Optimal control problems constrained by the stochastic Navier–Stokes equations with multiplicative Lévy noise

We consider the controlled stochastic Navier–Stokes equations in a bounded multidimensional domain, where the noise term allows jumps. In order to prove existence and uniqueness of an optimal control w.r.t. a given control problem, we first need to show the existence and uniqueness of a local mild s...

Full description

Saved in:
Bibliographic Details
Published inMathematische Nachrichten Vol. 292; no. 7; pp. 1444 - 1461
Main Authors Benner, Peter, Trautwein, Christoph
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.07.2019
Subjects
Online AccessGet full text
ISSN0025-584X
1522-2616
DOI10.1002/mana.201700185

Cover

Abstract We consider the controlled stochastic Navier–Stokes equations in a bounded multidimensional domain, where the noise term allows jumps. In order to prove existence and uniqueness of an optimal control w.r.t. a given control problem, we first need to show the existence and uniqueness of a local mild solution of the considered controlled stochastic Navier–Stokes equations. We then discuss the control problem, where the related cost functional includes stopping times dependent on controls. Based on the continuity of the cost functional, we can apply existence and uniqueness results provided in [4], which enables us to show that a unique optimal control exists.
AbstractList We consider the controlled stochastic Navier–Stokes equations in a bounded multidimensional domain, where the noise term allows jumps. In order to prove existence and uniqueness of an optimal control w.r.t. a given control problem, we first need to show the existence and uniqueness of a local mild solution of the considered controlled stochastic Navier–Stokes equations. We then discuss the control problem, where the related cost functional includes stopping times dependent on controls. Based on the continuity of the cost functional, we can apply existence and uniqueness results provided in [4], which enables us to show that a unique optimal control exists.
We consider the controlled stochastic Navier–Stokes equations in a bounded multidimensional domain, where the noise term allows jumps. In order to prove existence and uniqueness of an optimal control w.r.t. a given control problem, we first need to show the existence and uniqueness of a local mild solution of the considered controlled stochastic Navier–Stokes equations. We then discuss the control problem, where the related cost functional includes stopping times dependent on controls. Based on the continuity of the cost functional, we can apply existence and uniqueness results provided in [4], which enables us to show that a unique optimal control exists.
Author Trautwein, Christoph
Benner, Peter
Author_xml – sequence: 1
  givenname: Peter
  surname: Benner
  fullname: Benner, Peter
  organization: Max Planck Institute for Dynamics of Complex Technical Systems
– sequence: 2
  givenname: Christoph
  surname: Trautwein
  fullname: Trautwein, Christoph
  email: trautwein@mpi-magdeburg.mpg.de
  organization: Max Planck Institute for Dynamics of Complex Technical Systems
BookMark eNqFkM1KAzEURoNUsFW3rgOupyaZJDNZluIfVF2o4G5IMxkanU6mSaalO9_Bp_A5fBOfxNSKgiCuLnx8517uGYBeYxsNwBFGQ4wQOZnLRg4JwhlCOGc7oI8ZIQnhmPdAPxZYwnL6sAcG3j8ihITIeB-0N20wc1lDZZvgbA1bZ6e1nvtN4IOTptElnK5hmGnog1Uz6YNR8FoujXbvzy-3wT5pD_Wik8FEBK5MmMF5VwfT1kbFcKnh5O11uYaNNV4fgN1K1l4ffs19cH92eje-SCY355fj0SRRKc5YIqSkGaN5JljFmUo5r6pSCJmWPCdCK4ak4ohPKU1RKjjPK1xOVcoETXHJEU33wfF2b3xo0WkfikfbuSaeLAhhBBEaqdgablvKWe-drorWRR1uXWBUbKwWG6vFt9UI0F-AMuHz842r-m9MbLGVqfX6nyPF1eh69MN-ADhdkgk
CitedBy_id crossref_primary_10_1137_23M1623069
crossref_primary_10_1007_s00245_021_09792_6
crossref_primary_10_1016_j_jde_2023_02_021
crossref_primary_10_1007_s40072_021_00196_9
crossref_primary_10_1007_s10957_024_02416_3
crossref_primary_10_1007_s40072_024_00341_0
crossref_primary_10_1051_cocv_2025002
crossref_primary_10_1016_j_cam_2022_114286
Cites_doi 10.1002/mana.201300248
10.1137/030601259
10.1007/BF01214869
10.3934/eect.2017021
10.1007/s00245-002-0734-6
10.3792/pja/1195526510
10.1155/S1048953300000228
10.1051/m2an:2000140
10.1006/jfan.1994.1140
10.1017/CBO9780511662829
10.4064/sm-44-1-47-60
10.1002/cpa.20077
10.1080/07362990701673047
10.1007/BF01192467
10.1007/s00440-004-0392-5
10.1007/978-3-663-13911-9
10.1007/978-1-4612-5561-1
10.1017/CBO9780511809781
10.1002/mana.19790930106
10.4171/RMI/250
10.1017/CBO9780511721373
10.2977/prims/1195182014
10.1016/j.cam.2016.04.030
10.1016/S0167-6911(02)00274-8
10.1017/CBO9781107295513
10.1080/07362994.2013.759482
10.3792/pja/1195521686
10.1016/j.na.2012.10.011
10.1016/j.spa.2006.04.001
10.1007/s00021-015-0234-5
10.1051/m2an:2000151
10.1007/BF00276188
10.1007/BF00276875
10.1002/mana.3210040121
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
DOI 10.1002/mana.201700185
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1522-2616
EndPage 1461
ExternalDocumentID 10_1002_mana_201700185
MANA201700185
Genre article
GrantInformation_xml – fundername: International Max Planck Research School (IMPRS)
GroupedDBID --Z
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OHT
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
V8K
W8V
W99
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
YNT
YQT
ZY4
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
AMVHM
CITATION
ID FETCH-LOGICAL-c3175-9aa47548795f65c366ffd99a3d6829ec50ac606b443039668f1dbc359431d6043
IEDL.DBID DR2
ISSN 0025-584X
IngestDate Fri Jul 25 12:04:56 EDT 2025
Thu Apr 24 23:06:36 EDT 2025
Wed Oct 01 02:57:22 EDT 2025
Wed Jan 22 16:39:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3175-9aa47548795f65c366ffd99a3d6829ec50ac606b443039668f1dbc359431d6043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2252024966
PQPubID 1016385
PageCount 18
ParticipantIDs proquest_journals_2252024966
crossref_primary_10_1002_mana_201700185
crossref_citationtrail_10_1002_mana_201700185
wiley_primary_10_1002_mana_201700185_MANA201700185
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2019
2019-07-00
20190701
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: July 2019
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Mathematische Nachrichten
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 6
1983; 19
2005; 132
1967; 43
2016; 307
2010
2015; 288
2006; 16
2009
1998
2008
1996
2007
1973
2003
1977; 24
2016; 18
2006; 116
1985; 89
1972; 44
1979; 93
1951; 4
2009; 14
1994; 126
2013; 38
1981; 178
2000; 34
2013; 79
1964; 16
2000; 13
2002; 46
2013; 31
1999; 15
2008; 26
2003; 48
1985
1995; 102
1983
2014
2005; 34
1970; 46
2005; 58
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_27_1
Glatt‐Holtz N. (e_1_2_8_26_1) 2009; 14
Ou Y. R. (e_1_2_8_37_1) 1998
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_6_1
Wachsmuth D. (e_1_2_8_46_1) 2005; 34
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
Brzeźniak Z. (e_1_2_8_7_1) 2003
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
Vrabie I. (e_1_2_8_45_1) 2003
Flandoli F. (e_1_2_8_17_1) 2008
Motyl E. (e_1_2_8_36_1) 2013; 38
Fujiwara D. (e_1_2_8_22_1) 1977; 24
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
Sritharan S. S. (e_1_2_8_41_1) 1998
Barbu V. (e_1_2_8_3_1) 2010
e_1_2_8_30_1
References_xml – volume: 31
  start-page: 381
  issue: 3
  year: 2013
  end-page: 426
  article-title: Nonlinear filtering of stochastic Navier–Stokes equation with Itô–Lévy noise
  publication-title: Stoch. Anal. Appl.
– year: 1985
– volume: 34
  start-page: 241
  issue: 2
  year: 2000
  end-page: 273
  article-title: Local solutions for stochastic Navier Stokes equations
  publication-title: ESAJM Math. Model. Numer. Anal.
– year: 2009
– year: 1983
– volume: 89
  start-page: 267
  issue: 3
  year: 1985
  end-page: 281
  article-title: Solutions in of the Navier–Stokes initial value problem
  publication-title: Arch. Ration. Mech. Anal.
– volume: 288
  start-page: 1615
  issue: 14–15
  year: 2015
  end-page: 1621
  article-title: Mild solutions of stochastic Navier–Stokes equation with jump noise in ‐spaces
  publication-title: Math. Nachr.
– volume: 102
  start-page: 367
  year: 1995
  end-page: 391
  article-title: Martingale and stationary solutions for stochastic Navier–Stokes equations
  publication-title: Probab. Theory Related Fields
– volume: 6
  start-page: 409
  issue: 3
  year: 2017
  end-page: 425
  article-title: ‐solutions of the stochastic Navier–Stokes equations subject to Lévy noise with initial data
  publication-title: Evol. Equ. Control Theory
– volume: 116
  start-page: 1636
  year: 2006
  end-page: 1659
  article-title: Large deviations for the two‐dimensional Navier–Stokes equations with multiplicative noise
  publication-title: Stochastic Process. Appl.
– year: 2007
– volume: 16
  start-page: 269
  year: 1964
  end-page: 315
  article-title: On the Navier–Stokes initial value problem. I
  publication-title: Arch. Ration. Mech. Anal.
– year: 2003
– year: 1973
– volume: 46
  start-page: 1141
  year: 1970
  end-page: 1143
  article-title: On fractional powers of the Stokes operator
  publication-title: Proc. Japan Acad.
– year: 1996
– volume: 24
  start-page: 685
  issue: 3
  year: 1977
  end-page: 700
  article-title: An ‐theorem of the Helmholtz decomposition of vector fields
  publication-title: J. Fac. Sci. Univ. Tokyo Sec. 1 A
– volume: 178
  start-page: 297
  year: 1981
  end-page: 329
  article-title: Analyticity of the semigroup generated by the stokes operator in spaces
  publication-title: Math. Z.
– volume: 26
  start-page: 98
  year: 2008
  end-page: 119
  article-title: Stochastic convolutions driven by Martingales: Maximal inequalities and exponential integrability
  publication-title: Stoch. Anal. Appl.
– start-page: 51
  year: 2008
  end-page: 150
– volume: 93
  start-page: 67
  year: 1979
  end-page: 73
  article-title: On existence of optimal control
  publication-title: Math. Nachr.
– volume: 44
  start-page: 47
  year: 1972
  end-page: 60
  article-title: Interpolation in with boundary conditions
  publication-title: Stud. Math.
– start-page: 151
  year: 1998
  end-page: 180
– year: 2014
– year: 2010
– volume: 14
  start-page: 567
  issue: 5‐6
  year: 2009
  end-page: 600
  article-title: Strong pathwise solutions of the stochastic Navier–Stokes system
  publication-title: Adv. Differential Equations
– start-page: 251
  year: 2003
  end-page: 289
– volume: 16
  start-page: 1177
  issue: 4
  year: 2006
  end-page: 1200
  article-title: A SQP‐Semismooth Newton–type algorithm applied to control of the instationary Navier–Stokes system subject to control constraints
  publication-title: SIAM J. Optim.
– volume: 15
  start-page: 59
  year: 1999
  end-page: 91
  article-title: Some Dirichlet spaces obtained by subordinate reflected diffusions
  publication-title: Rev. Mat. Iberoam.
– start-page: 1
  year: 1998
  end-page: 42
– volume: 46
  start-page: 31
  year: 2002
  end-page: 53
  article-title: Stochastic 2‐D Navier–Stokes equation
  publication-title: Appl. Math. Optim.
– volume: 307
  start-page: 25
  year: 2016
  end-page: 36
  article-title: The velocity tracking problem for Wick‐stochastic Navier–Stokes flows using Wiener chaos expansion
  publication-title: J. Comput. Appl. Math.
– volume: 43
  start-page: 82
  year: 1967
  end-page: 86
  article-title: Concrete characterization of the domains of fractional powers of some elliptic differential operators of the second order
  publication-title: Proc. Japan Acad.
– volume: 79
  start-page: 122
  year: 2013
  end-page: 139
  article-title: 2D stochastic Navier–Stokes equations driven by jump noise
  publication-title: Nonlinear Anal.
– volume: 38
  start-page: 863
  year: 2013
  end-page: 912
  article-title: Stochastic Navier–Stokes equations driven by Lévy noise in unbounded 3D domains
  publication-title: Potential Anal.
– volume: 126
  start-page: 26
  year: 1994
  end-page: 35
  article-title: Stochastic equations in Hilbert space with application to Navier–Stokes equations in any dimension
  publication-title: J. Funct. Anal.
– volume: 34
  start-page: 387
  issue: 2
  year: 2005
  end-page: 409
  article-title: Regularity and stability of optimal controls of nonstationary Navier–Stokes equations
  publication-title: Control Cybernet.
– volume: 18
  start-page: 25
  year: 2016
  end-page: 69
  article-title: Well‐posedness of the multidimensional fractional stochastic Navier–Stokes equations on the torus and on bounded domains
  publication-title: J. Math. Fluid Mech.
– volume: 19
  start-page: 887
  year: 1983
  end-page: 910
  article-title: Weak and strong solutions of the Navier–Stokes initial value problem
  publication-title: Publ. Res. Inst. Math. Sci.
– volume: 132
  start-page: 119
  year: 2005
  end-page: 149
  article-title: Stochastic nonlinear beam equations
  publication-title: Probab. Theory Related Fields
– volume: 58
  start-page: 671
  year: 2005
  end-page: 700
  article-title: Bellman equations associated to the optimal feedback control of stochastic Navier–Stokes equations
  publication-title: Comm. Pure Appl. Math.
– volume: 4
  start-page: 213
  year: 1951
  end-page: 231
  article-title: Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen
  publication-title: Math. Nachr.
– volume: 48
  start-page: 297
  year: 2003
  end-page: 311
  article-title: Constrained optimal control of Navier–Stokes flow by semismooth Newton methods
  publication-title: Systems Control Lett.
– volume: 13
  start-page: 239
  issue: 3
  year: 2000
  end-page: 259
  article-title: Galerkin approximation and the strong solution of the Navier–Stokes equation
  publication-title: J. Appl. Math. Stoch. Anal.
– volume: 34
  start-page: 459
  issue: 2
  year: 2000
  end-page: 475
  article-title: Dynamic programming for the stochastic Navier–Stokes equations
  publication-title: ESAIM Math. Model. Numer. Anal.
– ident: e_1_2_8_15_1
  doi: 10.1002/mana.201300248
– ident: e_1_2_8_30_1
  doi: 10.1137/030601259
– ident: e_1_2_8_23_1
  doi: 10.1007/BF01214869
– ident: e_1_2_8_35_1
  doi: 10.3934/eect.2017021
– volume: 38
  start-page: 863
  year: 2013
  ident: e_1_2_8_36_1
  article-title: Stochastic Navier–Stokes equations driven by Lévy noise in unbounded 3D domains
  publication-title: Potential Anal.
– ident: e_1_2_8_34_1
  doi: 10.1007/s00245-002-0734-6
– ident: e_1_2_8_20_1
  doi: 10.3792/pja/1195526510
– ident: e_1_2_8_6_1
  doi: 10.1155/S1048953300000228
– volume: 34
  start-page: 387
  issue: 2
  year: 2005
  ident: e_1_2_8_46_1
  article-title: Regularity and stability of optimal controls of nonstationary Navier–Stokes equations
  publication-title: Control Cybernet.
– ident: e_1_2_8_4_1
  doi: 10.1051/m2an:2000140
– ident: e_1_2_8_10_1
  doi: 10.1006/jfan.1994.1140
– ident: e_1_2_8_12_1
  doi: 10.1017/CBO9780511662829
– start-page: 51
  volume-title: An introduction to 3D stochastic fluid dynamics
  year: 2008
  ident: e_1_2_8_17_1
– ident: e_1_2_8_40_1
  doi: 10.4064/sm-44-1-47-60
– ident: e_1_2_8_28_1
  doi: 10.1002/cpa.20077
– volume: 14
  start-page: 567
  issue: 5
  year: 2009
  ident: e_1_2_8_26_1
  article-title: Strong pathwise solutions of the stochastic Navier–Stokes system
  publication-title: Adv. Differential Equations
– start-page: 1
  volume-title: An introduction to deterministic and stochastic control of viscous flow
  year: 1998
  ident: e_1_2_8_41_1
– ident: e_1_2_8_29_1
  doi: 10.1080/07362990701673047
– volume-title: Stabilization of Navier–Stokes flow
  year: 2010
  ident: e_1_2_8_3_1
– ident: e_1_2_8_18_1
  doi: 10.1007/BF01192467
– ident: e_1_2_8_5_1
– ident: e_1_2_8_9_1
  doi: 10.1007/s00440-004-0392-5
– ident: e_1_2_8_44_1
  doi: 10.1007/978-3-663-13911-9
– ident: e_1_2_8_38_1
  doi: 10.1007/978-1-4612-5561-1
– start-page: 151
  volume-title: Design of feedback compensators for viscous flow
  year: 1998
  ident: e_1_2_8_37_1
– ident: e_1_2_8_2_1
  doi: 10.1017/CBO9780511809781
– ident: e_1_2_8_27_1
  doi: 10.1002/mana.19790930106
– ident: e_1_2_8_32_1
  doi: 10.4171/RMI/250
– ident: e_1_2_8_39_1
  doi: 10.1017/CBO9780511721373
– ident: e_1_2_8_24_1
  doi: 10.2977/prims/1195182014
– ident: e_1_2_8_33_1
  doi: 10.1016/j.cam.2016.04.030
– ident: e_1_2_8_43_1
  doi: 10.1016/S0167-6911(02)00274-8
– ident: e_1_2_8_13_1
  doi: 10.1017/CBO9781107295513
– ident: e_1_2_8_16_1
  doi: 10.1080/07362994.2013.759482
– ident: e_1_2_8_21_1
  doi: 10.3792/pja/1195521686
– ident: e_1_2_8_8_1
  doi: 10.1016/j.na.2012.10.011
– volume-title: C0‐semigroups and applications
  year: 2003
  ident: e_1_2_8_45_1
– ident: e_1_2_8_42_1
  doi: 10.1016/j.spa.2006.04.001
– ident: e_1_2_8_14_1
  doi: 10.1007/s00021-015-0234-5
– ident: e_1_2_8_11_1
  doi: 10.1051/m2an:2000151
– ident: e_1_2_8_19_1
  doi: 10.1007/BF00276188
– volume: 24
  start-page: 685
  issue: 3
  year: 1977
  ident: e_1_2_8_22_1
  article-title: An ‐theorem of the Helmholtz decomposition of vector fields
  publication-title: J. Fac. Sci. Univ. Tokyo Sec. 1 A
– start-page: 251
  volume-title: Approximations of the Wong–Zakai type for stochastic differential equations in M‐type 2 Banach spaces with applications to loop spaces
  year: 2003
  ident: e_1_2_8_7_1
– ident: e_1_2_8_25_1
  doi: 10.1007/BF00276875
– ident: e_1_2_8_31_1
  doi: 10.1002/mana.3210040121
SSID ssj0009976
Score 2.2447598
Snippet We consider the controlled stochastic Navier–Stokes equations in a bounded multidimensional domain, where the noise term allows jumps. In order to prove...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1444
SubjectTerms 35Q30
49J20
93E20
Continuity (mathematics)
Control theory
Fluid dynamics
Fluid flow
local mild solution
Lévy process
Mathematical analysis
Navier-Stokes equations
Optimal control
stochastic Navier–Stokes equations
stochastic optimal control
Uniqueness
Title Optimal control problems constrained by the stochastic Navier–Stokes equations with multiplicative Lévy noise
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmana.201700185
https://www.proquest.com/docview/2252024966
Volume 292
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1522-2616
  dateEnd: 20241003
  omitProxy: true
  ssIdentifier: ssj0009976
  issn: 0025-584X
  databaseCode: ABDBF
  dateStart: 20120601
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0025-584X
  databaseCode: DR2
  dateStart: 20000101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2616
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009976
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSsMwFA6iN3rhvzidIxeCV926_qTJ5aaOIW6COthdSdMUZbpN2w3mle_gU_gcvolPYk7adZsggt6UtiSlSc7J-U5y8h2EjqOqF1CPmoa6SsPx7EipVEQNQaiSIEFFVZM9t9qk2XEuum537hR_yg-RL7iBZuj5GhScB3FlRhoK0Z0QmgUbpxROmVdtV-_TXs_4oxjT2eV0zlZlabtT1kbTqixWX7RKM6g5D1i1xWlsID791zTQpFceJUFZvHyjcfxPYzbRegZHcS2Vny20JPvbaK2Vc7nGO2h4pWaVR1Uoi2rHWQ6aGF7EOsWEDHEwwaoOVlBS3HHgfsZtDib38_XtJhn0ZIzlU8oqHmNY-8VZJKNeMhxLfPnxPp7g_uA-lruo0zi_PW0aWZ4GQwD6MBjnjgeeD3Mj4gqbkCgKGeN2SKjFpHBNLpSfFDiOspfKvaJRNQyE7TIFXkJiOvYeWu4P-nIfYccOHDhNq0TLAyo36nFuhSaRkWAkdHkBGdNx8kVGYg4NffBT-mXLh570854soJO8_DCl7_ixZHE67H6mxrGvJjsLOBUJKSBLj98vX_EhD0P-dPCXSodoVd2zNCS4iJaT55E8UsAnCUpopVY_qzdKWsi_AJt9_hw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BOQAHdkRZfUDiFEizOPYRsahAWyQWiVvkOI5AhRZIqQQn_oGv4Dv4E74Ej7MUkBASXCLFsqPYnvGMx89vANaTWhCxgNmWfirLC9xEq1TCLEmZliDJZM2QPTdbtH7uHV74BZoQ78Jk_BBlwA01w6zXqOAYkN4asIYivBOxWXhyyvxhGMFDOtTN3ZMBgxTnJr-cydqqbe1FwdtoO1tf23-1SwNn87PLamzO_iRExd9mUJP25kMv2pRP34gc_9WdKZjIPVKynYnQNAypzgyMN0s613QWbo_1wnKjK-XAdpKnoUmxIDVZJlRMokei2xDtTcpLgfTPpCXQ6r4_v5z2um2VEnWXEYunBMO_JAczmqhhX5HG22v_kXS6V6mag_P9vbOdupWnarAkOiAWF8ILcPPD_YT60qU0SWLOhRtT5nAlfVtIvVWKPE-bTL3DYkktjqTrc-2_xNT23HmodLodtQDEcyMPL9Rq6QqQzY0FQjixTVUiOY19UQWrmKhQ5jzm2NHrMGNgdkIcybAcySpslPVvMwaPH2suF_Me5pqchnq9c5BWkdIqOGYCf_lKiKkYyrfFvzRag9H6WbMRNg5aR0swpst5hhBehkrv_kGtaD-oF60aSf8AeFUA1Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BTtwwEB1RkKpyAFpAXUqpD0g9BbKJ49hHBF3RFraoLdLeIsexBYLuLmRBghP_0K_gO_gTvqQzTjYLlapKcIkUy45ie8bzxh6_AVh37TSXqQwDfNqAp7FDlXIyMEKiBBlp2p7seb8rdg_5l17Se3CLv-KHaDbcSDP8ek0KPizc5oQ0lKI7KTSLDk5l8gJmuEAXi2DR9wmBlFI-vZxP2oqmtjembQyjzcftH5ulCdZ8iFi9yenMgx7_bBVpcrJxMco3zPVfPI7P6c0CzNV4lG1VAvQapmz_DczuN2Su5SIMv-Gy8gsr1WHtrE5CU1JB6XNM2ILlVwzbMMSS5kgT-TPrarK59ze_f4wGJ7Zk9qyiFS8Zbf6yOpTR7xleWrZ3d3t5xfqD49IuwWHn08_t3aBO1BAYgh-B0pqn5PqoxInExEI4Vyil40LISFmThNqgo5RzjgYT_Svp2kVu4kQheilEyONlmO4P-vYtMB7nnK7TomylxOUmU62jIhTWGSWKRLcgGM9TZmoWc-roaVbxL0cZjWTWjGQLPjb1hxV_xz9rro6nPav1uMxwtYuIVFGIFkR-_v7zlYwSMTRvK09p9AFeHux0sr3P3a_v4BUWqyo8eBWmR-cX9j2CoFG-5uX8D3c4_3U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+control+problems+constrained+by+the+stochastic+Navier%E2%80%93Stokes+equations+with+multiplicative+L%C3%A9vy+noise&rft.jtitle=Mathematische+Nachrichten&rft.au=Benner%2C+Peter&rft.au=Trautwein%2C+Christoph&rft.date=2019-07-01&rft.issn=0025-584X&rft.eissn=1522-2616&rft.volume=292&rft.issue=7&rft.spage=1444&rft.epage=1461&rft_id=info:doi/10.1002%2Fmana.201700185&rft.externalDBID=10.1002%252Fmana.201700185&rft.externalDocID=MANA201700185
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-584X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-584X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-584X&client=summon