Fused thiophene based materials for organic thin‐film transistors
This review highlights our recent efforts in the development of organic semiconductors based on anthradithiophene (ADT), dithienothiophene (DTT), tetrathienoacene (TTA), benzothienodithiophene (BTDT), benzothienothiophene (BTT), chalcogen‐planarized BT, and some quinoidal oligothiophenes for the app...
Saved in:
Published in | Journal of the Chinese Chemical Society (Taipei) Vol. 69; no. 8; pp. 1253 - 1275 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley‐VCH Verlag GmbH & Co. KGaA
01.08.2022
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0009-4536 2192-6549 |
DOI | 10.1002/jccs.202200214 |
Cover
Abstract | This review highlights our recent efforts in the development of organic semiconductors based on anthradithiophene (ADT), dithienothiophene (DTT), tetrathienoacene (TTA), benzothienodithiophene (BTDT), benzothienothiophene (BTT), chalcogen‐planarized BT, and some quinoidal oligothiophenes for the application of organic thin‐film transistors (OTFTs). We visualized various strategies that have been employed in molecular architecture to improve the stability as well as solubility, and the energy levels are tuned for efficient hole/electron injection, thus leading to high‐performance solution processable OTFTs. The obtained mobility was correlated with the molecular stacking pattern and film morphology/microstructure of the semiconductors. Overall, this review presents information that aids reliable OTFT data analysis and provide guidelines for the development of next‐generation organic semiconductors. At present, the p‐type and n‐type OTFTs developed by our group are able to reach the mobilities of over 4.01 and 2.5 cm2V−1 s−1, respectively. In addition, we also demonstrated the utilization of these conjugated moieties in development of high performance dye‐sensitized solar cells (DSSCs) and hole transporting materials (HTM) as well as non‐fullerene acceptor (NFA) for perovskite solar cells (PSCs).
This review examines strategies employed in molecular architecture to increase stability and solubility, and the energy levels used to optimize hole/electron injection, leading to high‐performance solution‐processable OTFTs. |
---|---|
AbstractList | This review highlights our recent efforts in the development of organic semiconductors based on anthradithiophene (ADT), dithienothiophene (DTT), tetrathienoacene (TTA), benzothienodithiophene (BTDT), benzothienothiophene (BTT), chalcogen‐planarized BT, and some quinoidal oligothiophenes for the application of organic thin‐film transistors (OTFTs). We visualized various strategies that have been employed in molecular architecture to improve the stability as well as solubility, and the energy levels are tuned for efficient hole/electron injection, thus leading to high‐performance solution processable OTFTs. The obtained mobility was correlated with the molecular stacking pattern and film morphology/microstructure of the semiconductors. Overall, this review presents information that aids reliable OTFT data analysis and provide guidelines for the development of next‐generation organic semiconductors. At present, the
p
‐type and
n
‐type OTFTs developed by our group are able to reach the mobilities of over 4.01 and 2.5 cm
2
V
−1
s
−1
, respectively. In addition, we also demonstrated the utilization of these conjugated moieties in development of high performance dye‐sensitized solar cells (DSSCs) and hole transporting materials (HTM) as well as non‐fullerene acceptor (NFA) for perovskite solar cells (PSCs). This review highlights our recent efforts in the development of organic semiconductors based on anthradithiophene (ADT), dithienothiophene (DTT), tetrathienoacene (TTA), benzothienodithiophene (BTDT), benzothienothiophene (BTT), chalcogen‐planarized BT, and some quinoidal oligothiophenes for the application of organic thin‐film transistors (OTFTs). We visualized various strategies that have been employed in molecular architecture to improve the stability as well as solubility, and the energy levels are tuned for efficient hole/electron injection, thus leading to high‐performance solution processable OTFTs. The obtained mobility was correlated with the molecular stacking pattern and film morphology/microstructure of the semiconductors. Overall, this review presents information that aids reliable OTFT data analysis and provide guidelines for the development of next‐generation organic semiconductors. At present, the p‐type and n‐type OTFTs developed by our group are able to reach the mobilities of over 4.01 and 2.5 cm2V−1 s−1, respectively. In addition, we also demonstrated the utilization of these conjugated moieties in development of high performance dye‐sensitized solar cells (DSSCs) and hole transporting materials (HTM) as well as non‐fullerene acceptor (NFA) for perovskite solar cells (PSCs). This review examines strategies employed in molecular architecture to increase stability and solubility, and the energy levels used to optimize hole/electron injection, leading to high‐performance solution‐processable OTFTs. This review highlights our recent efforts in the development of organic semiconductors based on anthradithiophene (ADT), dithienothiophene (DTT), tetrathienoacene (TTA), benzothienodithiophene (BTDT), benzothienothiophene (BTT), chalcogen‐planarized BT, and some quinoidal oligothiophenes for the application of organic thin‐film transistors (OTFTs). We visualized various strategies that have been employed in molecular architecture to improve the stability as well as solubility, and the energy levels are tuned for efficient hole/electron injection, thus leading to high‐performance solution processable OTFTs. The obtained mobility was correlated with the molecular stacking pattern and film morphology/microstructure of the semiconductors. Overall, this review presents information that aids reliable OTFT data analysis and provide guidelines for the development of next‐generation organic semiconductors. At present, the p‐type and n‐type OTFTs developed by our group are able to reach the mobilities of over 4.01 and 2.5 cm2V−1 s−1, respectively. In addition, we also demonstrated the utilization of these conjugated moieties in development of high performance dye‐sensitized solar cells (DSSCs) and hole transporting materials (HTM) as well as non‐fullerene acceptor (NFA) for perovskite solar cells (PSCs). |
Author | Liu, Cheng‐Liang Afraj, Shakil N. Kumaresan, Prabakaran Chen, Ming‐Chou Velusamy, Arulmozhi Ezhumalai, Yamuna Yau, Shuehlin |
Author_xml | – sequence: 1 givenname: Arulmozhi surname: Velusamy fullname: Velusamy, Arulmozhi organization: National Central University – sequence: 2 givenname: Shakil N. orcidid: 0000-0002-4174-5178 surname: Afraj fullname: Afraj, Shakil N. organization: National Central University – sequence: 3 givenname: Shuehlin surname: Yau fullname: Yau, Shuehlin organization: National Central University – sequence: 4 givenname: Cheng‐Liang surname: Liu fullname: Liu, Cheng‐Liang organization: National Taiwan University – sequence: 5 givenname: Yamuna surname: Ezhumalai fullname: Ezhumalai, Yamuna email: yamuchemist@gmail.com organization: Karpagam Academy of Higher Education – sequence: 6 givenname: Prabakaran surname: Kumaresan fullname: Kumaresan, Prabakaran email: prabakaranchem@gmail.com organization: PSG College of Arts and Science – sequence: 7 givenname: Ming‐Chou surname: Chen fullname: Chen, Ming‐Chou email: mcchen@cc.ncu.edu.tw organization: National Central University |
BookMark | eNqFkM9KAzEQh4NUsK1ePS943nUym-2aoyzWPxQ8qOeQzWZtyjapyRbpzUfwGX0Ss1QUBPE0DPN9M8NvQkbWWU3IKYWMAuD5SqmQISDGhrIDMkbKMZ0VjI_IGAB4yop8dkQmIawAWI4FH5Nqvg26SfqlcZultjqp5dCvZa-9kV1IWucT55-lNWqg7Mfbe2u6ddJ7aYMJvfPhmBy2EdUnX3VKnuZXj9VNuri_vq0uF6nKacnSHCQwVesSa10AlxRqRFZIfiFnWCrFchbnDZS6ZUhbzXnbNEoqKHRTA-X5lJzt9268e9nq0IuV23obTwosKeYcS4BIsT2lvAvB61Yo08veOBtfNp2gIIa4xBCX-I4ratkvbePNWvrd3wLfC6-m07t_aHFXVQ8_7id24IC- |
CitedBy_id | crossref_primary_10_1002_ange_202400803 crossref_primary_10_1039_D2TC02679A crossref_primary_10_1039_D4TC05240D crossref_primary_10_1039_D3MA00552F crossref_primary_10_1021_acsami_4c15688 crossref_primary_10_3390_cryst14070620 crossref_primary_10_1002_ange_202407228 crossref_primary_10_1002_jccs_202300326 crossref_primary_10_1039_D3TC04294D crossref_primary_10_1002_anie_202407228 crossref_primary_10_1002_cplu_202300280 crossref_primary_10_1002_chem_202402461 crossref_primary_10_1002_advs_202305361 crossref_primary_10_1002_adfm_202213939 crossref_primary_10_1002_adma_202300681 crossref_primary_10_1002_aenm_202302047 crossref_primary_10_1016_j_matchemphys_2024_130268 crossref_primary_10_1002_anie_202400803 crossref_primary_10_1016_j_jelechem_2023_117646 crossref_primary_10_1021_acsami_3c15774 crossref_primary_10_1016_j_orgel_2024_107058 |
Cites_doi | 10.1039/D1QM00334H 10.1007/s10854-018-9936-9 10.1002/adma.200701431 10.1016/j.orgel.2010.01.022 10.1039/D2TA00617K 10.1039/c0cc00947d 10.1021/acsami.0c18426 10.1002/smll.202100783 10.1038/nmat1612 10.1021/ol0523650 10.3390/electronics11020197 10.1039/C6CC00948D 10.1021/acsami.6b02767 10.1002/adma.201801079 10.1016/j.orgel.2017.11.023 10.1039/D0TC03808C 10.1016/j.mser.2018.10.003 10.1039/C7TC03455E 10.1002/adfm.200500547 10.1021/acsami.1c23994 10.1021/cm102296d 10.1021/ja2073643 10.1002/adma.201305981 10.1016/j.orgel.2010.09.010 10.1021/acs.accounts.8b00448 10.1002/adma.201102007 10.1016/j.mee.2021.111590 10.1021/acsami.0c03477 10.1038/s41928-021-00634-5 10.1016/j.dyepig.2016.05.041 10.1021/acsami.1c20143 10.1016/j.orgel.2009.02.007 10.1002/advs.202002930 10.1021/jacs.7b05344 10.1002/adma.201502980 10.1021/ol050872b 10.1002/pssr.201105534 10.1039/C7CC02714A 10.1021/acsenergylett.2c00684 10.1002/anie.200701920 10.1016/j.dyepig.2020.108911 10.1039/b820621j 10.1002/sdtp.11936 10.1021/acs.accounts.9b00031 10.1021/cm101435s 10.1063/1.1471378 10.1039/C7TA01825H 10.1039/C7TC02023F 10.1002/advs.201700290 10.1002/adma.201001402 10.1021/ja311469y 10.1038/nature02498 10.1016/S1369-7021(07)70017-2 10.1002/adma.201002682 10.1021/jacs.7b10898 10.1002/adfm.200800829 10.1021/acsami.8b19778 10.1002/asia.201000001 10.1002/adma.201304346 10.1021/acs.accounts.8b00025 10.1021/jo061853y 10.1002/adfm.202200880 10.1002/adma.200901454 10.1002/adma.201302315 10.1088/1468-6996/10/2/024313 10.1038/s41598-021-91239-7 10.1021/cm049614j 10.1002/adfm.201303378 10.1039/c0cs00194e 10.1002/chem.200601064 10.1109/55.556089 10.1021/ja052816b 10.1007/978-3-030-80702-3_1 10.1039/b715746k 10.1002/adom.202102650 10.1016/j.orgel.2010.04.029 10.1021/am3022448 10.1021/acsnano.0c07003 10.1016/j.cclet.2016.05.033 10.1002/aelm.202100648 10.1021/acsami.2c00841 10.1002/adfm.201101053 10.1021/acs.chemmater.1c00335 10.1021/ja074841i 10.1016/B978-0-12-823147-0.00010-0 10.1080/15583724.2013.848455 10.1002/adma.200903628 10.1002/adfm.201801025 10.1016/j.matpr.2021.04.401 10.1039/D0TC02310H 10.3390/ma15062255 10.1016/j.tet.2005.08.030 10.1039/C4TC01115E 10.1002/adfm.201606761 10.1002/adma.201702115 10.1063/1.363032 10.1016/j.dyepig.2018.12.054 10.1002/chem.201204110 10.1016/j.orgel.2021.106427 10.1039/c3tc30144c 10.1016/j.dyepig.2017.06.017 10.1016/j.orgel.2019.105432 10.1038/nature10683 10.1002/adma.200305275 10.1002/adma.201702414 10.1021/cr100380z 10.1021/ma047415f 10.1021/cm201326c 10.1021/cm049391x 10.1021/ja053326m 10.1021/acs.chemmater.9b03967 10.1016/j.isci.2022.103782 10.1002/aelm.201700464 10.1021/cr0501386 10.1016/j.dyepig.2015.12.008 10.1021/acsaem.1c03485 10.1063/1.2952769 10.1039/D0TC01408G 10.1002/adma.200802202 10.3390/coatings11101222 10.1002/adfm.201905393 10.1038/nature10313 10.1038/ncomms4005 10.1002/adfm.201203439 10.1016/j.talanta.2019.06.034 10.1016/j.orgel.2012.05.040 10.1002/adfm.202000765 10.1039/C6TC05052B 10.1021/ar800130s 10.1021/acsami.6b02788 10.1039/C4TC01454E 10.1109/TED.2022.3151044 10.1055/s-0030-1261191 10.3390/electronics11030316 10.1002/adma.201600541 10.1002/adma.201801048 10.1039/C7TC01680H 10.1002/adfm.201904588 10.1039/C3TC32046D 10.1021/ma0709001 10.1021/ja042353u 10.1039/c2cp41664f 10.3390/polym6102645 10.1039/C8TC01802B 10.1002/chem.201603112 10.1016/j.orgel.2016.09.006 10.1021/cm062378n 10.1038/nchem.1422 10.3390/polym14061112 10.1039/C5TC01348H 10.1038/s41528-022-00133-3 10.1021/cr050966z 10.1038/s41570-019-0152-9 10.1021/acsami.9b21955 10.1002/cphc.201300317 10.1039/c3cs60108k 10.1021/jacs.9b09374 10.1021/ma9015278 10.1002/admt.202001028 10.1002/adma.201801830 10.1021/ja513254z 10.1002/aelm.201500098 10.1021/ja801475h 10.1016/j.tsf.2022.139112 10.1021/acs.chemmater.7b01551 |
ContentType | Journal Article |
Copyright | 2022 Chemical Society Located in Taipei and Wiley‐VCH GmbH. 2022 The Chemical Society Located in Taipei & Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Chemical Society Located in Taipei and Wiley‐VCH GmbH. – notice: 2022 The Chemical Society Located in Taipei & Wiley‐VCH GmbH |
DBID | AAYXX CITATION |
DOI | 10.1002/jccs.202200214 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2192-6549 |
EndPage | 1275 |
ExternalDocumentID | 10_1002_jccs_202200214 JCCS202200214 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Ministry of Science and Technology funderid: MOST 109‐2113‐M‐008‐011‐MY2 – fundername: National Central University funderid: MOST 110‐2622‐8‐008‐ – fundername: Ministry of Science and Technology of Taiwan |
GroupedDBID | 05W 0R~ 1OB 1OC 2NJ 2WC 31~ 33P 3SF 50Y 52U 5GY 8-0 8-1 8RM A00 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABDBF ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACRPL ACUHS ACXBN ACXQS ACYXJ ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI BZXJU DCZOG DPXWK DRFUL DRSTM E3Z EBS EJD EOJEC FEDTE G-S GODZA HGLYW HH5 HVGLF HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OBODZ OK1 P2P P2W PALCI Q0C R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TR2 VH1 WBFHL WBKPD WIH WIK WOHZO WXSBR WYISQ WYJ ZZTAW AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c3174-30a04cbe72be509a10b2245a98a627cc43404cd07ef421fe99fddcac05edb0193 |
ISSN | 0009-4536 |
IngestDate | Wed Aug 13 07:30:02 EDT 2025 Thu Apr 24 23:00:11 EDT 2025 Tue Jul 01 00:51:20 EDT 2025 Wed Jan 22 16:24:25 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3174-30a04cbe72be509a10b2245a98a627cc43404cd07ef421fe99fddcac05edb0193 |
Notes | Funding information Ministry of Science and Technology, Grant/Award Number: MOST 109‐2113‐M‐008‐011‐MY2; National Central University, Grant/Award Number: MOST 110‐2622‐8‐008‐; Ministry of Science and Technology of Taiwan ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4174-5178 |
PQID | 2712392700 |
PQPubID | 2032544 |
PageCount | 23 |
ParticipantIDs | proquest_journals_2712392700 crossref_citationtrail_10_1002_jccs_202200214 crossref_primary_10_1002_jccs_202200214 wiley_primary_10_1002_jccs_202200214_JCCS202200214 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2022 2022-08-00 20220801 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: August 2022 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Taipei |
PublicationTitle | Journal of the Chinese Chemical Society (Taipei) |
PublicationYear | 2022 |
Publisher | Wiley‐VCH Verlag GmbH & Co. KGaA Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley‐VCH Verlag GmbH & Co. KGaA – name: Wiley Subscription Services, Inc |
References | 2017; 5 2010; 11 2002 2005 2005 2007 2009; 80 127 7 19 10 2010 2012 2012; 11 13 6 2013; 23 2014 2015 2016 2016 2017 2018 2018 2021; 26 27 39 28 29 5 4 11 2018 2022; 30 102 2014; 24 2020; 12 2019; 163 2020 2020; 12 8 2020; 8 2010; 22 2013; 14 2014; 2 2018 2019; 140 29 2022 2022; 7 14 2021 2021; 17 33 2011 2012 2020 2020; 133 4 4 142 2011; 23 2022; 32 2018 2021 2021 2022 2022; 30 4 46 11 2012; 22 2014; 6 2007 2007 2011 2011; 129 19 480 23 2015; 1 2021; 8 2005 2016 2017 2017 2019; 61 22 139 29 52 2006 2007 2007 2008 2009; 106 107 10 41 21 2021; 6 2018; 28 1996 1997 2000 2008; 80 18 43 93 2015; 3 2017; 27 2008; 18 2009 2014 2018 2019 2019 2020 2021 2021 2022 2022 2022 2022 2022 2022; 54 30 204 52 30 5 13 14 69 6 25 14 2017; 29 2016; 126 2020; 32 2005 2005 2013; 127 127 1 2003 2005 2009; 15 38 42 2003; 771 2015 2016 2017 2019; 137 8 5 11 2016 2016 2017 2018; 52 8 5 6 2012 2013; 4 19 2011; 2011 2017; 53 2021; 15 2022 2022; 15 14 2006 2018 2021 2022; 16 52 11 745 2007 2010; 13 5 2007 2005; 72 7 2004; 16 2006 2007 2009 2013 2017; 5 40 131 135 5 2022; 8 2022 2022; 10 5 2008; 47 2016; 133 2018; 51 2022; 10 2009 2011 2021; 19 23 185 2017; 145 2011 2014; 475 5 2004 2009 2010 2010 2010 2011 2011 2011 2012 2012 2013 2013 2014 2016 2017 2018 2019 2019 2020; 16 10 22 46 22 23 23 40 14 112 42 25 2 27 5 29 75 136 30 2004 2014 2017 2021 2022 2022; 428 26 48 247 11 Bracciale M. P. (e_1_2_11_4_5) 2022 e_1_2_11_70_1 e_1_2_11_70_2 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_55_2 e_1_2_11_36_1 e_1_2_11_13_2 e_1_2_11_51_1 e_1_2_11_13_1 e_1_2_11_32_2 e_1_2_11_4_4 e_1_2_11_29_1 e_1_2_11_4_3 e_1_2_11_21_8 e_1_2_11_25_4 e_1_2_11_4_2 e_1_2_11_21_7 e_1_2_11_4_1 e_1_2_11_21_6 e_1_2_11_25_2 e_1_2_11_48_1 e_1_2_11_29_3 Kelley T. W. (e_1_2_11_23_1) 2003; 771 e_1_2_11_29_2 e_1_2_11_5_12 e_1_2_11_5_11 e_1_2_11_5_14 e_1_2_11_5_13 e_1_2_11_5_10 e_1_2_11_20_2 e_1_2_11_5_19 e_1_2_11_20_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_5_16 e_1_2_11_24_2 e_1_2_11_5_15 e_1_2_11_24_1 e_1_2_11_62_1 e_1_2_11_4_6 e_1_2_11_5_18 e_1_2_11_5_17 e_1_2_11_8_1 e_1_2_11_43_1 e_1_2_11_17_2 e_1_2_11_17_1 e_1_2_11_59_1 e_1_2_11_59_2 e_1_2_11_17_4 e_1_2_11_17_3 e_1_2_11_50_1 e_1_2_11_31_1 e_1_2_11_58_1 e_1_2_11_12_3 e_1_2_11_12_2 e_1_2_11_35_1 e_1_2_11_12_1 e_1_2_11_54_1 e_1_2_11_5_3 e_1_2_11_5_2 e_1_2_11_24_5 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_24_4 e_1_2_11_24_3 e_1_2_11_3_10 e_1_2_11_3_11 e_1_2_11_61_1 e_1_2_11_3_12 e_1_2_11_5_9 e_1_2_11_9_5 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_5_8 e_1_2_11_9_4 e_1_2_11_3_13 e_1_2_11_5_7 e_1_2_11_9_3 e_1_2_11_5_6 e_1_2_11_9_2 e_1_2_11_5_5 e_1_2_11_9_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_5_4 e_1_2_11_16_3 e_1_2_11_16_2 e_1_2_11_12_5 e_1_2_11_16_1 e_1_2_11_12_4 e_1_2_11_16_5 e_1_2_11_39_1 e_1_2_11_16_4 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_11_3 e_1_2_11_11_2 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_11_1 e_1_2_11_6_2 e_1_2_11_2_5 e_1_2_11_6_1 e_1_2_11_2_4 e_1_2_11_27_1 e_1_2_11_2_3 e_1_2_11_2_2 e_1_2_11_2_1 e_1_2_11_69_2 e_1_2_11_60_1 e_1_2_11_45_1 e_1_2_11_68_2 e_1_2_11_68_1 e_1_2_11_41_1 e_1_2_11_6_4 e_1_2_11_6_3 e_1_2_11_22_1 e_1_2_11_64_1 e_1_2_11_15_4 e_1_2_11_15_3 e_1_2_11_15_2 e_1_2_11_15_1 e_1_2_11_19_3 e_1_2_11_38_1 e_1_2_11_19_2 e_1_2_11_19_1 e_1_2_11_10_1 e_1_2_11_52_4 e_1_2_11_56_1 e_1_2_11_14_1 e_1_2_11_52_1 e_1_2_11_52_2 Klauk H. (e_1_2_11_25_3) 2000; 43 e_1_2_11_33_1 e_1_2_11_52_3 e_1_2_11_3_5 e_1_2_11_7_1 e_1_2_11_3_4 e_1_2_11_3_3 e_1_2_11_3_2 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 e_1_2_11_44_2 e_1_2_11_67_2 e_1_2_11_3_9 e_1_2_11_21_5 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_3_8 e_1_2_11_7_4 e_1_2_11_21_4 e_1_2_11_3_7 e_1_2_11_7_3 e_1_2_11_21_3 e_1_2_11_3_6 e_1_2_11_7_2 e_1_2_11_21_2 e_1_2_11_18_1 e_1_2_11_14_2 e_1_2_11_37_1 e_1_2_11_18_3 e_1_2_11_18_2 |
References_xml | – volume: 145 start-page: 584 year: 2017 publication-title: Dyes Pigments – volume: 106 107 10 41 21 start-page: 5028 1066 28 1202 1217 year: 2006 2007 2007 2008 2009 publication-title: Chem. Rev. Chem. Rev. Mater. Today Acc. Chem. Res. Adv. Mater. (Weinheim, Ger.) – volume: 5 40 131 135 5 start-page: 328 7960 2521 2338 1935 year: 2006 2007 2009 2013 2017 publication-title: Nat. Mater. Macromolecules J. Am. Chem. Soc. J. Am. Chem. Soc. J. Mater. Chem. C – volume: 129 19 480 23 start-page: 15732 3882 504 523 year: 2007 2007 2011 2011 publication-title: J. Am. Chem. Soc. Adv. Mater. (Weinheim, Ger.) Nature Adv. Mater. (Weinheim, Ger.) – volume: 47 start-page: 4070 year: 2008 publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 2001028 year: 2021 publication-title: Adv. Mater. Technol. – volume: 12 start-page: 25081 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 9838 year: 2017 publication-title: J. Mater. Chem. C – volume: 13 5 start-page: 548 1550 year: 2007 2010 publication-title: Chem.‐‐Eur. J. Chem. Asian J. – volume: 27 start-page: 1606761 year: 2017 publication-title: Adv. Funct. Mater. – volume: 29 start-page: 1702414 year: 2017 publication-title: Adv. Mater. (Weinheim, Ger.) – volume: 8 start-page: 15119 year: 2020 publication-title: J. Mater. Chem. C – volume: 80 127 7 19 10 start-page: 2925 4986 3163 418 486 year: 2002 2005 2005 2007 2009 publication-title: Appl. Phys. Lett. J. Am. Chem. Soc. Org. Lett. Chem. Mater. Org. Electron. – volume: 18 start-page: 1029 year: 2008 publication-title: J. Mater. Chem. – volume: 126 start-page: 261 year: 2016 publication-title: Dyes Pigments – volume: 133 4 4 142 start-page: 20009 699 66 652 year: 2011 2012 2020 2020 publication-title: J. Am. Chem. Soc. Nat. Chem. Nat. Rev. Chem. J. Am. Chem. Soc. – volume: 22 start-page: 5031 year: 2010 publication-title: Chem. Mater. – volume: 11 start-page: 801 year: 2010 publication-title: Org. Electron. – volume: 10 start-page: 2102650 year: 2022 publication-title: Adv. Opt. Materials – volume: 3 start-page: 8932 year: 2015 publication-title: J. Mater. Chem. C – volume: 54 30 204 52 30 5 13 14 69 6 25 14 start-page: 33 1801079 713 277 1904588 6760 11369 5709 1 2038 1 103782 13584 year: 2014 2018 2019 2019 2020 2021 2021 2022 2022 2022 2022 2022 2022 publication-title: Polym. Rev. (Philadelphia, PA, U. S.) Adv. Mater. (Weinheim, Ger.) Talanta Acc. Chem. Res. Adv. Funct. Mater. Mater. Chem. Front. ACS Appl. Mater. Interfaces ACS Appl. Mater. Interfaces IEEE Trans. Electron Devices npj Flexible Electron. iScience ACS Appl. Mater. Interfaces – volume: 7 14 start-page: 2118 22053 year: 2022 2022 publication-title: ACS Energy Lett. ACS Appl. Mater. Interfaces – volume: 30 4 46 11 start-page: 1801048 544 2322 316 339 year: 2018 2021 2021 2022 2022 publication-title: Adv. Mater. (Weinheim, Ger.) Nat. Electron. Mater. Today: Proc. Electronics – volume: 127 127 1 start-page: 13281 10502 3686 year: 2005 2005 2013 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. J. Mater. Chem. C – volume: 8 start-page: 2100648 year: 2022 publication-title: Adv. Electron. Mater. – volume: 19 23 185 start-page: 772 3138 year: 2009 2011 2021 publication-title: Adv. Funct. Mater. Chem. Mater. Dyes Pigments – volume: 4 19 start-page: 6992 3721 year: 2012 2013 publication-title: ACS Appl. Mater. Interfaces Chem.‐‐Eur. J. – volume: 137 8 5 11 start-page: 4414 15267 12310 21424 year: 2015 2016 2017 2019 publication-title: J. Am. Chem. Soc. ACS Appl. Mater. Interfaces J. Mater. Chem. A ACS Appl. Mater. Interfaces – volume: 475 5 start-page: 364 3005 year: 2011 2014 publication-title: Nature Nat. Commun. – volume: 140 29 start-page: 388 1905393 year: 2018 2019 publication-title: J. Am. Chem. Soc. Adv. Funct. Mater. – volume: 15 38 42 start-page: 1519 3312 8615 year: 2003 2005 2009 publication-title: Adv. Mater. (Weinheim, Ger.) Macromolecules Macromolecules – volume: 23 start-page: 3850 year: 2013 publication-title: Adv. Funct. Mater. – volume: 16 52 11 745 start-page: 426 356 1222 year: 2006 2018 2021 2022 publication-title: Adv. Funct. Mater. Org. Electron. Coatings Thin Solid Films – volume: 72 7 start-page: 442 5301 year: 2007 2005 publication-title: J. Org. Chem. Org. Lett. – volume: 11 start-page: 1363 year: 2010 publication-title: Org. Electron. – volume: 133 start-page: 280 year: 2016 publication-title: Dyes Pigments – volume: 52 8 5 6 start-page: 4800 14077 9439 7493 year: 2016 2016 2017 2018 publication-title: Chem. Commun. ACS Appl. Mater. Interfaces J. Mater. Chem. C J. Mater. Chem. C – volume: 80 18 43 93 start-page: 2501 87 63 year: 1996 1997 2000 2008 publication-title: J. Appl. Phys. IEEE Electron Device Lett. Solid State Technol. Appl. Phys. Lett. – volume: 1 start-page: 1500098 year: 2015 publication-title: Adv. Electron. Mater. – volume: 32 start-page: 1422 year: 2020 publication-title: Chem. Mater. – volume: 16 10 22 46 22 23 23 40 14 112 42 25 2 27 5 29 75 136 30 start-page: 4436 3876 5211 1331 568 268 3728 14152 2208 6113 5372 3099 1357 8654 17975 13 2000765 year: 2004 2009 2010 2010 2010 2011 2011 2011 2012 2012 2013 2013 2014 2016 2017 2018 2019 2019 2020 publication-title: Chem. Mater. Sci. Technol. Adv. Mater. Adv. Mater. (Weinheim, Ger.) Chem. Commun. Adv. Mater. (Weinheim, Ger.) Chem. Mater. Adv. Mater. (Weinheim, Ger.) Chem. Soc. Rev. Phys. Chem. Chem. Phys. Chem. Rev. Chem. Soc. Rev. Adv. Mater. (Weinheim, Ger.) J. Mater. Chem. C Chin. Chem. Lett. J. Mater. Chem. C J. Mater. Sci. Mater. Electron. Org. Electron. Mater. Sci. Eng. R. Rep. Adv. Funct. Mater. – volume: 2011 start-page: 2151 year: 2011 publication-title: Synlett – volume: 771 start-page: 5 issue: L6 year: 2003 publication-title: MRS Proc. – volume: 51 start-page: 1196 year: 2018 publication-title: Acc. Chem. Res. – volume: 17 33 start-page: 2100783 3286 year: 2021 2021 publication-title: Small Chem. Mater. – volume: 30 102 start-page: 1801830 year: 2018 2022 publication-title: Adv. Mater. (Weinheim, Ger.) Org. Electron. – start-page: 1846 year: 2009 publication-title: Chem. Commun. – volume: 6 start-page: 6 year: 2014 publication-title: Polymers – volume: 15 14 start-page: 2255 year: 2022 2022 publication-title: Materials Polymers – volume: 14 start-page: 2772 year: 2013 publication-title: ChemPhysChem – volume: 61 22 139 29 52 start-page: 11055 17136 13013 4999 1113 year: 2005 2016 2017 2017 2019 publication-title: Tetrahedron Chem.‐‐Eur. J. J. Am. Chem. Soc. Chem. Mater. Acc. Chem. Res. – volume: 24 start-page: 2057 year: 2014 publication-title: Adv. Funct. Mater. – volume: 16 start-page: 4413 year: 2004 publication-title: Chem. Mater. – volume: 11 13 6 start-page: 1947 1881 71 year: 2010 2012 2012 publication-title: Org. Electron. Org. Electron. Phys. Status Solidi Rapid Res. Lett. – volume: 12 8 start-page: 15071 15322 year: 2020 2020 publication-title: ACS Appl. Mater. Interfaces J. Mater. Chem. C – volume: 22 start-page: 48 year: 2012 publication-title: Adv. Funct. Mater. – volume: 163 start-page: 725 year: 2019 publication-title: Dyes Pigments – volume: 26 27 39 28 29 5 4 11 start-page: 2636 6870 127 7213 1702115 1700290 1700464 11710 year: 2014 2015 2016 2016 2017 2018 2018 2021 publication-title: Adv. Mater. (Weinheim, Ger.) Adv. Mater. (Weinheim, Ger.) Org. Electron. Adv. Mater. (Weinheim, Ger.) Adv. Mater. (Weinheim, Ger.) Adv. Sci. Adv. Electron. Mater. Sci. Rep. – volume: 2 start-page: 8892 year: 2014 publication-title: J. Mater. Chem. C – volume: 53 start-page: 5898 year: 2017 publication-title: Chem. Commun. – volume: 2 start-page: 7599 year: 2014 publication-title: J. Mater. Chem. C – volume: 32 start-page: 2200880 year: 2022 publication-title: Adv. Funct. Mater. – volume: 15 start-page: 727 year: 2021 publication-title: ACS Nano – volume: 428 26 48 247 11 start-page: 911 1319 1509 197 year: 2004 2014 2017 2021 2022 2022 publication-title: Nature Adv. Mater. (Weinheim, Ger.) SID Symp. Dig. Tech. Pap. Microelectron. Eng. Electronics – volume: 28 start-page: 1801025 year: 2018 publication-title: Adv. Funct. Mater. – volume: 23 start-page: 4347 year: 2011 publication-title: Adv. Mater. (Weinheim, Ger.) – volume: 8 start-page: 15450 year: 2020 publication-title: J. Mater. Chem. C – volume: 8 start-page: 2002930 year: 2021 publication-title: Adv. Sci. – volume: 10 5 start-page: 11254 4149 year: 2022 2022 publication-title: J. Mater. Chem. A ACS Appl. Energy Mater. – ident: e_1_2_11_3_6 doi: 10.1039/D1QM00334H – ident: e_1_2_11_5_16 doi: 10.1007/s10854-018-9936-9 – ident: e_1_2_11_7_2 doi: 10.1002/adma.200701431 – volume: 43 start-page: 63 year: 2000 ident: e_1_2_11_25_3 publication-title: Solid State Technol. – volume-title: Sustainable strategies in organic electronics year: 2022 ident: e_1_2_11_4_5 – ident: e_1_2_11_34_1 doi: 10.1016/j.orgel.2010.01.022 – ident: e_1_2_11_70_1 doi: 10.1039/D2TA00617K – ident: e_1_2_11_5_4 doi: 10.1039/c0cc00947d – ident: e_1_2_11_3_7 doi: 10.1021/acsami.0c18426 – ident: e_1_2_11_68_1 doi: 10.1002/smll.202100783 – ident: e_1_2_11_12_1 doi: 10.1038/nmat1612 – ident: e_1_2_11_32_2 doi: 10.1021/ol0523650 – ident: e_1_2_11_4_6 doi: 10.3390/electronics11020197 – ident: e_1_2_11_15_1 doi: 10.1039/C6CC00948D – ident: e_1_2_11_52_2 doi: 10.1021/acsami.6b02767 – ident: e_1_2_11_3_2 doi: 10.1002/adma.201801079 – ident: e_1_2_11_17_2 doi: 10.1016/j.orgel.2017.11.023 – ident: e_1_2_11_63_1 doi: 10.1039/D0TC03808C – ident: e_1_2_11_5_18 doi: 10.1016/j.mser.2018.10.003 – ident: e_1_2_11_43_1 doi: 10.1039/C7TC03455E – ident: e_1_2_11_17_1 doi: 10.1002/adfm.200500547 – ident: e_1_2_11_3_13 doi: 10.1021/acsami.1c23994 – ident: e_1_2_11_5_6 doi: 10.1021/cm102296d – ident: e_1_2_11_6_1 doi: 10.1021/ja2073643 – ident: e_1_2_11_21_1 doi: 10.1002/adma.201305981 – ident: e_1_2_11_29_1 doi: 10.1016/j.orgel.2010.09.010 – ident: e_1_2_11_3_4 doi: 10.1021/acs.accounts.8b00448 – ident: e_1_2_11_54_1 doi: 10.1002/adma.201102007 – ident: e_1_2_11_4_4 doi: 10.1016/j.mee.2021.111590 – ident: e_1_2_11_62_1 doi: 10.1021/acsami.0c03477 – ident: e_1_2_11_2_2 doi: 10.1038/s41928-021-00634-5 – ident: e_1_2_11_51_1 doi: 10.1016/j.dyepig.2016.05.041 – ident: e_1_2_11_3_8 doi: 10.1021/acsami.1c20143 – ident: e_1_2_11_24_5 doi: 10.1016/j.orgel.2009.02.007 – ident: e_1_2_11_64_1 doi: 10.1002/advs.202002930 – ident: e_1_2_11_16_3 doi: 10.1021/jacs.7b05344 – ident: e_1_2_11_21_2 doi: 10.1002/adma.201502980 – ident: e_1_2_11_24_3 doi: 10.1021/ol050872b – ident: e_1_2_11_29_3 doi: 10.1002/pssr.201105534 – ident: e_1_2_11_47_1 doi: 10.1039/C7CC02714A – ident: e_1_2_11_69_1 doi: 10.1021/acsenergylett.2c00684 – ident: e_1_2_11_10_1 doi: 10.1002/anie.200701920 – ident: e_1_2_11_18_3 doi: 10.1016/j.dyepig.2020.108911 – ident: e_1_2_11_33_1 doi: 10.1039/b820621j – ident: e_1_2_11_4_3 doi: 10.1002/sdtp.11936 – ident: e_1_2_11_16_5 doi: 10.1021/acs.accounts.9b00031 – ident: e_1_2_11_56_1 doi: 10.1021/cm101435s – ident: e_1_2_11_24_1 doi: 10.1063/1.1471378 – ident: e_1_2_11_52_3 doi: 10.1039/C7TA01825H – ident: e_1_2_11_15_3 doi: 10.1039/C7TC02023F – ident: e_1_2_11_21_6 doi: 10.1002/advs.201700290 – ident: e_1_2_11_5_7 doi: 10.1002/adma.201001402 – ident: e_1_2_11_12_4 doi: 10.1021/ja311469y – ident: e_1_2_11_4_1 doi: 10.1038/nature02498 – ident: e_1_2_11_9_3 doi: 10.1016/S1369-7021(07)70017-2 – ident: e_1_2_11_7_4 doi: 10.1002/adma.201002682 – ident: e_1_2_11_67_1 doi: 10.1021/jacs.7b10898 – ident: e_1_2_11_18_1 doi: 10.1002/adfm.200800829 – ident: e_1_2_11_52_4 doi: 10.1021/acsami.8b19778 – ident: e_1_2_11_20_2 doi: 10.1002/asia.201000001 – ident: e_1_2_11_4_2 doi: 10.1002/adma.201304346 – ident: e_1_2_11_8_1 doi: 10.1021/acs.accounts.8b00025 – ident: e_1_2_11_32_1 doi: 10.1021/jo061853y – ident: e_1_2_11_45_1 doi: 10.1002/adfm.202200880 – ident: e_1_2_11_5_5 doi: 10.1002/adma.200901454 – ident: e_1_2_11_5_12 doi: 10.1002/adma.201302315 – ident: e_1_2_11_5_2 doi: 10.1088/1468-6996/10/2/024313 – ident: e_1_2_11_21_8 doi: 10.1038/s41598-021-91239-7 – ident: e_1_2_11_22_1 doi: 10.1021/cm049614j – ident: e_1_2_11_57_1 doi: 10.1002/adfm.201303378 – ident: e_1_2_11_5_8 doi: 10.1039/c0cs00194e – ident: e_1_2_11_20_1 doi: 10.1002/chem.200601064 – ident: e_1_2_11_25_2 doi: 10.1109/55.556089 – ident: e_1_2_11_19_1 doi: 10.1021/ja052816b – ident: e_1_2_11_3_9 doi: 10.1007/978-3-030-80702-3_1 – ident: e_1_2_11_26_1 doi: 10.1039/b715746k – ident: e_1_2_11_65_1 doi: 10.1002/adom.202102650 – ident: e_1_2_11_27_1 doi: 10.1016/j.orgel.2010.04.029 – ident: e_1_2_11_59_1 doi: 10.1021/am3022448 – ident: e_1_2_11_39_1 doi: 10.1021/acsnano.0c07003 – ident: e_1_2_11_5_14 doi: 10.1016/j.cclet.2016.05.033 – ident: e_1_2_11_40_1 doi: 10.1002/aelm.202100648 – ident: e_1_2_11_69_2 doi: 10.1021/acsami.2c00841 – ident: e_1_2_11_46_1 doi: 10.1002/adfm.201101053 – ident: e_1_2_11_68_2 doi: 10.1021/acs.chemmater.1c00335 – ident: e_1_2_11_7_1 doi: 10.1021/ja074841i – ident: e_1_2_11_2_5 doi: 10.1016/B978-0-12-823147-0.00010-0 – ident: e_1_2_11_3_1 doi: 10.1080/15583724.2013.848455 – ident: e_1_2_11_5_3 doi: 10.1002/adma.200903628 – ident: e_1_2_11_49_1 doi: 10.1002/adfm.201801025 – ident: e_1_2_11_2_3 doi: 10.1016/j.matpr.2021.04.401 – ident: e_1_2_11_44_2 doi: 10.1039/D0TC02310H – ident: e_1_2_11_14_1 doi: 10.3390/ma15062255 – ident: e_1_2_11_16_1 doi: 10.1016/j.tet.2005.08.030 – ident: e_1_2_11_60_1 doi: 10.1039/C4TC01115E – ident: e_1_2_11_61_1 doi: 10.1002/adfm.201606761 – ident: e_1_2_11_21_5 doi: 10.1002/adma.201702115 – ident: e_1_2_11_25_1 doi: 10.1063/1.363032 – ident: e_1_2_11_42_1 doi: 10.1016/j.dyepig.2018.12.054 – ident: e_1_2_11_59_2 doi: 10.1002/chem.201204110 – ident: e_1_2_11_13_2 doi: 10.1016/j.orgel.2021.106427 – ident: e_1_2_11_19_3 doi: 10.1039/c3tc30144c – ident: e_1_2_11_48_1 doi: 10.1016/j.dyepig.2017.06.017 – ident: e_1_2_11_5_17 doi: 10.1016/j.orgel.2019.105432 – ident: e_1_2_11_7_3 doi: 10.1038/nature10683 – ident: e_1_2_11_11_1 doi: 10.1002/adma.200305275 – ident: e_1_2_11_41_1 doi: 10.1002/adma.201702414 – ident: e_1_2_11_5_10 doi: 10.1021/cr100380z – ident: e_1_2_11_11_2 doi: 10.1021/ma047415f – ident: e_1_2_11_18_2 doi: 10.1021/cm201326c – volume: 771 start-page: 5 issue: 6 year: 2003 ident: e_1_2_11_23_1 publication-title: MRS Proc. – ident: e_1_2_11_5_1 doi: 10.1021/cm049391x – ident: e_1_2_11_19_2 doi: 10.1021/ja053326m – ident: e_1_2_11_38_1 doi: 10.1021/acs.chemmater.9b03967 – ident: e_1_2_11_3_12 doi: 10.1016/j.isci.2022.103782 – ident: e_1_2_11_21_7 doi: 10.1002/aelm.201700464 – ident: e_1_2_11_9_2 doi: 10.1021/cr0501386 – ident: e_1_2_11_30_1 doi: 10.1016/j.dyepig.2015.12.008 – ident: e_1_2_11_70_2 doi: 10.1021/acsaem.1c03485 – ident: e_1_2_11_25_4 doi: 10.1063/1.2952769 – ident: e_1_2_11_53_1 doi: 10.1039/D0TC01408G – ident: e_1_2_11_9_5 doi: 10.1002/adma.200802202 – ident: e_1_2_11_17_3 doi: 10.3390/coatings11101222 – ident: e_1_2_11_67_2 doi: 10.1002/adfm.201905393 – ident: e_1_2_11_55_1 doi: 10.1038/nature10313 – ident: e_1_2_11_55_2 doi: 10.1038/ncomms4005 – ident: e_1_2_11_58_1 doi: 10.1002/adfm.201203439 – ident: e_1_2_11_3_3 doi: 10.1016/j.talanta.2019.06.034 – ident: e_1_2_11_29_2 doi: 10.1016/j.orgel.2012.05.040 – ident: e_1_2_11_5_19 doi: 10.1002/adfm.202000765 – ident: e_1_2_11_12_5 doi: 10.1039/C6TC05052B – ident: e_1_2_11_9_4 doi: 10.1021/ar800130s – ident: e_1_2_11_15_2 doi: 10.1021/acsami.6b02788 – ident: e_1_2_11_35_1 doi: 10.1039/C4TC01454E – ident: e_1_2_11_3_10 doi: 10.1109/TED.2022.3151044 – ident: e_1_2_11_31_1 doi: 10.1055/s-0030-1261191 – ident: e_1_2_11_2_4 doi: 10.3390/electronics11030316 – ident: e_1_2_11_21_4 doi: 10.1002/adma.201600541 – ident: e_1_2_11_2_1 doi: 10.1002/adma.201801048 – ident: e_1_2_11_5_15 doi: 10.1039/C7TC01680H – ident: e_1_2_11_3_5 doi: 10.1002/adfm.201904588 – ident: e_1_2_11_5_13 doi: 10.1039/C3TC32046D – ident: e_1_2_11_12_2 doi: 10.1021/ma0709001 – ident: e_1_2_11_24_2 doi: 10.1021/ja042353u – ident: e_1_2_11_5_9 doi: 10.1039/c2cp41664f – ident: e_1_2_11_66_1 doi: 10.3390/polym6102645 – ident: e_1_2_11_15_4 doi: 10.1039/C8TC01802B – ident: e_1_2_11_16_2 doi: 10.1002/chem.201603112 – ident: e_1_2_11_21_3 doi: 10.1016/j.orgel.2016.09.006 – ident: e_1_2_11_24_4 doi: 10.1021/cm062378n – ident: e_1_2_11_6_2 doi: 10.1038/nchem.1422 – ident: e_1_2_11_14_2 doi: 10.3390/polym14061112 – ident: e_1_2_11_50_1 doi: 10.1039/C5TC01348H – ident: e_1_2_11_3_11 doi: 10.1038/s41528-022-00133-3 – ident: e_1_2_11_9_1 doi: 10.1021/cr050966z – ident: e_1_2_11_6_3 doi: 10.1038/s41570-019-0152-9 – ident: e_1_2_11_44_1 doi: 10.1021/acsami.9b21955 – ident: e_1_2_11_28_1 doi: 10.1002/cphc.201300317 – ident: e_1_2_11_5_11 doi: 10.1039/c3cs60108k – ident: e_1_2_11_6_4 doi: 10.1021/jacs.9b09374 – ident: e_1_2_11_11_3 doi: 10.1021/ma9015278 – ident: e_1_2_11_37_1 doi: 10.1002/admt.202001028 – ident: e_1_2_11_13_1 doi: 10.1002/adma.201801830 – ident: e_1_2_11_52_1 doi: 10.1021/ja513254z – ident: e_1_2_11_36_1 doi: 10.1002/aelm.201500098 – ident: e_1_2_11_12_3 doi: 10.1021/ja801475h – ident: e_1_2_11_17_4 doi: 10.1016/j.tsf.2022.139112 – ident: e_1_2_11_16_4 doi: 10.1021/acs.chemmater.7b01551 |
SSID | ssj0043259 |
Score | 2.399352 |
SecondaryResourceType | review_article |
Snippet | This review highlights our recent efforts in the development of organic semiconductors based on anthradithiophene (ADT), dithienothiophene (DTT),... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1253 |
SubjectTerms | Data analysis Energy levels Molecular structure Organic semiconductors Perovskites Photovoltaic cells Semiconductor devices Semiconductors Solar cells Thin film transistors Transistors |
Title | Fused thiophene based materials for organic thin‐film transistors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjccs.202200214 https://www.proquest.com/docview/2712392700 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27btswFCVcZ2iXoq-gbtNCQ4EOglybIvUYHbWOkbZZ4gTZBIqiYhWyHFjWkimfkG9sf6SXpETLQNJHFtkgryWD9-jyULw6F6EPnI05Tzh3aOYFDklHvhMySp2QS8KcAaJVOaDvJ97sjBxf0Ite71cna6neJEN-fed7JQ_xKrSBX-Vbsv_hWXNSaIDv4F84gofh-E8-ntaVkPmPuRQHALYop6TUBg6qL65SCHXZJi6tSpPZkOXFUlaHKCulElLdQ1ElKZUFtkUlPxtlgTbPE6jpnOVXIu88TDgXRV2xpXLcZF0Xy9X1IjeYytZM7RWdLoC2FvbJ0IQcVuv2WiyKfJsklNc6I0BAQGr_-jfA82X3WQUsc9tMuU5ENPbn0czWDy3to2UyU1CPVkP76xGb7ITs0CHUbfSyVRtEWex4VGudtmFcV3xp4Bp0YjJQOLczv0tF-zvnDq1F-4NzqeKOVfIK2c6SbWaAsaR_tlUU4TiKTk3_I7SHfc_DfbQ3Ofx8OG0JA3ExDU3BP7Wbvt9c5dPuFXa503ZB1F1WKV40f4aeNmixJhqdz1FPlC_Q46itI_gSRQqllkGppVBqGZRagFKrQam0Kn_e3Ep8Wh18vkJn0y_zaOY0pTscDoRU7rWxEeGJ8HEigJKy8SgBrkhZGDAP-5wTl0A_RAaRETzORBhmacoZH1GRJrDqcPdRv1yV4jWyKAEe5zE_GwUZYcwNU0KTQAgeSu3HIB0gpx2UmDe69rK8ShFrRW4cy0GMzSAO0Edjf6UVXe61PGjHOG7ueuj1geuFMl1jgLAa97-cJd4BwZuH_OgterK9mw5Qf7OuxTvgwpvkfYOl32nLqis |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fused+thiophene+based+materials+for+organic+thin%E2%80%90film+transistors&rft.jtitle=Journal+of+the+Chinese+Chemical+Society+%28Taipei%29&rft.au=Velusamy%2C+Arulmozhi&rft.au=Afraj%2C+Shakil+N.&rft.au=Yau%2C+Shuehlin&rft.au=Liu%2C+Cheng%E2%80%90Liang&rft.date=2022-08-01&rft.pub=Wiley%E2%80%90VCH+Verlag+GmbH+%26+Co.+KGaA&rft.issn=0009-4536&rft.eissn=2192-6549&rft.volume=69&rft.issue=8&rft.spage=1253&rft.epage=1275&rft_id=info:doi/10.1002%2Fjccs.202200214&rft.externalDBID=10.1002%252Fjccs.202200214&rft.externalDocID=JCCS202200214 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-4536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-4536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-4536&client=summon |