Improved BP neural network algorithm to wind power forecast
To constantly enhance the accuracy of wind power prediction and furthermore reduce the uncertainty of power grid dispatching, this study proposes an improved back propagation (BP) neural network algorithm. The original prediction method of BP neural network algorithm has been improved, and the tradi...
        Saved in:
      
    
          | Published in | Journal of engineering (Stevenage, England) Vol. 2017; no. 13; pp. 940 - 943 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            The Institution of Engineering and Technology
    
        2017
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2051-3305 2051-3305  | 
| DOI | 10.1049/joe.2017.0469 | 
Cover
| Abstract | To constantly enhance the accuracy of wind power prediction and furthermore reduce the uncertainty of power grid dispatching, this study proposes an improved back propagation (BP) neural network algorithm. The original prediction method of BP neural network algorithm has been improved, and the traditional minimum square error (SE) perform function is abandoned. Maximum correntropy criteria (MCC) algorithm which is more conducive to deal with non-Gaussian error and big noise is introduced, and a new perform function is created. Through the analysis of examples, the feasibility of MCC algorithm is verified. Comparing to the traditional mean SE (MSE) perform function, MCC perform function could drop the limit error of prediction, reduce root MSE and increase the correlation between forecasting power and real power. The most important is that the prediction accuracy is enhanced. | 
    
|---|---|
| AbstractList | To constantly enhance the accuracy of wind power prediction and furthermore reduce the uncertainty of power grid dispatching, this study proposes an improved back propagation (BP) neural network algorithm. The original prediction method of BP neural network algorithm has been improved, and the traditional minimum square error (SE) perform function is abandoned. Maximum correntropy criteria (MCC) algorithm which is more conducive to deal with non‐Gaussian error and big noise is introduced, and a new perform function is created. Through the analysis of examples, the feasibility of MCC algorithm is verified. Comparing to the traditional mean SE (MSE) perform function, MCC perform function could drop the limit error of prediction, reduce root MSE and increase the correlation between forecasting power and real power. The most important is that the prediction accuracy is enhanced. | 
    
| Author | Wang, Bo Wang, Wei-sheng Wang, Zheng Liu, Chun  | 
    
| Author_xml | – sequence: 1 givenname: Zheng surname: Wang fullname: Wang, Zheng email: wangz@epri.sgcc.com.cn organization: Renewable Energy Research Center, China Electric Power Research Institute, No. 15 Xiaoying East Road, Haidian District, Beijing, People's Republic of China – sequence: 2 givenname: Bo surname: Wang fullname: Wang, Bo organization: Renewable Energy Research Center, China Electric Power Research Institute, No. 15 Xiaoying East Road, Haidian District, Beijing, People's Republic of China – sequence: 3 givenname: Chun surname: Liu fullname: Liu, Chun organization: Renewable Energy Research Center, China Electric Power Research Institute, No. 15 Xiaoying East Road, Haidian District, Beijing, People's Republic of China – sequence: 4 givenname: Wei-sheng surname: Wang fullname: Wang, Wei-sheng organization: Renewable Energy Research Center, China Electric Power Research Institute, No. 15 Xiaoying East Road, Haidian District, Beijing, People's Republic of China  | 
    
| BookMark | eNqFkLtOwzAUQC1UJErpyJ6FgSHl2s6jEROtWmhVqQxltlw_wCWNIycl6t_jKAwV4jFdD-fY9_gS9QpbKISuMYwwRNndzqoRAZyOIEqyM9QnEOOQUoh7J-cLNKyqHQBgGhGIcB_dL_alsx9KBpPnoFAHx3M_6sa694Dnr9aZ-m0f1DZoTCGD0jbKBdo6JXhVX6FzzfNKDb_mAL3MZ5vpU7haPy6mD6tQUJzSkCii-VbK1K8Zp4omWTreak1onEAMYylIloImWZxwgSUGMhYp3VJIpBDK83SARt29h6Lkx4bnOSud2XN3ZBhYW898PWvrWVvvhbAThLNV5ZT-l6ffeGFqXhtb1I6b_Fcr6azG5Or49xNss5yRyRwggrbnphONqj12cIX_PbZcz074UmrP3f7A_bzMJ6bTl_I | 
    
| CitedBy_id | crossref_primary_10_1109_TCCN_2019_2953061 crossref_primary_10_1007_s00521_021_06682_4 crossref_primary_10_1016_j_energy_2023_129242 crossref_primary_10_1088_1755_1315_645_1_012057 crossref_primary_10_3390_pr12010191 crossref_primary_10_21285_1814_3520_2023_2_354_369 crossref_primary_10_1007_s12652_018_0962_5 crossref_primary_10_32604_cmes_2022_019245 crossref_primary_10_1016_j_epsr_2022_107886 crossref_primary_10_3390_en16031530 crossref_primary_10_1093_ijlct_ctad054 crossref_primary_10_1080_03772063_2022_2143439 crossref_primary_10_1155_2022_5816453 crossref_primary_10_1002_tee_22999 crossref_primary_10_3390_math11122746 crossref_primary_10_1155_2021_6408772 crossref_primary_10_1088_1742_6596_1646_1_012135 crossref_primary_10_1109_ACCESS_2019_2952555 crossref_primary_10_1109_ACCESS_2019_2957267 crossref_primary_10_3389_fenrg_2021_754274 crossref_primary_10_1007_s00521_019_04379_3 crossref_primary_10_1109_ACCESS_2023_3260979 crossref_primary_10_1016_j_measen_2023_100843 crossref_primary_10_1155_2021_5516909 crossref_primary_10_1002_pc_25089 crossref_primary_10_1007_s10462_019_09768_7 crossref_primary_10_3103_S0146411620020029  | 
    
| Cites_doi | 10.1109/TSP.2007.896065 10.3724/SP.J.1001.2012.03977 10.2172/1031454  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 The Institution of Engineering and Technology | 
    
| Copyright_xml | – notice: 2021 The Institution of Engineering and Technology | 
    
| DBID | IDLOA 24P AAYXX CITATION ADTOC UNPAY  | 
    
| DOI | 10.1049/joe.2017.0469 | 
    
| DatabaseName | IET Digital Library Open Access Wiley Online Library Open Access (Activated by CARLI) CrossRef Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: IDLOA name: IET Digital Library Open Access url: https://digital-library.theiet.org/content/collections sourceTypes: Enrichment Source Publisher – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2051-3305 | 
    
| EndPage | 943 | 
    
| ExternalDocumentID | 10.1049/joe.2017.0469 10_1049_joe_2017_0469 TJE2BF00403  | 
    
| Genre | article | 
    
| GroupedDBID | 24P 5VS AAJGR ADACO ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BFFAM GROUPED_DOAJ IDLOA KQ8 OCL OK1 RIE RIG RNS RUI 0R~ 1OC AAHJG ABJCF ABQXS ACCMX ACESK ACXQS AFKRA ARAPS AVUZU BENPR BGLVJ CCPQU EBS HCIFZ IAO IGS IPNFZ ITC M43 M7S M~E PIMPY PTHSS ROL AAMMB AAYXX ADMLS AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION PHGZM PHGZT PQGLB WIN ADTOC PUEGO UNPAY  | 
    
| ID | FETCH-LOGICAL-c3173-2e2fabdd704957e36978bff23560508dc2970f2956ac1d1028c73b306dcce7e33 | 
    
| IEDL.DBID | IDLOA | 
    
| ISSN | 2051-3305 | 
    
| IngestDate | Sun Sep 07 10:45:57 EDT 2025 Wed Oct 29 21:27:15 EDT 2025 Thu Apr 24 22:52:16 EDT 2025 Wed Jan 22 16:30:46 EST 2025 Tue Jan 05 21:45:57 EST 2021 Thu May 09 18:04:54 EDT 2019  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 13 | 
    
| Keywords | real power wind power forecast power engineering computing power generation dispatch power grid dispatching uncertainty reduction wind power root MSE reduction wind power prediction improved BP neural network algorithm big noise backpropagation nonGaussian error maximum correntropy criteria algorithm maximum entropy methods forecasting power MCC algorithm mean square error methods wind power plants neural nets  | 
    
| Language | English | 
    
| License | Attribution-NonCommercial http://creativecommons.org/licenses/by-nc/3.0 cc-by-nc  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c3173-2e2fabdd704957e36978bff23560508dc2970f2956ac1d1028c73b306dcce7e33 | 
    
| OpenAccessLink | http://digital-library.theiet.org/content/journals/10.1049/joe.2017.0469 | 
    
| PageCount | 4 | 
    
| ParticipantIDs | crossref_primary_10_1049_joe_2017_0469 wiley_primary_10_1049_joe_2017_0469_TJE2BF00403 crossref_citationtrail_10_1049_joe_2017_0469 iet_journals_10_1049_joe_2017_0469 unpaywall_primary_10_1049_joe_2017_0469  | 
    
| ProviderPackageCode | IDLOA RUI  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2017 | 
    
| PublicationDateYYYYMMDD | 2017-01-01 | 
    
| PublicationDate_xml | – year: 2017 text: 2017  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Journal of engineering (Stevenage, England) | 
    
| PublicationYear | 2017 | 
    
| Publisher | The Institution of Engineering and Technology | 
    
| Publisher_xml | – name: The Institution of Engineering and Technology | 
    
| References | Yang, N.; Huang, M.; He, R. (C18) 2012; 23 Mao, M.; Zhou, S.; Su, J. (C5) 2011; 35 Liu, W.; Pokharel, P.; Principe, J. (C11) 2007; 55 Wang, Z.; Weisheng, W.; Liu, C. (C17) 2012; 37 Wang, S.; Su, J.; Songhuai, D. (C15) 2010; 36 Chi, Y.; Li, Q.; Li, Y. (C2) 2008; 9 Fan, G.; Pei, Z.; Xin, Y. (C3) 2011; 44 Pan, Z.; Dai, Y.; Junrong, X. (C7) 2011; 45 Zhang, X.; Xiao, X.; Xu, G. (C20) 2007; 33 Fan, G.; Wang, W.; Liu, C. (C4) 2008; 28 Meng, Y.; Jiping, L.; Sun, L. (C8) 2010; 34 2010; 34 2010; 36 2001 2011 2008; 28 2008; 9 2009 2008 2011; 44 2007 2011; 35 2011; 45 2004 2012; 37 2007; 55 2012; 23 2007; 33 Chi Y. (e_1_2_6_3_1) 2008; 9 Zhang X. (e_1_2_6_21_1) 2007; 33 e_1_2_6_10_1 Pan Z. (e_1_2_6_8_1) 2011; 45 Fan G. (e_1_2_6_4_1) 2011; 44 Meng Y. (e_1_2_6_9_1) 2010; 34 Wang S. (e_1_2_6_16_1) 2010; 36 Mao M. (e_1_2_6_6_1) 2011; 35 State G. (e_1_2_6_20_1) 2011 e_1_2_6_19_1 Ye S. (e_1_2_6_15_1) 2004 Wang Z. (e_1_2_6_2_1) 2011 Fan G. (e_1_2_6_5_1) 2008; 28 Dong C. (e_1_2_6_13_1) 2007 e_1_2_6_7_1 Zongli J. (e_1_2_6_14_1) 2001 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_17_1 Wang Z. (e_1_2_6_18_1) 2012; 37  | 
    
| References_xml | – volume: 35 start-page: 70 issue: 7 year: 2011 end-page: 74 ident: C5 article-title: Short-term wind power forecast based on ridgelet neural network publication-title: Autom. Electr. Power Syst. – volume: 45 start-page: 47 issue: 5 year: 2011 end-page: 51 ident: C7 article-title: A Kalman filter based correction model for short term wind power prediction publication-title: J. Xi'an Jiaotong Univ. – volume: 23 start-page: 279 issue: 2 year: 2012 end-page: 288 ident: C18 article-title: Robust semi-supervised learning algorithm based on maximum correntropy criterion publication-title: J. Softw. – volume: 44 start-page: 38 issue: 6 year: 2011 end-page: 41 ident: C3 article-title: Wind power prediction achievement and prospect publication-title: Electr. Power – volume: 55 start-page: 5286 issue: 11 year: 2007 end-page: 5298 ident: C11 article-title: Correntropy properties and applications in non-Gaussian processing publication-title: IEEE Trans. Signal Process. – volume: 33 start-page: 52 issue: 12 year: 2007 end-page: 53 ident: C20 article-title: A new method for determining the parameter of Gaussian kernel publication-title: Comput. Eng. – volume: 28 start-page: 118 issue: 34 year: 2008 end-page: 123 ident: C4 article-title: Wind power prediction based on artificial neural network publication-title: Proc. CSEE – volume: 36 start-page: 125 issue: 2 year: 2010 end-page: 129 ident: C15 article-title: A method of short term wind power forecast based on wavelet transform and neural network publication-title: Trans. CSAE – volume: 9 start-page: 16 issue: 11 year: 2008 end-page: 19 ident: C2 article-title: Power system operation and stability problems caused by integration of large-scale wind power and correspond solution publication-title: Electr. Equip. – volume: 37 start-page: 36 issue: 1 year: 2012 ident: C17 article-title: Uncertainty estimation of wind power prediction result based on wind process method publication-title: Power Syst. Technol. – volume: 34 start-page: 163 issue: 2 year: 2010 end-page: 167 ident: C8 article-title: Short term wind power forecasting based on similar days and artificial neural network publication-title: Power Syst. Technol. – year: 2011 – volume: 35 start-page: 70 issue: 7 year: 2011 end-page: 74 article-title: Short‐term wind power forecast based on ridgelet neural network publication-title: Autom. Electr. Power Syst. – volume: 34 start-page: 163 issue: 2 year: 2010 end-page: 167 article-title: Short term wind power forecasting based on similar days and artificial neural network publication-title: Power Syst. Technol. – year: 2009 – volume: 33 start-page: 52 issue: 12 year: 2007 end-page: 53 article-title: A new method for determining the parameter of Gaussian kernel publication-title: Comput. Eng. – volume: 44 start-page: 38 issue: 6 year: 2011 end-page: 41 article-title: Wind power prediction achievement and prospect publication-title: Electr. Power – year: 2008 – year: 2007 – year: 2001 – year: 2011 article-title: The distribution of wind power forecast errors from operational systems – volume: 9 start-page: 16 issue: 11 year: 2008 end-page: 19 article-title: Power system operation and stability problems caused by integration of large‐scale wind power and correspond solution publication-title: Electr. Equip. – volume: 23 start-page: 279 issue: 2 year: 2012 end-page: 288 article-title: Robust semi‐supervised learning algorithm based on maximum correntropy criterion publication-title: J. Softw. – year: 2004 – volume: 37 start-page: 36 issue: 1 year: 2012 article-title: Uncertainty estimation of wind power prediction result based on wind process method publication-title: Power Syst. Technol. – volume: 45 start-page: 47 issue: 5 year: 2011 end-page: 51 article-title: A Kalman filter based correction model for short term wind power prediction publication-title: J. Xi'an Jiaotong Univ. – volume: 36 start-page: 125 issue: 2 year: 2010 end-page: 129 article-title: A method of short term wind power forecast based on wavelet transform and neural network publication-title: Trans. CSAE – volume: 55 start-page: 5286 issue: 11 year: 2007 end-page: 5298 article-title: Correntropy properties and applications in non‐Gaussian processing publication-title: IEEE Trans. Signal Process. – volume: 28 start-page: 118 issue: 34 year: 2008 end-page: 123 article-title: Wind power prediction based on artificial neural network publication-title: Proc. CSEE – ident: e_1_2_6_12_1 doi: 10.1109/TSP.2007.896065 – volume: 44 start-page: 38 issue: 6 year: 2011 ident: e_1_2_6_4_1 article-title: Wind power prediction achievement and prospect publication-title: Electr. Power – volume-title: Introduction of artificial neural network year: 2001 ident: e_1_2_6_14_1 – ident: e_1_2_6_10_1 – volume-title: Neural network theory year: 2004 ident: e_1_2_6_15_1 – volume: 34 start-page: 163 issue: 2 year: 2010 ident: e_1_2_6_9_1 article-title: Short term wind power forecasting based on similar days and artificial neural network publication-title: Power Syst. Technol. – volume-title: The renewable energy industry development report of China year: 2011 ident: e_1_2_6_2_1 – volume: 9 start-page: 16 issue: 11 year: 2008 ident: e_1_2_6_3_1 article-title: Power system operation and stability problems caused by integration of large‐scale wind power and correspond solution publication-title: Electr. Equip. – volume: 35 start-page: 70 issue: 7 year: 2011 ident: e_1_2_6_6_1 article-title: Short‐term wind power forecast based on ridgelet neural network publication-title: Autom. Electr. Power Syst. – volume: 45 start-page: 47 issue: 5 year: 2011 ident: e_1_2_6_8_1 article-title: A Kalman filter based correction model for short term wind power prediction publication-title: J. Xi'an Jiaotong Univ. – volume: 33 start-page: 52 issue: 12 year: 2007 ident: e_1_2_6_21_1 article-title: A new method for determining the parameter of Gaussian kernel publication-title: Comput. Eng. – ident: e_1_2_6_19_1 doi: 10.3724/SP.J.1001.2012.03977 – volume: 36 start-page: 125 issue: 2 year: 2010 ident: e_1_2_6_16_1 article-title: A method of short term wind power forecast based on wavelet transform and neural network publication-title: Trans. CSAE – volume: 28 start-page: 118 issue: 34 year: 2008 ident: e_1_2_6_5_1 article-title: Wind power prediction based on artificial neural network publication-title: Proc. CSEE – ident: e_1_2_6_7_1 – volume-title: MATLAB neural network and its application year: 2007 ident: e_1_2_6_13_1 – ident: e_1_2_6_11_1 doi: 10.2172/1031454 – volume: 37 start-page: 36 issue: 1 year: 2012 ident: e_1_2_6_18_1 article-title: Uncertainty estimation of wind power prediction result based on wind process method publication-title: Power Syst. Technol. – ident: e_1_2_6_17_1 – volume-title: Wind power prediction system standard year: 2011 ident: e_1_2_6_20_1  | 
    
| SSID | ssj0001342041 | 
    
| Score | 1.9942633 | 
    
| Snippet | To constantly enhance the accuracy of wind power prediction and furthermore reduce the uncertainty of power grid dispatching, this study proposes an improved... | 
    
| SourceID | unpaywall crossref wiley iet  | 
    
| SourceType | Open Access Repository Enrichment Source Index Database Publisher  | 
    
| StartPage | 940 | 
    
| SubjectTerms | backpropagation big noise forecasting power improved BP neural network algorithm maximum correntropy criteria algorithm maximum entropy methods MCC algorithm mean square error methods neural nets nonGaussian error power engineering computing power generation dispatch power grid dispatching uncertainty reduction real power root MSE reduction wind power wind power forecast wind power plants wind power prediction  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTsJAFL1RWKgL30Z8kIkxurHQTl8hrtRACInIAhJcNfNUFAvREqNf7x1aVDSIuyY9bSd3bqfnzEzPBTgWFRzyAupYoSkE6FEZWFx5zLJ9qr3A19LRZkL_uhnUO16j63ezTTTmX5ip9XuvUn4YGC9LJywZHbcI-cBHyp2DfKfZurg1heMwqSzU5H7mn_nrmqnvzWJPIX9cGsVD9vbK-v1pRjr-pNTWoDZpTLqT5LE0SnhJvP_waZzb2nVYzUgluUizYAMWVLwJK9-sBrfgPJ09UJJctogxsUR8nG4BJ6x_N3juJfdPJBmQVxTpZGhqpxHks0qwl2QbOrVq-6puZYUTLIF0wLWooppxKUNskx8qN0CpyLWmLtIbJGRS0Epoa4rSiAlHGoohQpejeJBCKMS7O5CLB7HaBaJ9zu2AuUo53GOolRwbCRWXgQhR-Gi7AGeT8EYicxU3xS360Xh126tEGJPIxCQyMSnAySd8mNppzAIeYV9F2Qv1MgtUnAI1bqpfJ6Oh1AU4_ezrec8rjzPhb1TUblTpZc2MfO7ev--9D8vmOJ24OYBc8jxSh0hlEl7MEvkDVGHo3Q priority: 102 providerName: Unpaywall – databaseName: Wiley Online Library Open Access (Activated by CARLI) dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60HtSD-MT6KIuIXoxNNi-KJystpaD20EJvYZ9aqGloU4r_3pkktuZQxWsy2ZCZnd3vmyTzEXItG7DkBcyxQhQC9JgKLKE9btk-M17gG-UYLOg_vwSdgdcd-sNC5xT_hcn7QywLbpgZ2XqNCc5FrkICoBaTfIJdLp3wHhneJtlyAMvgFGdeb1VkcT1mZ-qVDCafBdzdL_pswhj10gilfWlzpAFnbs_jhH8u-HhcRq7Z1tPeJ3sFZqSPeZAPyIaOD8nuj06CR-QhLw5oRZs9ij0qwT7Ov_CmfPw2mY7S9w-aTugCODhNUBqNAlzVks_SYzJot_pPHavQRbAk7PauxTQzXCgVwkP4oXYDYILCGOYCegG8pSRrhLZhwHy4dBQiCBm6AriBklKDvXtCKvEk1qeEGl8IO-Cu1o7wOFAhxwa8JFQgQ-A1xq6Su2-vRLJoGo7aFeMoe3ntNSJwYoROjNCJVXKzNE_ybhnrDK_AxVGRL7N1RrWSUfe1tToZJcpUye0yRH_dr54F8HerqN9tsWYbFzb37N9XnJMdPJ7XZy5IJZ3O9SUgllTUsln5BSxz3p0 priority: 102 providerName: Wiley-Blackwell  | 
    
| Title | Improved BP neural network algorithm to wind power forecast | 
    
| URI | http://digital-library.theiet.org/content/journals/10.1049/joe.2017.0469 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fjoe.2017.0469 https://doi.org/10.1049/joe.2017.0469  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 2017 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2051-3305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001342041 issn: 2051-3305 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2051-3305 dateEnd: 20241231 omitProxy: true ssIdentifier: ssj0001342041 issn: 2051-3305 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBHI databaseName: IET Digital Library Open Access customDbUrl: eissn: 2051-3305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001342041 issn: 2051-3305 databaseCode: IDLOA dateStart: 20130601 isFulltext: true titleUrlDefault: https://digital-library.theiet.org/content/collections providerName: Institution of Engineering and Technology – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2051-3305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001342041 issn: 2051-3305 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 2051-3305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001342041 issn: 2051-3305 databaseCode: AVUZU dateStart: 20130601 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2051-3305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001342041 issn: 2051-3305 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9tAEB2R5AA5VLSACC3WClXlgom9XtuKekogEY0o5IBR4GLtJ0VKnSgYof77ztoOEFWhnGzZY609Y82-N17PA_gqO5jyIuq7sRUCZFRFrtCMu15IDYtCo3xjC_o_L6KzhA3H4XgNFmqj6v7OamW4i4qbrZbr8s8Du3Qb83C78nEpSIL4Fg_Ydpd-fGypXg0aFJk5rUPjx-l5Ra-KekvAqMf8qs3mP9ctTUs1HLMJ64_ZjP954pPJMnAtZp7BJnyoICPpljH-CGs6-wTNV40Et-B7WRvQivRGxLaoRPusXOBN-ORuOr_Pf_0m-ZQ8IQUnM6uMRhCtaskf8m1IBv2rkzO3kkVwJU72gUs1NVwoFeNDhLEOIiSCwhgaIHhBuKUk7cSeoUh8uPSVBRAyDgRSAyWlRvtgB-rZNNO7QEwohBfxQGtfMI5MyPcQLgkVyRhpjfFacLTwSiqrnuFWumKSFt-uWSdFJ6bWial1Ygu-PZvPymYZqwwP0MXpIpSrjJwlo-Fl_-VkOlOmBYfPIfrfeO0igG9bpVfDPu0NbF4L9t5zh59hw-6XFZkvUM_nj3ofMUouHKhRNnKg0b1ObhOnYPpO9UriNrkYdW_-Ap3K4_k | 
    
| linkProvider | Institution of Engineering and Technology | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYDsABsYqyWgjBhdDEcRxVnAC1KmU9FImb5ZVFJa0gCPH3zCSh0AMgznlxlPH23jh5Q8iOacCSJ1gUpFgIkDMrAu24CsKEeS4SbyOPCf2LS9G-4Z3b5PbbX_ylP8Qw4YYzo1ivcYJjQroUnBxNMh_7aHMZpQco8cbJJBeRQPnF-PVXliXmLCzKVzIYfQGI96Qy2oQ26iMtjGxM4w8OiObUazZQ72-q1xulrsXe05ojsxVppEdlL8-TMZctkJlvVoKL5LDMDjhLj68pmlQCPis_8aaqd9d_fsjvn2jep28gwukAa6NR4KvOqJd8idy0mt2TdlAVRggMbPdxwBzzSlubwkskqYsFSEHtPYuBvgDhsoY10tAzkD7KRBYphEljDeLAGuMAHy-TiayfuRVCfaJ1KFTsXKS5Ai0UhUCYtBUmBWHjwxrZ_4yKNJVrOBav6Mni9Jo3JARRYhAlBrFGdofwQWmX8RNwG0Isqwnz8hNocwTUuWp-XZQD62tkb9hFfz2vXnTg7yjZ7TTZcQtXtnj133dskal29-Jcnp9enq2RacSUyZp1MpE_v7oNoC-53ixG6AdEUuIJ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT4NAFH7RmrgcjGus68QYvYiFYYA0nlzaaF0P1hgvk1ldUmmjGOO_9w1gtQc1nvmA8GZ53_eA7wFsqDpueTENvMQ1AmRUx540THh-RC2LI6sD6wr6Z-fxUZu1bqKbb3_xF_4Q_YKbWxn5fu0WuOlpWwhO5kwyH7vO5jJIdpzEG4YRzOU-q8DI3nX7tv1VZwkZ9fMGlhTnn4fyPSqtNvEqtYFrDKSm4QeDVHPsNe2J9zfR6QyS1zz7NKdgsqSNZK8Y52kYMukMTHwzE5yF3aI-YDTZvyTOphLxafGRNxGdu-7zQ3b_RLIueUMZTnquOxpBxmqUeMnmoN1sXB0ceWVrBE9hwg89aqgVUusEHyJKTBijGJTW0hAJDFIurWg98S1F8SNUoB2JUEkoUR5opQziw3mopN3ULACxkZR-LEJjAskEqqHAR8okdawSlDbWr8L2Z1S4Kn3DXfuKDs_fX7M6xyByF0TugliFzT68Vxhm_ARcxxDzcsm8_ARaHQC1LhpfBznOhyps9Yfor_vV8gH8HcWvWg2633R7W7j47zPWYPTysMlPj89PlmDcQYpqzTJUsudXs4L8JZOr5RT9AHfN410 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTsJAFL1RWKgL30Z8kIkxurHQTl8hrtRACInIAhJcNfNUFAvREqNf7x1aVDSIuyY9bSd3bqfnzEzPBTgWFRzyAupYoSkE6FEZWFx5zLJ9qr3A19LRZkL_uhnUO16j63ezTTTmX5ip9XuvUn4YGC9LJywZHbcI-cBHyp2DfKfZurg1heMwqSzU5H7mn_nrmqnvzWJPIX9cGsVD9vbK-v1pRjr-pNTWoDZpTLqT5LE0SnhJvP_waZzb2nVYzUgluUizYAMWVLwJK9-sBrfgPJ09UJJctogxsUR8nG4BJ6x_N3juJfdPJBmQVxTpZGhqpxHks0qwl2QbOrVq-6puZYUTLIF0wLWooppxKUNskx8qN0CpyLWmLtIbJGRS0Epoa4rSiAlHGoohQpejeJBCKMS7O5CLB7HaBaJ9zu2AuUo53GOolRwbCRWXgQhR-Gi7AGeT8EYicxU3xS360Xh126tEGJPIxCQyMSnAySd8mNppzAIeYV9F2Qv1MgtUnAI1bqpfJ6Oh1AU4_ezrec8rjzPhb1TUblTpZc2MfO7ev--9D8vmOJ24OYBc8jxSh0hlEl7MEvkDVGHo3Q | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+BP+neural+network+algorithm+to+wind+power+forecast&rft.jtitle=Journal+of+engineering+%28Stevenage%2C+England%29&rft.au=Wang%2C+Zheng&rft.au=Wang%2C+Bo&rft.au=Liu%2C+Chun&rft.au=Wang%2C+Wei%E2%80%90sheng&rft.date=2017&rft.issn=2051-3305&rft.eissn=2051-3305&rft.volume=2017&rft.issue=13&rft.spage=940&rft.epage=943&rft_id=info:doi/10.1049%2Fjoe.2017.0469&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_joe_2017_0469 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-3305&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-3305&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-3305&client=summon |