Homologous MXene‐Derived Electrodes for Potassium‐Ion Full Batteries
The development of potassium‐ion battery (PIB) electrode materials is critical for promoting their use in next‐generation energy storage systems. Although metal–organic frameworks (MOFs) are appealing electrode materials, their performance in PIBs remains unsatisfactory. The low K+ adsorption energy...
Saved in:
Published in | Advanced energy materials Vol. 12; no. 23 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.06.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1614-6832 1614-6840 |
DOI | 10.1002/aenm.202200113 |
Cover
Abstract | The development of potassium‐ion battery (PIB) electrode materials is critical for promoting their use in next‐generation energy storage systems. Although metal–organic frameworks (MOFs) are appealing electrode materials, their performance in PIBs remains unsatisfactory. The low K+ adsorption energy (ΔEa) on the saturated coordination of MOFs can explain the limited capacity. Herein, MXene‐derived MOF nodes (NMD‐MOF) are unlocked and used as anodes in PIB. The NMD‐MOF anode exhibits substantially increased capacity (250 mA h g−1 at 0.05 A g−1), as well as good rate‐performance and excellent capacity retention. Density functional theory calculations reveal that the ΔEa at unlocked node sites is significantly higher than at intact node sites of the pristine MOF. Furthermore, the NMD‐MOF anode and homologous MXene‐derived K+‐intercalated vanadium oxide (MD‐KVO) cathode combine to assemble a PIB, which delivers an encouraging capacity of 63 mA h g−1 at 50 mA g−1 and high energy (143 Wh kg−1) and power density (440 W kg−1). The fabrication of MXene‐derived electrode materials and the unlocking node strategy for binding site activation may spur further research into highly active electrode materials for energy storage devices.
A potassium ion full battery is assembled with a homologous MXene‐derived metal–organic framework (MOF) anode and K+‐intercalated vanadium oxide cathode. Meanwhile, an unlocking MOF node strategy is proposed to increase the K+ adsorption energy, which leads to significantly improved K+ storage capacity. |
---|---|
AbstractList | The development of potassium‐ion battery (PIB) electrode materials is critical for promoting their use in next‐generation energy storage systems. Although metal–organic frameworks (MOFs) are appealing electrode materials, their performance in PIBs remains unsatisfactory. The low K+ adsorption energy (ΔEa) on the saturated coordination of MOFs can explain the limited capacity. Herein, MXene‐derived MOF nodes (NMD‐MOF) are unlocked and used as anodes in PIB. The NMD‐MOF anode exhibits substantially increased capacity (250 mA h g−1 at 0.05 A g−1), as well as good rate‐performance and excellent capacity retention. Density functional theory calculations reveal that the ΔEa at unlocked node sites is significantly higher than at intact node sites of the pristine MOF. Furthermore, the NMD‐MOF anode and homologous MXene‐derived K+‐intercalated vanadium oxide (MD‐KVO) cathode combine to assemble a PIB, which delivers an encouraging capacity of 63 mA h g−1 at 50 mA g−1 and high energy (143 Wh kg−1) and power density (440 W kg−1). The fabrication of MXene‐derived electrode materials and the unlocking node strategy for binding site activation may spur further research into highly active electrode materials for energy storage devices. The development of potassium‐ion battery (PIB) electrode materials is critical for promoting their use in next‐generation energy storage systems. Although metal–organic frameworks (MOFs) are appealing electrode materials, their performance in PIBs remains unsatisfactory. The low K+ adsorption energy (ΔEa) on the saturated coordination of MOFs can explain the limited capacity. Herein, MXene‐derived MOF nodes (NMD‐MOF) are unlocked and used as anodes in PIB. The NMD‐MOF anode exhibits substantially increased capacity (250 mA h g−1 at 0.05 A g−1), as well as good rate‐performance and excellent capacity retention. Density functional theory calculations reveal that the ΔEa at unlocked node sites is significantly higher than at intact node sites of the pristine MOF. Furthermore, the NMD‐MOF anode and homologous MXene‐derived K+‐intercalated vanadium oxide (MD‐KVO) cathode combine to assemble a PIB, which delivers an encouraging capacity of 63 mA h g−1 at 50 mA g−1 and high energy (143 Wh kg−1) and power density (440 W kg−1). The fabrication of MXene‐derived electrode materials and the unlocking node strategy for binding site activation may spur further research into highly active electrode materials for energy storage devices. A potassium ion full battery is assembled with a homologous MXene‐derived metal–organic framework (MOF) anode and K+‐intercalated vanadium oxide cathode. Meanwhile, an unlocking MOF node strategy is proposed to increase the K+ adsorption energy, which leads to significantly improved K+ storage capacity. The development of potassium‐ion battery (PIB) electrode materials is critical for promoting their use in next‐generation energy storage systems. Although metal–organic frameworks (MOFs) are appealing electrode materials, their performance in PIBs remains unsatisfactory. The low K + adsorption energy (Δ E a ) on the saturated coordination of MOFs can explain the limited capacity. Herein, MXene‐derived MOF nodes (NMD‐MOF) are unlocked and used as anodes in PIB. The NMD‐MOF anode exhibits substantially increased capacity (250 mA h g −1 at 0.05 A g −1 ), as well as good rate‐performance and excellent capacity retention. Density functional theory calculations reveal that the Δ E a at unlocked node sites is significantly higher than at intact node sites of the pristine MOF. Furthermore, the NMD‐MOF anode and homologous MXene‐derived K + ‐intercalated vanadium oxide (MD‐KVO) cathode combine to assemble a PIB, which delivers an encouraging capacity of 63 mA h g −1 at 50 mA g −1 and high energy (143 Wh kg −1 ) and power density (440 W kg −1 ). The fabrication of MXene‐derived electrode materials and the unlocking node strategy for binding site activation may spur further research into highly active electrode materials for energy storage devices. |
Author | Liu, Chengcheng Yang, Hongyan Tan, Yi Wu, Hao Sun, Lanju Zhai, Shengliang Fang, Xu Dong, Tiantian Deng, Wei‐Qiao Sun, Jikai |
Author_xml | – sequence: 1 givenname: Lanju surname: Sun fullname: Sun, Lanju organization: Shandong University – sequence: 2 givenname: Jikai surname: Sun fullname: Sun, Jikai organization: Shandong University – sequence: 3 givenname: Shengliang surname: Zhai fullname: Zhai, Shengliang organization: Shandong University – sequence: 4 givenname: Tiantian surname: Dong fullname: Dong, Tiantian organization: Chinese Academy of Sciences – sequence: 5 givenname: Hongyan surname: Yang fullname: Yang, Hongyan organization: Shandong University – sequence: 6 givenname: Yi surname: Tan fullname: Tan, Yi organization: Shandong University – sequence: 7 givenname: Xu surname: Fang fullname: Fang, Xu organization: Shandong University – sequence: 8 givenname: Chengcheng surname: Liu fullname: Liu, Chengcheng organization: Shandong University – sequence: 9 givenname: Wei‐Qiao surname: Deng fullname: Deng, Wei‐Qiao organization: Shandong University – sequence: 10 givenname: Hao orcidid: 0000-0002-9464-2033 surname: Wu fullname: Wu, Hao email: haowu2020@sdu.edu.cn organization: Shandong University |
BookMark | eNqFkMFKw0AQhhdRsNZePQc8p85m42ZzrLW1hVY9KHhbNptZSUmydTdRevMRfEafxJRKBUGcyz-H75uB_4Qc1rZGQs4oDClAdKGwroYRRBEApeyA9CincchFDIf7nUXHZOD9CrqJUwqM9chsZitb2mfb-mD5hDV-vn9coyteMQ8mJerG2Rx9YKwL7m2jvC_aqkPmtg6mbVkGV6ppOhz9KTkyqvQ4-M4-eZxOHsazcHF3Mx-PFqFmNGGhMuZSJ1zkILjKYiaMAq10limmEClngAC54Bq5iiOTZVRxQ5PMCIA0ZYr1yfnu7trZlxZ9I1e2dXX3UkY84UkieCI6Kt5R2lnvHRqpi0Y1ha0bp4pSUpDb2uS2NrmvrdOGv7S1KyrlNn8L6U54K0rc_EPL0eR2-eN-AQSPhGM |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2023_158239 crossref_primary_10_1039_D3MH01028G crossref_primary_10_1007_s40820_023_01202_6 crossref_primary_10_1002_sus2_184 crossref_primary_10_1016_j_est_2023_110293 crossref_primary_10_1002_admt_202201591 crossref_primary_10_1002_adfm_202303668 crossref_primary_10_1016_j_seppur_2024_127537 crossref_primary_10_1002_anie_202418031 crossref_primary_10_1021_acsaem_3c00012 crossref_primary_10_1002_bte2_20230074 crossref_primary_10_1016_j_jechem_2022_09_035 crossref_primary_10_1016_j_cej_2024_156190 crossref_primary_10_1002_smll_202306572 crossref_primary_10_1002_adfm_202300125 crossref_primary_10_1002_smll_202406737 crossref_primary_10_1016_j_cej_2023_146848 crossref_primary_10_1007_s11705_023_2335_7 crossref_primary_10_1016_j_jelechem_2024_118178 crossref_primary_10_1021_acsnano_4c00881 crossref_primary_10_34133_energymatadv_0033 crossref_primary_10_1002_tcr_202300006 crossref_primary_10_1002_adfm_202410212 crossref_primary_10_1016_j_matlet_2023_134832 crossref_primary_10_1002_smll_202300914 crossref_primary_10_1002_adma_202313835 crossref_primary_10_1002_adma_202408923 crossref_primary_10_1002_ange_202418031 crossref_primary_10_1002_sstr_202300255 crossref_primary_10_15251_DJNB_2024_193_1243 crossref_primary_10_1016_j_jcis_2023_05_073 |
Cites_doi | 10.1002/adma.202000958 10.1002/smll.201901272 10.1016/j.joule.2018.09.019 10.1038/s41467-018-04190-z 10.1002/adfm.202105145 10.1021/acsnano.8b08046 10.1021/jacs.9b11446 10.1039/C7NR06645G 10.1002/anie.202112183 10.1021/acsami.9b22087 10.1021/acs.nanolett.6b04611 10.1002/adfm.202004348 10.1016/j.electacta.2017.09.090 10.1002/aenm.202001673 10.1021/acsaem.0c01906 10.1002/adma.202000732 10.1002/anie.202016024 10.1021/acsaem.1c00807 10.1002/adfm.201908755 10.1038/nmat3601 10.1002/adfm.201800670 10.1039/C9EE00536F 10.1002/anie.201912287 10.1021/acsnano.0c03488 10.1002/adma.202100272 10.1002/adfm.202001588 10.1002/aenm.201900482 10.1002/adfm.202107246 10.1039/C9TA06538E 10.1002/adma.201900429 10.1021/acsnano.0c01073 10.1016/j.chempr.2018.10.004 10.1016/j.chempr.2019.09.005 10.1016/j.ccr.2021.214118 10.1021/acsnano.1c02275 10.1038/s41467-021-23335-1 10.1039/C7CC03606J 10.1021/acsenergylett.0c01401 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202200113 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202200113 AENM202200113 |
Genre | article |
GrantInformation_xml | – fundername: Natural Science Foundation of Shandong Province funderid: YDZX2021001 – fundername: Natural Science Foundation of Shandong Province funderid: ZR2021QB201 – fundername: Science Foundation for Outstanding Young Scholars of Shandong Province – fundername: National Key Research and Development Program of China funderid: 2017YFA0204800 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3173-aff5c768d086ab438fa0cacbba3aee1630e00d86ce6a42fbb1a6f17bf800993a3 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:05:11 EDT 2025 Tue Jul 01 01:43:45 EDT 2025 Thu Apr 24 23:07:50 EDT 2025 Wed Jan 22 16:23:28 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3173-aff5c768d086ab438fa0cacbba3aee1630e00d86ce6a42fbb1a6f17bf800993a3 |
Notes | Dedicated to Shandong University, on the occasion of its 120th anniversary. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9464-2033 |
PQID | 2676778678 |
PQPubID | 886389 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2676778678 crossref_citationtrail_10_1002_aenm_202200113 crossref_primary_10_1002_aenm_202200113 wiley_primary_10_1002_aenm_202200113_AENM202200113 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 7 2019; 9 2018; 28 2021; 4 2019; 5 2019; 31 2019; 13 2019; 12 2021; 446 2019; 15 2019; 58 2020; 14 2020; 12 2020; 10 2020; 32 2017; 253 2019; 141 2017; 9 2020; 6 2017; 53 2018; 9 2021; 15 2020; 5 2021; 31 2018; 2 2020; 3 2021; 12 2021; 33 2020; 30 2017; 17 2013; 12 2021; 60 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 Lu C. (e_1_2_8_4_1) 2020; 10 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Funct. Mater. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 12 start-page: 3131 year: 2021 publication-title: Nat. Commun. – volume: 2 start-page: 2235 year: 2018 publication-title: Joule – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 3 year: 2020 publication-title: ACS Appl. Energy Mater. – volume: 15 year: 2021 publication-title: ACS Nano – volume: 253 start-page: 439 year: 2017 publication-title: Electrochim. Acta – volume: 14 start-page: 4938 year: 2020 publication-title: ACS Nano – volume: 13 start-page: 745 year: 2019 publication-title: ACS Nano – volume: 9 start-page: 1720 year: 2018 publication-title: Nat. Commun. – volume: 15 year: 2019 publication-title: Small – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 17 start-page: 544 year: 2017 publication-title: Nano Lett. – volume: 5 start-page: 168 year: 2019 publication-title: Chem – volume: 14 year: 2020 publication-title: ACS Nano – volume: 6 start-page: 19 year: 2020 publication-title: Chem – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 60 start-page: 8472 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 12 start-page: 9332 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 4 start-page: 5957 year: 2021 publication-title: ACS Appl. Energy Mater. – volume: 446 year: 2021 publication-title: Coord. Chem. Rev. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 518 year: 2013 publication-title: Nat. Mater. – volume: 9 year: 2017 publication-title: Nanoscale – volume: 5 start-page: 2651 year: 2020 publication-title: ACS Energy Lett. – volume: 53 start-page: 8360 year: 2017 publication-title: Chem. Commun. – volume: 12 start-page: 1605 year: 2019 publication-title: Energy Environ. Sci. – ident: e_1_2_8_28_1 doi: 10.1002/adma.202000958 – ident: e_1_2_8_33_1 doi: 10.1002/smll.201901272 – ident: e_1_2_8_16_1 doi: 10.1016/j.joule.2018.09.019 – ident: e_1_2_8_40_1 doi: 10.1038/s41467-018-04190-z – ident: e_1_2_8_2_1 doi: 10.1002/adfm.202105145 – ident: e_1_2_8_5_1 doi: 10.1021/acsnano.8b08046 – ident: e_1_2_8_24_1 doi: 10.1021/jacs.9b11446 – ident: e_1_2_8_32_1 doi: 10.1039/C7NR06645G – ident: e_1_2_8_36_1 doi: 10.1002/adfm.202105145 – ident: e_1_2_8_37_1 doi: 10.1002/anie.202112183 – ident: e_1_2_8_30_1 doi: 10.1021/acsami.9b22087 – ident: e_1_2_8_35_1 doi: 10.1021/acs.nanolett.6b04611 – ident: e_1_2_8_9_1 doi: 10.1002/adfm.202004348 – ident: e_1_2_8_18_1 doi: 10.1016/j.electacta.2017.09.090 – ident: e_1_2_8_21_1 doi: 10.1002/aenm.202001673 – ident: e_1_2_8_29_1 doi: 10.1021/acsaem.0c01906 – ident: e_1_2_8_11_1 doi: 10.1002/adma.202000732 – ident: e_1_2_8_22_1 doi: 10.1002/anie.202016024 – ident: e_1_2_8_14_1 doi: 10.1021/acsaem.1c00807 – ident: e_1_2_8_3_1 doi: 10.1002/adfm.201908755 – ident: e_1_2_8_27_1 doi: 10.1038/nmat3601 – ident: e_1_2_8_31_1 doi: 10.1002/adfm.201800670 – ident: e_1_2_8_7_1 doi: 10.1039/C9EE00536F – ident: e_1_2_8_10_1 doi: 10.1002/anie.201912287 – ident: e_1_2_8_23_1 doi: 10.1021/acsnano.0c03488 – ident: e_1_2_8_38_1 doi: 10.1002/adma.202100272 – ident: e_1_2_8_8_1 doi: 10.1002/adfm.202001588 – ident: e_1_2_8_20_1 doi: 10.1002/aenm.201900482 – ident: e_1_2_8_12_1 doi: 10.1002/adfm.202107246 – ident: e_1_2_8_34_1 doi: 10.1039/C9TA06538E – ident: e_1_2_8_13_1 doi: 10.1002/adma.201900429 – ident: e_1_2_8_26_1 doi: 10.1021/acsnano.0c01073 – ident: e_1_2_8_39_1 doi: 10.1016/j.chempr.2018.10.004 – ident: e_1_2_8_15_1 doi: 10.1016/j.chempr.2019.09.005 – ident: e_1_2_8_19_1 doi: 10.1016/j.ccr.2021.214118 – ident: e_1_2_8_1_1 doi: 10.1021/acsnano.1c02275 – ident: e_1_2_8_25_1 doi: 10.1038/s41467-021-23335-1 – volume: 10 year: 2020 ident: e_1_2_8_4_1 publication-title: Adv. Funct. Mater. – ident: e_1_2_8_17_1 doi: 10.1039/C7CC03606J – ident: e_1_2_8_6_1 doi: 10.1021/acsenergylett.0c01401 |
SSID | ssj0000491033 |
Score | 2.5394137 |
Snippet | The development of potassium‐ion battery (PIB) electrode materials is critical for promoting their use in next‐generation energy storage systems. Although... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | adsorption energy Anodes Binding sites Density functional theory Electrode materials Electrodes Energy storage full cells Homology Metal-organic frameworks MXene MXenes Nodes Potassium potassium‐ion batteries Rechargeable batteries Storage systems Vanadium oxides |
Title | Homologous MXene‐Derived Electrodes for Potassium‐Ion Full Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202200113 https://www.proquest.com/docview/2676778678 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWge4ED4lMUFpQDEoeVIbHTNBwrtquyagvSplJv1jhxRIFNEaQcOPET-I38EmZix0n5XLhErWU56czr9I0788zYo3E60qAL4DIsDI-1KfizMNG8lJCnUpNeDHUjL5bJbBWfrkfrriSo6S6p9ZP88y_7Sv7HqziGfqUu2X_wrF8UB_A1-hev6GG8XsjHs-05xS6qYl2sMWj5yoVjvPsnpJJTe8hNYRrVhaNX2xq58mZ37ie-QOdTFnpkdTbbisJWlrYtEDC2QxDZrf1Y3V9JtnMBqje7H8ZON29h09uWbqoGzl4bahsG93NJBNqVBGc4WLdQdbsQmMD6aqkLxrpejEVGwJPUbWua_phVbvKBWfQAaLuSfwr4VkAWTEWqAoIKxGxr676y9vKlOlnN5yqbrrPL7ECMkWcN2MHkeDE_8ztymCtFoWw6MtonbFU-Q_F0_xb7LKZLTfoJTsNQsuvsmkstgonFyQ12yVQ32dWe4OQtNusQEzSI-fblq8NK0GElQKwEHis4BVESEEoCj5LbbHUyzZ7PuDtLg-fIECWHshzlmFoWmMKCjmVaQphDrjVIMAZJeWjCsEiT3CQQi1LrCJIyGusypRxCgrzDBtW2MndZAMT6ipCEAWOkNhGYgiiOiEi6MElGQ8Zb26jcCc3TeSfvlJXIFopsqbwth-yxn__eSqz8duZha2rlvoYflSDJwXGKpGvIRGP-v6yiJtPlwr-79-c177MrHdwP2aD-sDMPkIbW-qHDz3cfLYa8 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Homologous+MXene%E2%80%90Derived+Electrodes+for+Potassium%E2%80%90Ion+Full+Batteries&rft.jtitle=Advanced+energy+materials&rft.au=Sun%2C+Lanju&rft.au=Sun%2C+Jikai&rft.au=Zhai%2C+Shengliang&rft.au=Dong%2C+Tiantian&rft.date=2022-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=12&rft.issue=23&rft_id=info:doi/10.1002%2Faenm.202200113&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |