Quartz modification by Zn ion implantation and swift Xe ion irradiation

The quartz slides were implanted by 64Zn+ ions with dose of 5 × 1016/cm2 and energy of 100 keV. After implantation, the amorphous metallic Zn nanoparticles with an average radius of 3.5 nm were created. The sample surface becomes nonuniform, its roughness is increased and its values rise up to 6 nm...

Full description

Saved in:
Bibliographic Details
Published inPhysica status solidi. C Vol. 14; no. 7
Main Authors Privezentsev, Vladimir, Kulikauskas, Vaclav, Didyk, Alexander, Skuratov, Vladimir, Steinman, Edward, Tereshchenko, Alexey, Kolesnikov, Nikolay, Trifonov, Alexey, Sakharov, Oleg, Ksenich, Sergey
Format Journal Article
LanguageEnglish
Published Berlin WILEY‐VCH Verlag Berlin GmbH 01.07.2017
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1862-6351
1610-1642
DOI10.1002/pssc.201700112

Cover

Abstract The quartz slides were implanted by 64Zn+ ions with dose of 5 × 1016/cm2 and energy of 100 keV. After implantation, the amorphous metallic Zn nanoparticles with an average radius of 3.5 nm were created. The sample surface becomes nonuniform, its roughness is increased and its values rise up to 6 nm compared to virgin state, and the roughness maximum is at a value of about 0.8 nm. The surface is made up of valleys and hillocks which have a round shape with an average diameter about 200 nm. At the center of these hillocks are pores with a depth up to 6 nm and a diameter of about 20 nm. After implantation in UV‐vis diapason, the optical transmission decreases while PL peak (apparently due to oxygen deficient centers) at wavelength of 400 nm increases. Then the samples were subjected to swift Xe ion irradiation with the fluences of 1 × 1012–7.5 × 1014/cm2 and energy of 167 MeV. After Xe irradiation, the sample surface roughness shat down to values of 0.5 nm and the roughness maximum is at a value of about 0.1 nm. Optical transmission in UV‐vis diapason increases. The PL peak at wavelength of 400 nm is decreased while a PL peak at wavelength of 660 nm is raised. This peak is presumably due to non‐bridging oxygen hole centers or/and NPs with structure Si(core)/SiO2(shell). HRTEM image of Zn‐implanted quartz subsurface layer. One can see the Zn amorphous nanoparticles, which confirms the electron diffraction pattern (insert).
AbstractList The quartz slides were implanted by 64Zn+ ions with dose of 5×1016/cm2 and energy of 100keV. After implantation, the amorphous metallic Zn nanoparticles with an average radius of 3.5nm were created. The sample surface becomes nonuniform, its roughness is increased and its values rise up to 6nm compared to virgin state, and the roughness maximum is at a value of about 0.8nm. The surface is made up of valleys and hillocks which have a round shape with an average diameter about 200nm. At the center of these hillocks are pores with a depth up to 6nm and a diameter of about 20nm. After implantation in UV-vis diapason, the optical transmission decreases while PL peak (apparently due to oxygen deficient centers) at wavelength of 400nm increases. Then the samples were subjected to swift Xe ion irradiation with the fluences of 1×1012-7.5×1014/cm2 and energy of 167MeV. After Xe irradiation, the sample surface roughness shat down to values of 0.5nm and the roughness maximum is at a value of about 0.1nm. Optical transmission in UV-vis diapason increases. The PL peak at wavelength of 400nm is decreased while a PL peak at wavelength of 660nm is raised. This peak is presumably due to non-bridging oxygen hole centers or/and NPs with structure Si(core)/SiO2(shell). HRTEM image of Zn-implanted quartz subsurface layer. One can see the Zn amorphous nanoparticles, which confirms the electron diffraction pattern (insert).
The quartz slides were implanted by 64Zn+ ions with dose of 5 × 1016/cm2 and energy of 100 keV. After implantation, the amorphous metallic Zn nanoparticles with an average radius of 3.5 nm were created. The sample surface becomes nonuniform, its roughness is increased and its values rise up to 6 nm compared to virgin state, and the roughness maximum is at a value of about 0.8 nm. The surface is made up of valleys and hillocks which have a round shape with an average diameter about 200 nm. At the center of these hillocks are pores with a depth up to 6 nm and a diameter of about 20 nm. After implantation in UV‐vis diapason, the optical transmission decreases while PL peak (apparently due to oxygen deficient centers) at wavelength of 400 nm increases. Then the samples were subjected to swift Xe ion irradiation with the fluences of 1 × 1012–7.5 × 1014/cm2 and energy of 167 MeV. After Xe irradiation, the sample surface roughness shat down to values of 0.5 nm and the roughness maximum is at a value of about 0.1 nm. Optical transmission in UV‐vis diapason increases. The PL peak at wavelength of 400 nm is decreased while a PL peak at wavelength of 660 nm is raised. This peak is presumably due to non‐bridging oxygen hole centers or/and NPs with structure Si(core)/SiO2(shell). HRTEM image of Zn‐implanted quartz subsurface layer. One can see the Zn amorphous nanoparticles, which confirms the electron diffraction pattern (insert).
Author Kulikauskas, Vaclav
Trifonov, Alexey
Kolesnikov, Nikolay
Sakharov, Oleg
Privezentsev, Vladimir
Skuratov, Vladimir
Steinman, Edward
Tereshchenko, Alexey
Didyk, Alexander
Ksenich, Sergey
Author_xml – sequence: 1
  givenname: Vladimir
  surname: Privezentsev
  fullname: Privezentsev, Vladimir
  email: v.privezentsev@mail.ru
  organization: Russian Academy of Sciences
– sequence: 2
  givenname: Vaclav
  surname: Kulikauskas
  fullname: Kulikauskas, Vaclav
  organization: Lomonosov Moscow State University
– sequence: 3
  givenname: Alexander
  surname: Didyk
  fullname: Didyk, Alexander
  organization: Joint Institute of Nuclear Research
– sequence: 4
  givenname: Vladimir
  surname: Skuratov
  fullname: Skuratov, Vladimir
  organization: Joint Institute of Nuclear Research
– sequence: 5
  givenname: Edward
  surname: Steinman
  fullname: Steinman, Edward
  organization: Russian Academy of Sciences
– sequence: 6
  givenname: Alexey
  surname: Tereshchenko
  fullname: Tereshchenko, Alexey
  organization: Russian Academy of Sciences
– sequence: 7
  givenname: Nikolay
  surname: Kolesnikov
  fullname: Kolesnikov, Nikolay
  organization: Russian Academy of Sciences
– sequence: 8
  givenname: Alexey
  surname: Trifonov
  fullname: Trifonov, Alexey
  organization: National Research University “MIET”
– sequence: 9
  givenname: Oleg
  surname: Sakharov
  fullname: Sakharov, Oleg
  organization: National Research University “MIET”
– sequence: 10
  givenname: Sergey
  surname: Ksenich
  fullname: Ksenich, Sergey
  organization: National University of Science and Technology “MISiS”
BookMark eNqFkE1Lw0AQhhepYFu9eg54Tp3Z7abJUYpWoaBSBfGybPYDtqSbuJtS6q83NaIgiMxhhpl55mXeERn42htCzhEmCEAvmxjVhALOABDpERlihpBiNqWDrs4zmmaM4wkZxbgGYBwwG5LF41aG9j3Z1NpZp2Trap-U--TVJ4fKbZpK-rZvS6-TuHO2TV5MPw1Bavc5PCXHVlbRnH3lMXm-uX6a36bL-8Xd_GqZKoYzmvIyV7ZUABLB0JnWzFiqC4aMlnqqKTKTQxdlCVZJ1EyVGqHgOQWurQQ2Jhf93SbUb1sTW7Gut8F3kgILWuScs5x2W5N-S4U6xmCsaILbyLAXCOJgljiYJb7N6oDpL0C5_us2SFf9jRU9tnOV2f8jIh5Wq_kP-wFZwIFi
CitedBy_id crossref_primary_10_1016_j_surfin_2024_104892
Cites_doi 10.12989/sss.2013.12.1.055
10.1016/j.jnoncrysol.2006.08.018
10.1063/1.2751588
10.1002/pssc.201200539
10.1016/j.matlet.2011.06.066
10.3103/S106287381602012X
10.1103/PhysRevB.79.205206
10.1007/s40820-015-0040-x
10.1063/1.1485302
10.1103/PhysRevB.67.220101
10.1088/0957-4484/18/13/135604
10.1063/1.3012579
10.1021/ed075p752
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7U5
8FD
H8D
L7M
DOI 10.1002/pssc.201700112
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1610-1642
EndPage n/a
ExternalDocumentID 10_1002_pssc_201700112
PSSC201700112
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OC
31~
33P
3SF
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANHP
AAONW
AAZKR
ABCQN
ABEML
ABIJN
ABJNI
ACBWZ
ACCFJ
ACIWK
ACRPL
ACSCC
ACXQS
ACYXJ
ADIYS
ADIZJ
ADNMO
AEEZP
AEIMD
AEQDE
AEUCX
AEUQT
AFBPY
AFFNX
AFZJQ
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HHY
HVGLF
HZ~
J0M
JPC
KQQ
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LW6
MK4
MRFUL
N04
N05
N9A
NF~
NNB
O66
O9-
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WGJPS
WIH
WIK
WQJ
WRC
WYISQ
WYUIH
XG1
XV2
ZE2
~IA
~WT
AAYXX
ADMLS
AGQPQ
CITATION
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
H8D
L7M
ID FETCH-LOGICAL-c3172-5b8cfbc00a10e27dd3ef2d93132bd4d213e80808bb0fca1d3cbd10958205dfa03
IEDL.DBID DR2
ISSN 1862-6351
IngestDate Fri Jul 25 12:25:05 EDT 2025
Thu Apr 24 23:10:16 EDT 2025
Tue Jul 01 01:28:52 EDT 2025
Wed Jan 22 16:53:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3172-5b8cfbc00a10e27dd3ef2d93132bd4d213e80808bb0fca1d3cbd10958205dfa03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1929855382
PQPubID 1036349
PageCount 5
ParticipantIDs proquest_journals_1929855382
crossref_primary_10_1002_pssc_201700112
crossref_citationtrail_10_1002_pssc_201700112
wiley_primary_10_1002_pssc_201700112_PSSC201700112
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2017
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: July 2017
PublicationDecade 2010
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
– name: Weinheim
PublicationTitle Physica status solidi. C
PublicationYear 2017
Publisher WILEY‐VCH Verlag Berlin GmbH
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY‐VCH Verlag Berlin GmbH
– name: Wiley Subscription Services, Inc
References 2007; 18
2009; 79
2014; 3
2013; 10
2000
2013; 12
2004; 68
2007; 90
2006; 352
2011; 65
2003
2016; 80
2013
2002; 80
2008; 93
1998; 75
2015; 7
2011; 222
1999
2003; 67
e_1_2_5_15_1
Singh Nalwa H. (e_1_2_5_2_1) 2003
e_1_2_5_14_1
Sokolov V. N. (e_1_2_5_21_1) 2004; 68
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_5_1
e_1_2_5_4_1
Inbasekaran S. (e_1_2_5_11_1) 2014; 3
e_1_2_5_18_1
Flytzanis C. (e_1_2_5_3_1) 1999
Ziegler J. F. (e_1_2_5_17_1) 2013
e_1_2_5_20_1
Devine R. A. B. (e_1_2_5_19_1) 2000
Amekura H. (e_1_2_5_12_1) 2011; 222
References_xml – volume: 93
  start-page: 181106
  year: 2008
  publication-title: Appl. Phys. Lett
– volume: 75
  start-page: 752
  year: 1998
  publication-title: J. Chem. Educ
– year: 2013
  publication-title: SRIM
– volume: 80
  start-page: 160
  year: 2016
  publication-title: Bull. Russ. Acad. Sci.: Phys
– volume: 3
  start-page: 8601
  year: 2014
  publication-title: Intern. J. Innov.//Res. Sci. Engineer. Technol
– volume: 65
  start-page: 2966
  year: 2011
  publication-title: Mater. Lett
– year: 2003
– start-page: 321
  year: 1999
– volume: 90
  start-page: 263501
  year: 2007
  publication-title: Appl. Phys. Lett
– volume: 18
  start-page: 135604
  year: 2007
  publication-title: Nanotechnology
– volume: 67
  start-page: 220101(R)
  year: 2003
  publication-title: Phys. Rev. B
– year: 2000
– volume: 12
  start-page: 055
  year: 2013
  publication-title: Smart Struct. Syst
– volume: 80
  start-page: 4834
  year: 2002
  publication-title: Appl. Phys. Lett
– volume: 79
  start-page: 205206
  year: 2009
  publication-title: Phys. Rev. B
– volume: 7
  start-page: 219
  year: 2015
  publication-title: Nano‐Micro Lett
– volume: 10
  start-page: 48
  year: 2013
  publication-title: Phys. Sstat. Sol. (C)
– volume: 68
  start-page: 1491
  year: 2004
  publication-title: Bull. Russ. Acad. Sci.: Phys
– volume: 222
  start-page: 96
  year: 2011
  publication-title: Mater. Lett
– volume: 352
  start-page: 5391
  year: 2006
  publication-title: J. Non‐Cryst. Solids
– volume: 68
  start-page: 1491
  year: 2004
  ident: e_1_2_5_21_1
  publication-title: Bull. Russ. Acad. Sci.: Phys
– ident: e_1_2_5_9_1
  doi: 10.12989/sss.2013.12.1.055
– ident: e_1_2_5_18_1
  doi: 10.1016/j.jnoncrysol.2006.08.018
– start-page: 321
  volume-title: Progress in Optics
  year: 1999
  ident: e_1_2_5_3_1
– ident: e_1_2_5_5_1
  doi: 10.1063/1.2751588
– volume: 3
  start-page: 8601
  year: 2014
  ident: e_1_2_5_11_1
  publication-title: Intern. J. Innov.//Res. Sci. Engineer. Technol
– ident: e_1_2_5_14_1
  doi: 10.1002/pssc.201200539
– volume-title: Nanoclusters and Nanocrystals
  year: 2003
  ident: e_1_2_5_2_1
– ident: e_1_2_5_13_1
  doi: 10.1016/j.matlet.2011.06.066
– volume-title: Structure and Imperfections in Amorphous and Crystalline Silicon Dioxide
  year: 2000
  ident: e_1_2_5_19_1
– volume: 222
  start-page: 96
  year: 2011
  ident: e_1_2_5_12_1
  publication-title: Mater. Lett
– ident: e_1_2_5_16_1
  doi: 10.3103/S106287381602012X
– year: 2013
  ident: e_1_2_5_17_1
  publication-title: SRIM
– ident: e_1_2_5_8_1
  doi: 10.1103/PhysRevB.79.205206
– ident: e_1_2_5_10_1
  doi: 10.1007/s40820-015-0040-x
– ident: e_1_2_5_20_1
  doi: 10.1063/1.1485302
– ident: e_1_2_5_15_1
  doi: 10.1103/PhysRevB.67.220101
– ident: e_1_2_5_7_1
  doi: 10.1088/0957-4484/18/13/135604
– ident: e_1_2_5_4_1
  doi: 10.1063/1.3012579
– ident: e_1_2_5_6_1
  doi: 10.1021/ed075p752
SSID ssj0035016
Score 2.1068416
Snippet The quartz slides were implanted by 64Zn+ ions with dose of 5 × 1016/cm2 and energy of 100 keV. After implantation, the amorphous metallic Zn nanoparticles...
The quartz slides were implanted by 64Zn+ ions with dose of 5×1016/cm2 and energy of 100keV. After implantation, the amorphous metallic Zn nanoparticles with...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Diffraction patterns
Electron diffraction
Ion implantation
Ion irradiation
Microscopes
Nanoparticles
Quartz
Silicon dioxide
Surface roughness
swift irradiation
Valleys
Zinc
Title Quartz modification by Zn ion implantation and swift Xe ion irradiation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpssc.201700112
https://www.proquest.com/docview/1929855382
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMeDTARfvIvTOfIg-NQtvbePY3MOcSLOwfCl5ArDrRtrh7hPb5Jetgki6FtKktLm5PJPe84vANzY2CbClRbwmBMaDmXICChjhoMdz_NDuWLqILH-k9cbOg8jd7QRxZ_xIcoPbmpk6PlaDXBMkuYaGjpPEoUgVHw5Ux8zbNqegud3Xkp-lPpppsOLpGw35MpqFtRGZDW3q2-vSmupuSlY9YrTPQS4eNbM0eS9sUxJg66-YRz_8zJH4CCXo7CV9Z9jsMPjE7Cn3UJpcgrutc_nCk5nTLkUaStC8gnfYqhS4-l8grPYpRjimMHkYyxSOOJZ7mKhwAcq8wwMu3ev7Z6RH71gUCko5PaUBFQQihA2Ebd8xmwuLBYqziNhDrNMmysgZUAIEhSbzKaEmVKtST3hMoGRfQ4q8SzmFwBinzkiwIL6iEvtxkK5I-fC5txzpPYkogqMoukjmnPJ1fEYkygjKluRapyobJwquC3LzzMix48la4Ulo3xkJpFUtGHgymleZlvaJL_cJXoeDNrl1eVfKl2BfZXOvHxroJIulvxaapmU1MFuq9N_HNR1v_0CBt3s4Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT8IwEG8MxuiL30YUtQ8mPg32zfZoiIgKxAgkxJelnwkRBmEQI3-9vY4NMTEm-rat7bL1er1f27vfIXTtEIdKT0nA525ouIybRsA4N1zi-n41VBZTB4m12n6j5z72vcybEGJhUn6IfMMNNEPP16DgsCFdWbGGTpIEOAiBYM6CPMOb-pAOcNFLziAFx2Y6wEgBd0PZVivjbTTtynr7dbu0AptfIau2OfU9RLOvTV1N3srzGS2zxTcix3_9zj7aXSJSfJsOoQO0IeJDtKU9Q1lyhO612-cCj8YcvIq0IDH9wK8xhqvBaDIkafhSjEnMcfI-kDPcF2npdArcB1B4jHr1u26tYSyzLxhMYQq1QqUBk5SZJrFMYVc5d4S0eQhUj5S73LYcAZyUAaWmZMTiDqPcUoBNQQqPS2I6J6gQj2NxijCpclcGRLKqKRR846FalAvpCOG7Cn5SWURG1vcRW1KTQ4aMYZSSKtsRdE6Ud04R3eT1Jykpx481S5koo6VyJpECtWHgqZleFdtaJr-8JXrudGr53dlfGl2h7Ua31YyaD-2nc7QDz1On3xIqzKZzcaGgzYxe6sH7CW1r72s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT8IwEG8MRuOL30YUtQ8mPg32Ucb2aFDEL0JEEuLL0vbahAiDMIiRv962gwEmxkTftl27bHdt79ft7ncIXXrUY7KsLOADCS3CwbYCDmARSny_EiqPaZLEnht-vU0eOuXOUhZ_yg-RfXDTM8Os13qCD0GWFqShwyTRFISaX87RZYbXia98pYZFLxmBlP5rZvKLFG63lGt15rSNtlta7b_qlhZYcxmxGpdT20F0_rBppMl7cTJmRT79xuP4n7fZRdszPIqv0wG0h9ZEvI82TFwoTw7QnQn6nOL-AHRMkTEjZp_4Lcb6qNsf9miavBRjGgNOPrpyjDsilY5GmvlACw9Ru3b7Wq1bs9oLFleIQu1PWcAl47ZNHVu4FQBPSBdCTfTIgIDreEIzUgaM2ZJTBzzOwFFwTQGKMkhqe0coFw9icYwwrQCRAZW8YgsF3iBUW3IhPSF8osAnk3lkzVUf8Rkxua6P0YtSSmU30sqJMuXk0VXWfphScvzYsjC3ZDSbmkmkIG0YlNU6r8SuMckvd4marVY1Ozv5S6cLtNm8qUVP943HU7SlL6cRvwWUG48m4kzhmjE7N0P3C6h57ho
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quartz+modification+by+Zn+ion+implantation+and+swift+Xe+ion+irradiation&rft.jtitle=Physica+status+solidi.+C&rft.au=Privezentsev%2C+Vladimir&rft.au=Kulikauskas%2C+Vaclav&rft.au=Didyk%2C+Alexander&rft.au=Skuratov%2C+Vladimir&rft.date=2017-07-01&rft.pub=WILEY%E2%80%90VCH+Verlag+Berlin+GmbH&rft.issn=1862-6351&rft.eissn=1610-1642&rft.volume=14&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fpssc.201700112&rft.externalDBID=10.1002%252Fpssc.201700112&rft.externalDocID=PSSC201700112
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-6351&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-6351&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-6351&client=summon