Halogen‐Free On‐Surface Synthesis of Rylene‐Type Graphene Nanoribbons
Graphene nanoribbons (GNRs) are promising building blocks for nanoelectronic and spintronic devices. As a bottom‐up approach, on‐surface synthesis from predefined precursor molecules is widely applied for the fabrication of GNRs with precisely controlled edge structure and width. In order to guide t...
Saved in:
| Published in | Macromolecular chemistry and physics Vol. 218; no. 17; pp. 1700155 - n/a |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Weinheim
Wiley Subscription Services, Inc
01.09.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1022-1352 1521-3935 |
| DOI | 10.1002/macp.201700155 |
Cover
| Abstract | Graphene nanoribbons (GNRs) are promising building blocks for nanoelectronic and spintronic devices. As a bottom‐up approach, on‐surface synthesis from predefined precursor molecules is widely applied for the fabrication of GNRs with precisely controlled edge structure and width. In order to guide the on‐surface reaction in a desired style, most of the chosen precursor molecules are functionalized with halogen atoms, while halogen‐free strategy for GNR synthesis is still challenging so far. Here, the on‐surface synthesis of ultranarrow armchair GNRs with five carbons across the ribbon (5‐aGNRs) on Au(111) surfaces via direct dehydrogenative CC coupling is reported. As the precursor molecule, quaterrylene molecules undergo various pathways of cyclodehydrogenation at submonolayer coverage: Instead of straight GNRs, a large proportion of the reaction products are kinked with an angle of 150°. When increasing the coverage to nearly one monolayer, the selectivity toward the straight GNRs is significantly enhanced. The coverage‐dependent reaction preference is ascribed to the intermolecular steric effect, in which the reaction pathway is constrained by the orientation of the neighboring molecules. Such an intermolecular steric effect is considered a novel approach to guide the on‐surface synthesis toward desired nanostructures.
The on‐surface synthesis of rylene‐type grapheme nanoribbons (GNRs) on Au(111) surfaces via direct dehydrogenative CC coupling is reported. The quaterrylene molecules undergo various pathways of cyclodehydrogenation: At submonolayer coverage, predominant reaction products are kinked with an angle of 150°, while the selectivity toward the straight GNRs is significantly enhanced at one monolayer. |
|---|---|
| AbstractList | Graphene nanoribbons (GNRs) are promising building blocks for nanoelectronic and spintronic devices. As a bottom-up approach, on-surface synthesis from predefined precursor molecules is widely applied for the fabrication of GNRs with precisely controlled edge structure and width. In order to guide the on-surface reaction in a desired style, most of the chosen precursor molecules are functionalized with halogen atoms, while halogen-free strategy for GNR synthesis is still challenging so far. Here, the on-surface synthesis of ultranarrow armchair GNRs with five carbons across the ribbon (5-aGNRs) on Au(111) surfaces via direct dehydrogenative CC coupling is reported. As the precursor molecule, quaterrylene molecules undergo various pathways of cyclodehydrogenation at submonolayer coverage: Instead of straight GNRs, a large proportion of the reaction products are kinked with an angle of 150°. When increasing the coverage to nearly one monolayer, the selectivity toward the straight GNRs is significantly enhanced. The coverage-dependent reaction preference is ascribed to the intermolecular steric effect, in which the reaction pathway is constrained by the orientation of the neighboring molecules. Such an intermolecular steric effect is considered a novel approach to guide the on-surface synthesis toward desired nanostructures. Graphene nanoribbons (GNRs) are promising building blocks for nanoelectronic and spintronic devices. As a bottom‐up approach, on‐surface synthesis from predefined precursor molecules is widely applied for the fabrication of GNRs with precisely controlled edge structure and width. In order to guide the on‐surface reaction in a desired style, most of the chosen precursor molecules are functionalized with halogen atoms, while halogen‐free strategy for GNR synthesis is still challenging so far. Here, the on‐surface synthesis of ultranarrow armchair GNRs with five carbons across the ribbon (5‐aGNRs) on Au(111) surfaces via direct dehydrogenative CC coupling is reported. As the precursor molecule, quaterrylene molecules undergo various pathways of cyclodehydrogenation at submonolayer coverage: Instead of straight GNRs, a large proportion of the reaction products are kinked with an angle of 150°. When increasing the coverage to nearly one monolayer, the selectivity toward the straight GNRs is significantly enhanced. The coverage‐dependent reaction preference is ascribed to the intermolecular steric effect, in which the reaction pathway is constrained by the orientation of the neighboring molecules. Such an intermolecular steric effect is considered a novel approach to guide the on‐surface synthesis toward desired nanostructures. The on‐surface synthesis of rylene‐type grapheme nanoribbons (GNRs) on Au(111) surfaces via direct dehydrogenative CC coupling is reported. The quaterrylene molecules undergo various pathways of cyclodehydrogenation: At submonolayer coverage, predominant reaction products are kinked with an angle of 150°, while the selectivity toward the straight GNRs is significantly enhanced at one monolayer. |
| Author | She, Limin Cai, Lang Zhong, Dingyong Cai, Zeying He, Yangyong Wu, Liqin |
| Author_xml | – sequence: 1 givenname: Zeying surname: Cai fullname: Cai, Zeying organization: Sun Yat‐sen University – sequence: 2 givenname: Limin surname: She fullname: She, Limin organization: Sun Yat‐sen University – sequence: 3 givenname: Yangyong surname: He fullname: He, Yangyong organization: Sun Yat‐sen University – sequence: 4 givenname: Liqin surname: Wu fullname: Wu, Liqin organization: Sun Yat‐sen University – sequence: 5 givenname: Lang surname: Cai fullname: Cai, Lang organization: Sun Yat‐sen University – sequence: 6 givenname: Dingyong surname: Zhong fullname: Zhong, Dingyong email: dyzhong@mail.sysu.edu.cn organization: Sun Yat‐sen University |
| BookMark | eNqFkM1KAzEUhYNUsK1uXQ-4nnqTzF-WpdhWrD-03Yckk7FTpsmYTJHZ-Qg-o0_ilIqCIK7uudzz3QNngHrGGo3QJYYRBiDXO6HqEQGcAuA4PkF9HBMcUkbjXqeBkBDTmJyhgfdbAMiApX10NxeVfdbm4-196rQOHg9qtXeFUDpYtabZaF_6wBbBsq200d113dY6mDlRb7o9eBDGulJKa_w5Oi1E5fXF1xyi5fRmPZmHi8fZ7WS8CBXFaRwKKSCRKmMJZkmUQ5ITLRMpiCQpUzlOZQSMpELEJGJKUakYjrDOVC6yjA7R1fFp7ezLXvuGb-3emS6PY0YjRhMc0c41OrqUs947XfDalTvhWo6BH9rih7b4d1sdEP0CVNmIprSmcaKs_sbYEXstK93-E8Lvx5OnH_YTXgOEBg |
| CitedBy_id | crossref_primary_10_1021_jacs_8b02599 crossref_primary_10_1039_C9NR10942K crossref_primary_10_1016_j_surfrep_2019_05_001 crossref_primary_10_1021_acs_chemrev_8b00601 crossref_primary_10_3762_bjoc_16_58 crossref_primary_10_1021_acsnano_1c06226 crossref_primary_10_1021_jacs_4c12460 crossref_primary_10_1021_acs_jpcc_8b09533 crossref_primary_10_1039_C8CP01005F |
| Cites_doi | 10.1063/1.478430 10.1002/anie.201209735 10.1021/nn5028642 10.1021/nl4046747 10.1126/science.1150878 10.1038/nature17151 10.1002/anie.201208597 10.1038/nmat1849 10.1038/lsa.2015.14 10.1103/PhysRevLett.108.216801 10.1021/jacs.5b03017 10.1038/srep00983 10.1103/PhysRevLett.117.056101 10.1038/nature04233 10.1021/nl903473p 10.1021/acs.jpclett.5b01154 10.1021/jacs.5b02523 10.1038/nnano.2014.184 10.1038/ncomms10177 10.1021/acs.accounts.5b00168 10.1002/tcr.201402082 10.1021/jp5037475 10.1038/nnano.2014.307 10.1021/ja404039t 10.1021/ja501308s 10.1021/nl0617033 10.1021/acs.jpcc.6b00284 10.1126/science.1211836 10.1038/ncomms2291 10.1063/1.2168446 10.1039/C4CC08299K 10.1039/C4CC05482B 10.1038/ncomms9098 10.1126/science.1102896 10.1038/nature09211 10.1021/ja511995r 10.1021/jp003174b 10.1088/0022-3727/49/14/143001 10.1038/nnano.2012.169 10.1021/nn401948e 10.1021/acsnano.6b04025 10.1021/acs.nanolett.5b01723 10.1021/ja501680n |
| ContentType | Journal Article |
| Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | AAYXX CITATION 7SR 7U5 8FD JG9 L7M |
| DOI | 10.1002/macp.201700155 |
| DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3935 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_macp_201700155 MACP201700155 |
| Genre | article |
| GrantInformation_xml | – fundername: Natural Science Foundation of China funderid: 11374374; 11574403 |
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA GYXMG H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6T MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT AAYXX CITATION 7SR 7U5 8FD JG9 L7M |
| ID | FETCH-LOGICAL-c3175-aba06bc8961964d06d2eb6ba2b279cd17b40927aa5249cc3bc9141e8cda883 |
| IEDL.DBID | DR2 |
| ISSN | 1022-1352 |
| IngestDate | Fri Jul 25 12:10:47 EDT 2025 Wed Oct 01 03:22:07 EDT 2025 Thu Apr 24 23:09:49 EDT 2025 Sun Sep 21 06:19:47 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Language | English |
| License | http://doi.wiley.com/10.1002/tdm_license_1.1 http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3175-aba06bc8961964d06d2eb6ba2b279cd17b40927aa5249cc3bc9141e8cda883 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1934936143 |
| PQPubID | 2034252 |
| PageCount | 7 |
| ParticipantIDs | proquest_journals_1934936143 crossref_primary_10_1002_macp_201700155 crossref_citationtrail_10_1002_macp_201700155 wiley_primary_10_1002_macp_201700155_MACP201700155 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | September 2017 2017-09-00 20170901 |
| PublicationDateYYYYMMDD | 2017-09-01 |
| PublicationDate_xml | – month: 09 year: 2017 text: September 2017 |
| PublicationDecade | 2010 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim |
| PublicationTitle | Macromolecular chemistry and physics |
| PublicationYear | 2017 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2014; 118 2015; 15 2010; 10 2011; 334 2015; 6 2015; 4 2015; 51 2010; 466 2015; 10 2016; 10 2005; 438 2006; 6 2013; 7 2004; 306 2014; 136 2016; 120 2012; 108 2001; 105 2015; 48 2012; 2 2012; 3 2015; 137 2008; 319 2013; 52 2016; 531 1999; 110 2007; 6 2014; 14 2013; 135 2016; 117 2014; 9 2012; 7 2014; 8 2016; 49 2014; 50 2006; 124 Novoselov (10.1002/macp.201700155-BIB0004|macp201700155-cit-0004) 2004; 306 Cai (10.1002/macp.201700155-BIB0017|macp201700155-cit-0017) 2014; 9 Cirera (10.1002/macp.201700155-BIB0029|macp201700155-cit-0029) 2014; 14 Fan (10.1002/macp.201700155-BIB0027|macp201700155-cit-0027) 2014; 118 Dohnálek (10.1002/macp.201700155-BIB0041|macp201700155-cit-0041) 2001; 105 Li (10.1002/macp.201700155-BIB0006|macp201700155-cit-0006) 2008; 319 Huang (10.1002/macp.201700155-BIB0039|macp201700155-cit-0039) 2012; 2 Koch (10.1002/macp.201700155-BIB0007|macp201700155-cit-0007) 2012; 7 Cai (10.1002/macp.201700155-BIB0011|macp201700155-cit-0011) 2010; 466 Kimouche (10.1002/macp.201700155-BIB0021|macp201700155-cit-0021) 2015; 6 Zhang (10.1002/macp.201700155-BIB0015|macp201700155-cit-0015) 2015; 137 Ruffieux (10.1002/macp.201700155-BIB0016|macp201700155-cit-0016) 2016; 531 Sánchez-Sánchez (10.1002/macp.201700155-BIB0020|macp201700155-cit-0020) 2016; 10 Gao (10.1002/macp.201700155-BIB0028|macp201700155-cit-0028) 2013; 52 Chen (10.1002/macp.201700155-BIB0013|macp201700155-cit-0013) 2013; 7 Weckesser (10.1002/macp.201700155-BIB0040|macp201700155-cit-0040) 1999; 110 Silveiro (10.1002/macp.201700155-BIB0008|macp201700155-cit-0008) 2015; 4 Andryushechkin (10.1002/macp.201700155-BIB0038|macp201700155-cit-0038) 2016; 117 Barone (10.1002/macp.201700155-BIB0005|macp201700155-cit-0005) 2006; 6 Celis (10.1002/macp.201700155-BIB0009|macp201700155-cit-0009) 2016; 49 Kawai (10.1002/macp.201700155-BIB0025|macp201700155-cit-0025) 2015; 6 Sun (10.1002/macp.201700155-BIB0030|macp201700155-cit-0030) 2013; 135 Linden (10.1002/macp.201700155-BIB0012|macp201700155-cit-0012) 2012; 108 Palma (10.1002/macp.201700155-BIB0010|macp201700155-cit-0010) 2015; 6 Sun (10.1002/macp.201700155-BIB0032|macp201700155-cit-0032) 2014; 50 Novoselov (10.1002/macp.201700155-BIB0002|macp201700155-cit-0002) 2005; 438 Liu (10.1002/macp.201700155-BIB0022|macp201700155-cit-0022) 2015; 137 Cloke (10.1002/macp.201700155-BIB0026|macp201700155-cit-0026) 2015; 137 Zhang (10.1002/macp.201700155-BIB0036|macp201700155-cit-0036) 2012; 3 Geim (10.1002/macp.201700155-BIB0003|macp201700155-cit-0003) 2007; 6 Vo (10.1002/macp.201700155-BIB0024|macp201700155-cit-0024) 2015; 15 Narita (10.1002/macp.201700155-BIB0019|macp201700155-cit-0019) 2015; 15 Zhou (10.1002/macp.201700155-BIB0031|macp201700155-cit-0031) 2014; 136 Jiang (10.1002/macp.201700155-BIB0037|macp201700155-cit-0037) 2010; 10 Amiaud (10.1002/macp.201700155-BIB0042|macp201700155-cit-0042) 2006; 124 Cai (10.1002/macp.201700155-BIB0035|macp201700155-cit-0035) 2016; 120 Bronner (10.1002/macp.201700155-BIB0018|macp201700155-cit-0018) 2013; 52 Han (10.1002/macp.201700155-BIB0023|macp201700155-cit-0023) 2014; 8 Chen (10.1002/macp.201700155-BIB0014|macp201700155-cit-0014) 2015; 10 Zhong (10.1002/macp.201700155-BIB0043|macp201700155-cit-0043) 2011; 334 Sun (10.1002/macp.201700155-BIB0033|macp201700155-cit-0033) 2015; 51 Fan (10.1002/macp.201700155-BIB0001|macp201700155-cit-0001) 2015; 48 Wiengarten (10.1002/macp.201700155-BIB0034|macp201700155-cit-0034) 2014; 136 |
| References_xml | – volume: 49 start-page: 143001 year: 2016 publication-title: J. Phys. D: Appl. Phys. – volume: 2 start-page: 983 year: 2012 publication-title: Sci. Rep. – volume: 466 start-page: 470 year: 2010 publication-title: Nature – volume: 9 start-page: 896 year: 2014 publication-title: Nat. Nanotechnol. – volume: 6 start-page: 10177 year: 2015 publication-title: Nat. Commun. – volume: 6 start-page: 8098 year: 2015 publication-title: Nat. Commun. – volume: 7 start-page: 6123 year: 2013 publication-title: ACS Nano – volume: 10 start-page: 1184 year: 2010 publication-title: Nano Lett. – volume: 137 start-page: 8872 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 156 year: 2015 publication-title: Nat. Nanotechnol. – volume: 136 start-page: 5567 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 6097 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 306 start-page: 666 year: 2004 publication-title: Science – volume: 52 start-page: 4422 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 50 start-page: 11825 year: 2014 publication-title: Chem. Commun. – volume: 319 start-page: 1229 year: 2008 publication-title: Science – volume: 6 start-page: 183 year: 2007 publication-title: Nat. Mater. – volume: 7 start-page: 713 year: 2012 publication-title: Nat. Nanotechnol. – volume: 4 start-page: e241 year: 2015 publication-title: Light: Sci. Appl. – volume: 117 start-page: 056101 year: 2016 publication-title: Phys. Rev. Lett. – volume: 105 start-page: 3747 year: 2001 publication-title: J. Phys. Chem. B – volume: 334 start-page: 213 year: 2011 publication-title: Science – volume: 15 start-page: 295 year: 2015 publication-title: Chem. Rec. – volume: 118 start-page: 13018 year: 2014 publication-title: J. Phys. Chem. C – volume: 10 start-page: 8006 year: 2016 publication-title: ACS Nano – volume: 438 start-page: 197 year: 2005 publication-title: Nature – volume: 137 start-page: 4022 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 4024 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 14 start-page: 1891 year: 2014 publication-title: Nano Lett. – volume: 8 start-page: 9181 year: 2014 publication-title: ACS Nano – volume: 6 start-page: 3228 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 15 start-page: 5770 year: 2015 publication-title: Nano Lett. – volume: 136 start-page: 9346 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 108 start-page: 216801 year: 2012 publication-title: Phys. Rev. Lett. – volume: 6 start-page: 2748 year: 2006 publication-title: Nano Lett. – volume: 48 start-page: 2484 year: 2015 publication-title: Acc. Chem. Res. – volume: 135 start-page: 8448 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 1286 year: 2012 publication-title: Nat. Commun. – volume: 110 start-page: 5351 year: 1999 publication-title: J. Chem. Phys. – volume: 120 start-page: 6619 year: 2016 publication-title: J. Phys. Chem. C – volume: 531 start-page: 489 year: 2016 publication-title: Nature – volume: 124 start-page: 094702 year: 2006 publication-title: J. Chem. Phys. – volume: 51 start-page: 2836 year: 2015 publication-title: Chem. Commun. – volume: 110 start-page: 5351 year: 1999 ident: 10.1002/macp.201700155-BIB0040|macp201700155-cit-0040 publication-title: J. Chem. Phys. doi: 10.1063/1.478430 – volume: 52 start-page: 4422 year: 2013 ident: 10.1002/macp.201700155-BIB0018|macp201700155-cit-0018 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201209735 – volume: 8 start-page: 9181 year: 2014 ident: 10.1002/macp.201700155-BIB0023|macp201700155-cit-0023 publication-title: ACS Nano doi: 10.1021/nn5028642 – volume: 14 start-page: 1891 year: 2014 ident: 10.1002/macp.201700155-BIB0029|macp201700155-cit-0029 publication-title: Nano Lett. doi: 10.1021/nl4046747 – volume: 319 start-page: 1229 year: 2008 ident: 10.1002/macp.201700155-BIB0006|macp201700155-cit-0006 publication-title: Science doi: 10.1126/science.1150878 – volume: 531 start-page: 489 year: 2016 ident: 10.1002/macp.201700155-BIB0016|macp201700155-cit-0016 publication-title: Nature doi: 10.1038/nature17151 – volume: 52 start-page: 4024 year: 2013 ident: 10.1002/macp.201700155-BIB0028|macp201700155-cit-0028 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201208597 – volume: 6 start-page: 183 year: 2007 ident: 10.1002/macp.201700155-BIB0003|macp201700155-cit-0003 publication-title: Nat. Mater. doi: 10.1038/nmat1849 – volume: 4 start-page: e241 year: 2015 ident: 10.1002/macp.201700155-BIB0008|macp201700155-cit-0008 publication-title: Light: Sci. Appl. doi: 10.1038/lsa.2015.14 – volume: 108 start-page: 216801 year: 2012 ident: 10.1002/macp.201700155-BIB0012|macp201700155-cit-0012 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.216801 – volume: 137 start-page: 6097 year: 2015 ident: 10.1002/macp.201700155-BIB0022|macp201700155-cit-0022 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b03017 – volume: 2 start-page: 983 year: 2012 ident: 10.1002/macp.201700155-BIB0039|macp201700155-cit-0039 publication-title: Sci. Rep. doi: 10.1038/srep00983 – volume: 117 start-page: 056101 year: 2016 ident: 10.1002/macp.201700155-BIB0038|macp201700155-cit-0038 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.056101 – volume: 438 start-page: 197 year: 2005 ident: 10.1002/macp.201700155-BIB0002|macp201700155-cit-0002 publication-title: Nature doi: 10.1038/nature04233 – volume: 10 start-page: 1184 year: 2010 ident: 10.1002/macp.201700155-BIB0037|macp201700155-cit-0037 publication-title: Nano Lett. doi: 10.1021/nl903473p – volume: 6 start-page: 3228 year: 2015 ident: 10.1002/macp.201700155-BIB0010|macp201700155-cit-0010 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b01154 – volume: 137 start-page: 8872 year: 2015 ident: 10.1002/macp.201700155-BIB0026|macp201700155-cit-0026 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b02523 – volume: 9 start-page: 896 year: 2014 ident: 10.1002/macp.201700155-BIB0017|macp201700155-cit-0017 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.184 – volume: 6 start-page: 10177 year: 2015 ident: 10.1002/macp.201700155-BIB0021|macp201700155-cit-0021 publication-title: Nat. Commun. doi: 10.1038/ncomms10177 – volume: 48 start-page: 2484 year: 2015 ident: 10.1002/macp.201700155-BIB0001|macp201700155-cit-0001 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00168 – volume: 15 start-page: 295 year: 2015 ident: 10.1002/macp.201700155-BIB0019|macp201700155-cit-0019 publication-title: Chem. Rec. doi: 10.1002/tcr.201402082 – volume: 118 start-page: 13018 year: 2014 ident: 10.1002/macp.201700155-BIB0027|macp201700155-cit-0027 publication-title: J. Phys. Chem. C doi: 10.1021/jp5037475 – volume: 10 start-page: 156 year: 2015 ident: 10.1002/macp.201700155-BIB0014|macp201700155-cit-0014 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.307 – volume: 135 start-page: 8448 year: 2013 ident: 10.1002/macp.201700155-BIB0030|macp201700155-cit-0030 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja404039t – volume: 136 start-page: 5567 year: 2014 ident: 10.1002/macp.201700155-BIB0031|macp201700155-cit-0031 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja501308s – volume: 6 start-page: 2748 year: 2006 ident: 10.1002/macp.201700155-BIB0005|macp201700155-cit-0005 publication-title: Nano Lett. doi: 10.1021/nl0617033 – volume: 120 start-page: 6619 year: 2016 ident: 10.1002/macp.201700155-BIB0035|macp201700155-cit-0035 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b00284 – volume: 334 start-page: 213 year: 2011 ident: 10.1002/macp.201700155-BIB0043|macp201700155-cit-0043 publication-title: Science doi: 10.1126/science.1211836 – volume: 3 start-page: 1286 year: 2012 ident: 10.1002/macp.201700155-BIB0036|macp201700155-cit-0036 publication-title: Nat. Commun. doi: 10.1038/ncomms2291 – volume: 124 start-page: 094702 year: 2006 ident: 10.1002/macp.201700155-BIB0042|macp201700155-cit-0042 publication-title: J. Chem. Phys. doi: 10.1063/1.2168446 – volume: 51 start-page: 2836 year: 2015 ident: 10.1002/macp.201700155-BIB0033|macp201700155-cit-0033 publication-title: Chem. Commun. doi: 10.1039/C4CC08299K – volume: 50 start-page: 11825 year: 2014 ident: 10.1002/macp.201700155-BIB0032|macp201700155-cit-0032 publication-title: Chem. Commun. doi: 10.1039/C4CC05482B – volume: 6 start-page: 8098 year: 2015 ident: 10.1002/macp.201700155-BIB0025|macp201700155-cit-0025 publication-title: Nat. Commun. doi: 10.1038/ncomms9098 – volume: 306 start-page: 666 year: 2004 ident: 10.1002/macp.201700155-BIB0004|macp201700155-cit-0004 publication-title: Science doi: 10.1126/science.1102896 – volume: 466 start-page: 470 year: 2010 ident: 10.1002/macp.201700155-BIB0011|macp201700155-cit-0011 publication-title: Nature doi: 10.1038/nature09211 – volume: 137 start-page: 4022 year: 2015 ident: 10.1002/macp.201700155-BIB0015|macp201700155-cit-0015 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511995r – volume: 105 start-page: 3747 year: 2001 ident: 10.1002/macp.201700155-BIB0041|macp201700155-cit-0041 publication-title: J. Phys. Chem. B doi: 10.1021/jp003174b – volume: 49 start-page: 143001 year: 2016 ident: 10.1002/macp.201700155-BIB0009|macp201700155-cit-0009 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/49/14/143001 – volume: 7 start-page: 713 year: 2012 ident: 10.1002/macp.201700155-BIB0007|macp201700155-cit-0007 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.169 – volume: 7 start-page: 6123 year: 2013 ident: 10.1002/macp.201700155-BIB0013|macp201700155-cit-0013 publication-title: ACS Nano doi: 10.1021/nn401948e – volume: 10 start-page: 8006 year: 2016 ident: 10.1002/macp.201700155-BIB0020|macp201700155-cit-0020 publication-title: ACS Nano doi: 10.1021/acsnano.6b04025 – volume: 15 start-page: 5770 year: 2015 ident: 10.1002/macp.201700155-BIB0024|macp201700155-cit-0024 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b01723 – volume: 136 start-page: 9346 year: 2014 ident: 10.1002/macp.201700155-BIB0034|macp201700155-cit-0034 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja501680n |
| SSID | ssj0008097 |
| Score | 2.257968 |
| Snippet | Graphene nanoribbons (GNRs) are promising building blocks for nanoelectronic and spintronic devices. As a bottom‐up approach, on‐surface synthesis from... Graphene nanoribbons (GNRs) are promising building blocks for nanoelectronic and spintronic devices. As a bottom-up approach, on-surface synthesis from... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1700155 |
| SubjectTerms | Chemical synthesis Coupling (molecular) Dehydrogenation Graphene graphene nanoribbons intermolecular steric effect molecular self‐assembly Nanoribbons on‐surface synthesis Reaction products scanning tunneling microscopy Selectivity |
| Title | Halogen‐Free On‐Surface Synthesis of Rylene‐Type Graphene Nanoribbons |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmacp.201700155 https://www.proquest.com/docview/1934936143 |
| Volume | 218 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1521-3935 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0008097 issn: 1022-1352 databaseCode: ADMLS dateStart: 20120614 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1022-1352 databaseCode: DR2 dateStart: 19980101 customDbUrl: isFulltext: true eissn: 1521-3935 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008097 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kF734FqtVchA8pU1203RzLMValKq0Cr2Fmd0tFDWVPg715E_wN_pLnE2a1goi6G2X7IbsY2a-GSbfMHYGgjBoYIzb5-SuBhxDF3UkXSTfgAuwKWM2NNC-CVsPwVWv2vvyF3_GD7EIuFnJSPW1FXDAcWVJGvoMyvJNWn45somkhH0Rpj5VZ8kfJb2suopNWfcJauSsjR6vrE5ftUpLqPkVsKYWp7nFIP_WLNHksTydYFm9fqNx_M9ittnmHI469ez-7LA1k-yy9UZeBW6PXbdsdMckH2_vzZExzq1tdaejPijjdGcJ4cfxYOwM-05nRgbM0FPr2jqXlgib-g6p7-FogEi3e591mhf3jZY7L8DgKgsrXEDwQlQyCi1tl_ZCzQ2GCBx5LVLaryF5h7wGUCUnTimBKvID30ilQUpxwArJMDGHzIGqFpEx0tNVFfQjiQBcCw8FBKBrkSwyN9_9WM2pyW2FjKc4I1Xmsd2feLE_RXa-GP-SkXL8OLKUH2Y8F85xTJg1iAThElFkPD2VX94St-uNu0Xv6C-TjtmGbWfZaSVWmIym5oTgzARP0yv7CfAM7lc |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4HODCGzGePSBxKnRJ16VHNDHGY4AGSNyqOMmkCejQHgc48RP4jfwS7HXdAAkhwa1pkyp1nPiz5X4G2NWSMGjonN8U5K6GAiMfbax8JN9ASM0pYxwaqF9Etdvw9K6UZxPyvzAZP8Qo4MY7Y3Be8wbngPTBmDX0URsmnGSCOTKKkzAdRuSsMC5qjBmkVJDVV-Gk9SKBjZy3MRAHX8d_tUtjsPkZsg5sTnUeMJ9tlmpyv9_v4b55-Ubk-K_PWYC5ISL1DjMVWoQJly7BTCUvBLcMZzUO8Lj0_fWt2nHOu-Sr636nqY3zrp9TgpDdVtdrN73GM9kwR0_Zu_WOmQub2h6d4O1OC5EUfAUa1aObSs0f1mDwDSMLX6MOIjQqjpi5ywaRFQ4j1AJFOTa2WEaSuShrXSI_zhiJJi6GRaeM1UrJVZhK26lbA0-XrIydU4EtmbAZK9RaWBmg1KG25VgVwM_Fn5ghOzkXyXhIMl5lkbB8kpF8CrA36v-U8XL82HMzX81kuD-7CcHWMJYETWQBxGBZfnlLUj-sXI1a638ZtAMztZv6eXJ-cnG2AbN8P0tW24SpXqfvtgjd9HB7oL8f6CTyeA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSMCFHVHWHJA4BVI7Se0jKpSyowISt8hjOxICUtTlACc-gW_kS_A0TQtICAlucWJHznjseTOavAHYUtxh0NBaP2XOXQ0Zxj4aKXx0vgHjilLGKDRwdh7Xb8Lj26jIJqR_YXJ-iEHAjXZG77ymDW6fTLo7ZA19VJoIJ4lgzhnFURgPIykoq2-_MWSQEkFeX4WS1ssObBS8jQHb_Tr-q10ags3PkLVnc2ozgMVs81ST-51uB3f0yzcix399zixM9xGpt5er0ByM2GweJqtFIbgFOKlTgMdm769vtZa13gVdXXVbqdLWu3rOHIRs37W9Zuo1np0Ns-4pebfeIXFhu7bnTvBm6w7RKfgiNGoH19W636_B4GtCFr5CFcSohYyJucsEsWEWY1QMWUVqU66gcxBZRanI-XFac9SyHJat0EYJwZdgLGtmdhk8FRkurRWBiXSYSoFKMcMD5CpUpiJFCfxC_Inus5NTkYyHJOdVZgnJJxnIpwTbg_5POS_Hjz3XitVM-vuznTjYGkruoAkvAestyy9vSc72qpeD1spfBm3CxOV-LTk9Oj9ZhSm6neeqrcFYp9W16w7cdHCjp74fojvx_A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Halogen%E2%80%90Free+On%E2%80%90Surface+Synthesis+of+Rylene%E2%80%90Type+Graphene+Nanoribbons&rft.jtitle=Macromolecular+chemistry+and+physics&rft.au=Cai%2C+Zeying&rft.au=She%2C+Limin&rft.au=He%2C+Yangyong&rft.au=Wu%2C+Liqin&rft.date=2017-09-01&rft.issn=1022-1352&rft.eissn=1521-3935&rft.volume=218&rft.issue=17&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fmacp.201700155&rft.externalDBID=10.1002%252Fmacp.201700155&rft.externalDocID=MACP201700155 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1352&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1352&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1352&client=summon |