Improved BP neural network algorithm to wind power forecast

To constantly enhance the accuracy of wind power prediction and furthermore reduce the uncertainty of power grid dispatching, this study proposes an improved back propagation (BP) neural network algorithm. The original prediction method of BP neural network algorithm has been improved, and the tradi...

Full description

Saved in:
Bibliographic Details
Published inJournal of engineering (Stevenage, England) Vol. 2017; no. 13; pp. 940 - 943
Main Authors Wang, Zheng, Wang, Bo, Liu, Chun, Wang, Wei-sheng
Format Journal Article
LanguageEnglish
Published The Institution of Engineering and Technology 2017
Subjects
Online AccessGet full text
ISSN2051-3305
2051-3305
DOI10.1049/joe.2017.0469

Cover

Abstract To constantly enhance the accuracy of wind power prediction and furthermore reduce the uncertainty of power grid dispatching, this study proposes an improved back propagation (BP) neural network algorithm. The original prediction method of BP neural network algorithm has been improved, and the traditional minimum square error (SE) perform function is abandoned. Maximum correntropy criteria (MCC) algorithm which is more conducive to deal with non-Gaussian error and big noise is introduced, and a new perform function is created. Through the analysis of examples, the feasibility of MCC algorithm is verified. Comparing to the traditional mean SE (MSE) perform function, MCC perform function could drop the limit error of prediction, reduce root MSE and increase the correlation between forecasting power and real power. The most important is that the prediction accuracy is enhanced.
AbstractList To constantly enhance the accuracy of wind power prediction and furthermore reduce the uncertainty of power grid dispatching, this study proposes an improved back propagation (BP) neural network algorithm. The original prediction method of BP neural network algorithm has been improved, and the traditional minimum square error (SE) perform function is abandoned. Maximum correntropy criteria (MCC) algorithm which is more conducive to deal with non‐Gaussian error and big noise is introduced, and a new perform function is created. Through the analysis of examples, the feasibility of MCC algorithm is verified. Comparing to the traditional mean SE (MSE) perform function, MCC perform function could drop the limit error of prediction, reduce root MSE and increase the correlation between forecasting power and real power. The most important is that the prediction accuracy is enhanced.
Author Wang, Bo
Wang, Wei-sheng
Wang, Zheng
Liu, Chun
Author_xml – sequence: 1
  givenname: Zheng
  surname: Wang
  fullname: Wang, Zheng
  email: wangz@epri.sgcc.com.cn
  organization: Renewable Energy Research Center, China Electric Power Research Institute, No. 15 Xiaoying East Road, Haidian District, Beijing, People's Republic of China
– sequence: 2
  givenname: Bo
  surname: Wang
  fullname: Wang, Bo
  organization: Renewable Energy Research Center, China Electric Power Research Institute, No. 15 Xiaoying East Road, Haidian District, Beijing, People's Republic of China
– sequence: 3
  givenname: Chun
  surname: Liu
  fullname: Liu, Chun
  organization: Renewable Energy Research Center, China Electric Power Research Institute, No. 15 Xiaoying East Road, Haidian District, Beijing, People's Republic of China
– sequence: 4
  givenname: Wei-sheng
  surname: Wang
  fullname: Wang, Wei-sheng
  organization: Renewable Energy Research Center, China Electric Power Research Institute, No. 15 Xiaoying East Road, Haidian District, Beijing, People's Republic of China
BookMark eNqFkLtOwzAUQC1UJErpyJ6FgSHl2s6jEROtWmhVqQxltlw_wCWNIycl6t_jKAwV4jFdD-fY9_gS9QpbKISuMYwwRNndzqoRAZyOIEqyM9QnEOOQUoh7J-cLNKyqHQBgGhGIcB_dL_alsx9KBpPnoFAHx3M_6sa694Dnr9aZ-m0f1DZoTCGD0jbKBdo6JXhVX6FzzfNKDb_mAL3MZ5vpU7haPy6mD6tQUJzSkCii-VbK1K8Zp4omWTreak1onEAMYylIloImWZxwgSUGMhYp3VJIpBDK83SARt29h6Lkx4bnOSud2XN3ZBhYW898PWvrWVvvhbAThLNV5ZT-l6ffeGFqXhtb1I6b_Fcr6azG5Or49xNss5yRyRwggrbnphONqj12cIX_PbZcz074UmrP3f7A_bzMJ6bTl_I
CitedBy_id crossref_primary_10_1109_TCCN_2019_2953061
crossref_primary_10_1007_s00521_021_06682_4
crossref_primary_10_1016_j_energy_2023_129242
crossref_primary_10_1088_1755_1315_645_1_012057
crossref_primary_10_3390_pr12010191
crossref_primary_10_21285_1814_3520_2023_2_354_369
crossref_primary_10_1007_s12652_018_0962_5
crossref_primary_10_32604_cmes_2022_019245
crossref_primary_10_1016_j_epsr_2022_107886
crossref_primary_10_3390_en16031530
crossref_primary_10_1093_ijlct_ctad054
crossref_primary_10_1080_03772063_2022_2143439
crossref_primary_10_1155_2022_5816453
crossref_primary_10_1002_tee_22999
crossref_primary_10_3390_math11122746
crossref_primary_10_1155_2021_6408772
crossref_primary_10_1088_1742_6596_1646_1_012135
crossref_primary_10_1109_ACCESS_2019_2952555
crossref_primary_10_1109_ACCESS_2019_2957267
crossref_primary_10_3389_fenrg_2021_754274
crossref_primary_10_1007_s00521_019_04379_3
crossref_primary_10_1109_ACCESS_2023_3260979
crossref_primary_10_1016_j_measen_2023_100843
crossref_primary_10_1155_2021_5516909
crossref_primary_10_1002_pc_25089
crossref_primary_10_1007_s10462_019_09768_7
crossref_primary_10_3103_S0146411620020029
Cites_doi 10.1109/TSP.2007.896065
10.3724/SP.J.1001.2012.03977
10.2172/1031454
ContentType Journal Article
Copyright 2021 The Institution of Engineering and Technology
Copyright_xml – notice: 2021 The Institution of Engineering and Technology
DBID IDLOA
24P
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1049/joe.2017.0469
DatabaseName IET Digital Library Open Access
Wiley Online Library Open Access (Activated by CARLI)
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: IDLOA
  name: IET Digital Library Open Access
  url: https://digital-library.theiet.org/content/collections
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2051-3305
EndPage 943
ExternalDocumentID 10.1049/joe.2017.0469
10_1049_joe_2017_0469
TJE2BF00403
Genre article
GroupedDBID 24P
5VS
AAJGR
ADACO
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BFFAM
GROUPED_DOAJ
IDLOA
KQ8
OCL
OK1
RIE
RIG
RNS
RUI
0R~
1OC
AAHJG
ABJCF
ABQXS
ACCMX
ACESK
ACXQS
AFKRA
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
EBS
HCIFZ
IAO
IGS
IPNFZ
ITC
M43
M7S
M~E
PIMPY
PTHSS
ROL
AAMMB
AAYXX
ADMLS
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
PHGZM
PHGZT
PQGLB
WIN
ADTOC
PUEGO
UNPAY
ID FETCH-LOGICAL-c3173-2e2fabdd704957e36978bff23560508dc2970f2956ac1d1028c73b306dcce7e33
IEDL.DBID IDLOA
ISSN 2051-3305
IngestDate Sun Sep 07 10:45:57 EDT 2025
Wed Oct 29 21:27:15 EDT 2025
Thu Apr 24 22:52:16 EDT 2025
Wed Jan 22 16:30:46 EST 2025
Tue Jan 05 21:45:57 EST 2021
Thu May 09 18:04:54 EDT 2019
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords real power
wind power forecast
power engineering computing
power generation dispatch
power grid dispatching uncertainty reduction
wind power
root MSE reduction
wind power prediction
improved BP neural network algorithm
big noise
backpropagation
nonGaussian error
maximum correntropy criteria algorithm
maximum entropy methods
forecasting power
MCC algorithm
mean square error methods
wind power plants
neural nets
Language English
License Attribution-NonCommercial
http://creativecommons.org/licenses/by-nc/3.0
cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3173-2e2fabdd704957e36978bff23560508dc2970f2956ac1d1028c73b306dcce7e33
OpenAccessLink http://digital-library.theiet.org/content/journals/10.1049/joe.2017.0469
PageCount 4
ParticipantIDs crossref_primary_10_1049_joe_2017_0469
wiley_primary_10_1049_joe_2017_0469_TJE2BF00403
crossref_citationtrail_10_1049_joe_2017_0469
iet_journals_10_1049_joe_2017_0469
unpaywall_primary_10_1049_joe_2017_0469
ProviderPackageCode IDLOA
RUI
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle Journal of engineering (Stevenage, England)
PublicationYear 2017
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Yang, N.; Huang, M.; He, R. (C18) 2012; 23
Mao, M.; Zhou, S.; Su, J. (C5) 2011; 35
Liu, W.; Pokharel, P.; Principe, J. (C11) 2007; 55
Wang, Z.; Weisheng, W.; Liu, C. (C17) 2012; 37
Wang, S.; Su, J.; Songhuai, D. (C15) 2010; 36
Chi, Y.; Li, Q.; Li, Y. (C2) 2008; 9
Fan, G.; Pei, Z.; Xin, Y. (C3) 2011; 44
Pan, Z.; Dai, Y.; Junrong, X. (C7) 2011; 45
Zhang, X.; Xiao, X.; Xu, G. (C20) 2007; 33
Fan, G.; Wang, W.; Liu, C. (C4) 2008; 28
Meng, Y.; Jiping, L.; Sun, L. (C8) 2010; 34
2010; 34
2010; 36
2001
2011
2008; 28
2008; 9
2009
2008
2011; 44
2007
2011; 35
2011; 45
2004
2012; 37
2007; 55
2012; 23
2007; 33
Chi Y. (e_1_2_6_3_1) 2008; 9
Zhang X. (e_1_2_6_21_1) 2007; 33
e_1_2_6_10_1
Pan Z. (e_1_2_6_8_1) 2011; 45
Fan G. (e_1_2_6_4_1) 2011; 44
Meng Y. (e_1_2_6_9_1) 2010; 34
Wang S. (e_1_2_6_16_1) 2010; 36
Mao M. (e_1_2_6_6_1) 2011; 35
State G. (e_1_2_6_20_1) 2011
e_1_2_6_19_1
Ye S. (e_1_2_6_15_1) 2004
Wang Z. (e_1_2_6_2_1) 2011
Fan G. (e_1_2_6_5_1) 2008; 28
Dong C. (e_1_2_6_13_1) 2007
e_1_2_6_7_1
Zongli J. (e_1_2_6_14_1) 2001
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_17_1
Wang Z. (e_1_2_6_18_1) 2012; 37
References_xml – volume: 35
  start-page: 70
  issue: 7
  year: 2011
  end-page: 74
  ident: C5
  article-title: Short-term wind power forecast based on ridgelet neural network
  publication-title: Autom. Electr. Power Syst.
– volume: 45
  start-page: 47
  issue: 5
  year: 2011
  end-page: 51
  ident: C7
  article-title: A Kalman filter based correction model for short term wind power prediction
  publication-title: J. Xi'an Jiaotong Univ.
– volume: 23
  start-page: 279
  issue: 2
  year: 2012
  end-page: 288
  ident: C18
  article-title: Robust semi-supervised learning algorithm based on maximum correntropy criterion
  publication-title: J. Softw.
– volume: 44
  start-page: 38
  issue: 6
  year: 2011
  end-page: 41
  ident: C3
  article-title: Wind power prediction achievement and prospect
  publication-title: Electr. Power
– volume: 55
  start-page: 5286
  issue: 11
  year: 2007
  end-page: 5298
  ident: C11
  article-title: Correntropy properties and applications in non-Gaussian processing
  publication-title: IEEE Trans. Signal Process.
– volume: 33
  start-page: 52
  issue: 12
  year: 2007
  end-page: 53
  ident: C20
  article-title: A new method for determining the parameter of Gaussian kernel
  publication-title: Comput. Eng.
– volume: 28
  start-page: 118
  issue: 34
  year: 2008
  end-page: 123
  ident: C4
  article-title: Wind power prediction based on artificial neural network
  publication-title: Proc. CSEE
– volume: 36
  start-page: 125
  issue: 2
  year: 2010
  end-page: 129
  ident: C15
  article-title: A method of short term wind power forecast based on wavelet transform and neural network
  publication-title: Trans. CSAE
– volume: 9
  start-page: 16
  issue: 11
  year: 2008
  end-page: 19
  ident: C2
  article-title: Power system operation and stability problems caused by integration of large-scale wind power and correspond solution
  publication-title: Electr. Equip.
– volume: 37
  start-page: 36
  issue: 1
  year: 2012
  ident: C17
  article-title: Uncertainty estimation of wind power prediction result based on wind process method
  publication-title: Power Syst. Technol.
– volume: 34
  start-page: 163
  issue: 2
  year: 2010
  end-page: 167
  ident: C8
  article-title: Short term wind power forecasting based on similar days and artificial neural network
  publication-title: Power Syst. Technol.
– year: 2011
– volume: 35
  start-page: 70
  issue: 7
  year: 2011
  end-page: 74
  article-title: Short‐term wind power forecast based on ridgelet neural network
  publication-title: Autom. Electr. Power Syst.
– volume: 34
  start-page: 163
  issue: 2
  year: 2010
  end-page: 167
  article-title: Short term wind power forecasting based on similar days and artificial neural network
  publication-title: Power Syst. Technol.
– year: 2009
– volume: 33
  start-page: 52
  issue: 12
  year: 2007
  end-page: 53
  article-title: A new method for determining the parameter of Gaussian kernel
  publication-title: Comput. Eng.
– volume: 44
  start-page: 38
  issue: 6
  year: 2011
  end-page: 41
  article-title: Wind power prediction achievement and prospect
  publication-title: Electr. Power
– year: 2008
– year: 2007
– year: 2001
– year: 2011
  article-title: The distribution of wind power forecast errors from operational systems
– volume: 9
  start-page: 16
  issue: 11
  year: 2008
  end-page: 19
  article-title: Power system operation and stability problems caused by integration of large‐scale wind power and correspond solution
  publication-title: Electr. Equip.
– volume: 23
  start-page: 279
  issue: 2
  year: 2012
  end-page: 288
  article-title: Robust semi‐supervised learning algorithm based on maximum correntropy criterion
  publication-title: J. Softw.
– year: 2004
– volume: 37
  start-page: 36
  issue: 1
  year: 2012
  article-title: Uncertainty estimation of wind power prediction result based on wind process method
  publication-title: Power Syst. Technol.
– volume: 45
  start-page: 47
  issue: 5
  year: 2011
  end-page: 51
  article-title: A Kalman filter based correction model for short term wind power prediction
  publication-title: J. Xi'an Jiaotong Univ.
– volume: 36
  start-page: 125
  issue: 2
  year: 2010
  end-page: 129
  article-title: A method of short term wind power forecast based on wavelet transform and neural network
  publication-title: Trans. CSAE
– volume: 55
  start-page: 5286
  issue: 11
  year: 2007
  end-page: 5298
  article-title: Correntropy properties and applications in non‐Gaussian processing
  publication-title: IEEE Trans. Signal Process.
– volume: 28
  start-page: 118
  issue: 34
  year: 2008
  end-page: 123
  article-title: Wind power prediction based on artificial neural network
  publication-title: Proc. CSEE
– ident: e_1_2_6_12_1
  doi: 10.1109/TSP.2007.896065
– volume: 44
  start-page: 38
  issue: 6
  year: 2011
  ident: e_1_2_6_4_1
  article-title: Wind power prediction achievement and prospect
  publication-title: Electr. Power
– volume-title: Introduction of artificial neural network
  year: 2001
  ident: e_1_2_6_14_1
– ident: e_1_2_6_10_1
– volume-title: Neural network theory
  year: 2004
  ident: e_1_2_6_15_1
– volume: 34
  start-page: 163
  issue: 2
  year: 2010
  ident: e_1_2_6_9_1
  article-title: Short term wind power forecasting based on similar days and artificial neural network
  publication-title: Power Syst. Technol.
– volume-title: The renewable energy industry development report of China
  year: 2011
  ident: e_1_2_6_2_1
– volume: 9
  start-page: 16
  issue: 11
  year: 2008
  ident: e_1_2_6_3_1
  article-title: Power system operation and stability problems caused by integration of large‐scale wind power and correspond solution
  publication-title: Electr. Equip.
– volume: 35
  start-page: 70
  issue: 7
  year: 2011
  ident: e_1_2_6_6_1
  article-title: Short‐term wind power forecast based on ridgelet neural network
  publication-title: Autom. Electr. Power Syst.
– volume: 45
  start-page: 47
  issue: 5
  year: 2011
  ident: e_1_2_6_8_1
  article-title: A Kalman filter based correction model for short term wind power prediction
  publication-title: J. Xi'an Jiaotong Univ.
– volume: 33
  start-page: 52
  issue: 12
  year: 2007
  ident: e_1_2_6_21_1
  article-title: A new method for determining the parameter of Gaussian kernel
  publication-title: Comput. Eng.
– ident: e_1_2_6_19_1
  doi: 10.3724/SP.J.1001.2012.03977
– volume: 36
  start-page: 125
  issue: 2
  year: 2010
  ident: e_1_2_6_16_1
  article-title: A method of short term wind power forecast based on wavelet transform and neural network
  publication-title: Trans. CSAE
– volume: 28
  start-page: 118
  issue: 34
  year: 2008
  ident: e_1_2_6_5_1
  article-title: Wind power prediction based on artificial neural network
  publication-title: Proc. CSEE
– ident: e_1_2_6_7_1
– volume-title: MATLAB neural network and its application
  year: 2007
  ident: e_1_2_6_13_1
– ident: e_1_2_6_11_1
  doi: 10.2172/1031454
– volume: 37
  start-page: 36
  issue: 1
  year: 2012
  ident: e_1_2_6_18_1
  article-title: Uncertainty estimation of wind power prediction result based on wind process method
  publication-title: Power Syst. Technol.
– ident: e_1_2_6_17_1
– volume-title: Wind power prediction system standard
  year: 2011
  ident: e_1_2_6_20_1
SSID ssj0001342041
Score 1.9942633
Snippet To constantly enhance the accuracy of wind power prediction and furthermore reduce the uncertainty of power grid dispatching, this study proposes an improved...
SourceID unpaywall
crossref
wiley
iet
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 940
SubjectTerms backpropagation
big noise
forecasting power
improved BP neural network algorithm
maximum correntropy criteria algorithm
maximum entropy methods
MCC algorithm
mean square error methods
neural nets
nonGaussian error
power engineering computing
power generation dispatch
power grid dispatching uncertainty reduction
real power
root MSE reduction
wind power
wind power forecast
wind power plants
wind power prediction
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTsJAFL1RWKgL30Z8kIkxurHQTl8hrtRACInIAhJcNfNUFAvREqNf7x1aVDSIuyY9bSd3bqfnzEzPBTgWFRzyAupYoSkE6FEZWFx5zLJ9qr3A19LRZkL_uhnUO16j63ezTTTmX5ip9XuvUn4YGC9LJywZHbcI-cBHyp2DfKfZurg1heMwqSzU5H7mn_nrmqnvzWJPIX9cGsVD9vbK-v1pRjr-pNTWoDZpTLqT5LE0SnhJvP_waZzb2nVYzUgluUizYAMWVLwJK9-sBrfgPJ09UJJctogxsUR8nG4BJ6x_N3juJfdPJBmQVxTpZGhqpxHks0qwl2QbOrVq-6puZYUTLIF0wLWooppxKUNskx8qN0CpyLWmLtIbJGRS0Epoa4rSiAlHGoohQpejeJBCKMS7O5CLB7HaBaJ9zu2AuUo53GOolRwbCRWXgQhR-Gi7AGeT8EYicxU3xS360Xh126tEGJPIxCQyMSnAySd8mNppzAIeYV9F2Qv1MgtUnAI1bqpfJ6Oh1AU4_ezrec8rjzPhb1TUblTpZc2MfO7ev--9D8vmOJ24OYBc8jxSh0hlEl7MEvkDVGHo3Q
  priority: 102
  providerName: Unpaywall
– databaseName: Wiley Online Library Open Access (Activated by CARLI)
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60HtSD-MT6KIuIXoxNNi-KJystpaD20EJvYZ9aqGloU4r_3pkktuZQxWsy2ZCZnd3vmyTzEXItG7DkBcyxQhQC9JgKLKE9btk-M17gG-UYLOg_vwSdgdcd-sNC5xT_hcn7QywLbpgZ2XqNCc5FrkICoBaTfIJdLp3wHhneJtlyAMvgFGdeb1VkcT1mZ-qVDCafBdzdL_pswhj10gilfWlzpAFnbs_jhH8u-HhcRq7Z1tPeJ3sFZqSPeZAPyIaOD8nuj06CR-QhLw5oRZs9ij0qwT7Ov_CmfPw2mY7S9w-aTugCODhNUBqNAlzVks_SYzJot_pPHavQRbAk7PauxTQzXCgVwkP4oXYDYILCGOYCegG8pSRrhLZhwHy4dBQiCBm6AriBklKDvXtCKvEk1qeEGl8IO-Cu1o7wOFAhxwa8JFQgQ-A1xq6Su2-vRLJoGo7aFeMoe3ntNSJwYoROjNCJVXKzNE_ybhnrDK_AxVGRL7N1RrWSUfe1tToZJcpUye0yRH_dr54F8HerqN9tsWYbFzb37N9XnJMdPJ7XZy5IJZ3O9SUgllTUsln5BSxz3p0
  priority: 102
  providerName: Wiley-Blackwell
Title Improved BP neural network algorithm to wind power forecast
URI http://digital-library.theiet.org/content/journals/10.1049/joe.2017.0469
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fjoe.2017.0469
https://doi.org/10.1049/joe.2017.0469
UnpaywallVersion publishedVersion
Volume 2017
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 20241231
  omitProxy: true
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBHI
  databaseName: IET Digital Library Open Access
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: IDLOA
  dateStart: 20130601
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: AVUZU
  dateStart: 20130601
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9tAEB2R5AA5VLSACC3WClXlgom9XtuKekogEY0o5IBR4GLtJ0VKnSgYof77ztoOEFWhnGzZY609Y82-N17PA_gqO5jyIuq7sRUCZFRFrtCMu15IDYtCo3xjC_o_L6KzhA3H4XgNFmqj6v7OamW4i4qbrZbr8s8Du3Qb83C78nEpSIL4Fg_Ydpd-fGypXg0aFJk5rUPjx-l5Ra-KekvAqMf8qs3mP9ctTUs1HLMJ64_ZjP954pPJMnAtZp7BJnyoICPpljH-CGs6-wTNV40Et-B7WRvQivRGxLaoRPusXOBN-ORuOr_Pf_0m-ZQ8IQUnM6uMRhCtaskf8m1IBv2rkzO3kkVwJU72gUs1NVwoFeNDhLEOIiSCwhgaIHhBuKUk7cSeoUh8uPSVBRAyDgRSAyWlRvtgB-rZNNO7QEwohBfxQGtfMI5MyPcQLgkVyRhpjfFacLTwSiqrnuFWumKSFt-uWSdFJ6bWial1Ygu-PZvPymYZqwwP0MXpIpSrjJwlo-Fl_-VkOlOmBYfPIfrfeO0igG9bpVfDPu0NbF4L9t5zh59hw-6XFZkvUM_nj3ofMUouHKhRNnKg0b1ObhOnYPpO9UriNrkYdW_-Ap3K4_k
linkProvider Institution of Engineering and Technology
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYDsABsYqyWgjBhdDEcRxVnAC1KmU9FImb5ZVFJa0gCPH3zCSh0AMgznlxlPH23jh5Q8iOacCSJ1gUpFgIkDMrAu24CsKEeS4SbyOPCf2LS9G-4Z3b5PbbX_ylP8Qw4YYzo1ivcYJjQroUnBxNMh_7aHMZpQco8cbJJBeRQPnF-PVXliXmLCzKVzIYfQGI96Qy2oQ26iMtjGxM4w8OiObUazZQ72-q1xulrsXe05ojsxVppEdlL8-TMZctkJlvVoKL5LDMDjhLj68pmlQCPis_8aaqd9d_fsjvn2jep28gwukAa6NR4KvOqJd8idy0mt2TdlAVRggMbPdxwBzzSlubwkskqYsFSEHtPYuBvgDhsoY10tAzkD7KRBYphEljDeLAGuMAHy-TiayfuRVCfaJ1KFTsXKS5Ai0UhUCYtBUmBWHjwxrZ_4yKNJVrOBav6Mni9Jo3JARRYhAlBrFGdofwQWmX8RNwG0Isqwnz8hNocwTUuWp-XZQD62tkb9hFfz2vXnTg7yjZ7TTZcQtXtnj133dskal29-Jcnp9enq2RacSUyZp1MpE_v7oNoC-53ixG6AdEUuIJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT4NAFH7RmrgcjGus68QYvYiFYYA0nlzaaF0P1hgvk1ldUmmjGOO_9w1gtQc1nvmA8GZ53_eA7wFsqDpueTENvMQ1AmRUx540THh-RC2LI6sD6wr6Z-fxUZu1bqKbb3_xF_4Q_YKbWxn5fu0WuOlpWwhO5kwyH7vO5jJIdpzEG4YRzOU-q8DI3nX7tv1VZwkZ9fMGlhTnn4fyPSqtNvEqtYFrDKSm4QeDVHPsNe2J9zfR6QyS1zz7NKdgsqSNZK8Y52kYMukMTHwzE5yF3aI-YDTZvyTOphLxafGRNxGdu-7zQ3b_RLIueUMZTnquOxpBxmqUeMnmoN1sXB0ceWVrBE9hwg89aqgVUusEHyJKTBijGJTW0hAJDFIurWg98S1F8SNUoB2JUEkoUR5opQziw3mopN3ULACxkZR-LEJjAskEqqHAR8okdawSlDbWr8L2Z1S4Kn3DXfuKDs_fX7M6xyByF0TugliFzT68Vxhm_ARcxxDzcsm8_ARaHQC1LhpfBznOhyps9Yfor_vV8gH8HcWvWg2633R7W7j47zPWYPTysMlPj89PlmDcQYpqzTJUsudXs4L8JZOr5RT9AHfN410
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTsJAFL1RWKgL30Z8kIkxurHQTl8hrtRACInIAhJcNfNUFAvREqNf7x1aVDSIuyY9bSd3bqfnzEzPBTgWFRzyAupYoSkE6FEZWFx5zLJ9qr3A19LRZkL_uhnUO16j63ezTTTmX5ip9XuvUn4YGC9LJywZHbcI-cBHyp2DfKfZurg1heMwqSzU5H7mn_nrmqnvzWJPIX9cGsVD9vbK-v1pRjr-pNTWoDZpTLqT5LE0SnhJvP_waZzb2nVYzUgluUizYAMWVLwJK9-sBrfgPJ09UJJctogxsUR8nG4BJ6x_N3juJfdPJBmQVxTpZGhqpxHks0qwl2QbOrVq-6puZYUTLIF0wLWooppxKUNskx8qN0CpyLWmLtIbJGRS0Epoa4rSiAlHGoohQpejeJBCKMS7O5CLB7HaBaJ9zu2AuUo53GOolRwbCRWXgQhR-Gi7AGeT8EYicxU3xS360Xh126tEGJPIxCQyMSnAySd8mNppzAIeYV9F2Qv1MgtUnAI1bqpfJ6Oh1AU4_ezrec8rjzPhb1TUblTpZc2MfO7ev--9D8vmOJ24OYBc8jxSh0hlEl7MEvkDVGHo3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+BP+neural+network+algorithm+to+wind+power+forecast&rft.jtitle=Journal+of+engineering+%28Stevenage%2C+England%29&rft.au=Wang%2C+Zheng&rft.au=Wang%2C+Bo&rft.au=Liu%2C+Chun&rft.au=Wang%2C+Wei%E2%80%90sheng&rft.date=2017&rft.issn=2051-3305&rft.eissn=2051-3305&rft.volume=2017&rft.issue=13&rft.spage=940&rft.epage=943&rft_id=info:doi/10.1049%2Fjoe.2017.0469&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_joe_2017_0469
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-3305&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-3305&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-3305&client=summon