Anionic Regulation and Heteroatom Doping of Ni‐Based Electrocatalysts to Boost Biomass Valorization Coupled with Hydrogen Production

Electrocatalytic biomass valorization coupled with hydrogen production provides an efficient and economical way to achieve a zero‐carbon economy. Ni‐based electrocatalysts are promising candidates due to their intrinsic redox capabilities, but the rational design of active Ni site coordination is st...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 14; no. 2
Main Authors Xu, Penghui, Bao, Zhenyu, Zhao, Yujian, Zheng, Lingxia, Lv, Zhuoqing, Shi, Xiaowei, Wang, Hong‐En, Fang, Xiaosheng, Zheng, Huajun
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.01.2024
Subjects
Online AccessGet full text
ISSN1614-6832
1614-6840
DOI10.1002/aenm.202303557

Cover

Abstract Electrocatalytic biomass valorization coupled with hydrogen production provides an efficient and economical way to achieve a zero‐carbon economy. Ni‐based electrocatalysts are promising candidates due to their intrinsic redox capabilities, but the rational design of active Ni site coordination is still a huge challenge. Herein, the combined strategies of surface reconstruction and heteroatom doping are adopted to modify Ni3S2 pre‐catalysts and the obtained bimetallic catalyst exhibits superior electrocatalytic performance toward 5‐hydroxymethylfurfural (HMF) oxidation to 2,5‐furanedicarboxylic acid (FDCA). Specifically, the oxysulfide‐coordinated amorphous NiOOH (NiOOH‐SOx) active phase is in situ constructed following the anionic regulation mechanism, which endows numerous defects and unsaturated sites for anodic HMF oxidation. Cu heteroatom doping further modulates the electronic structure of active sites with abundant Lewis acidic sites, offering advanced capability for HMF adsorption. Several operando characterization techniques (in situ Raman, infrared, and electrochemical impedance spectroscopies) are performed to disclose the reaction pathway and structure‐activity‐potential relationship. Theoretical results further demonstrate that Cu doping and oxyanionic regulation effectively modulate the local coordination environment of Ni sites and correspondingly tailor the intermediate adsorption behavior and then promote the reaction kinetics. Moreover, a two‐electrode system is assembled to pair HMF oxidation with cathode hydrogen production, demonstrating better energy conversion efficiency. Transitional metal doping (Cu, V, Zn, and Fe) and oxyanionic regulation effectively modulate the local coordination environment of Ni sites and correspondingly tailor the HMF and OH adsorption behavior, and finally promote the reaction kinetics. Further pairing with cathode hydrogen production in a two‐electrode electrolyzer demonstrates better energy conversion efficiency.
AbstractList Electrocatalytic biomass valorization coupled with hydrogen production provides an efficient and economical way to achieve a zero‐carbon economy. Ni‐based electrocatalysts are promising candidates due to their intrinsic redox capabilities, but the rational design of active Ni site coordination is still a huge challenge. Herein, the combined strategies of surface reconstruction and heteroatom doping are adopted to modify Ni3S2 pre‐catalysts and the obtained bimetallic catalyst exhibits superior electrocatalytic performance toward 5‐hydroxymethylfurfural (HMF) oxidation to 2,5‐furanedicarboxylic acid (FDCA). Specifically, the oxysulfide‐coordinated amorphous NiOOH (NiOOH‐SOx) active phase is in situ constructed following the anionic regulation mechanism, which endows numerous defects and unsaturated sites for anodic HMF oxidation. Cu heteroatom doping further modulates the electronic structure of active sites with abundant Lewis acidic sites, offering advanced capability for HMF adsorption. Several operando characterization techniques (in situ Raman, infrared, and electrochemical impedance spectroscopies) are performed to disclose the reaction pathway and structure‐activity‐potential relationship. Theoretical results further demonstrate that Cu doping and oxyanionic regulation effectively modulate the local coordination environment of Ni sites and correspondingly tailor the intermediate adsorption behavior and then promote the reaction kinetics. Moreover, a two‐electrode system is assembled to pair HMF oxidation with cathode hydrogen production, demonstrating better energy conversion efficiency. Transitional metal doping (Cu, V, Zn, and Fe) and oxyanionic regulation effectively modulate the local coordination environment of Ni sites and correspondingly tailor the HMF and OH adsorption behavior, and finally promote the reaction kinetics. Further pairing with cathode hydrogen production in a two‐electrode electrolyzer demonstrates better energy conversion efficiency.
Electrocatalytic biomass valorization coupled with hydrogen production provides an efficient and economical way to achieve a zero‐carbon economy. Ni‐based electrocatalysts are promising candidates due to their intrinsic redox capabilities, but the rational design of active Ni site coordination is still a huge challenge. Herein, the combined strategies of surface reconstruction and heteroatom doping are adopted to modify Ni 3 S 2 pre‐catalysts and the obtained bimetallic catalyst exhibits superior electrocatalytic performance toward 5‐hydroxymethylfurfural (HMF) oxidation to 2,5‐furanedicarboxylic acid (FDCA). Specifically, the oxysulfide‐coordinated amorphous NiOOH (NiOOH‐SO x ) active phase is in situ constructed following the anionic regulation mechanism, which endows numerous defects and unsaturated sites for anodic HMF oxidation. Cu heteroatom doping further modulates the electronic structure of active sites with abundant Lewis acidic sites, offering advanced capability for HMF adsorption. Several operando characterization techniques (in situ Raman, infrared, and electrochemical impedance spectroscopies) are performed to disclose the reaction pathway and structure‐activity‐potential relationship. Theoretical results further demonstrate that Cu doping and oxyanionic regulation effectively modulate the local coordination environment of Ni sites and correspondingly tailor the intermediate adsorption behavior and then promote the reaction kinetics. Moreover, a two‐electrode system is assembled to pair HMF oxidation with cathode hydrogen production, demonstrating better energy conversion efficiency.
Electrocatalytic biomass valorization coupled with hydrogen production provides an efficient and economical way to achieve a zero‐carbon economy. Ni‐based electrocatalysts are promising candidates due to their intrinsic redox capabilities, but the rational design of active Ni site coordination is still a huge challenge. Herein, the combined strategies of surface reconstruction and heteroatom doping are adopted to modify Ni3S2 pre‐catalysts and the obtained bimetallic catalyst exhibits superior electrocatalytic performance toward 5‐hydroxymethylfurfural (HMF) oxidation to 2,5‐furanedicarboxylic acid (FDCA). Specifically, the oxysulfide‐coordinated amorphous NiOOH (NiOOH‐SOx) active phase is in situ constructed following the anionic regulation mechanism, which endows numerous defects and unsaturated sites for anodic HMF oxidation. Cu heteroatom doping further modulates the electronic structure of active sites with abundant Lewis acidic sites, offering advanced capability for HMF adsorption. Several operando characterization techniques (in situ Raman, infrared, and electrochemical impedance spectroscopies) are performed to disclose the reaction pathway and structure‐activity‐potential relationship. Theoretical results further demonstrate that Cu doping and oxyanionic regulation effectively modulate the local coordination environment of Ni sites and correspondingly tailor the intermediate adsorption behavior and then promote the reaction kinetics. Moreover, a two‐electrode system is assembled to pair HMF oxidation with cathode hydrogen production, demonstrating better energy conversion efficiency.
Author Zheng, Huajun
Zhao, Yujian
Shi, Xiaowei
Wang, Hong‐En
Bao, Zhenyu
Lv, Zhuoqing
Fang, Xiaosheng
Xu, Penghui
Zheng, Lingxia
Author_xml – sequence: 1
  givenname: Penghui
  surname: Xu
  fullname: Xu, Penghui
  organization: Zhejiang University of Technology
– sequence: 2
  givenname: Zhenyu
  surname: Bao
  fullname: Bao, Zhenyu
  organization: Zhejiang University of Technology
– sequence: 3
  givenname: Yujian
  surname: Zhao
  fullname: Zhao, Yujian
  organization: Zhejiang University of Technology
– sequence: 4
  givenname: Lingxia
  surname: Zheng
  fullname: Zheng, Lingxia
  email: lxzheng@zjut.edu.cn
  organization: Zhejiang University of Technology
– sequence: 5
  givenname: Zhuoqing
  surname: Lv
  fullname: Lv, Zhuoqing
  organization: Zhejiang University of Technology
– sequence: 6
  givenname: Xiaowei
  surname: Shi
  fullname: Shi, Xiaowei
  organization: Zhejiang University of Technology
– sequence: 7
  givenname: Hong‐En
  surname: Wang
  fullname: Wang, Hong‐En
  email: hongen.wang@ynnu.edu.cn
  organization: Yunnan Normal University
– sequence: 8
  givenname: Xiaosheng
  orcidid: 0000-0003-3387-4532
  surname: Fang
  fullname: Fang, Xiaosheng
  email: xshfang@fudan.edu.cn
  organization: Fudan University
– sequence: 9
  givenname: Huajun
  surname: Zheng
  fullname: Zheng, Huajun
  email: zhenghj@zjut.edu.cn
  organization: Zhejiang University of Technology
BookMark eNqFkE9PGzEQxS1EJdKUK2dLPSf13132mKSBIFGKEOK6mqy9wdHGE2yvonDqiTOfkU_ChlRUqoSYg2csv98b-X0lhx69JeSEsyFnTPwA61dDwYRkUuv8gPR4xtUgO1Xs8H2W4ogcx7hkXamCMyl75GnkHXpX0Ru7aBtI3YWCN3Rmkw0ICVf0J66dX1Cs6ZV7-fM8hmgNnTa2SgErSNBsY4o0IR0jxkTHDlcQI72DBoN73FtOsF03HbZx6Z7Otibgwnp6HdC01U7wjXypoYn2-G_vk9uz6e1kNrj8fX4xGV0OKsnzfCC4yeZzObcgpCpkJnSd1eZUyhw4GJ1nxmjBlTZzbXKoi-5ZWVGD4lXRHbJPvu9t1wEfWhtTucQ2-G5jKQoupdJK60413KuqgDEGW5fr4FYQtiVn5S7tcpd2-Z52B6j_gMqlt4-nAK75GCv22MY1dvvJknI0vfr1j30FH3WZzg
CitedBy_id crossref_primary_10_1002_adfm_202424435
crossref_primary_10_1002_tcr_202400238
crossref_primary_10_1002_advs_202410725
crossref_primary_10_1002_adma_202500399
crossref_primary_10_1016_j_chempr_2024_07_015
crossref_primary_10_1016_j_apcatb_2024_124404
crossref_primary_10_1039_D4EE03482A
crossref_primary_10_1002_adfm_202414587
crossref_primary_10_3390_catal14020157
crossref_primary_10_1016_j_jallcom_2025_179863
crossref_primary_10_1039_D4SC03470H
crossref_primary_10_1039_D4YA00302K
crossref_primary_10_1002_cssc_202402605
crossref_primary_10_1002_anie_202410555
crossref_primary_10_1016_j_mser_2024_100829
crossref_primary_10_1002_aenm_202405358
crossref_primary_10_1016_j_apsusc_2025_162401
crossref_primary_10_1016_j_jcis_2025_01_036
crossref_primary_10_1016_j_jelechem_2024_118491
crossref_primary_10_1002_cctc_202400345
crossref_primary_10_1002_cssc_202402197
crossref_primary_10_1039_D4CC04970E
crossref_primary_10_1002_ange_202410555
crossref_primary_10_1016_j_cej_2024_152950
crossref_primary_10_1016_j_apcatb_2024_124979
crossref_primary_10_1021_acs_inorgchem_4c04324
crossref_primary_10_1007_s12274_024_6485_9
crossref_primary_10_1002_adfm_202500351
crossref_primary_10_1016_j_apcatb_2024_124197
crossref_primary_10_1021_acssuschemeng_4c07570
crossref_primary_10_1016_j_jechem_2024_05_021
crossref_primary_10_1021_acs_inorgchem_4c03879
crossref_primary_10_1002_adfm_202405270
crossref_primary_10_1002_cssc_202401487
crossref_primary_10_1016_j_cej_2025_160052
crossref_primary_10_1021_acssuschemeng_4c05495
Cites_doi 10.1039/C9CY01793C
10.1002/adfm.202101532
10.1002/aenm.202301391
10.1002/cssc.201800695
10.1021/acscatal.1c04880
10.1021/acs.chemrev.7b00182
10.1021/acssuschemeng.8b01630
10.1038/nmat4834
10.1002/advs.202200957
10.1021/acs.nanolett.3c00885
10.1002/advs.202205540
10.1002/smll.202201306
10.1002/adma.202304133
10.1039/D2EE01036D
10.1002/smll.201700610
10.1007/s12274-021-3930-x
10.1039/D2TA05532E
10.1021/acs.energyfuels.5b02826
10.1016/j.cej.2022.140975
10.1007/s11426-020-9749-8
10.1039/D2TA00579D
10.1002/adfm.202209386
10.1021/acscatal.0c00007
10.1007/s12274-021-3545-2
10.1002/adfm.202301884
10.1021/jacs.5b08186
10.1002/aenm.202202522
10.1002/anie.201908722
10.1016/j.apcatb.2022.121357
10.1002/anie.202007767
10.1016/j.matt.2022.02.002
10.1038/s41467-023-41588-w
10.1002/adma.202208904
10.1016/j.jtice.2022.104439
10.1002/anie.201806298
10.1021/acsnano.2c10327
10.1002/adfm.202102772
10.1039/b922014c
10.1002/adfm.202206407
10.1038/s41467-022-30670-4
10.1021/acscatal.7b00876
10.1021/jacs.6b07127
10.1021/acscatal.2c03457
10.1002/aenm.202200077
10.1016/j.cplett.2018.07.066
10.1016/j.apcatb.2020.118721
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202303557
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
CrossRef
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202303557
AENM202303557
Genre article
GrantInformation_xml – fundername: Natural Science Foundation of Zhejiang Province
  funderid: LY21B030005
– fundername: Key R&D program of Zhejiang Province
  funderid: 2020C03G2022586
– fundername: NSFC
  funderid: 51702287; 21902143
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
AAESR
AAHQN
AAIHA
AAMMB
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIACR
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
ZZTAW
~S-
31~
AAHHS
AANHP
AASGY
AAYXX
ACBWZ
ACCFJ
ACRPL
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3177-21d6bb3bea23493625f6fd8337a1ad576dd52145db5d7af95f64e2fa41c9a413
ISSN 1614-6832
IngestDate Tue Aug 12 18:14:56 EDT 2025
Thu Apr 24 23:06:04 EDT 2025
Tue Jul 01 01:43:54 EDT 2025
Tue Sep 09 05:06:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3177-21d6bb3bea23493625f6fd8337a1ad576dd52145db5d7af95f64e2fa41c9a413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3387-4532
PQID 2913345455
PQPubID 886389
PageCount 11
ParticipantIDs proquest_journals_2913345455
crossref_primary_10_1002_aenm_202303557
crossref_citationtrail_10_1002_aenm_202303557
wiley_primary_10_1002_aenm_202303557_AENM202303557
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 12
2023; 10
2017; 7
2023; 35
2023; 13
2023; 14
2023; 33
2020; 63
2019; 58
2018; 708
2016; 30
2020; 59
2020; 10
2020; 267
2016; 16
2022; 138
2022; 311
2018; 6
2021; 15
2021; 31
2023; 23
2015; 137
2022; 5
2018; 118
2017; 13
2022; 9
2022; 12
2022; 13
2023; 456
2022; 15
2016; 138
2022; 10
2022; 32
2022; 33
2018; 11
2022; 16
2022; 18
2018; 57
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 15
  start-page: 2987
  year: 2022
  publication-title: Nano Res.
– volume: 5
  start-page: 1305
  year: 2022
  publication-title: Matter
– volume: 33
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 18
  year: 2022
  publication-title: Small
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 118
  start-page: 372
  year: 2018
  publication-title: Chem. Rev.
– volume: 10
  start-page: 5179
  year: 2020
  publication-title: ACS Catal.
– volume: 12
  start-page: 1545
  year: 2022
  publication-title: ACS Catal.
– volume: 10
  year: 2022
  publication-title: J. Mater. Chem. A
– volume: 16
  year: 2022
  publication-title: ACS Nano
– volume: 10
  year: 2023
  publication-title: Adv. Sci.
– volume: 137
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 708
  start-page: 42
  year: 2018
  publication-title: Chem. Phys. Lett.
– volume: 10
  start-page: 2484
  year: 2020
  publication-title: Catal. Sci. Technol.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 7
  start-page: 4564
  year: 2017
  publication-title: ACS Catal.
– volume: 14
  start-page: 5842
  year: 2023
  publication-title: Nat. Commun.
– volume: 13
  year: 2023
  publication-title: Adv. Energy Mater.
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 16
  start-page: 16
  year: 2016
  publication-title: Nat. Mater.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 456
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 15
  start-page: 677
  year: 2021
  publication-title: Nano Res.
– volume: 6
  year: 2018
  publication-title: ACS Sustainable Chem. Eng.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 2547
  year: 2018
  publication-title: ChemSusChem
– volume: 15
  start-page: 3257
  year: 2022
  publication-title: Energ. Environ. Sci.
– volume: 30
  start-page: 2216
  year: 2016
  publication-title: Energ. Fuels
– volume: 13
  start-page: 2916
  year: 2022
  publication-title: Nat. Commun.
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 311
  year: 2022
  publication-title: Appl. Catal. B Environ.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 12
  year: 2022
  publication-title: ACS Catal.
– volume: 23
  start-page: 5027
  year: 2023
  publication-title: Nano Lett.
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 63
  start-page: 980
  year: 2020
  publication-title: Sci. Chi. Chem.
– volume: 12
  start-page: 539
  year: 2010
  publication-title: Green Chem.
– volume: 13
  year: 2017
  publication-title: Small
– volume: 138
  year: 2022
  publication-title: J. Taiwan Inst. Chem. E.
– volume: 267
  year: 2020
  publication-title: Appl. Catal. B Environ.
– ident: e_1_2_7_10_1
  doi: 10.1039/C9CY01793C
– ident: e_1_2_7_26_1
  doi: 10.1002/adfm.202101532
– ident: e_1_2_7_31_1
  doi: 10.1002/aenm.202301391
– ident: e_1_2_7_12_1
  doi: 10.1002/cssc.201800695
– ident: e_1_2_7_16_1
  doi: 10.1021/acscatal.1c04880
– ident: e_1_2_7_3_1
  doi: 10.1021/acs.chemrev.7b00182
– ident: e_1_2_7_11_1
  doi: 10.1021/acssuschemeng.8b01630
– ident: e_1_2_7_1_1
  doi: 10.1038/nmat4834
– ident: e_1_2_7_40_1
  doi: 10.1002/advs.202200957
– ident: e_1_2_7_19_1
  doi: 10.1021/acs.nanolett.3c00885
– ident: e_1_2_7_38_1
  doi: 10.1002/advs.202205540
– ident: e_1_2_7_22_1
  doi: 10.1002/smll.202201306
– ident: e_1_2_7_17_1
  doi: 10.1002/adma.202304133
– ident: e_1_2_7_33_1
  doi: 10.1039/D2EE01036D
– ident: e_1_2_7_35_1
  doi: 10.1002/smll.201700610
– ident: e_1_2_7_43_1
  doi: 10.1007/s12274-021-3930-x
– ident: e_1_2_7_39_1
  doi: 10.1039/D2TA05532E
– ident: e_1_2_7_2_1
  doi: 10.1021/acs.energyfuels.5b02826
– ident: e_1_2_7_36_1
  doi: 10.1016/j.cej.2022.140975
– ident: e_1_2_7_6_1
  doi: 10.1007/s11426-020-9749-8
– ident: e_1_2_7_15_1
  doi: 10.1039/D2TA00579D
– ident: e_1_2_7_24_1
  doi: 10.1002/adfm.202209386
– ident: e_1_2_7_4_1
  doi: 10.1021/acscatal.0c00007
– ident: e_1_2_7_8_1
  doi: 10.1007/s12274-021-3545-2
– ident: e_1_2_7_29_1
  doi: 10.1002/adfm.202301884
– ident: e_1_2_7_20_1
  doi: 10.1021/jacs.5b08186
– ident: e_1_2_7_32_1
  doi: 10.1002/aenm.202202522
– ident: e_1_2_7_45_1
  doi: 10.1002/anie.201908722
– ident: e_1_2_7_18_1
  doi: 10.1016/j.apcatb.2022.121357
– ident: e_1_2_7_37_1
  doi: 10.1002/anie.202007767
– ident: e_1_2_7_9_1
  doi: 10.1016/j.matt.2022.02.002
– ident: e_1_2_7_21_1
  doi: 10.1038/s41467-023-41588-w
– ident: e_1_2_7_30_1
  doi: 10.1002/adma.202208904
– ident: e_1_2_7_44_1
  doi: 10.1016/j.jtice.2022.104439
– ident: e_1_2_7_27_1
  doi: 10.1002/anie.201806298
– ident: e_1_2_7_46_1
  doi: 10.1021/acsnano.2c10327
– ident: e_1_2_7_42_1
  doi: 10.1002/adfm.202102772
– ident: e_1_2_7_7_1
  doi: 10.1039/b922014c
– ident: e_1_2_7_25_1
  doi: 10.1002/adfm.202206407
– ident: e_1_2_7_34_1
  doi: 10.1038/s41467-022-30670-4
– ident: e_1_2_7_14_1
  doi: 10.1021/acscatal.7b00876
– ident: e_1_2_7_41_1
  doi: 10.1021/jacs.6b07127
– ident: e_1_2_7_5_1
  doi: 10.1021/acscatal.2c03457
– ident: e_1_2_7_28_1
  doi: 10.1002/aenm.202200077
– ident: e_1_2_7_13_1
  doi: 10.1016/j.cplett.2018.07.066
– ident: e_1_2_7_23_1
  doi: 10.1016/j.apcatb.2020.118721
SSID ssj0000491033
Score 2.6263247
Snippet Electrocatalytic biomass valorization coupled with hydrogen production provides an efficient and economical way to achieve a zero‐carbon economy. Ni‐based...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Adsorption
anionic regulation
Anodizing
Bimetals
Biomass
biomass valorization
Catalysts
Coordination
coupled hydrogen production
Cu doping
Doping
Electrocatalysts
Electrochemical impedance spectroscopy
Electronic structure
Energy conversion efficiency
HMF oxidation
Hydrogen production
Hydroxymethylfurfural
Nickel sulfide
nickel sulfides
Oxidation
Reaction kinetics
structural reconstruction
Title Anionic Regulation and Heteroatom Doping of Ni‐Based Electrocatalysts to Boost Biomass Valorization Coupled with Hydrogen Production
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202303557
https://www.proquest.com/docview/2913345455
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1614-6840
  dateEnd: 20240930
  omitProxy: false
  ssIdentifier: ssj0000491033
  issn: 1614-6832
  databaseCode: ADMLS
  dateStart: 20130501
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wIHxFMUFuQDgsMq0Div5piFrirUBgmyqHCJ4tjpBu0mZZtIlBMnzvwWfhK_hHHsJN7VwgIXt51aTpT5an8znQdCj92Jb9LMooaZZZZhc8cxqO_aBhf0mo896psiwXkRurND-9XSWQ4GP7Sopbqiz9IvF-aV_I9WQQZ6FVmy_6DZblEQwHvQL4ygYRj_SsdBkTcNbN7IhvJtZPFMhLiUYE2fAD9eq7DmMO_iGvbh5GJ7U9kAp_HfbDdVU-lhvyw3lehPeQKceu9dIsLzZJ6mSF5fH7ex6rMtOy3htkSeAZP1Z3WWG7SBBVxmFgIrlo-jVe-ylrHBxeqozntnauO2_XDEi22tObQb6fv6owZkMWelXAqrz3mi-y6Ifc53cfkOqe3MwCMMd6KcoVyXyXpP3XZua7AlF54SsupswgtRigBsMOBcXn8etjEA4ev44HA-j6PpMnqy_mSITmXiH33VtuUK2iGe65Ih2gleLuZvO88eoNwcW01mR3vPbbXQMXl-9qpn2VBv4uiGUsN0ohvoujJRcCDxdhMNeHELXdMKV95G3xTycI88DMjDPfKwRB4uMxzmP79-bzCHz2MOVyVuMIcV5rCOOawwhwXmcIs53GPuDooOptGLmaE6ehgp8FTPICZzKbUoT4hl-8CdnMzN2MSyvMRMGJi-jDmidD6jDvOSzIevbU6yxDZTHwbrLhoWZcHvIcyclHB7TF04b-DFpJR449Snjs8YSPgIGe2DjVNV7V40XTmOZZ1uEgtFxJ0iRuhpN38t67z8duZuq6dY7QWbmPimZdlgjTgjRBrdXbJKHEzDRffp_p_XfICu9r-eXTSsTmv-ELhwRR8p8P0C-iW6WQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anionic+Regulation+and+Heteroatom+Doping+of+Ni%E2%80%90Based+Electrocatalysts+to+Boost+Biomass+Valorization+Coupled+with+Hydrogen+Production&rft.jtitle=Advanced+energy+materials&rft.au=Xu%2C+Penghui&rft.au=Bao%2C+Zhenyu&rft.au=Zhao%2C+Yujian&rft.au=Zheng%2C+Lingxia&rft.date=2024-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=14&rft.issue=2&rft_id=info:doi/10.1002%2Faenm.202303557&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon