1021/acscatal.7b03177
– ident: e_1_2_7_47_2
  doi: 10.1016/j.electacta.2022.140757
– ident: e_1_2_7_34_1
  doi: 10.1016/j.ssi.2006.07.045
– ident: e_1_2_7_3_1
  doi: 10.1021/acs.chemrev.9b00613
– ident: e_1_2_7_66_2
  doi: 10.1016/S0269-7491(00)00147-0
– ident: e_1_2_7_86_1
  doi: 10.1002/aenm.202103022
– ident: e_1_2_7_71_1
  doi: 10.1021/acscatal.9b05260
– ident: e_1_2_7_39_1
  doi: 10.1021/acscatal.8b01014
– year: 2023
  ident: e_1_2_7_61_1
  publication-title: Chin. J. Struch. Chem.
– ident: e_1_2_7_86_2
  doi: 10.1002/cctc.202300076
– ident: e_1_2_7_15_2
  doi: 10.1016/j.susc.2005.08.041
– ident: e_1_2_7_78_3
  doi: 10.1039/D2MH01440H
– ident: e_1_2_7_3_2
  doi: 10.1038/s41929-022-00833-z
– ident: e_1_2_7_7_4
  doi: 10.1039/D1CS00857A
– ident: e_1_2_7_100_2
  doi: 10.1021/acscatal.3c00113
– ident: e_1_2_7_19_1
  doi: 10.1039/C3EE43886D
– ident: e_1_2_7_91_1
  doi: 10.1002/aenm.202003799
– ident: e_1_2_7_34_3
  doi: 10.1016/j.susc.2005.08.015
– ident: e_1_2_7_101_2
  doi: 10.1021/acssuschemeng.1c03353
– ident: e_1_2_7_105_3
  doi: 10.1002/adfm.202306098
– ident: e_1_2_7_93_2
  doi: 10.31635/ccschem.023.202202408
– ident: e_1_2_7_6_1
  doi: 10.1126/science.aar6611
– ident: e_1_2_7_64_2
  doi: 10.1002/adfm.202008533
– ident: e_1_2_7_18_4
  doi: 10.1002/advs.201901970
– ident: e_1_2_7_79_1
  doi: 10.1006/jcat.2001.3275
– volume: 60
  start-page: 1670
  year: 1988
  ident: e_1_2_7_65_1
  publication-title: J Water Pollut Control Fed
– ident: e_1_2_7_65_2
  doi: 10.3390/w7010051
– ident: e_1_2_7_5_2
  doi: 10.1039/D0CS00923G
– ident: e_1_2_7_25_3
  doi: 10.1002/aenm.202102389
– ident: e_1_2_7_16_4
  doi: 10.1002/adma.202205814
– ident: e_1_2_7_78_4
  doi: 10.1002/smll.202102396
– ident: e_1_2_7_28_2
  doi: 10.1002/adma.202107185
– ident: e_1_2_7_115_1
  doi: 10.1002/smll.202201343
– ident: e_1_2_7_55_3
  doi: 10.1039/D0EE03903A
– ident: e_1_2_7_43_1
  doi: 10.1016/j.mattod.2019.05.021
– ident: e_1_2_7_66_1
  doi: 10.1016/0043-1354(88)90178-9
– ident: e_1_2_7_42_2
  doi: 10.1016/j.cej.2022.134847
– ident: e_1_2_7_100_1
  doi: 10.1002/anie.202015773
– ident: e_1_2_7_75_2
  doi: 10.1038/s41929-021-00599-w
– ident: e_1_2_7_97_1
  doi: 10.1038/s41467-021-24400-5
– ident: e_1_2_7_62_1
  doi: 10.1007/s12274-022-4147-3
– ident: e_1_2_7_19_3
  doi: 10.1002/adfm.201502217
– ident: e_1_2_7_26_1
  doi: 10.1021/acs.chemmater.2c02043
– ident: e_1_2_7_123_1
  doi: 10.1039/D2SC06599A
– ident: e_1_2_7_112_1
  doi: 10.1073/pnas.2306673120
– ident: e_1_2_7_35_1
  doi: 10.1002/anie.201900167
– ident: e_1_2_7_14_1
  doi: 10.1126/science.287.5457.1474
– ident: e_1_2_7_98_1
  doi: 10.1021/acsnano.2c01956
– ident: e_1_2_7_69_1
  doi: 10.1002/anie.202213711
– ident: e_1_2_7_57_1
  doi: 10.1126/science.1239879
– ident: e_1_2_7_82_2
  doi: 10.1007/s11426-021-1073-5
– ident: e_1_2_7_24_2
  doi: 10.3389/fmats.2019.00260
– ident: e_1_2_7_28_1
  doi: 10.1002/adma.202202222
– ident: e_1_2_7_94_2
  doi: 10.1038/s41467-022-33066-6
– ident: e_1_2_7_27_1
  doi: 10.1021/jacs.2c03452
– ident: e_1_2_7_105_2
  doi: 10.1002/adma.202108180
– ident: e_1_2_7_102_1
  doi: 10.1016/j.scib.2022.08.008
– ident: e_1_2_7_109_1
  doi: 10.1021/acs.est.2c09147
– ident: e_1_2_7_31_2
  doi: 10.1021/acscatal.1c00564
– ident: e_1_2_7_108_1
  doi: 10.1021/jacs.3c06402
– ident: e_1_2_7_42_3
  doi: 10.1016/j.jechem.2021.06.039
– ident: e_1_2_7_22_1
  doi: 10.1080/10408430903368401
– ident: e_1_2_7_77_1
  doi: 10.1007/s12274-023-5384-9
– ident: e_1_2_7_9_1
  doi: 10.26599/NRE.2022.9120010
– ident: e_1_2_7_8_2
  doi: 10.1002/smsc.202100070
– ident: e_1_2_7_85_1
  doi: 10.1021/jacs.2c01245
– ident: e_1_2_7_74_1
  doi: 10.1021/acsnano.2c06747
– ident: e_1_2_7_55_2
  doi: 10.1021/acs.chemrev.0c00396
– ident: e_1_2_7_101_1
  doi: 10.1002/anie.202217449
– ident: e_1_2_7_18_1
  doi: 10.1126/science.aao2109
– ident: e_1_2_7_57_2
  doi: 10.1016/j.apcatb.2022.121879
– ident: e_1_2_7_67_1
  doi: 10.1002/cite.330611023
– volume: 62
  year: 2023
  ident: e_1_2_7_78_1
  publication-title: Angew. Chem., Int. Ed.
– volume: 16
  year: 2013
  ident: e_1_2_7_126_1
  publication-title: Acta Phys. Sin.
– ident: e_1_2_7_17_1
  doi: 10.1002/adfm.202109503
– ident: e_1_2_7_34_2
  doi: 10.1063/1.370831
– ident: e_1_2_7_51_2
  doi: 10.1021/acs.jpcc.7b03155
– ident: e_1_2_7_96_2
– ident: e_1_2_7_8_1
  doi: 10.1002/adfm.202008983
– ident: e_1_2_7_18_2
  doi: 10.1021/ja808433d
– ident: e_1_2_7_120_1
  doi: 10.1016/j.jcis.2020.05.014
– ident: e_1_2_7_6_2
  doi: 10.1038/s41586-022-05011-6
– ident: e_1_2_7_8_4
  doi: 10.1002/anie.202204541
– ident: e_1_2_7_59_1
  doi: 10.1002/aenm.201700005
– ident: e_1_2_7_20_3
  doi: 10.1002/adfm.201902449
– ident: e_1_2_7_57_3
  doi: 10.1126/science.286.5445.1719
– ident: e_1_2_7_20_1
  doi: 10.1021/acs.inorgchem.9b00007
– ident: e_1_2_7_23_1
  doi: 10.1038/s41467-022-29045-6
– ident: e_1_2_7_78_2
  doi: 10.1039/D3QI00225J
– ident: e_1_2_7_77_3
  doi: 10.1002/smll.202300291
– ident: e_1_2_7_31_1
  doi: 10.1002/adfm.202111084
– ident: e_1_2_7_1_2
  doi: 10.1039/C9CS00159J
– ident: e_1_2_7_114_1
  doi: 10.1002/sstr.202300158
– ident: e_1_2_7_113_1
  doi: 10.1021/acscatal.9b03864
– ident: e_1_2_7_107_1
  doi: 10.1039/D1TA03128G
– ident: e_1_2_7_52_1
  doi: 10.1021/acscatal.3c00333
– ident: e_1_2_7_53_3
  doi: 10.1016/S0961-1290(00)86708-3
– ident: e_1_2_7_13_2
  doi: 10.1002/adfm.201200615
– ident: e_1_2_7_11_1
  doi: 10.1002/adfm.202009070
– ident: e_1_2_7_12_1
  doi: 10.1126/science.1113955
– ident: e_1_2_7_19_2
  doi: 10.1002/smll.202101605
– ident: e_1_2_7_32_1
  doi: 10.1021/jacs.0c00257
– ident: e_1_2_7_20_2
  doi: 10.1016/j.apsusc.2022.156321
– ident: e_1_2_7_18_6
  doi: 10.1002/aenm.202204126
– ident: e_1_2_7_121_1
  doi: 10.1002/adma.202300020
– ident: e_1_2_7_50_1
  doi: 10.1126/science.aac8703
– ident: e_1_2_7_1_1
  doi: 10.1098/rstb.2013.0164
– ident: e_1_2_7_36_4
  doi: 10.1021/acssuschemeng.0c06775
– ident: e_1_2_7_15_1
  doi: 10.1103/PhysRevLett.87.266104
– ident: e_1_2_7_89_1
  doi: 10.1002/smll.202201200
– ident: e_1_2_7_33_1
  doi: 10.1016/j.nanoen.2020.104761
– ident: e_1_2_7_49_1
  doi: 10.1021/acscatal.8b00415
– ident: e_1_2_7_66_3
  doi: 10.1016/S0011-9164(03)00235-2
– ident: e_1_2_7_24_1
  doi: 10.1016/S0360-0564(08)60018-8
– ident: e_1_2_7_95_2
  doi: 10.1021/ie50151a009
– ident: e_1_2_7_36_2
  doi: 10.1002/aenm.202200101
– ident: e_1_2_7_79_2
  doi: 10.1016/S0013-4686(00)00678-2
– ident: e_1_2_7_80_1
  doi: 10.1021/acs.jpclett.1c01691
– ident: e_1_2_7_18_3
  doi: 10.1038/s41929-019-0282-y
– ident: e_1_2_7_99_1
  doi: 10.1016/j.xcrp.2021.100378
– ident: e_1_2_7_56_1
  doi: 10.1038/s41467-023-36263-z
– ident: e_1_2_7_25_1
  doi: 10.1103/PhysRevLett.102.026101
– ident: e_1_2_7_84_1
  doi: 10.1039/D0EE03596C
– ident: e_1_2_7_88_1
  doi: 10.1007/s12274-022-5117-5
– ident: e_1_2_7_87_2
  doi: 10.1002/advs.202104183
– ident: e_1_2_7_53_1
  doi: 10.1016/j.apsusc.2021.151807
– ident: e_1_2_7_19_4
  doi: 10.1002/aenm.202201466
– ident: e_1_2_7_104_1
  doi: 10.1002/adfm.202209698
– ident: e_1_2_7_73_1
  doi: 10.1002/anie.202215782
– ident: e_1_2_7_63_1
  doi: 10.1002/aenm.202301730
– volume: 62
  year: 2023
  ident: e_1_2_7_81_1
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_7_106_1
  doi: 10.1002/anie.202217635
– ident: e_1_2_7_42_1
  doi: 10.1038/s41467-020-15153-8
– ident: e_1_2_7_45_1
  doi: 10.1002/adma.201405763
– volume: 62
  year: 2023
  ident: e_1_2_7_111_1
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_7_2_1
  doi: 10.1038/nrmicro.2018.9
– ident: e_1_2_7_93_1
  doi: 10.1038/s41467-023-38603-5
– ident: e_1_2_7_55_1
  doi: 10.1021/acs.chemrev.9b00439
– ident: e_1_2_7_7_2
  doi: 10.1021/jacs.3c00276
– ident: e_1_2_7_64_3
  doi: 10.1021/acs.est.1c00264
– ident: e_1_2_7_118_1
  doi: 10.1016/j.ceramint.2023.04.141
– ident: e_1_2_7_54_1
  doi: 10.1021/acs.est.2c07661
– ident: e_1_2_7_29_2
  doi: 10.1002/adfm.202214470
– ident: e_1_2_7_124_1
  doi: 10.1016/j.electacta.2022.141333
– ident: e_1_2_7_72_1
  doi: 10.1002/anie.202202604
– ident: e_1_2_7_21_1
  doi: 10.1016/j.joule.2021.05.005
– ident: e_1_2_7_37_1
  doi: 10.1038/s41467-023-37008-8
– ident: e_1_2_7_18_5
  doi: 10.1038/s41467-023-37679-3
– ident: e_1_2_7_90_1
  doi: 10.1002/adfm.202209843
– ident: e_1_2_7_27_2
  doi: 10.1016/j.apcatb.2022.121301
– ident: e_1_2_7_46_1
  doi: 10.1016/j.trac.2019.05.002
– ident: e_1_2_7_48_1
  doi: 10.1002/anie.202107390
– ident: e_1_2_7_23_3
  doi: 10.1002/anie.202009050
– ident: e_1_2_7_36_3
  doi: 10.1002/adfm.202204499
– ident: e_1_2_7_4_1
  doi: 10.1126/science.1186120
– ident: e_1_2_7_78_5
  doi: 10.1039/C8TA00875B
– ident: e_1_2_7_16_2
  doi: 10.1038/s41560-021-00832-7
– ident: e_1_2_7_105_4
  doi: 10.1002/aenm.202300615
– ident: e_1_2_7_125_1
  doi: 10.1007/s12274-023-6126-8
– ident: e_1_2_7_5_1
  doi: 10.1007/s11426-022-1419-y
– ident: e_1_2_7_17_2
  doi: 10.1021/acs.jpclett.5b00710
– ident: e_1_2_7_51_1
  doi: 10.1016/j.apcatb.2017.06.071
– ident: e_1_2_7_23_2
  doi: 10.1021/cr200346z
– ident: e_1_2_7_96_1
  doi: 10.1002/ange.202110158
– ident: e_1_2_7_47_1
  doi: 10.1021/cm401977p
– ident: e_1_2_7_58_1
  doi: 10.1021/jp408221x
– ident: e_1_2_7_82_1
  doi: 10.1021/acsenergylett.0c00924
– ident: e_1_2_7_30_2
  doi: 10.1021/jacs.8b05134
– ident: e_1_2_7_26_2
  doi: 10.1002/anie.202214881
– ident: e_1_2_7_13_1
  doi: 10.1002/eom2.12075
– ident: e_1_2_7_60_1
  doi: 10.1002/adfm.202305659
– ident: e_1_2_7_70_1
  doi: 10.1021/acsami.1c11249
– ident: e_1_2_7_51_3
  doi: 10.1021/acsami.6b16856
– ident: e_1_2_7_4_2
  doi: 10.1126/science.1136674
– ident: e_1_2_7_31_3
  doi: 10.1002/smll.202200173
– ident: e_1_2_7_117_1
  doi: 10.1021/acsenergylett.2c00207
– ident: e_1_2_7_7_3
  doi: 10.1039/D1CS00116G
– ident: e_1_2_7_16_1
  doi: 10.1016/j.cej.2022.140376
– ident: e_1_2_7_76_1
  doi: 10.1002/aenm.202204231
– ident: e_1_2_7_8_3
  doi: 10.1038/s41557-020-0481-9
– ident: e_1_2_7_21_2
  doi: 10.1002/cnl2.8
– ident: e_1_2_7_10_1
  doi: 10.1038/186003a0
– ident: e_1_2_7_29_1
  doi: 10.1002/adfm.202107260
– ident: e_1_2_7_83_1
  doi: 10.1016/j.mtphys.2021.100586
– ident: e_1_2_7_77_2
  doi: 10.1006/jcat.2001.3275
– ident: e_1_2_7_30_1
  doi: 10.1016/j.apcatb.2023.122509
– ident: e_1_2_7_94_1
  doi: 10.1002/ange.202305447
– ident: e_1_2_7_105_1
  doi: 10.1093/nsr/nwz019
– ident: e_1_2_7_9_2
  doi: 10.1038/s41467-023-36322-5
– ident: e_1_2_7_43_2
  doi: 10.1002/adma.201907879
– ident: e_1_2_7_95_1
  doi: 10.1002/cite.201400064
– ident: e_1_2_7_116_1
  doi: 10.1002/adma.202304646
– ident: e_1_2_7_16_3
  doi: 10.1021/acscatal.2c06228
– ident: e_1_2_7_76_2
  doi: 10.1007/s12274-022-4747-y
– ident: e_1_2_7_70_2
  doi: 10.1007/s12274-022-4863-8
– ident: e_1_2_7_38_1
  doi: 10.1002/adfm.202214613
– ident: e_1_2_7_75_1
  doi: 10.1002/anie.202101522
– ident: e_1_2_7_92_2
  doi: 10.1038/s41467-021-21901-1
– ident: e_1_2_7_119_1
  doi: 10.31635/ccschem.023.202302903
– ident: e_1_2_7_25_2
  doi: 10.1002/anie.202104001
– ident: e_1_2_7_53_2
  doi: 10.1007/s11426-021-9967-9
– ident: e_1_2_7_40_1
  doi: 10.1002/cey2.279
– ident: e_1_2_7_50_2
  doi: 10.1039/D2EE01149B
– ident: e_1_2_7_29_3
  doi: 10.1002/anie.202219230
– ident: e_1_2_7_41_1
  doi: 10.1007/s40820-022-00832-6
SSID ssj0000491033
Score 2.6339593
SecondaryResourceType review_article
Snippet The development of industry and agriculture has been accompanied by an artificially imbalanced nitrogen cycle, which threatens human health and ecological...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Catalytic activity
Chemical reduction
C─N coupling
electrocatalysis
Electrocatalysts
electrosynthesis
Industrial development
Metal oxides
Nitric oxide
Nitrogen
nitrogen cycle
Oxidation
Oxygen
oxygen vacancy engineering
Title Oxygen Vacancies‐Rich Metal Oxide for Electrocatalytic Nitrogen Cycle
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202303027
https://www.proquest.com/docview/2910077701
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1614-6840
  dateEnd: 20241001
  omitProxy: false
  ssIdentifier: ssj0000491033
  issn: 1614-6832
  databaseCode: ADMLS
  dateStart: 20130501
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BeoED4ikKBe0BiUNl2KztXfsYlZQKkfRAiyIu1r6sRkIuoomUcOIn8Bv5Jcw-nYYiCodY9ma9tnc-j3dmZ75F6AVo_JJpRTKdC5uSw2UmGZM2wQcQU2oQu01OnkzZ0WnxblbO-nBbl12ykK_UtyvzSv5HqlAGcrVZsv8g2dQoFMA-yBe2IGHYXkvGx6s1_Lf_USi3xu5Filyw6fL7E2MTHY9Xc-2Jvcd-xRvnsFlbntbpHA5tAwfr2HDko42RAcanBsKw1j9PP5HjogBmc3G-gl8fJGDCJH6fYXa4DDW7dHufzpa9Iz_4q8-WsLcOPODBDUGLDTeE15wg9YxVwVlpNss8H1NSt8U2rH7T4p4VVpjOUgWAjWTnVvvvVZyj3_qMpeBCT8RMG3t-k86_iXYoZ4wO0M7ozeT9h-SIAxNpSHKXiBEfIZJ7Evr68k1cHrz0FsmmXeMGJid30Z1gUeCRh8c9dMN099HtDZ7JB-itBwpOQPn5_YeFCHYQwQ4iGCCCtyGCI0Swg8hDdHo4Pjk4ysIKGpmCcSHPWDkUw5ZUula50i2V8F62eZ2butZVpUxLCl0XFVOKCCbAdmiZrE0liOKFIqDtH6FBd96Zxwi3BamFkVSXShZc5VCNaqW4IaVUkg93URa7plGBXt6ucvK5uVoeu-hlqv_FE6v8seZe7OkmvHwXDa1teA_nBC5MXe__pZVmNJ5O0tGTa1_9KbrVw30PDRZfl-YZjEMX8nlA0i-q_IJ7
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxygen+Vacancies%E2%80%90Rich+Metal+Oxide+for+Electrocatalytic+Nitrogen+Cycle&rft.jtitle=Advanced+energy+materials&rft.au=Wei%2C+Xiaoxiao&rft.au=Chen%2C+Chen&rft.au=Fu%2C+Xian%E2%80%90Zhu&rft.au=Wang%2C+Shuangyin&rft.date=2024-01-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1002%2Faenm.202303027&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_202303027
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon