Anionic Regulation and Heteroatom Doping of Ni‐Based Electrocatalysts to Boost Biomass Valorization Coupled with Hydrogen Production
Electrocatalytic biomass valorization coupled with hydrogen production provides an efficient and economical way to achieve a zero‐carbon economy. Ni‐based electrocatalysts are promising candidates due to their intrinsic redox capabilities, but the rational design of active Ni site coordination is st...
Saved in:
Published in | Advanced energy materials Vol. 14; no. 2 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.01.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1614-6832 1614-6840 |
DOI | 10.1002/aenm.202303557 |
Cover
Abstract | Electrocatalytic biomass valorization coupled with hydrogen production provides an efficient and economical way to achieve a zero‐carbon economy. Ni‐based electrocatalysts are promising candidates due to their intrinsic redox capabilities, but the rational design of active Ni site coordination is still a huge challenge. Herein, the combined strategies of surface reconstruction and heteroatom doping are adopted to modify Ni3S2 pre‐catalysts and the obtained bimetallic catalyst exhibits superior electrocatalytic performance toward 5‐hydroxymethylfurfural (HMF) oxidation to 2,5‐furanedicarboxylic acid (FDCA). Specifically, the oxysulfide‐coordinated amorphous NiOOH (NiOOH‐SOx) active phase is in situ constructed following the anionic regulation mechanism, which endows numerous defects and unsaturated sites for anodic HMF oxidation. Cu heteroatom doping further modulates the electronic structure of active sites with abundant Lewis acidic sites, offering advanced capability for HMF adsorption. Several operando characterization techniques (in situ Raman, infrared, and electrochemical impedance spectroscopies) are performed to disclose the reaction pathway and structure‐activity‐potential relationship. Theoretical results further demonstrate that Cu doping and oxyanionic regulation effectively modulate the local coordination environment of Ni sites and correspondingly tailor the intermediate adsorption behavior and then promote the reaction kinetics. Moreover, a two‐electrode system is assembled to pair HMF oxidation with cathode hydrogen production, demonstrating better energy conversion efficiency.
Transitional metal doping (Cu, V, Zn, and Fe) and oxyanionic regulation effectively modulate the local coordination environment of Ni sites and correspondingly tailor the HMF and OH adsorption behavior, and finally promote the reaction kinetics. Further pairing with cathode hydrogen production in a two‐electrode electrolyzer demonstrates better energy conversion efficiency. |
---|---|
AbstractList | Electrocatalytic biomass valorization coupled with hydrogen production provides an efficient and economical way to achieve a zero‐carbon economy. Ni‐based electrocatalysts are promising candidates due to their intrinsic redox capabilities, but the rational design of active Ni site coordination is still a huge challenge. Herein, the combined strategies of surface reconstruction and heteroatom doping are adopted to modify Ni3S2 pre‐catalysts and the obtained bimetallic catalyst exhibits superior electrocatalytic performance toward 5‐hydroxymethylfurfural (HMF) oxidation to 2,5‐furanedicarboxylic acid (FDCA). Specifically, the oxysulfide‐coordinated amorphous NiOOH (NiOOH‐SOx) active phase is in situ constructed following the anionic regulation mechanism, which endows numerous defects and unsaturated sites for anodic HMF oxidation. Cu heteroatom doping further modulates the electronic structure of active sites with abundant Lewis acidic sites, offering advanced capability for HMF adsorption. Several operando characterization techniques (in situ Raman, infrared, and electrochemical impedance spectroscopies) are performed to disclose the reaction pathway and structure‐activity‐potential relationship. Theoretical results further demonstrate that Cu doping and oxyanionic regulation effectively modulate the local coordination environment of Ni sites and correspondingly tailor the intermediate adsorption behavior and then promote the reaction kinetics. Moreover, a two‐electrode system is assembled to pair HMF oxidation with cathode hydrogen production, demonstrating better energy conversion efficiency.
Transitional metal doping (Cu, V, Zn, and Fe) and oxyanionic regulation effectively modulate the local coordination environment of Ni sites and correspondingly tailor the HMF and OH adsorption behavior, and finally promote the reaction kinetics. Further pairing with cathode hydrogen production in a two‐electrode electrolyzer demonstrates better energy conversion efficiency. Electrocatalytic biomass valorization coupled with hydrogen production provides an efficient and economical way to achieve a zero‐carbon economy. Ni‐based electrocatalysts are promising candidates due to their intrinsic redox capabilities, but the rational design of active Ni site coordination is still a huge challenge. Herein, the combined strategies of surface reconstruction and heteroatom doping are adopted to modify Ni 3 S 2 pre‐catalysts and the obtained bimetallic catalyst exhibits superior electrocatalytic performance toward 5‐hydroxymethylfurfural (HMF) oxidation to 2,5‐furanedicarboxylic acid (FDCA). Specifically, the oxysulfide‐coordinated amorphous NiOOH (NiOOH‐SO x ) active phase is in situ constructed following the anionic regulation mechanism, which endows numerous defects and unsaturated sites for anodic HMF oxidation. Cu heteroatom doping further modulates the electronic structure of active sites with abundant Lewis acidic sites, offering advanced capability for HMF adsorption. Several operando characterization techniques (in situ Raman, infrared, and electrochemical impedance spectroscopies) are performed to disclose the reaction pathway and structure‐activity‐potential relationship. Theoretical results further demonstrate that Cu doping and oxyanionic regulation effectively modulate the local coordination environment of Ni sites and correspondingly tailor the intermediate adsorption behavior and then promote the reaction kinetics. Moreover, a two‐electrode system is assembled to pair HMF oxidation with cathode hydrogen production, demonstrating better energy conversion efficiency. Electrocatalytic biomass valorization coupled with hydrogen production provides an efficient and economical way to achieve a zero‐carbon economy. Ni‐based electrocatalysts are promising candidates due to their intrinsic redox capabilities, but the rational design of active Ni site coordination is still a huge challenge. Herein, the combined strategies of surface reconstruction and heteroatom doping are adopted to modify Ni3S2 pre‐catalysts and the obtained bimetallic catalyst exhibits superior electrocatalytic performance toward 5‐hydroxymethylfurfural (HMF) oxidation to 2,5‐furanedicarboxylic acid (FDCA). Specifically, the oxysulfide‐coordinated amorphous NiOOH (NiOOH‐SOx) active phase is in situ constructed following the anionic regulation mechanism, which endows numerous defects and unsaturated sites for anodic HMF oxidation. Cu heteroatom doping further modulates the electronic structure of active sites with abundant Lewis acidic sites, offering advanced capability for HMF adsorption. Several operando characterization techniques (in situ Raman, infrared, and electrochemical impedance spectroscopies) are performed to disclose the reaction pathway and structure‐activity‐potential relationship. Theoretical results further demonstrate that Cu doping and oxyanionic regulation effectively modulate the local coordination environment of Ni sites and correspondingly tailor the intermediate adsorption behavior and then promote the reaction kinetics. Moreover, a two‐electrode system is assembled to pair HMF oxidation with cathode hydrogen production, demonstrating better energy conversion efficiency. |
Author | Zheng, Huajun Zhao, Yujian Shi, Xiaowei Wang, Hong‐En Bao, Zhenyu Lv, Zhuoqing Fang, Xiaosheng Xu, Penghui Zheng, Lingxia |
Author_xml | – sequence: 1 givenname: Penghui surname: Xu fullname: Xu, Penghui organization: Zhejiang University of Technology – sequence: 2 givenname: Zhenyu surname: Bao fullname: Bao, Zhenyu organization: Zhejiang University of Technology – sequence: 3 givenname: Yujian surname: Zhao fullname: Zhao, Yujian organization: Zhejiang University of Technology – sequence: 4 givenname: Lingxia surname: Zheng fullname: Zheng, Lingxia email: lxzheng@zjut.edu.cn organization: Zhejiang University of Technology – sequence: 5 givenname: Zhuoqing surname: Lv fullname: Lv, Zhuoqing organization: Zhejiang University of Technology – sequence: 6 givenname: Xiaowei surname: Shi fullname: Shi, Xiaowei organization: Zhejiang University of Technology – sequence: 7 givenname: Hong‐En surname: Wang fullname: Wang, Hong‐En email: hongen.wang@ynnu.edu.cn organization: Yunnan Normal University – sequence: 8 givenname: Xiaosheng orcidid: 0000-0003-3387-4532 surname: Fang fullname: Fang, Xiaosheng email: xshfang@fudan.edu.cn organization: Fudan University – sequence: 9 givenname: Huajun surname: Zheng fullname: Zheng, Huajun email: zhenghj@zjut.edu.cn organization: Zhejiang University of Technology |
BookMark | eNqFkE9PGzEQxS1EJdKUK2dLPSf13132mKSBIFGKEOK6mqy9wdHGE2yvonDqiTOfkU_ChlRUqoSYg2csv98b-X0lhx69JeSEsyFnTPwA61dDwYRkUuv8gPR4xtUgO1Xs8H2W4ogcx7hkXamCMyl75GnkHXpX0Ru7aBtI3YWCN3Rmkw0ICVf0J66dX1Cs6ZV7-fM8hmgNnTa2SgErSNBsY4o0IR0jxkTHDlcQI72DBoN73FtOsF03HbZx6Z7Otibgwnp6HdC01U7wjXypoYn2-G_vk9uz6e1kNrj8fX4xGV0OKsnzfCC4yeZzObcgpCpkJnSd1eZUyhw4GJ1nxmjBlTZzbXKoi-5ZWVGD4lXRHbJPvu9t1wEfWhtTucQ2-G5jKQoupdJK60413KuqgDEGW5fr4FYQtiVn5S7tcpd2-Z52B6j_gMqlt4-nAK75GCv22MY1dvvJknI0vfr1j30FH3WZzg |
CitedBy_id | crossref_primary_10_1002_adfm_202424435 crossref_primary_10_1002_tcr_202400238 crossref_primary_10_1002_advs_202410725 crossref_primary_10_1002_adma_202500399 crossref_primary_10_1016_j_chempr_2024_07_015 crossref_primary_10_1016_j_apcatb_2024_124404 crossref_primary_10_1039_D4EE03482A crossref_primary_10_1002_adfm_202414587 crossref_primary_10_3390_catal14020157 crossref_primary_10_1016_j_jallcom_2025_179863 crossref_primary_10_1039_D4SC03470H crossref_primary_10_1039_D4YA00302K crossref_primary_10_1002_cssc_202402605 crossref_primary_10_1002_anie_202410555 crossref_primary_10_1016_j_mser_2024_100829 crossref_primary_10_1002_aenm_202405358 crossref_primary_10_1016_j_apsusc_2025_162401 crossref_primary_10_1016_j_jcis_2025_01_036 crossref_primary_10_1016_j_jelechem_2024_118491 crossref_primary_10_1002_cctc_202400345 crossref_primary_10_1002_cssc_202402197 crossref_primary_10_1039_D4CC04970E crossref_primary_10_1002_ange_202410555 crossref_primary_10_1016_j_cej_2024_152950 crossref_primary_10_1016_j_apcatb_2024_124979 crossref_primary_10_1021_acs_inorgchem_4c04324 crossref_primary_10_1007_s12274_024_6485_9 crossref_primary_10_1002_adfm_202500351 crossref_primary_10_1016_j_apcatb_2024_124197 crossref_primary_10_1021_acssuschemeng_4c07570 crossref_primary_10_1016_j_jechem_2024_05_021 crossref_primary_10_1021_acs_inorgchem_4c03879 crossref_primary_10_1002_adfm_202405270 crossref_primary_10_1002_cssc_202401487 crossref_primary_10_1016_j_cej_2025_160052 crossref_primary_10_1021_acssuschemeng_4c05495 |
Cites_doi | 10.1039/C9CY01793C 10.1002/adfm.202101532 10.1002/aenm.202301391 10.1002/cssc.201800695 10.1021/acscatal.1c04880 10.1021/acs.chemrev.7b00182 10.1021/acssuschemeng.8b01630 10.1038/nmat4834 10.1002/advs.202200957 10.1021/acs.nanolett.3c00885 10.1002/advs.202205540 10.1002/smll.202201306 10.1002/adma.202304133 10.1039/D2EE01036D 10.1002/smll.201700610 10.1007/s12274-021-3930-x 10.1039/D2TA05532E 10.1021/acs.energyfuels.5b02826 10.1016/j.cej.2022.140975 10.1007/s11426-020-9749-8 10.1039/D2TA00579D 10.1002/adfm.202209386 10.1021/acscatal.0c00007 10.1007/s12274-021-3545-2 10.1002/adfm.202301884 10.1021/jacs.5b08186 10.1002/aenm.202202522 10.1002/anie.201908722 10.1016/j.apcatb.2022.121357 10.1002/anie.202007767 10.1016/j.matt.2022.02.002 10.1038/s41467-023-41588-w 10.1002/adma.202208904 10.1016/j.jtice.2022.104439 10.1002/anie.201806298 10.1021/acsnano.2c10327 10.1002/adfm.202102772 10.1039/b922014c 10.1002/adfm.202206407 10.1038/s41467-022-30670-4 10.1021/acscatal.7b00876 10.1021/jacs.6b07127 10.1021/acscatal.2c03457 10.1002/aenm.202200077 10.1016/j.cplett.2018.07.066 10.1016/j.apcatb.2020.118721 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202303557 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202303557 AENM202303557 |
Genre | article |
GrantInformation_xml | – fundername: Natural Science Foundation of Zhejiang Province funderid: LY21B030005 – fundername: Key R&D program of Zhejiang Province funderid: 2020C03G2022586 – fundername: NSFC funderid: 51702287; 21902143 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 AAESR AAHQN AAIHA AAMMB AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AENEX AEUYR AEYWJ AFBPY AFFPM AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIACR AIDQK AIDYY AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LH4 LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR ZZTAW ~S- 31~ AAHHS AANHP AASGY AAYXX ACBWZ ACCFJ ACRPL ACYXJ ADNMO ADZOD AEEZP AEQDE AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3177-21d6bb3bea23493625f6fd8337a1ad576dd52145db5d7af95f64e2fa41c9a413 |
ISSN | 1614-6832 |
IngestDate | Tue Aug 12 18:14:56 EDT 2025 Thu Apr 24 23:06:04 EDT 2025 Tue Jul 01 01:43:54 EDT 2025 Tue Sep 09 05:06:18 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3177-21d6bb3bea23493625f6fd8337a1ad576dd52145db5d7af95f64e2fa41c9a413 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3387-4532 |
PQID | 2913345455 |
PQPubID | 886389 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2913345455 crossref_primary_10_1002_aenm_202303557 crossref_citationtrail_10_1002_aenm_202303557 wiley_primary_10_1002_aenm_202303557_AENM202303557 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 12 2023; 10 2017; 7 2023; 35 2023; 13 2023; 14 2023; 33 2020; 63 2019; 58 2018; 708 2016; 30 2020; 59 2020; 10 2020; 267 2016; 16 2022; 138 2022; 311 2018; 6 2021; 15 2021; 31 2023; 23 2015; 137 2022; 5 2018; 118 2017; 13 2022; 9 2022; 12 2022; 13 2023; 456 2022; 15 2016; 138 2022; 10 2022; 32 2022; 33 2018; 11 2022; 16 2022; 18 2018; 57 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 15 start-page: 2987 year: 2022 publication-title: Nano Res. – volume: 5 start-page: 1305 year: 2022 publication-title: Matter – volume: 33 year: 2022 publication-title: Adv. Funct. Mater. – volume: 18 year: 2022 publication-title: Small – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 118 start-page: 372 year: 2018 publication-title: Chem. Rev. – volume: 10 start-page: 5179 year: 2020 publication-title: ACS Catal. – volume: 12 start-page: 1545 year: 2022 publication-title: ACS Catal. – volume: 10 year: 2022 publication-title: J. Mater. Chem. A – volume: 16 year: 2022 publication-title: ACS Nano – volume: 10 year: 2023 publication-title: Adv. Sci. – volume: 137 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 708 start-page: 42 year: 2018 publication-title: Chem. Phys. Lett. – volume: 10 start-page: 2484 year: 2020 publication-title: Catal. Sci. Technol. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 7 start-page: 4564 year: 2017 publication-title: ACS Catal. – volume: 14 start-page: 5842 year: 2023 publication-title: Nat. Commun. – volume: 13 year: 2023 publication-title: Adv. Energy Mater. – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 16 start-page: 16 year: 2016 publication-title: Nat. Mater. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 456 year: 2023 publication-title: Chem. Eng. J. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 15 start-page: 677 year: 2021 publication-title: Nano Res. – volume: 6 year: 2018 publication-title: ACS Sustainable Chem. Eng. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 2547 year: 2018 publication-title: ChemSusChem – volume: 15 start-page: 3257 year: 2022 publication-title: Energ. Environ. Sci. – volume: 30 start-page: 2216 year: 2016 publication-title: Energ. Fuels – volume: 13 start-page: 2916 year: 2022 publication-title: Nat. Commun. – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 311 year: 2022 publication-title: Appl. Catal. B Environ. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 12 year: 2022 publication-title: ACS Catal. – volume: 23 start-page: 5027 year: 2023 publication-title: Nano Lett. – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 63 start-page: 980 year: 2020 publication-title: Sci. Chi. Chem. – volume: 12 start-page: 539 year: 2010 publication-title: Green Chem. – volume: 13 year: 2017 publication-title: Small – volume: 138 year: 2022 publication-title: J. Taiwan Inst. Chem. E. – volume: 267 year: 2020 publication-title: Appl. Catal. B Environ. – ident: e_1_2_7_10_1 doi: 10.1039/C9CY01793C – ident: e_1_2_7_26_1 doi: 10.1002/adfm.202101532 – ident: e_1_2_7_31_1 doi: 10.1002/aenm.202301391 – ident: e_1_2_7_12_1 doi: 10.1002/cssc.201800695 – ident: e_1_2_7_16_1 doi: 10.1021/acscatal.1c04880 – ident: e_1_2_7_3_1 doi: 10.1021/acs.chemrev.7b00182 – ident: e_1_2_7_11_1 doi: 10.1021/acssuschemeng.8b01630 – ident: e_1_2_7_1_1 doi: 10.1038/nmat4834 – ident: e_1_2_7_40_1 doi: 10.1002/advs.202200957 – ident: e_1_2_7_19_1 doi: 10.1021/acs.nanolett.3c00885 – ident: e_1_2_7_38_1 doi: 10.1002/advs.202205540 – ident: e_1_2_7_22_1 doi: 10.1002/smll.202201306 – ident: e_1_2_7_17_1 doi: 10.1002/adma.202304133 – ident: e_1_2_7_33_1 doi: 10.1039/D2EE01036D – ident: e_1_2_7_35_1 doi: 10.1002/smll.201700610 – ident: e_1_2_7_43_1 doi: 10.1007/s12274-021-3930-x – ident: e_1_2_7_39_1 doi: 10.1039/D2TA05532E – ident: e_1_2_7_2_1 doi: 10.1021/acs.energyfuels.5b02826 – ident: e_1_2_7_36_1 doi: 10.1016/j.cej.2022.140975 – ident: e_1_2_7_6_1 doi: 10.1007/s11426-020-9749-8 – ident: e_1_2_7_15_1 doi: 10.1039/D2TA00579D – ident: e_1_2_7_24_1 doi: 10.1002/adfm.202209386 – ident: e_1_2_7_4_1 doi: 10.1021/acscatal.0c00007 – ident: e_1_2_7_8_1 doi: 10.1007/s12274-021-3545-2 – ident: e_1_2_7_29_1 doi: 10.1002/adfm.202301884 – ident: e_1_2_7_20_1 doi: 10.1021/jacs.5b08186 – ident: e_1_2_7_32_1 doi: 10.1002/aenm.202202522 – ident: e_1_2_7_45_1 doi: 10.1002/anie.201908722 – ident: e_1_2_7_18_1 doi: 10.1016/j.apcatb.2022.121357 – ident: e_1_2_7_37_1 doi: 10.1002/anie.202007767 – ident: e_1_2_7_9_1 doi: 10.1016/j.matt.2022.02.002 – ident: e_1_2_7_21_1 doi: 10.1038/s41467-023-41588-w – ident: e_1_2_7_30_1 doi: 10.1002/adma.202208904 – ident: e_1_2_7_44_1 doi: 10.1016/j.jtice.2022.104439 – ident: e_1_2_7_27_1 doi: 10.1002/anie.201806298 – ident: e_1_2_7_46_1 doi: 10.1021/acsnano.2c10327 – ident: e_1_2_7_42_1 doi: 10.1002/adfm.202102772 – ident: e_1_2_7_7_1 doi: 10.1039/b922014c – ident: e_1_2_7_25_1 doi: 10.1002/adfm.202206407 – ident: e_1_2_7_34_1 doi: 10.1038/s41467-022-30670-4 – ident: e_1_2_7_14_1 doi: 10.1021/acscatal.7b00876 – ident: e_1_2_7_41_1 doi: 10.1021/jacs.6b07127 – ident: e_1_2_7_5_1 doi: 10.1021/acscatal.2c03457 – ident: e_1_2_7_28_1 doi: 10.1002/aenm.202200077 – ident: e_1_2_7_13_1 doi: 10.1016/j.cplett.2018.07.066 – ident: e_1_2_7_23_1 doi: 10.1016/j.apcatb.2020.118721 |
SSID | ssj0000491033 |
Score | 2.6263247 |
Snippet | Electrocatalytic biomass valorization coupled with hydrogen production provides an efficient and economical way to achieve a zero‐carbon economy. Ni‐based... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Adsorption anionic regulation Anodizing Bimetals Biomass biomass valorization Catalysts Coordination coupled hydrogen production Cu doping Doping Electrocatalysts Electrochemical impedance spectroscopy Electronic structure Energy conversion efficiency HMF oxidation Hydrogen production Hydroxymethylfurfural Nickel sulfide nickel sulfides Oxidation Reaction kinetics structural reconstruction |
Title | Anionic Regulation and Heteroatom Doping of Ni‐Based Electrocatalysts to Boost Biomass Valorization Coupled with Hydrogen Production |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202303557 https://www.proquest.com/docview/2913345455 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1614-6840 dateEnd: 20240930 omitProxy: false ssIdentifier: ssj0000491033 issn: 1614-6832 databaseCode: ADMLS dateStart: 20130501 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wIHxFMUFuQDgsMq0Div5piFrirUBgmyqHCJ4tjpBu0mZZtIlBMnzvwWfhK_hHHsJN7VwgIXt51aTpT5an8znQdCj92Jb9LMooaZZZZhc8cxqO_aBhf0mo896psiwXkRurND-9XSWQ4GP7Sopbqiz9IvF-aV_I9WQQZ6FVmy_6DZblEQwHvQL4ygYRj_SsdBkTcNbN7IhvJtZPFMhLiUYE2fAD9eq7DmMO_iGvbh5GJ7U9kAp_HfbDdVU-lhvyw3lehPeQKceu9dIsLzZJ6mSF5fH7ex6rMtOy3htkSeAZP1Z3WWG7SBBVxmFgIrlo-jVe-ylrHBxeqozntnauO2_XDEi22tObQb6fv6owZkMWelXAqrz3mi-y6Ifc53cfkOqe3MwCMMd6KcoVyXyXpP3XZua7AlF54SsupswgtRigBsMOBcXn8etjEA4ev44HA-j6PpMnqy_mSITmXiH33VtuUK2iGe65Ih2gleLuZvO88eoNwcW01mR3vPbbXQMXl-9qpn2VBv4uiGUsN0ohvoujJRcCDxdhMNeHELXdMKV95G3xTycI88DMjDPfKwRB4uMxzmP79-bzCHz2MOVyVuMIcV5rCOOawwhwXmcIs53GPuDooOptGLmaE6ehgp8FTPICZzKbUoT4hl-8CdnMzN2MSyvMRMGJi-jDmidD6jDvOSzIevbU6yxDZTHwbrLhoWZcHvIcyclHB7TF04b-DFpJR449Snjs8YSPgIGe2DjVNV7V40XTmOZZ1uEgtFxJ0iRuhpN38t67z8duZuq6dY7QWbmPimZdlgjTgjRBrdXbJKHEzDRffp_p_XfICu9r-eXTSsTmv-ELhwRR8p8P0C-iW6WQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anionic+Regulation+and+Heteroatom+Doping+of+Ni%E2%80%90Based+Electrocatalysts+to+Boost+Biomass+Valorization+Coupled+with+Hydrogen+Production&rft.jtitle=Advanced+energy+materials&rft.au=Xu%2C+Penghui&rft.au=Bao%2C+Zhenyu&rft.au=Zhao%2C+Yujian&rft.au=Zheng%2C+Lingxia&rft.date=2024-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=14&rft.issue=2&rft_id=info:doi/10.1002%2Faenm.202303557&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |