Optimal control problems constrained by the stochastic Navier–Stokes equations with multiplicative Lévy noise
We consider the controlled stochastic Navier–Stokes equations in a bounded multidimensional domain, where the noise term allows jumps. In order to prove existence and uniqueness of an optimal control w.r.t. a given control problem, we first need to show the existence and uniqueness of a local mild s...
Saved in:
Published in | Mathematische Nachrichten Vol. 292; no. 7; pp. 1444 - 1461 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.07.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0025-584X 1522-2616 |
DOI | 10.1002/mana.201700185 |
Cover
Abstract | We consider the controlled stochastic Navier–Stokes equations in a bounded multidimensional domain, where the noise term allows jumps. In order to prove existence and uniqueness of an optimal control w.r.t. a given control problem, we first need to show the existence and uniqueness of a local mild solution of the considered controlled stochastic Navier–Stokes equations. We then discuss the control problem, where the related cost functional includes stopping times dependent on controls. Based on the continuity of the cost functional, we can apply existence and uniqueness results provided in [4], which enables us to show that a unique optimal control exists. |
---|---|
AbstractList | We consider the controlled stochastic Navier–Stokes equations in a bounded multidimensional domain, where the noise term allows jumps. In order to prove existence and uniqueness of an optimal control w.r.t. a given control problem, we first need to show the existence and uniqueness of a local mild solution of the considered controlled stochastic Navier–Stokes equations. We then discuss the control problem, where the related cost functional includes stopping times dependent on controls. Based on the continuity of the cost functional, we can apply existence and uniqueness results provided in [4], which enables us to show that a unique optimal control exists. We consider the controlled stochastic Navier–Stokes equations in a bounded multidimensional domain, where the noise term allows jumps. In order to prove existence and uniqueness of an optimal control w.r.t. a given control problem, we first need to show the existence and uniqueness of a local mild solution of the considered controlled stochastic Navier–Stokes equations. We then discuss the control problem, where the related cost functional includes stopping times dependent on controls. Based on the continuity of the cost functional, we can apply existence and uniqueness results provided in [4], which enables us to show that a unique optimal control exists. |
Author | Trautwein, Christoph Benner, Peter |
Author_xml | – sequence: 1 givenname: Peter surname: Benner fullname: Benner, Peter organization: Max Planck Institute for Dynamics of Complex Technical Systems – sequence: 2 givenname: Christoph surname: Trautwein fullname: Trautwein, Christoph email: trautwein@mpi-magdeburg.mpg.de organization: Max Planck Institute for Dynamics of Complex Technical Systems |
BookMark | eNqFkM1KAzEURoNUsFW3rgOupyaZJDNZluIfVF2o4G5IMxkanU6mSaalO9_Bp_A5fBOfxNSKgiCuLnx8517uGYBeYxsNwBFGQ4wQOZnLRg4JwhlCOGc7oI8ZIQnhmPdAPxZYwnL6sAcG3j8ihITIeB-0N20wc1lDZZvgbA1bZ6e1nvtN4IOTptElnK5hmGnog1Uz6YNR8FoujXbvzy-3wT5pD_Wik8FEBK5MmMF5VwfT1kbFcKnh5O11uYaNNV4fgN1K1l4ffs19cH92eje-SCY355fj0SRRKc5YIqSkGaN5JljFmUo5r6pSCJmWPCdCK4ak4ohPKU1RKjjPK1xOVcoETXHJEU33wfF2b3xo0WkfikfbuSaeLAhhBBEaqdgablvKWe-drorWRR1uXWBUbKwWG6vFt9UI0F-AMuHz842r-m9MbLGVqfX6nyPF1eh69MN-ADhdkgk |
CitedBy_id | crossref_primary_10_1137_23M1623069 crossref_primary_10_1007_s00245_021_09792_6 crossref_primary_10_1016_j_jde_2023_02_021 crossref_primary_10_1007_s40072_021_00196_9 crossref_primary_10_1007_s10957_024_02416_3 crossref_primary_10_1007_s40072_024_00341_0 crossref_primary_10_1051_cocv_2025002 crossref_primary_10_1016_j_cam_2022_114286 |
Cites_doi | 10.1002/mana.201300248 10.1137/030601259 10.1007/BF01214869 10.3934/eect.2017021 10.1007/s00245-002-0734-6 10.3792/pja/1195526510 10.1155/S1048953300000228 10.1051/m2an:2000140 10.1006/jfan.1994.1140 10.1017/CBO9780511662829 10.4064/sm-44-1-47-60 10.1002/cpa.20077 10.1080/07362990701673047 10.1007/BF01192467 10.1007/s00440-004-0392-5 10.1007/978-3-663-13911-9 10.1007/978-1-4612-5561-1 10.1017/CBO9780511809781 10.1002/mana.19790930106 10.4171/RMI/250 10.1017/CBO9780511721373 10.2977/prims/1195182014 10.1016/j.cam.2016.04.030 10.1016/S0167-6911(02)00274-8 10.1017/CBO9781107295513 10.1080/07362994.2013.759482 10.3792/pja/1195521686 10.1016/j.na.2012.10.011 10.1016/j.spa.2006.04.001 10.1007/s00021-015-0234-5 10.1051/m2an:2000151 10.1007/BF00276188 10.1007/BF00276875 10.1002/mana.3210040121 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION |
DOI | 10.1002/mana.201700185 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1522-2616 |
EndPage | 1461 |
ExternalDocumentID | 10_1002_mana_201700185 MANA201700185 |
Genre | article |
GrantInformation_xml | – fundername: International Max Planck Research School (IMPRS) |
GroupedDBID | --Z -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 FEDTE FSPIC G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6L MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OHT OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TN5 UB1 V2E V8K W8V W99 WBKPD WIB WIH WIK WOHZO WQJ WRC WWM WXSBR WYISQ XBAML XG1 XPP XV2 YNT YQT ZY4 ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE AMVHM CITATION |
ID | FETCH-LOGICAL-c3175-9aa47548795f65c366ffd99a3d6829ec50ac606b443039668f1dbc359431d6043 |
IEDL.DBID | DR2 |
ISSN | 0025-584X |
IngestDate | Fri Jul 25 12:04:56 EDT 2025 Thu Apr 24 23:06:36 EDT 2025 Wed Oct 01 02:57:22 EDT 2025 Wed Jan 22 16:39:58 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3175-9aa47548795f65c366ffd99a3d6829ec50ac606b443039668f1dbc359431d6043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2252024966 |
PQPubID | 1016385 |
PageCount | 18 |
ParticipantIDs | proquest_journals_2252024966 crossref_primary_10_1002_mana_201700185 crossref_citationtrail_10_1002_mana_201700185 wiley_primary_10_1002_mana_201700185_MANA201700185 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2019 2019-07-00 20190701 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: July 2019 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Mathematische Nachrichten |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 6 1983; 19 2005; 132 1967; 43 2016; 307 2010 2015; 288 2006; 16 2009 1998 2008 1996 2007 1973 2003 1977; 24 2016; 18 2006; 116 1985; 89 1972; 44 1979; 93 1951; 4 2009; 14 1994; 126 2013; 38 1981; 178 2000; 34 2013; 79 1964; 16 2000; 13 2002; 46 2013; 31 1999; 15 2008; 26 2003; 48 1985 1995; 102 1983 2014 2005; 34 1970; 46 2005; 58 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_27_1 Glatt‐Holtz N. (e_1_2_8_26_1) 2009; 14 Ou Y. R. (e_1_2_8_37_1) 1998 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_6_1 Wachsmuth D. (e_1_2_8_46_1) 2005; 34 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 Brzeźniak Z. (e_1_2_8_7_1) 2003 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 Vrabie I. (e_1_2_8_45_1) 2003 Flandoli F. (e_1_2_8_17_1) 2008 Motyl E. (e_1_2_8_36_1) 2013; 38 Fujiwara D. (e_1_2_8_22_1) 1977; 24 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 Sritharan S. S. (e_1_2_8_41_1) 1998 Barbu V. (e_1_2_8_3_1) 2010 e_1_2_8_30_1 |
References_xml | – volume: 31 start-page: 381 issue: 3 year: 2013 end-page: 426 article-title: Nonlinear filtering of stochastic Navier–Stokes equation with Itô–Lévy noise publication-title: Stoch. Anal. Appl. – year: 1985 – volume: 34 start-page: 241 issue: 2 year: 2000 end-page: 273 article-title: Local solutions for stochastic Navier Stokes equations publication-title: ESAJM Math. Model. Numer. Anal. – year: 2009 – year: 1983 – volume: 89 start-page: 267 issue: 3 year: 1985 end-page: 281 article-title: Solutions in of the Navier–Stokes initial value problem publication-title: Arch. Ration. Mech. Anal. – volume: 288 start-page: 1615 issue: 14–15 year: 2015 end-page: 1621 article-title: Mild solutions of stochastic Navier–Stokes equation with jump noise in ‐spaces publication-title: Math. Nachr. – volume: 102 start-page: 367 year: 1995 end-page: 391 article-title: Martingale and stationary solutions for stochastic Navier–Stokes equations publication-title: Probab. Theory Related Fields – volume: 6 start-page: 409 issue: 3 year: 2017 end-page: 425 article-title: ‐solutions of the stochastic Navier–Stokes equations subject to Lévy noise with initial data publication-title: Evol. Equ. Control Theory – volume: 116 start-page: 1636 year: 2006 end-page: 1659 article-title: Large deviations for the two‐dimensional Navier–Stokes equations with multiplicative noise publication-title: Stochastic Process. Appl. – year: 2007 – volume: 16 start-page: 269 year: 1964 end-page: 315 article-title: On the Navier–Stokes initial value problem. I publication-title: Arch. Ration. Mech. Anal. – year: 2003 – year: 1973 – volume: 46 start-page: 1141 year: 1970 end-page: 1143 article-title: On fractional powers of the Stokes operator publication-title: Proc. Japan Acad. – year: 1996 – volume: 24 start-page: 685 issue: 3 year: 1977 end-page: 700 article-title: An ‐theorem of the Helmholtz decomposition of vector fields publication-title: J. Fac. Sci. Univ. Tokyo Sec. 1 A – volume: 178 start-page: 297 year: 1981 end-page: 329 article-title: Analyticity of the semigroup generated by the stokes operator in spaces publication-title: Math. Z. – volume: 26 start-page: 98 year: 2008 end-page: 119 article-title: Stochastic convolutions driven by Martingales: Maximal inequalities and exponential integrability publication-title: Stoch. Anal. Appl. – start-page: 51 year: 2008 end-page: 150 – volume: 93 start-page: 67 year: 1979 end-page: 73 article-title: On existence of optimal control publication-title: Math. Nachr. – volume: 44 start-page: 47 year: 1972 end-page: 60 article-title: Interpolation in with boundary conditions publication-title: Stud. Math. – start-page: 151 year: 1998 end-page: 180 – year: 2014 – year: 2010 – volume: 14 start-page: 567 issue: 5‐6 year: 2009 end-page: 600 article-title: Strong pathwise solutions of the stochastic Navier–Stokes system publication-title: Adv. Differential Equations – start-page: 251 year: 2003 end-page: 289 – volume: 16 start-page: 1177 issue: 4 year: 2006 end-page: 1200 article-title: A SQP‐Semismooth Newton–type algorithm applied to control of the instationary Navier–Stokes system subject to control constraints publication-title: SIAM J. Optim. – volume: 15 start-page: 59 year: 1999 end-page: 91 article-title: Some Dirichlet spaces obtained by subordinate reflected diffusions publication-title: Rev. Mat. Iberoam. – start-page: 1 year: 1998 end-page: 42 – volume: 46 start-page: 31 year: 2002 end-page: 53 article-title: Stochastic 2‐D Navier–Stokes equation publication-title: Appl. Math. Optim. – volume: 307 start-page: 25 year: 2016 end-page: 36 article-title: The velocity tracking problem for Wick‐stochastic Navier–Stokes flows using Wiener chaos expansion publication-title: J. Comput. Appl. Math. – volume: 43 start-page: 82 year: 1967 end-page: 86 article-title: Concrete characterization of the domains of fractional powers of some elliptic differential operators of the second order publication-title: Proc. Japan Acad. – volume: 79 start-page: 122 year: 2013 end-page: 139 article-title: 2D stochastic Navier–Stokes equations driven by jump noise publication-title: Nonlinear Anal. – volume: 38 start-page: 863 year: 2013 end-page: 912 article-title: Stochastic Navier–Stokes equations driven by Lévy noise in unbounded 3D domains publication-title: Potential Anal. – volume: 126 start-page: 26 year: 1994 end-page: 35 article-title: Stochastic equations in Hilbert space with application to Navier–Stokes equations in any dimension publication-title: J. Funct. Anal. – volume: 34 start-page: 387 issue: 2 year: 2005 end-page: 409 article-title: Regularity and stability of optimal controls of nonstationary Navier–Stokes equations publication-title: Control Cybernet. – volume: 18 start-page: 25 year: 2016 end-page: 69 article-title: Well‐posedness of the multidimensional fractional stochastic Navier–Stokes equations on the torus and on bounded domains publication-title: J. Math. Fluid Mech. – volume: 19 start-page: 887 year: 1983 end-page: 910 article-title: Weak and strong solutions of the Navier–Stokes initial value problem publication-title: Publ. Res. Inst. Math. Sci. – volume: 132 start-page: 119 year: 2005 end-page: 149 article-title: Stochastic nonlinear beam equations publication-title: Probab. Theory Related Fields – volume: 58 start-page: 671 year: 2005 end-page: 700 article-title: Bellman equations associated to the optimal feedback control of stochastic Navier–Stokes equations publication-title: Comm. Pure Appl. Math. – volume: 4 start-page: 213 year: 1951 end-page: 231 article-title: Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen publication-title: Math. Nachr. – volume: 48 start-page: 297 year: 2003 end-page: 311 article-title: Constrained optimal control of Navier–Stokes flow by semismooth Newton methods publication-title: Systems Control Lett. – volume: 13 start-page: 239 issue: 3 year: 2000 end-page: 259 article-title: Galerkin approximation and the strong solution of the Navier–Stokes equation publication-title: J. Appl. Math. Stoch. Anal. – volume: 34 start-page: 459 issue: 2 year: 2000 end-page: 475 article-title: Dynamic programming for the stochastic Navier–Stokes equations publication-title: ESAIM Math. Model. Numer. Anal. – ident: e_1_2_8_15_1 doi: 10.1002/mana.201300248 – ident: e_1_2_8_30_1 doi: 10.1137/030601259 – ident: e_1_2_8_23_1 doi: 10.1007/BF01214869 – ident: e_1_2_8_35_1 doi: 10.3934/eect.2017021 – volume: 38 start-page: 863 year: 2013 ident: e_1_2_8_36_1 article-title: Stochastic Navier–Stokes equations driven by Lévy noise in unbounded 3D domains publication-title: Potential Anal. – ident: e_1_2_8_34_1 doi: 10.1007/s00245-002-0734-6 – ident: e_1_2_8_20_1 doi: 10.3792/pja/1195526510 – ident: e_1_2_8_6_1 doi: 10.1155/S1048953300000228 – volume: 34 start-page: 387 issue: 2 year: 2005 ident: e_1_2_8_46_1 article-title: Regularity and stability of optimal controls of nonstationary Navier–Stokes equations publication-title: Control Cybernet. – ident: e_1_2_8_4_1 doi: 10.1051/m2an:2000140 – ident: e_1_2_8_10_1 doi: 10.1006/jfan.1994.1140 – ident: e_1_2_8_12_1 doi: 10.1017/CBO9780511662829 – start-page: 51 volume-title: An introduction to 3D stochastic fluid dynamics year: 2008 ident: e_1_2_8_17_1 – ident: e_1_2_8_40_1 doi: 10.4064/sm-44-1-47-60 – ident: e_1_2_8_28_1 doi: 10.1002/cpa.20077 – volume: 14 start-page: 567 issue: 5 year: 2009 ident: e_1_2_8_26_1 article-title: Strong pathwise solutions of the stochastic Navier–Stokes system publication-title: Adv. Differential Equations – start-page: 1 volume-title: An introduction to deterministic and stochastic control of viscous flow year: 1998 ident: e_1_2_8_41_1 – ident: e_1_2_8_29_1 doi: 10.1080/07362990701673047 – volume-title: Stabilization of Navier–Stokes flow year: 2010 ident: e_1_2_8_3_1 – ident: e_1_2_8_18_1 doi: 10.1007/BF01192467 – ident: e_1_2_8_5_1 – ident: e_1_2_8_9_1 doi: 10.1007/s00440-004-0392-5 – ident: e_1_2_8_44_1 doi: 10.1007/978-3-663-13911-9 – ident: e_1_2_8_38_1 doi: 10.1007/978-1-4612-5561-1 – start-page: 151 volume-title: Design of feedback compensators for viscous flow year: 1998 ident: e_1_2_8_37_1 – ident: e_1_2_8_2_1 doi: 10.1017/CBO9780511809781 – ident: e_1_2_8_27_1 doi: 10.1002/mana.19790930106 – ident: e_1_2_8_32_1 doi: 10.4171/RMI/250 – ident: e_1_2_8_39_1 doi: 10.1017/CBO9780511721373 – ident: e_1_2_8_24_1 doi: 10.2977/prims/1195182014 – ident: e_1_2_8_33_1 doi: 10.1016/j.cam.2016.04.030 – ident: e_1_2_8_43_1 doi: 10.1016/S0167-6911(02)00274-8 – ident: e_1_2_8_13_1 doi: 10.1017/CBO9781107295513 – ident: e_1_2_8_16_1 doi: 10.1080/07362994.2013.759482 – ident: e_1_2_8_21_1 doi: 10.3792/pja/1195521686 – ident: e_1_2_8_8_1 doi: 10.1016/j.na.2012.10.011 – volume-title: C0‐semigroups and applications year: 2003 ident: e_1_2_8_45_1 – ident: e_1_2_8_42_1 doi: 10.1016/j.spa.2006.04.001 – ident: e_1_2_8_14_1 doi: 10.1007/s00021-015-0234-5 – ident: e_1_2_8_11_1 doi: 10.1051/m2an:2000151 – ident: e_1_2_8_19_1 doi: 10.1007/BF00276188 – volume: 24 start-page: 685 issue: 3 year: 1977 ident: e_1_2_8_22_1 article-title: An ‐theorem of the Helmholtz decomposition of vector fields publication-title: J. Fac. Sci. Univ. Tokyo Sec. 1 A – start-page: 251 volume-title: Approximations of the Wong–Zakai type for stochastic differential equations in M‐type 2 Banach spaces with applications to loop spaces year: 2003 ident: e_1_2_8_7_1 – ident: e_1_2_8_25_1 doi: 10.1007/BF00276875 – ident: e_1_2_8_31_1 doi: 10.1002/mana.3210040121 |
SSID | ssj0009976 |
Score | 2.2447598 |
Snippet | We consider the controlled stochastic Navier–Stokes equations in a bounded multidimensional domain, where the noise term allows jumps. In order to prove... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1444 |
SubjectTerms | 35Q30 49J20 93E20 Continuity (mathematics) Control theory Fluid dynamics Fluid flow local mild solution Lévy process Mathematical analysis Navier-Stokes equations Optimal control stochastic Navier–Stokes equations stochastic optimal control Uniqueness |
Title | Optimal control problems constrained by the stochastic Navier–Stokes equations with multiplicative Lévy noise |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmana.201700185 https://www.proquest.com/docview/2252024966 |
Volume | 292 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1522-2616 dateEnd: 20241003 omitProxy: true ssIdentifier: ssj0009976 issn: 0025-584X databaseCode: ABDBF dateStart: 20120601 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0025-584X databaseCode: DR2 dateStart: 20000101 customDbUrl: isFulltext: true eissn: 1522-2616 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009976 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSsMwFA6iN3rhvzidIxeCV926_qTJ5aaOIW6COthdSdMUZbpN2w3mle_gU_gcvolPYk7adZsggt6UtiSlSc7J-U5y8h2EjqOqF1CPmoa6SsPx7EipVEQNQaiSIEFFVZM9t9qk2XEuum537hR_yg-RL7iBZuj5GhScB3FlRhoK0Z0QmgUbpxROmVdtV-_TXs_4oxjT2eV0zlZlabtT1kbTqixWX7RKM6g5D1i1xWlsID791zTQpFceJUFZvHyjcfxPYzbRegZHcS2Vny20JPvbaK2Vc7nGO2h4pWaVR1Uoi2rHWQ6aGF7EOsWEDHEwwaoOVlBS3HHgfsZtDib38_XtJhn0ZIzlU8oqHmNY-8VZJKNeMhxLfPnxPp7g_uA-lruo0zi_PW0aWZ4GQwD6MBjnjgeeD3Mj4gqbkCgKGeN2SKjFpHBNLpSfFDiOspfKvaJRNQyE7TIFXkJiOvYeWu4P-nIfYccOHDhNq0TLAyo36nFuhSaRkWAkdHkBGdNx8kVGYg4NffBT-mXLh570854soJO8_DCl7_ixZHE67H6mxrGvJjsLOBUJKSBLj98vX_EhD0P-dPCXSodoVd2zNCS4iJaT55E8UsAnCUpopVY_qzdKWsi_AJt9_hw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BOQAHdkRZfUDiFEizOPYRsahAWyQWiVvkOI5AhRZIqQQn_oGv4Dv4E74Ej7MUkBASXCLFsqPYnvGMx89vANaTWhCxgNmWfirLC9xEq1TCLEmZliDJZM2QPTdbtH7uHV74BZoQ78Jk_BBlwA01w6zXqOAYkN4asIYivBOxWXhyyvxhGMFDOtTN3ZMBgxTnJr-cydqqbe1FwdtoO1tf23-1SwNn87PLamzO_iRExd9mUJP25kMv2pRP34gc_9WdKZjIPVKynYnQNAypzgyMN0s613QWbo_1wnKjK-XAdpKnoUmxIDVZJlRMokei2xDtTcpLgfTPpCXQ6r4_v5z2um2VEnWXEYunBMO_JAczmqhhX5HG22v_kXS6V6mag_P9vbOdupWnarAkOiAWF8ILcPPD_YT60qU0SWLOhRtT5nAlfVtIvVWKPE-bTL3DYkktjqTrc-2_xNT23HmodLodtQDEcyMPL9Rq6QqQzY0FQjixTVUiOY19UQWrmKhQ5jzm2NHrMGNgdkIcybAcySpslPVvMwaPH2suF_Me5pqchnq9c5BWkdIqOGYCf_lKiKkYyrfFvzRag9H6WbMRNg5aR0swpst5hhBehkrv_kGtaD-oF60aSf8AeFUA1Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BTtwwEB1RkKpyAFpAXUqpD0g9BbKJ49hHBF3RFraoLdLeIsexBYLuLmRBghP_0K_gO_gTvqQzTjYLlapKcIkUy45ie8bzxh6_AVh37TSXqQwDfNqAp7FDlXIyMEKiBBlp2p7seb8rdg_5l17Se3CLv-KHaDbcSDP8ek0KPizc5oQ0lKI7KTSLDk5l8gJmuEAXi2DR9wmBlFI-vZxP2oqmtjembQyjzcftH5ulCdZ8iFi9yenMgx7_bBVpcrJxMco3zPVfPI7P6c0CzNV4lG1VAvQapmz_DczuN2Su5SIMv-Gy8gsr1WHtrE5CU1JB6XNM2ILlVwzbMMSS5kgT-TPrarK59ze_f4wGJ7Zk9qyiFS8Zbf6yOpTR7xleWrZ3d3t5xfqD49IuwWHn08_t3aBO1BAYgh-B0pqn5PqoxInExEI4Vyil40LISFmThNqgo5RzjgYT_Svp2kVu4kQheilEyONlmO4P-vYtMB7nnK7TomylxOUmU62jIhTWGSWKRLcgGM9TZmoWc-roaVbxL0cZjWTWjGQLPjb1hxV_xz9rro6nPav1uMxwtYuIVFGIFkR-_v7zlYwSMTRvK09p9AFeHux0sr3P3a_v4BUWqyo8eBWmR-cX9j2CoFG-5uX8D3c4_3U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+control+problems+constrained+by+the+stochastic+Navier%E2%80%93Stokes+equations+with+multiplicative+L%C3%A9vy+noise&rft.jtitle=Mathematische+Nachrichten&rft.au=Benner%2C+Peter&rft.au=Trautwein%2C+Christoph&rft.date=2019-07-01&rft.issn=0025-584X&rft.eissn=1522-2616&rft.volume=292&rft.issue=7&rft.spage=1444&rft.epage=1461&rft_id=info:doi/10.1002%2Fmana.201700185&rft.externalDBID=10.1002%252Fmana.201700185&rft.externalDocID=MANA201700185 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-584X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-584X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-584X&client=summon |