Homologous MXene‐Derived Electrodes for Potassium‐Ion Full Batteries

The development of potassium‐ion battery (PIB) electrode materials is critical for promoting their use in next‐generation energy storage systems. Although metal–organic frameworks (MOFs) are appealing electrode materials, their performance in PIBs remains unsatisfactory. The low K+ adsorption energy...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 12; no. 23
Main Authors Sun, Lanju, Sun, Jikai, Zhai, Shengliang, Dong, Tiantian, Yang, Hongyan, Tan, Yi, Fang, Xu, Liu, Chengcheng, Deng, Wei‐Qiao, Wu, Hao
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.06.2022
Subjects
Online AccessGet full text
ISSN1614-6832
1614-6840
DOI10.1002/aenm.202200113

Cover

Abstract The development of potassium‐ion battery (PIB) electrode materials is critical for promoting their use in next‐generation energy storage systems. Although metal–organic frameworks (MOFs) are appealing electrode materials, their performance in PIBs remains unsatisfactory. The low K+ adsorption energy (ΔEa) on the saturated coordination of MOFs can explain the limited capacity. Herein, MXene‐derived MOF nodes (NMD‐MOF) are unlocked and used as anodes in PIB. The NMD‐MOF anode exhibits substantially increased capacity (250 mA h g−1 at 0.05 A g−1), as well as good rate‐performance and excellent capacity retention. Density functional theory calculations reveal that the ΔEa at unlocked node sites is significantly higher than at intact node sites of the pristine MOF. Furthermore, the NMD‐MOF anode and homologous MXene‐derived K+‐intercalated vanadium oxide (MD‐KVO) cathode combine to assemble a PIB, which delivers an encouraging capacity of 63 mA h g−1 at 50 mA g−1 and high energy (143 Wh kg−1) and power density (440 W kg−1). The fabrication of MXene‐derived electrode materials and the unlocking node strategy for binding site activation may spur further research into highly active electrode materials for energy storage devices. A potassium ion full battery is assembled with a homologous MXene‐derived metal–organic framework (MOF) anode and K+‐intercalated vanadium oxide cathode. Meanwhile, an unlocking MOF node strategy is proposed to increase the K+ adsorption energy, which leads to significantly improved K+ storage capacity.
AbstractList The development of potassium‐ion battery (PIB) electrode materials is critical for promoting their use in next‐generation energy storage systems. Although metal–organic frameworks (MOFs) are appealing electrode materials, their performance in PIBs remains unsatisfactory. The low K+ adsorption energy (ΔEa) on the saturated coordination of MOFs can explain the limited capacity. Herein, MXene‐derived MOF nodes (NMD‐MOF) are unlocked and used as anodes in PIB. The NMD‐MOF anode exhibits substantially increased capacity (250 mA h g−1 at 0.05 A g−1), as well as good rate‐performance and excellent capacity retention. Density functional theory calculations reveal that the ΔEa at unlocked node sites is significantly higher than at intact node sites of the pristine MOF. Furthermore, the NMD‐MOF anode and homologous MXene‐derived K+‐intercalated vanadium oxide (MD‐KVO) cathode combine to assemble a PIB, which delivers an encouraging capacity of 63 mA h g−1 at 50 mA g−1 and high energy (143 Wh kg−1) and power density (440 W kg−1). The fabrication of MXene‐derived electrode materials and the unlocking node strategy for binding site activation may spur further research into highly active electrode materials for energy storage devices.
The development of potassium‐ion battery (PIB) electrode materials is critical for promoting their use in next‐generation energy storage systems. Although metal–organic frameworks (MOFs) are appealing electrode materials, their performance in PIBs remains unsatisfactory. The low K+ adsorption energy (ΔEa) on the saturated coordination of MOFs can explain the limited capacity. Herein, MXene‐derived MOF nodes (NMD‐MOF) are unlocked and used as anodes in PIB. The NMD‐MOF anode exhibits substantially increased capacity (250 mA h g−1 at 0.05 A g−1), as well as good rate‐performance and excellent capacity retention. Density functional theory calculations reveal that the ΔEa at unlocked node sites is significantly higher than at intact node sites of the pristine MOF. Furthermore, the NMD‐MOF anode and homologous MXene‐derived K+‐intercalated vanadium oxide (MD‐KVO) cathode combine to assemble a PIB, which delivers an encouraging capacity of 63 mA h g−1 at 50 mA g−1 and high energy (143 Wh kg−1) and power density (440 W kg−1). The fabrication of MXene‐derived electrode materials and the unlocking node strategy for binding site activation may spur further research into highly active electrode materials for energy storage devices. A potassium ion full battery is assembled with a homologous MXene‐derived metal–organic framework (MOF) anode and K+‐intercalated vanadium oxide cathode. Meanwhile, an unlocking MOF node strategy is proposed to increase the K+ adsorption energy, which leads to significantly improved K+ storage capacity.
The development of potassium‐ion battery (PIB) electrode materials is critical for promoting their use in next‐generation energy storage systems. Although metal–organic frameworks (MOFs) are appealing electrode materials, their performance in PIBs remains unsatisfactory. The low K + adsorption energy (Δ E a ) on the saturated coordination of MOFs can explain the limited capacity. Herein, MXene‐derived MOF nodes (NMD‐MOF) are unlocked and used as anodes in PIB. The NMD‐MOF anode exhibits substantially increased capacity (250 mA h g −1 at 0.05 A g −1 ), as well as good rate‐performance and excellent capacity retention. Density functional theory calculations reveal that the Δ E a at unlocked node sites is significantly higher than at intact node sites of the pristine MOF. Furthermore, the NMD‐MOF anode and homologous MXene‐derived K + ‐intercalated vanadium oxide (MD‐KVO) cathode combine to assemble a PIB, which delivers an encouraging capacity of 63 mA h g −1 at 50 mA g −1 and high energy (143 Wh kg −1 ) and power density (440 W kg −1 ). The fabrication of MXene‐derived electrode materials and the unlocking node strategy for binding site activation may spur further research into highly active electrode materials for energy storage devices.
Author Liu, Chengcheng
Yang, Hongyan
Tan, Yi
Wu, Hao
Sun, Lanju
Zhai, Shengliang
Fang, Xu
Dong, Tiantian
Deng, Wei‐Qiao
Sun, Jikai
Author_xml – sequence: 1
  givenname: Lanju
  surname: Sun
  fullname: Sun, Lanju
  organization: Shandong University
– sequence: 2
  givenname: Jikai
  surname: Sun
  fullname: Sun, Jikai
  organization: Shandong University
– sequence: 3
  givenname: Shengliang
  surname: Zhai
  fullname: Zhai, Shengliang
  organization: Shandong University
– sequence: 4
  givenname: Tiantian
  surname: Dong
  fullname: Dong, Tiantian
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Hongyan
  surname: Yang
  fullname: Yang, Hongyan
  organization: Shandong University
– sequence: 6
  givenname: Yi
  surname: Tan
  fullname: Tan, Yi
  organization: Shandong University
– sequence: 7
  givenname: Xu
  surname: Fang
  fullname: Fang, Xu
  organization: Shandong University
– sequence: 8
  givenname: Chengcheng
  surname: Liu
  fullname: Liu, Chengcheng
  organization: Shandong University
– sequence: 9
  givenname: Wei‐Qiao
  surname: Deng
  fullname: Deng, Wei‐Qiao
  organization: Shandong University
– sequence: 10
  givenname: Hao
  orcidid: 0000-0002-9464-2033
  surname: Wu
  fullname: Wu, Hao
  email: haowu2020@sdu.edu.cn
  organization: Shandong University
BookMark eNqFkMFKw0AQhhdRsNZePQc8p85m42ZzrLW1hVY9KHhbNptZSUmydTdRevMRfEafxJRKBUGcyz-H75uB_4Qc1rZGQs4oDClAdKGwroYRRBEApeyA9CincchFDIf7nUXHZOD9CrqJUwqM9chsZitb2mfb-mD5hDV-vn9coyteMQ8mJerG2Rx9YKwL7m2jvC_aqkPmtg6mbVkGV6ppOhz9KTkyqvQ4-M4-eZxOHsazcHF3Mx-PFqFmNGGhMuZSJ1zkILjKYiaMAq10limmEClngAC54Bq5iiOTZVRxQ5PMCIA0ZYr1yfnu7trZlxZ9I1e2dXX3UkY84UkieCI6Kt5R2lnvHRqpi0Y1ha0bp4pSUpDb2uS2NrmvrdOGv7S1KyrlNn8L6U54K0rc_EPL0eR2-eN-AQSPhGM
CitedBy_id crossref_primary_10_1016_j_apsusc_2023_158239
crossref_primary_10_1039_D3MH01028G
crossref_primary_10_1007_s40820_023_01202_6
crossref_primary_10_1002_sus2_184
crossref_primary_10_1016_j_est_2023_110293
crossref_primary_10_1002_admt_202201591
crossref_primary_10_1002_adfm_202303668
crossref_primary_10_1016_j_seppur_2024_127537
crossref_primary_10_1002_anie_202418031
crossref_primary_10_1021_acsaem_3c00012
crossref_primary_10_1002_bte2_20230074
crossref_primary_10_1016_j_jechem_2022_09_035
crossref_primary_10_1016_j_cej_2024_156190
crossref_primary_10_1002_smll_202306572
crossref_primary_10_1002_adfm_202300125
crossref_primary_10_1002_smll_202406737
crossref_primary_10_1016_j_cej_2023_146848
crossref_primary_10_1007_s11705_023_2335_7
crossref_primary_10_1016_j_jelechem_2024_118178
crossref_primary_10_1021_acsnano_4c00881
crossref_primary_10_34133_energymatadv_0033
crossref_primary_10_1002_tcr_202300006
crossref_primary_10_1002_adfm_202410212
crossref_primary_10_1016_j_matlet_2023_134832
crossref_primary_10_1002_smll_202300914
crossref_primary_10_1002_adma_202313835
crossref_primary_10_1002_adma_202408923
crossref_primary_10_1002_ange_202418031
crossref_primary_10_1002_sstr_202300255
crossref_primary_10_15251_DJNB_2024_193_1243
crossref_primary_10_1016_j_jcis_2023_05_073
Cites_doi 10.1002/adma.202000958
10.1002/smll.201901272
10.1016/j.joule.2018.09.019
10.1038/s41467-018-04190-z
10.1002/adfm.202105145
10.1021/acsnano.8b08046
10.1021/jacs.9b11446
10.1039/C7NR06645G
10.1002/anie.202112183
10.1021/acsami.9b22087
10.1021/acs.nanolett.6b04611
10.1002/adfm.202004348
10.1016/j.electacta.2017.09.090
10.1002/aenm.202001673
10.1021/acsaem.0c01906
10.1002/adma.202000732
10.1002/anie.202016024
10.1021/acsaem.1c00807
10.1002/adfm.201908755
10.1038/nmat3601
10.1002/adfm.201800670
10.1039/C9EE00536F
10.1002/anie.201912287
10.1021/acsnano.0c03488
10.1002/adma.202100272
10.1002/adfm.202001588
10.1002/aenm.201900482
10.1002/adfm.202107246
10.1039/C9TA06538E
10.1002/adma.201900429
10.1021/acsnano.0c01073
10.1016/j.chempr.2018.10.004
10.1016/j.chempr.2019.09.005
10.1016/j.ccr.2021.214118
10.1021/acsnano.1c02275
10.1038/s41467-021-23335-1
10.1039/C7CC03606J
10.1021/acsenergylett.0c01401
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202200113
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202200113
AENM202200113
Genre article
GrantInformation_xml – fundername: Natural Science Foundation of Shandong Province
  funderid: YDZX2021001
– fundername: Natural Science Foundation of Shandong Province
  funderid: ZR2021QB201
– fundername: Science Foundation for Outstanding Young Scholars of Shandong Province
– fundername: National Key Research and Development Program of China
  funderid: 2017YFA0204800
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3173-aff5c768d086ab438fa0cacbba3aee1630e00d86ce6a42fbb1a6f17bf800993a3
ISSN 1614-6832
IngestDate Fri Jul 25 12:05:11 EDT 2025
Tue Jul 01 01:43:45 EDT 2025
Thu Apr 24 23:07:50 EDT 2025
Wed Jan 22 16:23:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3173-aff5c768d086ab438fa0cacbba3aee1630e00d86ce6a42fbb1a6f17bf800993a3
Notes Dedicated to Shandong University, on the occasion of its 120th anniversary.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9464-2033
PQID 2676778678
PQPubID 886389
PageCount 8
ParticipantIDs proquest_journals_2676778678
crossref_citationtrail_10_1002_aenm_202200113
crossref_primary_10_1002_aenm_202200113
wiley_primary_10_1002_aenm_202200113_AENM202200113
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2019; 9
2018; 28
2021; 4
2019; 5
2019; 31
2019; 13
2019; 12
2021; 446
2019; 15
2019; 58
2020; 14
2020; 12
2020; 10
2020; 32
2017; 253
2019; 141
2017; 9
2020; 6
2017; 53
2018; 9
2021; 15
2020; 5
2021; 31
2018; 2
2020; 3
2021; 12
2021; 33
2020; 30
2017; 17
2013; 12
2021; 60
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
Lu C. (e_1_2_8_4_1) 2020; 10
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 12
  start-page: 3131
  year: 2021
  publication-title: Nat. Commun.
– volume: 2
  start-page: 2235
  year: 2018
  publication-title: Joule
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 3
  year: 2020
  publication-title: ACS Appl. Energy Mater.
– volume: 15
  year: 2021
  publication-title: ACS Nano
– volume: 253
  start-page: 439
  year: 2017
  publication-title: Electrochim. Acta
– volume: 14
  start-page: 4938
  year: 2020
  publication-title: ACS Nano
– volume: 13
  start-page: 745
  year: 2019
  publication-title: ACS Nano
– volume: 9
  start-page: 1720
  year: 2018
  publication-title: Nat. Commun.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 17
  start-page: 544
  year: 2017
  publication-title: Nano Lett.
– volume: 5
  start-page: 168
  year: 2019
  publication-title: Chem
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 6
  start-page: 19
  year: 2020
  publication-title: Chem
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 60
  start-page: 8472
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 12
  start-page: 9332
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  start-page: 5957
  year: 2021
  publication-title: ACS Appl. Energy Mater.
– volume: 446
  year: 2021
  publication-title: Coord. Chem. Rev.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 518
  year: 2013
  publication-title: Nat. Mater.
– volume: 9
  year: 2017
  publication-title: Nanoscale
– volume: 5
  start-page: 2651
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 53
  start-page: 8360
  year: 2017
  publication-title: Chem. Commun.
– volume: 12
  start-page: 1605
  year: 2019
  publication-title: Energy Environ. Sci.
– ident: e_1_2_8_28_1
  doi: 10.1002/adma.202000958
– ident: e_1_2_8_33_1
  doi: 10.1002/smll.201901272
– ident: e_1_2_8_16_1
  doi: 10.1016/j.joule.2018.09.019
– ident: e_1_2_8_40_1
  doi: 10.1038/s41467-018-04190-z
– ident: e_1_2_8_2_1
  doi: 10.1002/adfm.202105145
– ident: e_1_2_8_5_1
  doi: 10.1021/acsnano.8b08046
– ident: e_1_2_8_24_1
  doi: 10.1021/jacs.9b11446
– ident: e_1_2_8_32_1
  doi: 10.1039/C7NR06645G
– ident: e_1_2_8_36_1
  doi: 10.1002/adfm.202105145
– ident: e_1_2_8_37_1
  doi: 10.1002/anie.202112183
– ident: e_1_2_8_30_1
  doi: 10.1021/acsami.9b22087
– ident: e_1_2_8_35_1
  doi: 10.1021/acs.nanolett.6b04611
– ident: e_1_2_8_9_1
  doi: 10.1002/adfm.202004348
– ident: e_1_2_8_18_1
  doi: 10.1016/j.electacta.2017.09.090
– ident: e_1_2_8_21_1
  doi: 10.1002/aenm.202001673
– ident: e_1_2_8_29_1
  doi: 10.1021/acsaem.0c01906
– ident: e_1_2_8_11_1
  doi: 10.1002/adma.202000732
– ident: e_1_2_8_22_1
  doi: 10.1002/anie.202016024
– ident: e_1_2_8_14_1
  doi: 10.1021/acsaem.1c00807
– ident: e_1_2_8_3_1
  doi: 10.1002/adfm.201908755
– ident: e_1_2_8_27_1
  doi: 10.1038/nmat3601
– ident: e_1_2_8_31_1
  doi: 10.1002/adfm.201800670
– ident: e_1_2_8_7_1
  doi: 10.1039/C9EE00536F
– ident: e_1_2_8_10_1
  doi: 10.1002/anie.201912287
– ident: e_1_2_8_23_1
  doi: 10.1021/acsnano.0c03488
– ident: e_1_2_8_38_1
  doi: 10.1002/adma.202100272
– ident: e_1_2_8_8_1
  doi: 10.1002/adfm.202001588
– ident: e_1_2_8_20_1
  doi: 10.1002/aenm.201900482
– ident: e_1_2_8_12_1
  doi: 10.1002/adfm.202107246
– ident: e_1_2_8_34_1
  doi: 10.1039/C9TA06538E
– ident: e_1_2_8_13_1
  doi: 10.1002/adma.201900429
– ident: e_1_2_8_26_1
  doi: 10.1021/acsnano.0c01073
– ident: e_1_2_8_39_1
  doi: 10.1016/j.chempr.2018.10.004
– ident: e_1_2_8_15_1
  doi: 10.1016/j.chempr.2019.09.005
– ident: e_1_2_8_19_1
  doi: 10.1016/j.ccr.2021.214118
– ident: e_1_2_8_1_1
  doi: 10.1021/acsnano.1c02275
– ident: e_1_2_8_25_1
  doi: 10.1038/s41467-021-23335-1
– volume: 10
  year: 2020
  ident: e_1_2_8_4_1
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_8_17_1
  doi: 10.1039/C7CC03606J
– ident: e_1_2_8_6_1
  doi: 10.1021/acsenergylett.0c01401
SSID ssj0000491033
Score 2.5394137
Snippet The development of potassium‐ion battery (PIB) electrode materials is critical for promoting their use in next‐generation energy storage systems. Although...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms adsorption energy
Anodes
Binding sites
Density functional theory
Electrode materials
Electrodes
Energy storage
full cells
Homology
Metal-organic frameworks
MXene
MXenes
Nodes
Potassium
potassium‐ion batteries
Rechargeable batteries
Storage systems
Vanadium oxides
Title Homologous MXene‐Derived Electrodes for Potassium‐Ion Full Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202200113
https://www.proquest.com/docview/2676778678
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWge4ED4lMUFpQDEoeVIbHTNBwrtquyagvSplJv1jhxRIFNEaQcOPET-I38EmZix0n5XLhErWU56czr9I0788zYo3E60qAL4DIsDI-1KfizMNG8lJCnUpNeDHUjL5bJbBWfrkfrriSo6S6p9ZP88y_7Sv7HqziGfqUu2X_wrF8UB_A1-hev6GG8XsjHs-05xS6qYl2sMWj5yoVjvPsnpJJTe8hNYRrVhaNX2xq58mZ37ie-QOdTFnpkdTbbisJWlrYtEDC2QxDZrf1Y3V9JtnMBqje7H8ZON29h09uWbqoGzl4bahsG93NJBNqVBGc4WLdQdbsQmMD6aqkLxrpejEVGwJPUbWua_phVbvKBWfQAaLuSfwr4VkAWTEWqAoIKxGxr676y9vKlOlnN5yqbrrPL7ECMkWcN2MHkeDE_8ztymCtFoWw6MtonbFU-Q_F0_xb7LKZLTfoJTsNQsuvsmkstgonFyQ12yVQ32dWe4OQtNusQEzSI-fblq8NK0GElQKwEHis4BVESEEoCj5LbbHUyzZ7PuDtLg-fIECWHshzlmFoWmMKCjmVaQphDrjVIMAZJeWjCsEiT3CQQi1LrCJIyGusypRxCgrzDBtW2MndZAMT6ipCEAWOkNhGYgiiOiEi6MElGQ8Zb26jcCc3TeSfvlJXIFopsqbwth-yxn__eSqz8duZha2rlvoYflSDJwXGKpGvIRGP-v6yiJtPlwr-79-c177MrHdwP2aD-sDMPkIbW-qHDz3cfLYa8
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Homologous+MXene%E2%80%90Derived+Electrodes+for+Potassium%E2%80%90Ion+Full+Batteries&rft.jtitle=Advanced+energy+materials&rft.au=Sun%2C+Lanju&rft.au=Sun%2C+Jikai&rft.au=Zhai%2C+Shengliang&rft.au=Dong%2C+Tiantian&rft.date=2022-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=12&rft.issue=23&rft_id=info:doi/10.1002%2Faenm.202200113&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon