Fused thiophene based materials for organic thin‐film transistors

This review highlights our recent efforts in the development of organic semiconductors based on anthradithiophene (ADT), dithienothiophene (DTT), tetrathienoacene (TTA), benzothienodithiophene (BTDT), benzothienothiophene (BTT), chalcogen‐planarized BT, and some quinoidal oligothiophenes for the app...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Chinese Chemical Society (Taipei) Vol. 69; no. 8; pp. 1253 - 1275
Main Authors Velusamy, Arulmozhi, Afraj, Shakil N., Yau, Shuehlin, Liu, Cheng‐Liang, Ezhumalai, Yamuna, Kumaresan, Prabakaran, Chen, Ming‐Chou
Format Journal Article
LanguageEnglish
Published Weinheim Wiley‐VCH Verlag GmbH & Co. KGaA 01.08.2022
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0009-4536
2192-6549
DOI10.1002/jccs.202200214

Cover

Abstract This review highlights our recent efforts in the development of organic semiconductors based on anthradithiophene (ADT), dithienothiophene (DTT), tetrathienoacene (TTA), benzothienodithiophene (BTDT), benzothienothiophene (BTT), chalcogen‐planarized BT, and some quinoidal oligothiophenes for the application of organic thin‐film transistors (OTFTs). We visualized various strategies that have been employed in molecular architecture to improve the stability as well as solubility, and the energy levels are tuned for efficient hole/electron injection, thus leading to high‐performance solution processable OTFTs. The obtained mobility was correlated with the molecular stacking pattern and film morphology/microstructure of the semiconductors. Overall, this review presents information that aids reliable OTFT data analysis and provide guidelines for the development of next‐generation organic semiconductors. At present, the p‐type and n‐type OTFTs developed by our group are able to reach the mobilities of over 4.01 and 2.5 cm2V−1 s−1, respectively. In addition, we also demonstrated the utilization of these conjugated moieties in development of high performance dye‐sensitized solar cells (DSSCs) and hole transporting materials (HTM) as well as non‐fullerene acceptor (NFA) for perovskite solar cells (PSCs). This review examines strategies employed in molecular architecture to increase stability and solubility, and the energy levels used to optimize hole/electron injection, leading to high‐performance solution‐processable OTFTs.
AbstractList This review highlights our recent efforts in the development of organic semiconductors based on anthradithiophene (ADT), dithienothiophene (DTT), tetrathienoacene (TTA), benzothienodithiophene (BTDT), benzothienothiophene (BTT), chalcogen‐planarized BT, and some quinoidal oligothiophenes for the application of organic thin‐film transistors (OTFTs). We visualized various strategies that have been employed in molecular architecture to improve the stability as well as solubility, and the energy levels are tuned for efficient hole/electron injection, thus leading to high‐performance solution processable OTFTs. The obtained mobility was correlated with the molecular stacking pattern and film morphology/microstructure of the semiconductors. Overall, this review presents information that aids reliable OTFT data analysis and provide guidelines for the development of next‐generation organic semiconductors. At present, the p ‐type and n ‐type OTFTs developed by our group are able to reach the mobilities of over 4.01 and 2.5 cm 2 V −1  s −1 , respectively. In addition, we also demonstrated the utilization of these conjugated moieties in development of high performance dye‐sensitized solar cells (DSSCs) and hole transporting materials (HTM) as well as non‐fullerene acceptor (NFA) for perovskite solar cells (PSCs).
This review highlights our recent efforts in the development of organic semiconductors based on anthradithiophene (ADT), dithienothiophene (DTT), tetrathienoacene (TTA), benzothienodithiophene (BTDT), benzothienothiophene (BTT), chalcogen‐planarized BT, and some quinoidal oligothiophenes for the application of organic thin‐film transistors (OTFTs). We visualized various strategies that have been employed in molecular architecture to improve the stability as well as solubility, and the energy levels are tuned for efficient hole/electron injection, thus leading to high‐performance solution processable OTFTs. The obtained mobility was correlated with the molecular stacking pattern and film morphology/microstructure of the semiconductors. Overall, this review presents information that aids reliable OTFT data analysis and provide guidelines for the development of next‐generation organic semiconductors. At present, the p‐type and n‐type OTFTs developed by our group are able to reach the mobilities of over 4.01 and 2.5 cm2V−1 s−1, respectively. In addition, we also demonstrated the utilization of these conjugated moieties in development of high performance dye‐sensitized solar cells (DSSCs) and hole transporting materials (HTM) as well as non‐fullerene acceptor (NFA) for perovskite solar cells (PSCs). This review examines strategies employed in molecular architecture to increase stability and solubility, and the energy levels used to optimize hole/electron injection, leading to high‐performance solution‐processable OTFTs.
This review highlights our recent efforts in the development of organic semiconductors based on anthradithiophene (ADT), dithienothiophene (DTT), tetrathienoacene (TTA), benzothienodithiophene (BTDT), benzothienothiophene (BTT), chalcogen‐planarized BT, and some quinoidal oligothiophenes for the application of organic thin‐film transistors (OTFTs). We visualized various strategies that have been employed in molecular architecture to improve the stability as well as solubility, and the energy levels are tuned for efficient hole/electron injection, thus leading to high‐performance solution processable OTFTs. The obtained mobility was correlated with the molecular stacking pattern and film morphology/microstructure of the semiconductors. Overall, this review presents information that aids reliable OTFT data analysis and provide guidelines for the development of next‐generation organic semiconductors. At present, the p‐type and n‐type OTFTs developed by our group are able to reach the mobilities of over 4.01 and 2.5 cm2V−1 s−1, respectively. In addition, we also demonstrated the utilization of these conjugated moieties in development of high performance dye‐sensitized solar cells (DSSCs) and hole transporting materials (HTM) as well as non‐fullerene acceptor (NFA) for perovskite solar cells (PSCs).
Author Liu, Cheng‐Liang
Afraj, Shakil N.
Kumaresan, Prabakaran
Chen, Ming‐Chou
Velusamy, Arulmozhi
Ezhumalai, Yamuna
Yau, Shuehlin
Author_xml – sequence: 1
  givenname: Arulmozhi
  surname: Velusamy
  fullname: Velusamy, Arulmozhi
  organization: National Central University
– sequence: 2
  givenname: Shakil N.
  orcidid: 0000-0002-4174-5178
  surname: Afraj
  fullname: Afraj, Shakil N.
  organization: National Central University
– sequence: 3
  givenname: Shuehlin
  surname: Yau
  fullname: Yau, Shuehlin
  organization: National Central University
– sequence: 4
  givenname: Cheng‐Liang
  surname: Liu
  fullname: Liu, Cheng‐Liang
  organization: National Taiwan University
– sequence: 5
  givenname: Yamuna
  surname: Ezhumalai
  fullname: Ezhumalai, Yamuna
  email: yamuchemist@gmail.com
  organization: Karpagam Academy of Higher Education
– sequence: 6
  givenname: Prabakaran
  surname: Kumaresan
  fullname: Kumaresan, Prabakaran
  email: prabakaranchem@gmail.com
  organization: PSG College of Arts and Science
– sequence: 7
  givenname: Ming‐Chou
  surname: Chen
  fullname: Chen, Ming‐Chou
  email: mcchen@cc.ncu.edu.tw
  organization: National Central University
BookMark eNqFkM9KAzEQh4NUsK1ePS943nUym-2aoyzWPxQ8qOeQzWZtyjapyRbpzUfwGX0Ss1QUBPE0DPN9M8NvQkbWWU3IKYWMAuD5SqmQISDGhrIDMkbKMZ0VjI_IGAB4yop8dkQmIawAWI4FH5Nqvg26SfqlcZultjqp5dCvZa-9kV1IWucT55-lNWqg7Mfbe2u6ddJ7aYMJvfPhmBy2EdUnX3VKnuZXj9VNuri_vq0uF6nKacnSHCQwVesSa10AlxRqRFZIfiFnWCrFchbnDZS6ZUhbzXnbNEoqKHRTA-X5lJzt9268e9nq0IuV23obTwosKeYcS4BIsT2lvAvB61Yo08veOBtfNp2gIIa4xBCX-I4ratkvbePNWvrd3wLfC6-m07t_aHFXVQ8_7id24IC-
CitedBy_id crossref_primary_10_1002_ange_202400803
crossref_primary_10_1039_D2TC02679A
crossref_primary_10_1039_D4TC05240D
crossref_primary_10_1039_D3MA00552F
crossref_primary_10_1021_acsami_4c15688
crossref_primary_10_3390_cryst14070620
crossref_primary_10_1002_ange_202407228
crossref_primary_10_1002_jccs_202300326
crossref_primary_10_1039_D3TC04294D
crossref_primary_10_1002_anie_202407228
crossref_primary_10_1002_cplu_202300280
crossref_primary_10_1002_chem_202402461
crossref_primary_10_1002_advs_202305361
crossref_primary_10_1002_adfm_202213939
crossref_primary_10_1002_adma_202300681
crossref_primary_10_1002_aenm_202302047
crossref_primary_10_1016_j_matchemphys_2024_130268
crossref_primary_10_1002_anie_202400803
crossref_primary_10_1016_j_jelechem_2023_117646
crossref_primary_10_1021_acsami_3c15774
crossref_primary_10_1016_j_orgel_2024_107058
Cites_doi 10.1039/D1QM00334H
10.1007/s10854-018-9936-9
10.1002/adma.200701431
10.1016/j.orgel.2010.01.022
10.1039/D2TA00617K
10.1039/c0cc00947d
10.1021/acsami.0c18426
10.1002/smll.202100783
10.1038/nmat1612
10.1021/ol0523650
10.3390/electronics11020197
10.1039/C6CC00948D
10.1021/acsami.6b02767
10.1002/adma.201801079
10.1016/j.orgel.2017.11.023
10.1039/D0TC03808C
10.1016/j.mser.2018.10.003
10.1039/C7TC03455E
10.1002/adfm.200500547
10.1021/acsami.1c23994
10.1021/cm102296d
10.1021/ja2073643
10.1002/adma.201305981
10.1016/j.orgel.2010.09.010
10.1021/acs.accounts.8b00448
10.1002/adma.201102007
10.1016/j.mee.2021.111590
10.1021/acsami.0c03477
10.1038/s41928-021-00634-5
10.1016/j.dyepig.2016.05.041
10.1021/acsami.1c20143
10.1016/j.orgel.2009.02.007
10.1002/advs.202002930
10.1021/jacs.7b05344
10.1002/adma.201502980
10.1021/ol050872b
10.1002/pssr.201105534
10.1039/C7CC02714A
10.1021/acsenergylett.2c00684
10.1002/anie.200701920
10.1016/j.dyepig.2020.108911
10.1039/b820621j
10.1002/sdtp.11936
10.1021/acs.accounts.9b00031
10.1021/cm101435s
10.1063/1.1471378
10.1039/C7TA01825H
10.1039/C7TC02023F
10.1002/advs.201700290
10.1002/adma.201001402
10.1021/ja311469y
10.1038/nature02498
10.1016/S1369-7021(07)70017-2
10.1002/adma.201002682
10.1021/jacs.7b10898
10.1002/adfm.200800829
10.1021/acsami.8b19778
10.1002/asia.201000001
10.1002/adma.201304346
10.1021/acs.accounts.8b00025
10.1021/jo061853y
10.1002/adfm.202200880
10.1002/adma.200901454
10.1002/adma.201302315
10.1088/1468-6996/10/2/024313
10.1038/s41598-021-91239-7
10.1021/cm049614j
10.1002/adfm.201303378
10.1039/c0cs00194e
10.1002/chem.200601064
10.1109/55.556089
10.1021/ja052816b
10.1007/978-3-030-80702-3_1
10.1039/b715746k
10.1002/adom.202102650
10.1016/j.orgel.2010.04.029
10.1021/am3022448
10.1021/acsnano.0c07003
10.1016/j.cclet.2016.05.033
10.1002/aelm.202100648
10.1021/acsami.2c00841
10.1002/adfm.201101053
10.1021/acs.chemmater.1c00335
10.1021/ja074841i
10.1016/B978-0-12-823147-0.00010-0
10.1080/15583724.2013.848455
10.1002/adma.200903628
10.1002/adfm.201801025
10.1016/j.matpr.2021.04.401
10.1039/D0TC02310H
10.3390/ma15062255
10.1016/j.tet.2005.08.030
10.1039/C4TC01115E
10.1002/adfm.201606761
10.1002/adma.201702115
10.1063/1.363032
10.1016/j.dyepig.2018.12.054
10.1002/chem.201204110
10.1016/j.orgel.2021.106427
10.1039/c3tc30144c
10.1016/j.dyepig.2017.06.017
10.1016/j.orgel.2019.105432
10.1038/nature10683
10.1002/adma.200305275
10.1002/adma.201702414
10.1021/cr100380z
10.1021/ma047415f
10.1021/cm201326c
10.1021/cm049391x
10.1021/ja053326m
10.1021/acs.chemmater.9b03967
10.1016/j.isci.2022.103782
10.1002/aelm.201700464
10.1021/cr0501386
10.1016/j.dyepig.2015.12.008
10.1021/acsaem.1c03485
10.1063/1.2952769
10.1039/D0TC01408G
10.1002/adma.200802202
10.3390/coatings11101222
10.1002/adfm.201905393
10.1038/nature10313
10.1038/ncomms4005
10.1002/adfm.201203439
10.1016/j.talanta.2019.06.034
10.1016/j.orgel.2012.05.040
10.1002/adfm.202000765
10.1039/C6TC05052B
10.1021/ar800130s
10.1021/acsami.6b02788
10.1039/C4TC01454E
10.1109/TED.2022.3151044
10.1055/s-0030-1261191
10.3390/electronics11030316
10.1002/adma.201600541
10.1002/adma.201801048
10.1039/C7TC01680H
10.1002/adfm.201904588
10.1039/C3TC32046D
10.1021/ma0709001
10.1021/ja042353u
10.1039/c2cp41664f
10.3390/polym6102645
10.1039/C8TC01802B
10.1002/chem.201603112
10.1016/j.orgel.2016.09.006
10.1021/cm062378n
10.1038/nchem.1422
10.3390/polym14061112
10.1039/C5TC01348H
10.1038/s41528-022-00133-3
10.1021/cr050966z
10.1038/s41570-019-0152-9
10.1021/acsami.9b21955
10.1002/cphc.201300317
10.1039/c3cs60108k
10.1021/jacs.9b09374
10.1021/ma9015278
10.1002/admt.202001028
10.1002/adma.201801830
10.1021/ja513254z
10.1002/aelm.201500098
10.1021/ja801475h
10.1016/j.tsf.2022.139112
10.1021/acs.chemmater.7b01551
ContentType Journal Article
Copyright 2022 Chemical Society Located in Taipei and Wiley‐VCH GmbH.
2022 The Chemical Society Located in Taipei & Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Chemical Society Located in Taipei and Wiley‐VCH GmbH.
– notice: 2022 The Chemical Society Located in Taipei & Wiley‐VCH GmbH
DBID AAYXX
CITATION
DOI 10.1002/jccs.202200214
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2192-6549
EndPage 1275
ExternalDocumentID 10_1002_jccs_202200214
JCCS202200214
Genre reviewArticle
GrantInformation_xml – fundername: Ministry of Science and Technology
  funderid: MOST 109‐2113‐M‐008‐011‐MY2
– fundername: National Central University
  funderid: MOST 110‐2622‐8‐008‐
– fundername: Ministry of Science and Technology of Taiwan
GroupedDBID 05W
0R~
1OB
1OC
2NJ
2WC
31~
33P
3SF
50Y
52U
5GY
8-0
8-1
8RM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACRPL
ACUHS
ACXBN
ACXQS
ACYXJ
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
BZXJU
DCZOG
DPXWK
DRFUL
DRSTM
E3Z
EBS
EJD
EOJEC
FEDTE
G-S
GODZA
HGLYW
HH5
HVGLF
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OBODZ
OK1
P2P
P2W
PALCI
Q0C
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TR2
VH1
WBFHL
WBKPD
WIH
WIK
WOHZO
WXSBR
WYISQ
WYJ
ZZTAW
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c3174-30a04cbe72be509a10b2245a98a627cc43404cd07ef421fe99fddcac05edb0193
ISSN 0009-4536
IngestDate Wed Aug 13 07:30:02 EDT 2025
Thu Apr 24 23:00:11 EDT 2025
Tue Jul 01 00:51:20 EDT 2025
Wed Jan 22 16:24:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3174-30a04cbe72be509a10b2245a98a627cc43404cd07ef421fe99fddcac05edb0193
Notes Funding information
Ministry of Science and Technology, Grant/Award Number: MOST 109‐2113‐M‐008‐011‐MY2; National Central University, Grant/Award Number: MOST 110‐2622‐8‐008‐; Ministry of Science and Technology of Taiwan
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4174-5178
PQID 2712392700
PQPubID 2032544
PageCount 23
ParticipantIDs proquest_journals_2712392700
crossref_citationtrail_10_1002_jccs_202200214
crossref_primary_10_1002_jccs_202200214
wiley_primary_10_1002_jccs_202200214_JCCS202200214
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2022
2022-08-00
20220801
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Taipei
PublicationTitle Journal of the Chinese Chemical Society (Taipei)
PublicationYear 2022
Publisher Wiley‐VCH Verlag GmbH & Co. KGaA
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley‐VCH Verlag GmbH & Co. KGaA
– name: Wiley Subscription Services, Inc
References 2017; 5
2010; 11
2002 2005 2005 2007 2009; 80 127 7 19 10
2010 2012 2012; 11 13 6
2013; 23
2014 2015 2016 2016 2017 2018 2018 2021; 26 27 39 28 29 5 4 11
2018 2022; 30 102
2014; 24
2020; 12
2019; 163
2020 2020; 12 8
2020; 8
2010; 22
2013; 14
2014; 2
2018 2019; 140 29
2022 2022; 7 14
2021 2021; 17 33
2011 2012 2020 2020; 133 4 4 142
2011; 23
2022; 32
2018 2021 2021 2022 2022; 30 4 46 11
2012; 22
2014; 6
2007 2007 2011 2011; 129 19 480 23
2015; 1
2021; 8
2005 2016 2017 2017 2019; 61 22 139 29 52
2006 2007 2007 2008 2009; 106 107 10 41 21
2021; 6
2018; 28
1996 1997 2000 2008; 80 18 43 93
2015; 3
2017; 27
2008; 18
2009
2014 2018 2019 2019 2020 2021 2021 2022 2022 2022 2022 2022 2022; 54 30 204 52 30 5 13 14 69 6 25 14
2017; 29
2016; 126
2020; 32
2005 2005 2013; 127 127 1
2003 2005 2009; 15 38 42
2003; 771
2015 2016 2017 2019; 137 8 5 11
2016 2016 2017 2018; 52 8 5 6
2012 2013; 4 19
2011; 2011
2017; 53
2021; 15
2022 2022; 15 14
2006 2018 2021 2022; 16 52 11 745
2007 2010; 13 5
2007 2005; 72 7
2004; 16
2006 2007 2009 2013 2017; 5 40 131 135 5
2022; 8
2022 2022; 10 5
2008; 47
2016; 133
2018; 51
2022; 10
2009 2011 2021; 19 23 185
2017; 145
2011 2014; 475 5
2004 2009 2010 2010 2010 2011 2011 2011 2012 2012 2013 2013 2014 2016 2017 2018 2019 2019 2020; 16 10 22 46 22 23 23 40 14 112 42 25 2 27 5 29 75 136 30
2004 2014 2017 2021 2022 2022; 428 26 48 247 11
Bracciale M. P. (e_1_2_11_4_5) 2022
e_1_2_11_70_1
e_1_2_11_70_2
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_55_2
e_1_2_11_36_1
e_1_2_11_13_2
e_1_2_11_51_1
e_1_2_11_13_1
e_1_2_11_32_2
e_1_2_11_4_4
e_1_2_11_29_1
e_1_2_11_4_3
e_1_2_11_21_8
e_1_2_11_25_4
e_1_2_11_4_2
e_1_2_11_21_7
e_1_2_11_4_1
e_1_2_11_21_6
e_1_2_11_25_2
e_1_2_11_48_1
e_1_2_11_29_3
Kelley T. W. (e_1_2_11_23_1) 2003; 771
e_1_2_11_29_2
e_1_2_11_5_12
e_1_2_11_5_11
e_1_2_11_5_14
e_1_2_11_5_13
e_1_2_11_5_10
e_1_2_11_20_2
e_1_2_11_5_19
e_1_2_11_20_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_5_16
e_1_2_11_24_2
e_1_2_11_5_15
e_1_2_11_24_1
e_1_2_11_62_1
e_1_2_11_4_6
e_1_2_11_5_18
e_1_2_11_5_17
e_1_2_11_8_1
e_1_2_11_43_1
e_1_2_11_17_2
e_1_2_11_17_1
e_1_2_11_59_1
e_1_2_11_59_2
e_1_2_11_17_4
e_1_2_11_17_3
e_1_2_11_50_1
e_1_2_11_31_1
e_1_2_11_58_1
e_1_2_11_12_3
e_1_2_11_12_2
e_1_2_11_35_1
e_1_2_11_12_1
e_1_2_11_54_1
e_1_2_11_5_3
e_1_2_11_5_2
e_1_2_11_24_5
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_24_4
e_1_2_11_24_3
e_1_2_11_3_10
e_1_2_11_3_11
e_1_2_11_61_1
e_1_2_11_3_12
e_1_2_11_5_9
e_1_2_11_9_5
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_5_8
e_1_2_11_9_4
e_1_2_11_3_13
e_1_2_11_5_7
e_1_2_11_9_3
e_1_2_11_5_6
e_1_2_11_9_2
e_1_2_11_5_5
e_1_2_11_9_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_5_4
e_1_2_11_16_3
e_1_2_11_16_2
e_1_2_11_12_5
e_1_2_11_16_1
e_1_2_11_12_4
e_1_2_11_16_5
e_1_2_11_39_1
e_1_2_11_16_4
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_11_3
e_1_2_11_11_2
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_11_1
e_1_2_11_6_2
e_1_2_11_2_5
e_1_2_11_6_1
e_1_2_11_2_4
e_1_2_11_27_1
e_1_2_11_2_3
e_1_2_11_2_2
e_1_2_11_2_1
e_1_2_11_69_2
e_1_2_11_60_1
e_1_2_11_45_1
e_1_2_11_68_2
e_1_2_11_68_1
e_1_2_11_41_1
e_1_2_11_6_4
e_1_2_11_6_3
e_1_2_11_22_1
e_1_2_11_64_1
e_1_2_11_15_4
e_1_2_11_15_3
e_1_2_11_15_2
e_1_2_11_15_1
e_1_2_11_19_3
e_1_2_11_38_1
e_1_2_11_19_2
e_1_2_11_19_1
e_1_2_11_10_1
e_1_2_11_52_4
e_1_2_11_56_1
e_1_2_11_14_1
e_1_2_11_52_1
e_1_2_11_52_2
Klauk H. (e_1_2_11_25_3) 2000; 43
e_1_2_11_33_1
e_1_2_11_52_3
e_1_2_11_3_5
e_1_2_11_7_1
e_1_2_11_3_4
e_1_2_11_3_3
e_1_2_11_3_2
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_44_2
e_1_2_11_67_2
e_1_2_11_3_9
e_1_2_11_21_5
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_3_8
e_1_2_11_7_4
e_1_2_11_21_4
e_1_2_11_3_7
e_1_2_11_7_3
e_1_2_11_21_3
e_1_2_11_3_6
e_1_2_11_7_2
e_1_2_11_21_2
e_1_2_11_18_1
e_1_2_11_14_2
e_1_2_11_37_1
e_1_2_11_18_3
e_1_2_11_18_2
References_xml – volume: 145
  start-page: 584
  year: 2017
  publication-title: Dyes Pigments
– volume: 106 107 10 41 21
  start-page: 5028 1066 28 1202 1217
  year: 2006 2007 2007 2008 2009
  publication-title: Chem. Rev. Chem. Rev. Mater. Today Acc. Chem. Res. Adv. Mater. (Weinheim, Ger.)
– volume: 5 40 131 135 5
  start-page: 328 7960 2521 2338 1935
  year: 2006 2007 2009 2013 2017
  publication-title: Nat. Mater. Macromolecules J. Am. Chem. Soc. J. Am. Chem. Soc. J. Mater. Chem. C
– volume: 129 19 480 23
  start-page: 15732 3882 504 523
  year: 2007 2007 2011 2011
  publication-title: J. Am. Chem. Soc. Adv. Mater. (Weinheim, Ger.) Nature Adv. Mater. (Weinheim, Ger.)
– volume: 47
  start-page: 4070
  year: 2008
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 2001028
  year: 2021
  publication-title: Adv. Mater. Technol.
– volume: 12
  start-page: 25081
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 9838
  year: 2017
  publication-title: J. Mater. Chem. C
– volume: 13 5
  start-page: 548 1550
  year: 2007 2010
  publication-title: Chem.‐‐Eur. J. Chem. Asian J.
– volume: 27
  start-page: 1606761
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 29
  start-page: 1702414
  year: 2017
  publication-title: Adv. Mater. (Weinheim, Ger.)
– volume: 8
  start-page: 15119
  year: 2020
  publication-title: J. Mater. Chem. C
– volume: 80 127 7 19 10
  start-page: 2925 4986 3163 418 486
  year: 2002 2005 2005 2007 2009
  publication-title: Appl. Phys. Lett. J. Am. Chem. Soc. Org. Lett. Chem. Mater. Org. Electron.
– volume: 18
  start-page: 1029
  year: 2008
  publication-title: J. Mater. Chem.
– volume: 126
  start-page: 261
  year: 2016
  publication-title: Dyes Pigments
– volume: 133 4 4 142
  start-page: 20009 699 66 652
  year: 2011 2012 2020 2020
  publication-title: J. Am. Chem. Soc. Nat. Chem. Nat. Rev. Chem. J. Am. Chem. Soc.
– volume: 22
  start-page: 5031
  year: 2010
  publication-title: Chem. Mater.
– volume: 11
  start-page: 801
  year: 2010
  publication-title: Org. Electron.
– volume: 10
  start-page: 2102650
  year: 2022
  publication-title: Adv. Opt. Materials
– volume: 3
  start-page: 8932
  year: 2015
  publication-title: J. Mater. Chem. C
– volume: 54 30 204 52 30 5 13 14 69 6 25 14
  start-page: 33 1801079 713 277 1904588 6760 11369 5709 1 2038 1 103782 13584
  year: 2014 2018 2019 2019 2020 2021 2021 2022 2022 2022 2022 2022 2022
  publication-title: Polym. Rev. (Philadelphia, PA, U. S.) Adv. Mater. (Weinheim, Ger.) Talanta Acc. Chem. Res. Adv. Funct. Mater. Mater. Chem. Front. ACS Appl. Mater. Interfaces ACS Appl. Mater. Interfaces IEEE Trans. Electron Devices npj Flexible Electron. iScience ACS Appl. Mater. Interfaces
– volume: 7 14
  start-page: 2118 22053
  year: 2022 2022
  publication-title: ACS Energy Lett. ACS Appl. Mater. Interfaces
– volume: 30 4 46 11
  start-page: 1801048 544 2322 316 339
  year: 2018 2021 2021 2022 2022
  publication-title: Adv. Mater. (Weinheim, Ger.) Nat. Electron. Mater. Today: Proc. Electronics
– volume: 127 127 1
  start-page: 13281 10502 3686
  year: 2005 2005 2013
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. J. Mater. Chem. C
– volume: 8
  start-page: 2100648
  year: 2022
  publication-title: Adv. Electron. Mater.
– volume: 19 23 185
  start-page: 772 3138
  year: 2009 2011 2021
  publication-title: Adv. Funct. Mater. Chem. Mater. Dyes Pigments
– volume: 4 19
  start-page: 6992 3721
  year: 2012 2013
  publication-title: ACS Appl. Mater. Interfaces Chem.‐‐Eur. J.
– volume: 137 8 5 11
  start-page: 4414 15267 12310 21424
  year: 2015 2016 2017 2019
  publication-title: J. Am. Chem. Soc. ACS Appl. Mater. Interfaces J. Mater. Chem. A ACS Appl. Mater. Interfaces
– volume: 475 5
  start-page: 364 3005
  year: 2011 2014
  publication-title: Nature Nat. Commun.
– volume: 140 29
  start-page: 388 1905393
  year: 2018 2019
  publication-title: J. Am. Chem. Soc. Adv. Funct. Mater.
– volume: 15 38 42
  start-page: 1519 3312 8615
  year: 2003 2005 2009
  publication-title: Adv. Mater. (Weinheim, Ger.) Macromolecules Macromolecules
– volume: 23
  start-page: 3850
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 16 52 11 745
  start-page: 426 356 1222
  year: 2006 2018 2021 2022
  publication-title: Adv. Funct. Mater. Org. Electron. Coatings Thin Solid Films
– volume: 72 7
  start-page: 442 5301
  year: 2007 2005
  publication-title: J. Org. Chem. Org. Lett.
– volume: 11
  start-page: 1363
  year: 2010
  publication-title: Org. Electron.
– volume: 133
  start-page: 280
  year: 2016
  publication-title: Dyes Pigments
– volume: 52 8 5 6
  start-page: 4800 14077 9439 7493
  year: 2016 2016 2017 2018
  publication-title: Chem. Commun. ACS Appl. Mater. Interfaces J. Mater. Chem. C J. Mater. Chem. C
– volume: 80 18 43 93
  start-page: 2501 87 63
  year: 1996 1997 2000 2008
  publication-title: J. Appl. Phys. IEEE Electron Device Lett. Solid State Technol. Appl. Phys. Lett.
– volume: 1
  start-page: 1500098
  year: 2015
  publication-title: Adv. Electron. Mater.
– volume: 32
  start-page: 1422
  year: 2020
  publication-title: Chem. Mater.
– volume: 16 10 22 46 22 23 23 40 14 112 42 25 2 27 5 29 75 136 30
  start-page: 4436 3876 5211 1331 568 268 3728 14152 2208 6113 5372 3099 1357 8654 17975 13 2000765
  year: 2004 2009 2010 2010 2010 2011 2011 2011 2012 2012 2013 2013 2014 2016 2017 2018 2019 2019 2020
  publication-title: Chem. Mater. Sci. Technol. Adv. Mater. Adv. Mater. (Weinheim, Ger.) Chem. Commun. Adv. Mater. (Weinheim, Ger.) Chem. Mater. Adv. Mater. (Weinheim, Ger.) Chem. Soc. Rev. Phys. Chem. Chem. Phys. Chem. Rev. Chem. Soc. Rev. Adv. Mater. (Weinheim, Ger.) J. Mater. Chem. C Chin. Chem. Lett. J. Mater. Chem. C J. Mater. Sci. Mater. Electron. Org. Electron. Mater. Sci. Eng. R. Rep. Adv. Funct. Mater.
– volume: 2011
  start-page: 2151
  year: 2011
  publication-title: Synlett
– volume: 771
  start-page: 5
  issue: L6
  year: 2003
  publication-title: MRS Proc.
– volume: 51
  start-page: 1196
  year: 2018
  publication-title: Acc. Chem. Res.
– volume: 17 33
  start-page: 2100783 3286
  year: 2021 2021
  publication-title: Small Chem. Mater.
– volume: 30 102
  start-page: 1801830
  year: 2018 2022
  publication-title: Adv. Mater. (Weinheim, Ger.) Org. Electron.
– start-page: 1846
  year: 2009
  publication-title: Chem. Commun.
– volume: 6
  start-page: 6
  year: 2014
  publication-title: Polymers
– volume: 15 14
  start-page: 2255
  year: 2022 2022
  publication-title: Materials Polymers
– volume: 14
  start-page: 2772
  year: 2013
  publication-title: ChemPhysChem
– volume: 61 22 139 29 52
  start-page: 11055 17136 13013 4999 1113
  year: 2005 2016 2017 2017 2019
  publication-title: Tetrahedron Chem.‐‐Eur. J. J. Am. Chem. Soc. Chem. Mater. Acc. Chem. Res.
– volume: 24
  start-page: 2057
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 16
  start-page: 4413
  year: 2004
  publication-title: Chem. Mater.
– volume: 11 13 6
  start-page: 1947 1881 71
  year: 2010 2012 2012
  publication-title: Org. Electron. Org. Electron. Phys. Status Solidi Rapid Res. Lett.
– volume: 12 8
  start-page: 15071 15322
  year: 2020 2020
  publication-title: ACS Appl. Mater. Interfaces J. Mater. Chem. C
– volume: 22
  start-page: 48
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 163
  start-page: 725
  year: 2019
  publication-title: Dyes Pigments
– volume: 26 27 39 28 29 5 4 11
  start-page: 2636 6870 127 7213 1702115 1700290 1700464 11710
  year: 2014 2015 2016 2016 2017 2018 2018 2021
  publication-title: Adv. Mater. (Weinheim, Ger.) Adv. Mater. (Weinheim, Ger.) Org. Electron. Adv. Mater. (Weinheim, Ger.) Adv. Mater. (Weinheim, Ger.) Adv. Sci. Adv. Electron. Mater. Sci. Rep.
– volume: 2
  start-page: 8892
  year: 2014
  publication-title: J. Mater. Chem. C
– volume: 53
  start-page: 5898
  year: 2017
  publication-title: Chem. Commun.
– volume: 2
  start-page: 7599
  year: 2014
  publication-title: J. Mater. Chem. C
– volume: 32
  start-page: 2200880
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 15
  start-page: 727
  year: 2021
  publication-title: ACS Nano
– volume: 428 26 48 247 11
  start-page: 911 1319 1509 197
  year: 2004 2014 2017 2021 2022 2022
  publication-title: Nature Adv. Mater. (Weinheim, Ger.) SID Symp. Dig. Tech. Pap. Microelectron. Eng. Electronics
– volume: 28
  start-page: 1801025
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 23
  start-page: 4347
  year: 2011
  publication-title: Adv. Mater. (Weinheim, Ger.)
– volume: 8
  start-page: 15450
  year: 2020
  publication-title: J. Mater. Chem. C
– volume: 8
  start-page: 2002930
  year: 2021
  publication-title: Adv. Sci.
– volume: 10 5
  start-page: 11254 4149
  year: 2022 2022
  publication-title: J. Mater. Chem. A ACS Appl. Energy Mater.
– ident: e_1_2_11_3_6
  doi: 10.1039/D1QM00334H
– ident: e_1_2_11_5_16
  doi: 10.1007/s10854-018-9936-9
– ident: e_1_2_11_7_2
  doi: 10.1002/adma.200701431
– volume: 43
  start-page: 63
  year: 2000
  ident: e_1_2_11_25_3
  publication-title: Solid State Technol.
– volume-title: Sustainable strategies in organic electronics
  year: 2022
  ident: e_1_2_11_4_5
– ident: e_1_2_11_34_1
  doi: 10.1016/j.orgel.2010.01.022
– ident: e_1_2_11_70_1
  doi: 10.1039/D2TA00617K
– ident: e_1_2_11_5_4
  doi: 10.1039/c0cc00947d
– ident: e_1_2_11_3_7
  doi: 10.1021/acsami.0c18426
– ident: e_1_2_11_68_1
  doi: 10.1002/smll.202100783
– ident: e_1_2_11_12_1
  doi: 10.1038/nmat1612
– ident: e_1_2_11_32_2
  doi: 10.1021/ol0523650
– ident: e_1_2_11_4_6
  doi: 10.3390/electronics11020197
– ident: e_1_2_11_15_1
  doi: 10.1039/C6CC00948D
– ident: e_1_2_11_52_2
  doi: 10.1021/acsami.6b02767
– ident: e_1_2_11_3_2
  doi: 10.1002/adma.201801079
– ident: e_1_2_11_17_2
  doi: 10.1016/j.orgel.2017.11.023
– ident: e_1_2_11_63_1
  doi: 10.1039/D0TC03808C
– ident: e_1_2_11_5_18
  doi: 10.1016/j.mser.2018.10.003
– ident: e_1_2_11_43_1
  doi: 10.1039/C7TC03455E
– ident: e_1_2_11_17_1
  doi: 10.1002/adfm.200500547
– ident: e_1_2_11_3_13
  doi: 10.1021/acsami.1c23994
– ident: e_1_2_11_5_6
  doi: 10.1021/cm102296d
– ident: e_1_2_11_6_1
  doi: 10.1021/ja2073643
– ident: e_1_2_11_21_1
  doi: 10.1002/adma.201305981
– ident: e_1_2_11_29_1
  doi: 10.1016/j.orgel.2010.09.010
– ident: e_1_2_11_3_4
  doi: 10.1021/acs.accounts.8b00448
– ident: e_1_2_11_54_1
  doi: 10.1002/adma.201102007
– ident: e_1_2_11_4_4
  doi: 10.1016/j.mee.2021.111590
– ident: e_1_2_11_62_1
  doi: 10.1021/acsami.0c03477
– ident: e_1_2_11_2_2
  doi: 10.1038/s41928-021-00634-5
– ident: e_1_2_11_51_1
  doi: 10.1016/j.dyepig.2016.05.041
– ident: e_1_2_11_3_8
  doi: 10.1021/acsami.1c20143
– ident: e_1_2_11_24_5
  doi: 10.1016/j.orgel.2009.02.007
– ident: e_1_2_11_64_1
  doi: 10.1002/advs.202002930
– ident: e_1_2_11_16_3
  doi: 10.1021/jacs.7b05344
– ident: e_1_2_11_21_2
  doi: 10.1002/adma.201502980
– ident: e_1_2_11_24_3
  doi: 10.1021/ol050872b
– ident: e_1_2_11_29_3
  doi: 10.1002/pssr.201105534
– ident: e_1_2_11_47_1
  doi: 10.1039/C7CC02714A
– ident: e_1_2_11_69_1
  doi: 10.1021/acsenergylett.2c00684
– ident: e_1_2_11_10_1
  doi: 10.1002/anie.200701920
– ident: e_1_2_11_18_3
  doi: 10.1016/j.dyepig.2020.108911
– ident: e_1_2_11_33_1
  doi: 10.1039/b820621j
– ident: e_1_2_11_4_3
  doi: 10.1002/sdtp.11936
– ident: e_1_2_11_16_5
  doi: 10.1021/acs.accounts.9b00031
– ident: e_1_2_11_56_1
  doi: 10.1021/cm101435s
– ident: e_1_2_11_24_1
  doi: 10.1063/1.1471378
– ident: e_1_2_11_52_3
  doi: 10.1039/C7TA01825H
– ident: e_1_2_11_15_3
  doi: 10.1039/C7TC02023F
– ident: e_1_2_11_21_6
  doi: 10.1002/advs.201700290
– ident: e_1_2_11_5_7
  doi: 10.1002/adma.201001402
– ident: e_1_2_11_12_4
  doi: 10.1021/ja311469y
– ident: e_1_2_11_4_1
  doi: 10.1038/nature02498
– ident: e_1_2_11_9_3
  doi: 10.1016/S1369-7021(07)70017-2
– ident: e_1_2_11_7_4
  doi: 10.1002/adma.201002682
– ident: e_1_2_11_67_1
  doi: 10.1021/jacs.7b10898
– ident: e_1_2_11_18_1
  doi: 10.1002/adfm.200800829
– ident: e_1_2_11_52_4
  doi: 10.1021/acsami.8b19778
– ident: e_1_2_11_20_2
  doi: 10.1002/asia.201000001
– ident: e_1_2_11_4_2
  doi: 10.1002/adma.201304346
– ident: e_1_2_11_8_1
  doi: 10.1021/acs.accounts.8b00025
– ident: e_1_2_11_32_1
  doi: 10.1021/jo061853y
– ident: e_1_2_11_45_1
  doi: 10.1002/adfm.202200880
– ident: e_1_2_11_5_5
  doi: 10.1002/adma.200901454
– ident: e_1_2_11_5_12
  doi: 10.1002/adma.201302315
– ident: e_1_2_11_5_2
  doi: 10.1088/1468-6996/10/2/024313
– ident: e_1_2_11_21_8
  doi: 10.1038/s41598-021-91239-7
– ident: e_1_2_11_22_1
  doi: 10.1021/cm049614j
– ident: e_1_2_11_57_1
  doi: 10.1002/adfm.201303378
– ident: e_1_2_11_5_8
  doi: 10.1039/c0cs00194e
– ident: e_1_2_11_20_1
  doi: 10.1002/chem.200601064
– ident: e_1_2_11_25_2
  doi: 10.1109/55.556089
– ident: e_1_2_11_19_1
  doi: 10.1021/ja052816b
– ident: e_1_2_11_3_9
  doi: 10.1007/978-3-030-80702-3_1
– ident: e_1_2_11_26_1
  doi: 10.1039/b715746k
– ident: e_1_2_11_65_1
  doi: 10.1002/adom.202102650
– ident: e_1_2_11_27_1
  doi: 10.1016/j.orgel.2010.04.029
– ident: e_1_2_11_59_1
  doi: 10.1021/am3022448
– ident: e_1_2_11_39_1
  doi: 10.1021/acsnano.0c07003
– ident: e_1_2_11_5_14
  doi: 10.1016/j.cclet.2016.05.033
– ident: e_1_2_11_40_1
  doi: 10.1002/aelm.202100648
– ident: e_1_2_11_69_2
  doi: 10.1021/acsami.2c00841
– ident: e_1_2_11_46_1
  doi: 10.1002/adfm.201101053
– ident: e_1_2_11_68_2
  doi: 10.1021/acs.chemmater.1c00335
– ident: e_1_2_11_7_1
  doi: 10.1021/ja074841i
– ident: e_1_2_11_2_5
  doi: 10.1016/B978-0-12-823147-0.00010-0
– ident: e_1_2_11_3_1
  doi: 10.1080/15583724.2013.848455
– ident: e_1_2_11_5_3
  doi: 10.1002/adma.200903628
– ident: e_1_2_11_49_1
  doi: 10.1002/adfm.201801025
– ident: e_1_2_11_2_3
  doi: 10.1016/j.matpr.2021.04.401
– ident: e_1_2_11_44_2
  doi: 10.1039/D0TC02310H
– ident: e_1_2_11_14_1
  doi: 10.3390/ma15062255
– ident: e_1_2_11_16_1
  doi: 10.1016/j.tet.2005.08.030
– ident: e_1_2_11_60_1
  doi: 10.1039/C4TC01115E
– ident: e_1_2_11_61_1
  doi: 10.1002/adfm.201606761
– ident: e_1_2_11_21_5
  doi: 10.1002/adma.201702115
– ident: e_1_2_11_25_1
  doi: 10.1063/1.363032
– ident: e_1_2_11_42_1
  doi: 10.1016/j.dyepig.2018.12.054
– ident: e_1_2_11_59_2
  doi: 10.1002/chem.201204110
– ident: e_1_2_11_13_2
  doi: 10.1016/j.orgel.2021.106427
– ident: e_1_2_11_19_3
  doi: 10.1039/c3tc30144c
– ident: e_1_2_11_48_1
  doi: 10.1016/j.dyepig.2017.06.017
– ident: e_1_2_11_5_17
  doi: 10.1016/j.orgel.2019.105432
– ident: e_1_2_11_7_3
  doi: 10.1038/nature10683
– ident: e_1_2_11_11_1
  doi: 10.1002/adma.200305275
– ident: e_1_2_11_41_1
  doi: 10.1002/adma.201702414
– ident: e_1_2_11_5_10
  doi: 10.1021/cr100380z
– ident: e_1_2_11_11_2
  doi: 10.1021/ma047415f
– ident: e_1_2_11_18_2
  doi: 10.1021/cm201326c
– volume: 771
  start-page: 5
  issue: 6
  year: 2003
  ident: e_1_2_11_23_1
  publication-title: MRS Proc.
– ident: e_1_2_11_5_1
  doi: 10.1021/cm049391x
– ident: e_1_2_11_19_2
  doi: 10.1021/ja053326m
– ident: e_1_2_11_38_1
  doi: 10.1021/acs.chemmater.9b03967
– ident: e_1_2_11_3_12
  doi: 10.1016/j.isci.2022.103782
– ident: e_1_2_11_21_7
  doi: 10.1002/aelm.201700464
– ident: e_1_2_11_9_2
  doi: 10.1021/cr0501386
– ident: e_1_2_11_30_1
  doi: 10.1016/j.dyepig.2015.12.008
– ident: e_1_2_11_70_2
  doi: 10.1021/acsaem.1c03485
– ident: e_1_2_11_25_4
  doi: 10.1063/1.2952769
– ident: e_1_2_11_53_1
  doi: 10.1039/D0TC01408G
– ident: e_1_2_11_9_5
  doi: 10.1002/adma.200802202
– ident: e_1_2_11_17_3
  doi: 10.3390/coatings11101222
– ident: e_1_2_11_67_2
  doi: 10.1002/adfm.201905393
– ident: e_1_2_11_55_1
  doi: 10.1038/nature10313
– ident: e_1_2_11_55_2
  doi: 10.1038/ncomms4005
– ident: e_1_2_11_58_1
  doi: 10.1002/adfm.201203439
– ident: e_1_2_11_3_3
  doi: 10.1016/j.talanta.2019.06.034
– ident: e_1_2_11_29_2
  doi: 10.1016/j.orgel.2012.05.040
– ident: e_1_2_11_5_19
  doi: 10.1002/adfm.202000765
– ident: e_1_2_11_12_5
  doi: 10.1039/C6TC05052B
– ident: e_1_2_11_9_4
  doi: 10.1021/ar800130s
– ident: e_1_2_11_15_2
  doi: 10.1021/acsami.6b02788
– ident: e_1_2_11_35_1
  doi: 10.1039/C4TC01454E
– ident: e_1_2_11_3_10
  doi: 10.1109/TED.2022.3151044
– ident: e_1_2_11_31_1
  doi: 10.1055/s-0030-1261191
– ident: e_1_2_11_2_4
  doi: 10.3390/electronics11030316
– ident: e_1_2_11_21_4
  doi: 10.1002/adma.201600541
– ident: e_1_2_11_2_1
  doi: 10.1002/adma.201801048
– ident: e_1_2_11_5_15
  doi: 10.1039/C7TC01680H
– ident: e_1_2_11_3_5
  doi: 10.1002/adfm.201904588
– ident: e_1_2_11_5_13
  doi: 10.1039/C3TC32046D
– ident: e_1_2_11_12_2
  doi: 10.1021/ma0709001
– ident: e_1_2_11_24_2
  doi: 10.1021/ja042353u
– ident: e_1_2_11_5_9
  doi: 10.1039/c2cp41664f
– ident: e_1_2_11_66_1
  doi: 10.3390/polym6102645
– ident: e_1_2_11_15_4
  doi: 10.1039/C8TC01802B
– ident: e_1_2_11_16_2
  doi: 10.1002/chem.201603112
– ident: e_1_2_11_21_3
  doi: 10.1016/j.orgel.2016.09.006
– ident: e_1_2_11_24_4
  doi: 10.1021/cm062378n
– ident: e_1_2_11_6_2
  doi: 10.1038/nchem.1422
– ident: e_1_2_11_14_2
  doi: 10.3390/polym14061112
– ident: e_1_2_11_50_1
  doi: 10.1039/C5TC01348H
– ident: e_1_2_11_3_11
  doi: 10.1038/s41528-022-00133-3
– ident: e_1_2_11_9_1
  doi: 10.1021/cr050966z
– ident: e_1_2_11_6_3
  doi: 10.1038/s41570-019-0152-9
– ident: e_1_2_11_44_1
  doi: 10.1021/acsami.9b21955
– ident: e_1_2_11_28_1
  doi: 10.1002/cphc.201300317
– ident: e_1_2_11_5_11
  doi: 10.1039/c3cs60108k
– ident: e_1_2_11_6_4
  doi: 10.1021/jacs.9b09374
– ident: e_1_2_11_11_3
  doi: 10.1021/ma9015278
– ident: e_1_2_11_37_1
  doi: 10.1002/admt.202001028
– ident: e_1_2_11_13_1
  doi: 10.1002/adma.201801830
– ident: e_1_2_11_52_1
  doi: 10.1021/ja513254z
– ident: e_1_2_11_36_1
  doi: 10.1002/aelm.201500098
– ident: e_1_2_11_12_3
  doi: 10.1021/ja801475h
– ident: e_1_2_11_17_4
  doi: 10.1016/j.tsf.2022.139112
– ident: e_1_2_11_16_4
  doi: 10.1021/acs.chemmater.7b01551
SSID ssj0043259
Score 2.399352
SecondaryResourceType review_article
Snippet This review highlights our recent efforts in the development of organic semiconductors based on anthradithiophene (ADT), dithienothiophene (DTT),...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1253
SubjectTerms Data analysis
Energy levels
Molecular structure
Organic semiconductors
Perovskites
Photovoltaic cells
Semiconductor devices
Semiconductors
Solar cells
Thin film transistors
Transistors
Title Fused thiophene based materials for organic thin‐film transistors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjccs.202200214
https://www.proquest.com/docview/2712392700
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27btswFCVcZ2iXoq-gbtNCQ4EOglybIvUYHbWOkbZZ4gTZBIqiYhWyHFjWkimfkG9sf6SXpETLQNJHFtkgryWD9-jyULw6F6EPnI05Tzh3aOYFDklHvhMySp2QS8KcAaJVOaDvJ97sjBxf0Ite71cna6neJEN-fed7JQ_xKrSBX-Vbsv_hWXNSaIDv4F84gofh-E8-ntaVkPmPuRQHALYop6TUBg6qL65SCHXZJi6tSpPZkOXFUlaHKCulElLdQ1ElKZUFtkUlPxtlgTbPE6jpnOVXIu88TDgXRV2xpXLcZF0Xy9X1IjeYytZM7RWdLoC2FvbJ0IQcVuv2WiyKfJsklNc6I0BAQGr_-jfA82X3WQUsc9tMuU5ENPbn0czWDy3to2UyU1CPVkP76xGb7ITs0CHUbfSyVRtEWex4VGudtmFcV3xp4Bp0YjJQOLczv0tF-zvnDq1F-4NzqeKOVfIK2c6SbWaAsaR_tlUU4TiKTk3_I7SHfc_DfbQ3Ofx8OG0JA3ExDU3BP7Wbvt9c5dPuFXa503ZB1F1WKV40f4aeNmixJhqdz1FPlC_Q46itI_gSRQqllkGppVBqGZRagFKrQam0Kn_e3Ep8Wh18vkJn0y_zaOY0pTscDoRU7rWxEeGJ8HEigJKy8SgBrkhZGDAP-5wTl0A_RAaRETzORBhmacoZH1GRJrDqcPdRv1yV4jWyKAEe5zE_GwUZYcwNU0KTQAgeSu3HIB0gpx2UmDe69rK8ShFrRW4cy0GMzSAO0Edjf6UVXe61PGjHOG7ueuj1geuFMl1jgLAa97-cJd4BwZuH_OgterK9mw5Qf7OuxTvgwpvkfYOl32nLqis
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fused+thiophene+based+materials+for+organic+thin%E2%80%90film+transistors&rft.jtitle=Journal+of+the+Chinese+Chemical+Society+%28Taipei%29&rft.au=Velusamy%2C+Arulmozhi&rft.au=Afraj%2C+Shakil+N.&rft.au=Yau%2C+Shuehlin&rft.au=Liu%2C+Cheng%E2%80%90Liang&rft.date=2022-08-01&rft.pub=Wiley%E2%80%90VCH+Verlag+GmbH+%26+Co.+KGaA&rft.issn=0009-4536&rft.eissn=2192-6549&rft.volume=69&rft.issue=8&rft.spage=1253&rft.epage=1275&rft_id=info:doi/10.1002%2Fjccs.202200214&rft.externalDBID=10.1002%252Fjccs.202200214&rft.externalDocID=JCCS202200214
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-4536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-4536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-4536&client=summon