Halogen‐Free On‐Surface Synthesis of Rylene‐Type Graphene Nanoribbons

Graphene nanoribbons (GNRs) are promising building blocks for nanoelectronic and spintronic devices. As a bottom‐up approach, on‐surface synthesis from predefined precursor molecules is widely applied for the fabrication of GNRs with precisely controlled edge structure and width. In order to guide t...

Full description

Saved in:
Bibliographic Details
Published inMacromolecular chemistry and physics Vol. 218; no. 17; pp. 1700155 - n/a
Main Authors Cai, Zeying, She, Limin, He, Yangyong, Wu, Liqin, Cai, Lang, Zhong, Dingyong
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.09.2017
Subjects
Online AccessGet full text
ISSN1022-1352
1521-3935
DOI10.1002/macp.201700155

Cover

Abstract Graphene nanoribbons (GNRs) are promising building blocks for nanoelectronic and spintronic devices. As a bottom‐up approach, on‐surface synthesis from predefined precursor molecules is widely applied for the fabrication of GNRs with precisely controlled edge structure and width. In order to guide the on‐surface reaction in a desired style, most of the chosen precursor molecules are functionalized with halogen atoms, while halogen‐free strategy for GNR synthesis is still challenging so far. Here, the on‐surface synthesis of ultranarrow armchair GNRs with five carbons across the ribbon (5‐aGNRs) on Au(111) surfaces via direct dehydrogenative CC coupling is reported. As the precursor molecule, quaterrylene molecules undergo various pathways of cyclodehydrogenation at submonolayer coverage: Instead of straight GNRs, a large proportion of the reaction products are kinked with an angle of 150°. When increasing the coverage to nearly one monolayer, the selectivity toward the straight GNRs is significantly enhanced. The coverage‐dependent reaction preference is ascribed to the intermolecular steric effect, in which the reaction pathway is constrained by the orientation of the neighboring molecules. Such an intermolecular steric effect is considered a novel approach to guide the on‐surface synthesis toward desired nanostructures. The on‐surface synthesis of rylene‐type grapheme nanoribbons (GNRs) on Au(111) surfaces via direct dehydrogenative CC coupling is reported. The quaterrylene molecules undergo various pathways of cyclodehydrogenation: At submonolayer coverage, predominant reaction products are kinked with an angle of 150°, while the selectivity toward the straight GNRs is significantly enhanced at one monolayer.
AbstractList Graphene nanoribbons (GNRs) are promising building blocks for nanoelectronic and spintronic devices. As a bottom-up approach, on-surface synthesis from predefined precursor molecules is widely applied for the fabrication of GNRs with precisely controlled edge structure and width. In order to guide the on-surface reaction in a desired style, most of the chosen precursor molecules are functionalized with halogen atoms, while halogen-free strategy for GNR synthesis is still challenging so far. Here, the on-surface synthesis of ultranarrow armchair GNRs with five carbons across the ribbon (5-aGNRs) on Au(111) surfaces via direct dehydrogenative CC coupling is reported. As the precursor molecule, quaterrylene molecules undergo various pathways of cyclodehydrogenation at submonolayer coverage: Instead of straight GNRs, a large proportion of the reaction products are kinked with an angle of 150°. When increasing the coverage to nearly one monolayer, the selectivity toward the straight GNRs is significantly enhanced. The coverage-dependent reaction preference is ascribed to the intermolecular steric effect, in which the reaction pathway is constrained by the orientation of the neighboring molecules. Such an intermolecular steric effect is considered a novel approach to guide the on-surface synthesis toward desired nanostructures.
Graphene nanoribbons (GNRs) are promising building blocks for nanoelectronic and spintronic devices. As a bottom‐up approach, on‐surface synthesis from predefined precursor molecules is widely applied for the fabrication of GNRs with precisely controlled edge structure and width. In order to guide the on‐surface reaction in a desired style, most of the chosen precursor molecules are functionalized with halogen atoms, while halogen‐free strategy for GNR synthesis is still challenging so far. Here, the on‐surface synthesis of ultranarrow armchair GNRs with five carbons across the ribbon (5‐aGNRs) on Au(111) surfaces via direct dehydrogenative CC coupling is reported. As the precursor molecule, quaterrylene molecules undergo various pathways of cyclodehydrogenation at submonolayer coverage: Instead of straight GNRs, a large proportion of the reaction products are kinked with an angle of 150°. When increasing the coverage to nearly one monolayer, the selectivity toward the straight GNRs is significantly enhanced. The coverage‐dependent reaction preference is ascribed to the intermolecular steric effect, in which the reaction pathway is constrained by the orientation of the neighboring molecules. Such an intermolecular steric effect is considered a novel approach to guide the on‐surface synthesis toward desired nanostructures. The on‐surface synthesis of rylene‐type grapheme nanoribbons (GNRs) on Au(111) surfaces via direct dehydrogenative CC coupling is reported. The quaterrylene molecules undergo various pathways of cyclodehydrogenation: At submonolayer coverage, predominant reaction products are kinked with an angle of 150°, while the selectivity toward the straight GNRs is significantly enhanced at one monolayer.
Author She, Limin
Cai, Lang
Zhong, Dingyong
Cai, Zeying
He, Yangyong
Wu, Liqin
Author_xml – sequence: 1
  givenname: Zeying
  surname: Cai
  fullname: Cai, Zeying
  organization: Sun Yat‐sen University
– sequence: 2
  givenname: Limin
  surname: She
  fullname: She, Limin
  organization: Sun Yat‐sen University
– sequence: 3
  givenname: Yangyong
  surname: He
  fullname: He, Yangyong
  organization: Sun Yat‐sen University
– sequence: 4
  givenname: Liqin
  surname: Wu
  fullname: Wu, Liqin
  organization: Sun Yat‐sen University
– sequence: 5
  givenname: Lang
  surname: Cai
  fullname: Cai, Lang
  organization: Sun Yat‐sen University
– sequence: 6
  givenname: Dingyong
  surname: Zhong
  fullname: Zhong, Dingyong
  email: dyzhong@mail.sysu.edu.cn
  organization: Sun Yat‐sen University
BookMark eNqFkM1KAzEUhYNUsK1uXQ-4nnqTzF-WpdhWrD-03Yckk7FTpsmYTJHZ-Qg-o0_ilIqCIK7uudzz3QNngHrGGo3QJYYRBiDXO6HqEQGcAuA4PkF9HBMcUkbjXqeBkBDTmJyhgfdbAMiApX10NxeVfdbm4-196rQOHg9qtXeFUDpYtabZaF_6wBbBsq200d113dY6mDlRb7o9eBDGulJKa_w5Oi1E5fXF1xyi5fRmPZmHi8fZ7WS8CBXFaRwKKSCRKmMJZkmUQ5ITLRMpiCQpUzlOZQSMpELEJGJKUakYjrDOVC6yjA7R1fFp7ezLXvuGb-3emS6PY0YjRhMc0c41OrqUs947XfDalTvhWo6BH9rih7b4d1sdEP0CVNmIprSmcaKs_sbYEXstK93-E8Lvx5OnH_YTXgOEBg
CitedBy_id crossref_primary_10_1021_jacs_8b02599
crossref_primary_10_1039_C9NR10942K
crossref_primary_10_1016_j_surfrep_2019_05_001
crossref_primary_10_1021_acs_chemrev_8b00601
crossref_primary_10_3762_bjoc_16_58
crossref_primary_10_1021_acsnano_1c06226
crossref_primary_10_1021_jacs_4c12460
crossref_primary_10_1021_acs_jpcc_8b09533
crossref_primary_10_1039_C8CP01005F
Cites_doi 10.1063/1.478430
10.1002/anie.201209735
10.1021/nn5028642
10.1021/nl4046747
10.1126/science.1150878
10.1038/nature17151
10.1002/anie.201208597
10.1038/nmat1849
10.1038/lsa.2015.14
10.1103/PhysRevLett.108.216801
10.1021/jacs.5b03017
10.1038/srep00983
10.1103/PhysRevLett.117.056101
10.1038/nature04233
10.1021/nl903473p
10.1021/acs.jpclett.5b01154
10.1021/jacs.5b02523
10.1038/nnano.2014.184
10.1038/ncomms10177
10.1021/acs.accounts.5b00168
10.1002/tcr.201402082
10.1021/jp5037475
10.1038/nnano.2014.307
10.1021/ja404039t
10.1021/ja501308s
10.1021/nl0617033
10.1021/acs.jpcc.6b00284
10.1126/science.1211836
10.1038/ncomms2291
10.1063/1.2168446
10.1039/C4CC08299K
10.1039/C4CC05482B
10.1038/ncomms9098
10.1126/science.1102896
10.1038/nature09211
10.1021/ja511995r
10.1021/jp003174b
10.1088/0022-3727/49/14/143001
10.1038/nnano.2012.169
10.1021/nn401948e
10.1021/acsnano.6b04025
10.1021/acs.nanolett.5b01723
10.1021/ja501680n
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SR
7U5
8FD
JG9
L7M
DOI 10.1002/macp.201700155
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3935
EndPage n/a
ExternalDocumentID 10_1002_macp_201700155
MACP201700155
Genre article
GrantInformation_xml – fundername: Natural Science Foundation of China
  funderid: 11374374; 11574403
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
GYXMG
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6T
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
AAYXX
CITATION
7SR
7U5
8FD
JG9
L7M
ID FETCH-LOGICAL-c3175-aba06bc8961964d06d2eb6ba2b279cd17b40927aa5249cc3bc9141e8cda883
IEDL.DBID DR2
ISSN 1022-1352
IngestDate Fri Jul 25 12:10:47 EDT 2025
Wed Oct 01 03:22:07 EDT 2025
Thu Apr 24 23:09:49 EDT 2025
Sun Sep 21 06:19:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3175-aba06bc8961964d06d2eb6ba2b279cd17b40927aa5249cc3bc9141e8cda883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1934936143
PQPubID 2034252
PageCount 7
ParticipantIDs proquest_journals_1934936143
crossref_primary_10_1002_macp_201700155
crossref_citationtrail_10_1002_macp_201700155
wiley_primary_10_1002_macp_201700155_MACP201700155
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2017
2017-09-00
20170901
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: September 2017
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Macromolecular chemistry and physics
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014; 118
2015; 15
2010; 10
2011; 334
2015; 6
2015; 4
2015; 51
2010; 466
2015; 10
2016; 10
2005; 438
2006; 6
2013; 7
2004; 306
2014; 136
2016; 120
2012; 108
2001; 105
2015; 48
2012; 2
2012; 3
2015; 137
2008; 319
2013; 52
2016; 531
1999; 110
2007; 6
2014; 14
2013; 135
2016; 117
2014; 9
2012; 7
2014; 8
2016; 49
2014; 50
2006; 124
Novoselov (10.1002/macp.201700155-BIB0004|macp201700155-cit-0004) 2004; 306
Cai (10.1002/macp.201700155-BIB0017|macp201700155-cit-0017) 2014; 9
Cirera (10.1002/macp.201700155-BIB0029|macp201700155-cit-0029) 2014; 14
Fan (10.1002/macp.201700155-BIB0027|macp201700155-cit-0027) 2014; 118
Dohnálek (10.1002/macp.201700155-BIB0041|macp201700155-cit-0041) 2001; 105
Li (10.1002/macp.201700155-BIB0006|macp201700155-cit-0006) 2008; 319
Huang (10.1002/macp.201700155-BIB0039|macp201700155-cit-0039) 2012; 2
Koch (10.1002/macp.201700155-BIB0007|macp201700155-cit-0007) 2012; 7
Cai (10.1002/macp.201700155-BIB0011|macp201700155-cit-0011) 2010; 466
Kimouche (10.1002/macp.201700155-BIB0021|macp201700155-cit-0021) 2015; 6
Zhang (10.1002/macp.201700155-BIB0015|macp201700155-cit-0015) 2015; 137
Ruffieux (10.1002/macp.201700155-BIB0016|macp201700155-cit-0016) 2016; 531
Sánchez-Sánchez (10.1002/macp.201700155-BIB0020|macp201700155-cit-0020) 2016; 10
Gao (10.1002/macp.201700155-BIB0028|macp201700155-cit-0028) 2013; 52
Chen (10.1002/macp.201700155-BIB0013|macp201700155-cit-0013) 2013; 7
Weckesser (10.1002/macp.201700155-BIB0040|macp201700155-cit-0040) 1999; 110
Silveiro (10.1002/macp.201700155-BIB0008|macp201700155-cit-0008) 2015; 4
Andryushechkin (10.1002/macp.201700155-BIB0038|macp201700155-cit-0038) 2016; 117
Barone (10.1002/macp.201700155-BIB0005|macp201700155-cit-0005) 2006; 6
Celis (10.1002/macp.201700155-BIB0009|macp201700155-cit-0009) 2016; 49
Kawai (10.1002/macp.201700155-BIB0025|macp201700155-cit-0025) 2015; 6
Sun (10.1002/macp.201700155-BIB0030|macp201700155-cit-0030) 2013; 135
Linden (10.1002/macp.201700155-BIB0012|macp201700155-cit-0012) 2012; 108
Palma (10.1002/macp.201700155-BIB0010|macp201700155-cit-0010) 2015; 6
Sun (10.1002/macp.201700155-BIB0032|macp201700155-cit-0032) 2014; 50
Novoselov (10.1002/macp.201700155-BIB0002|macp201700155-cit-0002) 2005; 438
Liu (10.1002/macp.201700155-BIB0022|macp201700155-cit-0022) 2015; 137
Cloke (10.1002/macp.201700155-BIB0026|macp201700155-cit-0026) 2015; 137
Zhang (10.1002/macp.201700155-BIB0036|macp201700155-cit-0036) 2012; 3
Geim (10.1002/macp.201700155-BIB0003|macp201700155-cit-0003) 2007; 6
Vo (10.1002/macp.201700155-BIB0024|macp201700155-cit-0024) 2015; 15
Narita (10.1002/macp.201700155-BIB0019|macp201700155-cit-0019) 2015; 15
Zhou (10.1002/macp.201700155-BIB0031|macp201700155-cit-0031) 2014; 136
Jiang (10.1002/macp.201700155-BIB0037|macp201700155-cit-0037) 2010; 10
Amiaud (10.1002/macp.201700155-BIB0042|macp201700155-cit-0042) 2006; 124
Cai (10.1002/macp.201700155-BIB0035|macp201700155-cit-0035) 2016; 120
Bronner (10.1002/macp.201700155-BIB0018|macp201700155-cit-0018) 2013; 52
Han (10.1002/macp.201700155-BIB0023|macp201700155-cit-0023) 2014; 8
Chen (10.1002/macp.201700155-BIB0014|macp201700155-cit-0014) 2015; 10
Zhong (10.1002/macp.201700155-BIB0043|macp201700155-cit-0043) 2011; 334
Sun (10.1002/macp.201700155-BIB0033|macp201700155-cit-0033) 2015; 51
Fan (10.1002/macp.201700155-BIB0001|macp201700155-cit-0001) 2015; 48
Wiengarten (10.1002/macp.201700155-BIB0034|macp201700155-cit-0034) 2014; 136
References_xml – volume: 49
  start-page: 143001
  year: 2016
  publication-title: J. Phys. D: Appl. Phys.
– volume: 2
  start-page: 983
  year: 2012
  publication-title: Sci. Rep.
– volume: 466
  start-page: 470
  year: 2010
  publication-title: Nature
– volume: 9
  start-page: 896
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 6
  start-page: 10177
  year: 2015
  publication-title: Nat. Commun.
– volume: 6
  start-page: 8098
  year: 2015
  publication-title: Nat. Commun.
– volume: 7
  start-page: 6123
  year: 2013
  publication-title: ACS Nano
– volume: 10
  start-page: 1184
  year: 2010
  publication-title: Nano Lett.
– volume: 137
  start-page: 8872
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 156
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 136
  start-page: 5567
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 6097
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 306
  start-page: 666
  year: 2004
  publication-title: Science
– volume: 52
  start-page: 4422
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 50
  start-page: 11825
  year: 2014
  publication-title: Chem. Commun.
– volume: 319
  start-page: 1229
  year: 2008
  publication-title: Science
– volume: 6
  start-page: 183
  year: 2007
  publication-title: Nat. Mater.
– volume: 7
  start-page: 713
  year: 2012
  publication-title: Nat. Nanotechnol.
– volume: 4
  start-page: e241
  year: 2015
  publication-title: Light: Sci. Appl.
– volume: 117
  start-page: 056101
  year: 2016
  publication-title: Phys. Rev. Lett.
– volume: 105
  start-page: 3747
  year: 2001
  publication-title: J. Phys. Chem. B
– volume: 334
  start-page: 213
  year: 2011
  publication-title: Science
– volume: 15
  start-page: 295
  year: 2015
  publication-title: Chem. Rec.
– volume: 118
  start-page: 13018
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 10
  start-page: 8006
  year: 2016
  publication-title: ACS Nano
– volume: 438
  start-page: 197
  year: 2005
  publication-title: Nature
– volume: 137
  start-page: 4022
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 4024
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 14
  start-page: 1891
  year: 2014
  publication-title: Nano Lett.
– volume: 8
  start-page: 9181
  year: 2014
  publication-title: ACS Nano
– volume: 6
  start-page: 3228
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 15
  start-page: 5770
  year: 2015
  publication-title: Nano Lett.
– volume: 136
  start-page: 9346
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 108
  start-page: 216801
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 6
  start-page: 2748
  year: 2006
  publication-title: Nano Lett.
– volume: 48
  start-page: 2484
  year: 2015
  publication-title: Acc. Chem. Res.
– volume: 135
  start-page: 8448
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 1286
  year: 2012
  publication-title: Nat. Commun.
– volume: 110
  start-page: 5351
  year: 1999
  publication-title: J. Chem. Phys.
– volume: 120
  start-page: 6619
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 531
  start-page: 489
  year: 2016
  publication-title: Nature
– volume: 124
  start-page: 094702
  year: 2006
  publication-title: J. Chem. Phys.
– volume: 51
  start-page: 2836
  year: 2015
  publication-title: Chem. Commun.
– volume: 110
  start-page: 5351
  year: 1999
  ident: 10.1002/macp.201700155-BIB0040|macp201700155-cit-0040
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.478430
– volume: 52
  start-page: 4422
  year: 2013
  ident: 10.1002/macp.201700155-BIB0018|macp201700155-cit-0018
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201209735
– volume: 8
  start-page: 9181
  year: 2014
  ident: 10.1002/macp.201700155-BIB0023|macp201700155-cit-0023
  publication-title: ACS Nano
  doi: 10.1021/nn5028642
– volume: 14
  start-page: 1891
  year: 2014
  ident: 10.1002/macp.201700155-BIB0029|macp201700155-cit-0029
  publication-title: Nano Lett.
  doi: 10.1021/nl4046747
– volume: 319
  start-page: 1229
  year: 2008
  ident: 10.1002/macp.201700155-BIB0006|macp201700155-cit-0006
  publication-title: Science
  doi: 10.1126/science.1150878
– volume: 531
  start-page: 489
  year: 2016
  ident: 10.1002/macp.201700155-BIB0016|macp201700155-cit-0016
  publication-title: Nature
  doi: 10.1038/nature17151
– volume: 52
  start-page: 4024
  year: 2013
  ident: 10.1002/macp.201700155-BIB0028|macp201700155-cit-0028
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201208597
– volume: 6
  start-page: 183
  year: 2007
  ident: 10.1002/macp.201700155-BIB0003|macp201700155-cit-0003
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1849
– volume: 4
  start-page: e241
  year: 2015
  ident: 10.1002/macp.201700155-BIB0008|macp201700155-cit-0008
  publication-title: Light: Sci. Appl.
  doi: 10.1038/lsa.2015.14
– volume: 108
  start-page: 216801
  year: 2012
  ident: 10.1002/macp.201700155-BIB0012|macp201700155-cit-0012
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.216801
– volume: 137
  start-page: 6097
  year: 2015
  ident: 10.1002/macp.201700155-BIB0022|macp201700155-cit-0022
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b03017
– volume: 2
  start-page: 983
  year: 2012
  ident: 10.1002/macp.201700155-BIB0039|macp201700155-cit-0039
  publication-title: Sci. Rep.
  doi: 10.1038/srep00983
– volume: 117
  start-page: 056101
  year: 2016
  ident: 10.1002/macp.201700155-BIB0038|macp201700155-cit-0038
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.056101
– volume: 438
  start-page: 197
  year: 2005
  ident: 10.1002/macp.201700155-BIB0002|macp201700155-cit-0002
  publication-title: Nature
  doi: 10.1038/nature04233
– volume: 10
  start-page: 1184
  year: 2010
  ident: 10.1002/macp.201700155-BIB0037|macp201700155-cit-0037
  publication-title: Nano Lett.
  doi: 10.1021/nl903473p
– volume: 6
  start-page: 3228
  year: 2015
  ident: 10.1002/macp.201700155-BIB0010|macp201700155-cit-0010
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b01154
– volume: 137
  start-page: 8872
  year: 2015
  ident: 10.1002/macp.201700155-BIB0026|macp201700155-cit-0026
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b02523
– volume: 9
  start-page: 896
  year: 2014
  ident: 10.1002/macp.201700155-BIB0017|macp201700155-cit-0017
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.184
– volume: 6
  start-page: 10177
  year: 2015
  ident: 10.1002/macp.201700155-BIB0021|macp201700155-cit-0021
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10177
– volume: 48
  start-page: 2484
  year: 2015
  ident: 10.1002/macp.201700155-BIB0001|macp201700155-cit-0001
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00168
– volume: 15
  start-page: 295
  year: 2015
  ident: 10.1002/macp.201700155-BIB0019|macp201700155-cit-0019
  publication-title: Chem. Rec.
  doi: 10.1002/tcr.201402082
– volume: 118
  start-page: 13018
  year: 2014
  ident: 10.1002/macp.201700155-BIB0027|macp201700155-cit-0027
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp5037475
– volume: 10
  start-page: 156
  year: 2015
  ident: 10.1002/macp.201700155-BIB0014|macp201700155-cit-0014
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.307
– volume: 135
  start-page: 8448
  year: 2013
  ident: 10.1002/macp.201700155-BIB0030|macp201700155-cit-0030
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja404039t
– volume: 136
  start-page: 5567
  year: 2014
  ident: 10.1002/macp.201700155-BIB0031|macp201700155-cit-0031
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja501308s
– volume: 6
  start-page: 2748
  year: 2006
  ident: 10.1002/macp.201700155-BIB0005|macp201700155-cit-0005
  publication-title: Nano Lett.
  doi: 10.1021/nl0617033
– volume: 120
  start-page: 6619
  year: 2016
  ident: 10.1002/macp.201700155-BIB0035|macp201700155-cit-0035
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b00284
– volume: 334
  start-page: 213
  year: 2011
  ident: 10.1002/macp.201700155-BIB0043|macp201700155-cit-0043
  publication-title: Science
  doi: 10.1126/science.1211836
– volume: 3
  start-page: 1286
  year: 2012
  ident: 10.1002/macp.201700155-BIB0036|macp201700155-cit-0036
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2291
– volume: 124
  start-page: 094702
  year: 2006
  ident: 10.1002/macp.201700155-BIB0042|macp201700155-cit-0042
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2168446
– volume: 51
  start-page: 2836
  year: 2015
  ident: 10.1002/macp.201700155-BIB0033|macp201700155-cit-0033
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC08299K
– volume: 50
  start-page: 11825
  year: 2014
  ident: 10.1002/macp.201700155-BIB0032|macp201700155-cit-0032
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC05482B
– volume: 6
  start-page: 8098
  year: 2015
  ident: 10.1002/macp.201700155-BIB0025|macp201700155-cit-0025
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9098
– volume: 306
  start-page: 666
  year: 2004
  ident: 10.1002/macp.201700155-BIB0004|macp201700155-cit-0004
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 466
  start-page: 470
  year: 2010
  ident: 10.1002/macp.201700155-BIB0011|macp201700155-cit-0011
  publication-title: Nature
  doi: 10.1038/nature09211
– volume: 137
  start-page: 4022
  year: 2015
  ident: 10.1002/macp.201700155-BIB0015|macp201700155-cit-0015
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511995r
– volume: 105
  start-page: 3747
  year: 2001
  ident: 10.1002/macp.201700155-BIB0041|macp201700155-cit-0041
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp003174b
– volume: 49
  start-page: 143001
  year: 2016
  ident: 10.1002/macp.201700155-BIB0009|macp201700155-cit-0009
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/49/14/143001
– volume: 7
  start-page: 713
  year: 2012
  ident: 10.1002/macp.201700155-BIB0007|macp201700155-cit-0007
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.169
– volume: 7
  start-page: 6123
  year: 2013
  ident: 10.1002/macp.201700155-BIB0013|macp201700155-cit-0013
  publication-title: ACS Nano
  doi: 10.1021/nn401948e
– volume: 10
  start-page: 8006
  year: 2016
  ident: 10.1002/macp.201700155-BIB0020|macp201700155-cit-0020
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b04025
– volume: 15
  start-page: 5770
  year: 2015
  ident: 10.1002/macp.201700155-BIB0024|macp201700155-cit-0024
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b01723
– volume: 136
  start-page: 9346
  year: 2014
  ident: 10.1002/macp.201700155-BIB0034|macp201700155-cit-0034
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja501680n
SSID ssj0008097
Score 2.257968
Snippet Graphene nanoribbons (GNRs) are promising building blocks for nanoelectronic and spintronic devices. As a bottom‐up approach, on‐surface synthesis from...
Graphene nanoribbons (GNRs) are promising building blocks for nanoelectronic and spintronic devices. As a bottom-up approach, on-surface synthesis from...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1700155
SubjectTerms Chemical synthesis
Coupling (molecular)
Dehydrogenation
Graphene
graphene nanoribbons
intermolecular steric effect
molecular self‐assembly
Nanoribbons
on‐surface synthesis
Reaction products
scanning tunneling microscopy
Selectivity
Title Halogen‐Free On‐Surface Synthesis of Rylene‐Type Graphene Nanoribbons
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmacp.201700155
https://www.proquest.com/docview/1934936143
Volume 218
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1521-3935
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0008097
  issn: 1022-1352
  databaseCode: ADMLS
  dateStart: 20120614
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1022-1352
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1521-3935
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008097
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kF734FqtVchA8pU1203RzLMValKq0Cr2Fmd0tFDWVPg715E_wN_pLnE2a1goi6G2X7IbsY2a-GSbfMHYGgjBoYIzb5-SuBhxDF3UkXSTfgAuwKWM2NNC-CVsPwVWv2vvyF3_GD7EIuFnJSPW1FXDAcWVJGvoMyvJNWn45somkhH0Rpj5VZ8kfJb2suopNWfcJauSsjR6vrE5ftUpLqPkVsKYWp7nFIP_WLNHksTydYFm9fqNx_M9ittnmHI469ez-7LA1k-yy9UZeBW6PXbdsdMckH2_vzZExzq1tdaejPijjdGcJ4cfxYOwM-05nRgbM0FPr2jqXlgib-g6p7-FogEi3e591mhf3jZY7L8DgKgsrXEDwQlQyCi1tl_ZCzQ2GCBx5LVLaryF5h7wGUCUnTimBKvID30ilQUpxwArJMDGHzIGqFpEx0tNVFfQjiQBcCw8FBKBrkSwyN9_9WM2pyW2FjKc4I1Xmsd2feLE_RXa-GP-SkXL8OLKUH2Y8F85xTJg1iAThElFkPD2VX94St-uNu0Xv6C-TjtmGbWfZaSVWmIym5oTgzARP0yv7CfAM7lc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4HODCGzGePSBxKnRJ16VHNDHGY4AGSNyqOMmkCejQHgc48RP4jfwS7HXdAAkhwa1pkyp1nPiz5X4G2NWSMGjonN8U5K6GAiMfbax8JN9ASM0pYxwaqF9Etdvw9K6UZxPyvzAZP8Qo4MY7Y3Be8wbngPTBmDX0URsmnGSCOTKKkzAdRuSsMC5qjBmkVJDVV-Gk9SKBjZy3MRAHX8d_tUtjsPkZsg5sTnUeMJ9tlmpyv9_v4b55-Ubk-K_PWYC5ISL1DjMVWoQJly7BTCUvBLcMZzUO8Lj0_fWt2nHOu-Sr636nqY3zrp9TgpDdVtdrN73GM9kwR0_Zu_WOmQub2h6d4O1OC5EUfAUa1aObSs0f1mDwDSMLX6MOIjQqjpi5ywaRFQ4j1AJFOTa2WEaSuShrXSI_zhiJJi6GRaeM1UrJVZhK26lbA0-XrIydU4EtmbAZK9RaWBmg1KG25VgVwM_Fn5ghOzkXyXhIMl5lkbB8kpF8CrA36v-U8XL82HMzX81kuD-7CcHWMJYETWQBxGBZfnlLUj-sXI1a638ZtAMztZv6eXJ-cnG2AbN8P0tW24SpXqfvtgjd9HB7oL8f6CTyeA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSMCFHVHWHJA4BVI7Se0jKpSyowISt8hjOxICUtTlACc-gW_kS_A0TQtICAlucWJHznjseTOavAHYUtxh0NBaP2XOXQ0Zxj4aKXx0vgHjilLGKDRwdh7Xb8Lj26jIJqR_YXJ-iEHAjXZG77ymDW6fTLo7ZA19VJoIJ4lgzhnFURgPIykoq2-_MWSQEkFeX4WS1ssObBS8jQHb_Tr-q10ags3PkLVnc2ozgMVs81ST-51uB3f0yzcix399zixM9xGpt5er0ByM2GweJqtFIbgFOKlTgMdm769vtZa13gVdXXVbqdLWu3rOHIRs37W9Zuo1np0Ns-4pebfeIXFhu7bnTvBm6w7RKfgiNGoH19W636_B4GtCFr5CFcSohYyJucsEsWEWY1QMWUVqU66gcxBZRanI-XFac9SyHJat0EYJwZdgLGtmdhk8FRkurRWBiXSYSoFKMcMD5CpUpiJFCfxC_Inus5NTkYyHJOdVZgnJJxnIpwTbg_5POS_Hjz3XitVM-vuznTjYGkruoAkvAestyy9vSc72qpeD1spfBm3CxOV-LTk9Oj9ZhSm6neeqrcFYp9W16w7cdHCjp74fojvx_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Halogen%E2%80%90Free+On%E2%80%90Surface+Synthesis+of+Rylene%E2%80%90Type+Graphene+Nanoribbons&rft.jtitle=Macromolecular+chemistry+and+physics&rft.au=Cai%2C+Zeying&rft.au=She%2C+Limin&rft.au=He%2C+Yangyong&rft.au=Wu%2C+Liqin&rft.date=2017-09-01&rft.issn=1022-1352&rft.eissn=1521-3935&rft.volume=218&rft.issue=17&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fmacp.201700155&rft.externalDBID=10.1002%252Fmacp.201700155&rft.externalDocID=MACP201700155
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1352&client=summon