Chiral Phosphoric Acid: A Powerful Organocatalyst for the Asymmetric Synthesis of Heterocycles with Chiral Atropisomerism
The past two decades have witnessed unprecedented development and advancement of chiral phosphoric acid catalysis. Therefore, it is not surprising that the attempts to synthesize enantioenriched axially chiral compounds via chiral phosphoric acid catalysis have achieved fruitful results in recent ye...
Saved in:
Published in | ChemCatChem Vol. 13; no. 5; pp. 1271 - 1289 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
05.03.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1867-3880 1867-3899 |
DOI | 10.1002/cctc.202001750 |
Cover
Abstract | The past two decades have witnessed unprecedented development and advancement of chiral phosphoric acid catalysis. Therefore, it is not surprising that the attempts to synthesize enantioenriched axially chiral compounds via chiral phosphoric acid catalysis have achieved fruitful results in recent years although this area of research is still in its infancy. A number of structurally important heterocycles with chiral atropisomerism have been successfully designed and prepared by chiral phosphoric acid promoted transformations involving diverse strategies: including direct coupling, de novo formation of a heterocyclic ring and functionalization of prochiral or racemic substrates. In this minireview, we would like to highlight the advances in the field of atropisomeric heterocycles construction enabled by chiral phosphoric acid catalysis. In addition, this Minireview is organized based on the different types of atropisomeric heterocyclic frameworks generated covering quinoline, pyrrole, indole, benzimidazole, quinazolinone, isoindolinone, urazole, pyrazole and so on. We hope that this Minireview will motivate continuous interest on chiral phosphoric acid catalyzed atroposelective reactions.
Organocatalysis: The advances in the field of chiral phosphoric acid catalyzed reactions for the asymmetric synthesis of heterocycles with chiral atropisomerism, including quinoline, pyrrole, indole, benzimidazole, quinazolinone, isoindolinone, urazole and pyrazole were reviewed. The substrates scope, mechanisms, limitations and applications were discussed. |
---|---|
AbstractList | The past two decades have witnessed unprecedented development and advancement of chiral phosphoric acid catalysis. Therefore, it is not surprising that the attempts to synthesize enantioenriched axially chiral compounds via chiral phosphoric acid catalysis have achieved fruitful results in recent years although this area of research is still in its infancy. A number of structurally important heterocycles with chiral atropisomerism have been successfully designed and prepared by chiral phosphoric acid promoted transformations involving diverse strategies: including direct coupling, de novo formation of a heterocyclic ring and functionalization of prochiral or racemic substrates. In this minireview, we would like to highlight the advances in the field of atropisomeric heterocycles construction enabled by chiral phosphoric acid catalysis. In addition, this Minireview is organized based on the different types of atropisomeric heterocyclic frameworks generated covering quinoline, pyrrole, indole, benzimidazole, quinazolinone, isoindolinone, urazole, pyrazole and so on. We hope that this Minireview will motivate continuous interest on chiral phosphoric acid catalyzed atroposelective reactions. The past two decades have witnessed unprecedented development and advancement of chiral phosphoric acid catalysis. Therefore, it is not surprising that the attempts to synthesize enantioenriched axially chiral compounds via chiral phosphoric acid catalysis have achieved fruitful results in recent years although this area of research is still in its infancy. A number of structurally important heterocycles with chiral atropisomerism have been successfully designed and prepared by chiral phosphoric acid promoted transformations involving diverse strategies: including direct coupling, de novo formation of a heterocyclic ring and functionalization of prochiral or racemic substrates. In this minireview, we would like to highlight the advances in the field of atropisomeric heterocycles construction enabled by chiral phosphoric acid catalysis. In addition, this Minireview is organized based on the different types of atropisomeric heterocyclic frameworks generated covering quinoline, pyrrole, indole, benzimidazole, quinazolinone, isoindolinone, urazole, pyrazole and so on. We hope that this Minireview will motivate continuous interest on chiral phosphoric acid catalyzed atroposelective reactions. The past two decades have witnessed unprecedented development and advancement of chiral phosphoric acid catalysis. Therefore, it is not surprising that the attempts to synthesize enantioenriched axially chiral compounds via chiral phosphoric acid catalysis have achieved fruitful results in recent years although this area of research is still in its infancy. A number of structurally important heterocycles with chiral atropisomerism have been successfully designed and prepared by chiral phosphoric acid promoted transformations involving diverse strategies: including direct coupling, de novo formation of a heterocyclic ring and functionalization of prochiral or racemic substrates. In this minireview, we would like to highlight the advances in the field of atropisomeric heterocycles construction enabled by chiral phosphoric acid catalysis. In addition, this Minireview is organized based on the different types of atropisomeric heterocyclic frameworks generated covering quinoline, pyrrole, indole, benzimidazole, quinazolinone, isoindolinone, urazole, pyrazole and so on. We hope that this Minireview will motivate continuous interest on chiral phosphoric acid catalyzed atroposelective reactions. Organocatalysis: The advances in the field of chiral phosphoric acid catalyzed reactions for the asymmetric synthesis of heterocycles with chiral atropisomerism, including quinoline, pyrrole, indole, benzimidazole, quinazolinone, isoindolinone, urazole and pyrazole were reviewed. The substrates scope, mechanisms, limitations and applications were discussed. |
Author | Shao, You‐Dong Cheng, Dao‐Juan |
Author_xml | – sequence: 1 givenname: You‐Dong surname: Shao fullname: Shao, You‐Dong organization: Heze University – sequence: 2 givenname: Dao‐Juan orcidid: 0000-0001-7834-7563 surname: Cheng fullname: Cheng, Dao‐Juan email: chengdaojuan0614@163.com organization: Anhui University of Chinese Medicine |
BookMark | eNqFkMFLwzAYxYNMcJtePQc8byZN0zTeSlEnDDZwnkuWfbUZbTOTjNH_3o6NCYJ4-h6P9_sevBEatLYFhO4pmVJCoketg55GJCKECk6u0JCmiZiwVMrBRafkBo283xKSSCb4EHV5ZZyq8bKyfldZZzTOtNk84Qwv7QFcua_xwn2q1moVVN35gEvrcKgAZ75rGghH5L1re8cbj22JZxDAWd3pGjw-mFDhc0cWnN0Zbxtwxje36LpUtYe78x2jj5fnVT6bzBevb3k2n2hGBZls1iRNU8qJpkJoqYExVsZScb5OEkjKFFgkYS0EI5TFmlMeC842MchSrqPeG6OH09-ds1978KHY2r1r-8oiimUiY8lZ3KfiU0o7672DstAmqGBsG5wydUFJcRy5OI5cXEbusekvbOdMo1z3NyBPwMHU0P2TLvJ8lf-w32vckoo |
CitedBy_id | crossref_primary_10_1002_anie_202218871 crossref_primary_10_1055_a_1833_8979 crossref_primary_10_1055_a_1965_2928 crossref_primary_10_1002_ange_202404545 crossref_primary_10_1039_D4QO00807C crossref_primary_10_1021_acs_orglett_3c00384 crossref_primary_10_1002_anie_202213692 crossref_primary_10_1039_D3QO02125D crossref_primary_10_1039_D1CC03568A crossref_primary_10_1039_D2QO01209J crossref_primary_10_1002_tcr_202200284 crossref_primary_10_1021_acsomega_4c04206 crossref_primary_10_1021_acs_chemrev_4c00869 crossref_primary_10_1002_slct_202300204 crossref_primary_10_1016_j_checat_2024_100918 crossref_primary_10_1039_D3CC05329F crossref_primary_10_1002_ajoc_202300374 crossref_primary_10_6023_cjoc202304015 crossref_primary_10_1021_acs_orglett_2c00461 crossref_primary_10_1021_acs_orglett_3c04261 crossref_primary_10_1021_jacs_3c12015 crossref_primary_10_1002_adsc_202301484 crossref_primary_10_1016_j_mcat_2022_112648 crossref_primary_10_1021_acscatal_2c00064 crossref_primary_10_1002_anie_202404545 crossref_primary_10_1002_anie_202108747 crossref_primary_10_1039_D1CC00590A crossref_primary_10_2139_ssrn_4145115 crossref_primary_10_1002_ange_202410112 crossref_primary_10_1039_D3OB00212H crossref_primary_10_1002_chir_23478 crossref_primary_10_1039_D1CC03117A crossref_primary_10_2174_0113852728331488240828074740 crossref_primary_10_1039_D3SC00610G crossref_primary_10_3390_molecules27238517 crossref_primary_10_1016_j_molstruc_2023_136919 crossref_primary_10_59761_RCR5104 crossref_primary_10_1055_a_2003_2276 crossref_primary_10_1021_jacs_1c04648 crossref_primary_10_3390_molecules29143363 crossref_primary_10_3762_bjoc_17_185 crossref_primary_10_1002_ange_202218871 crossref_primary_10_1002_ange_202108747 crossref_primary_10_1038_s41467_023_41299_2 crossref_primary_10_1002_anie_202410112 crossref_primary_10_1039_D1RA06885G crossref_primary_10_1002_ejoc_202200624 crossref_primary_10_1038_s44160_024_00533_5 crossref_primary_10_1055_a_2230_0759 crossref_primary_10_1021_acs_orglett_1c04330 crossref_primary_10_1039_D4OB01127A crossref_primary_10_1002_cssc_202301604 crossref_primary_10_1039_D1SC05161J crossref_primary_10_1055_a_1705_0307 crossref_primary_10_1002_ange_202213692 crossref_primary_10_1039_D3QO01083J crossref_primary_10_1039_D3RA03438K crossref_primary_10_1039_D3OB02011H |
Cites_doi | 10.1039/C7OB00908A 10.1002/cjoc.202000131 10.1002/chir.22145 10.1002/chem.201103278 10.1002/anie.202000585 10.1021/jacs.5b10152 10.1002/chem.201904213 10.1039/D0CC02380A 10.1021/np980495u 10.1039/C9CC06360A 10.1039/C4RA02917H 10.1021/ja00377a014 10.1002/anie.201709182 10.1002/ange.202000585 10.1021/ja0491533 10.1016/j.ccr.2015.07.006 10.1002/adsc.202000354 10.1038/nchembio.370 10.1016/j.fitote.2012.06.005 10.1021/acs.orglett.0c02519 10.1039/C9OB01304K 10.1039/C9SC00810A 10.1021/jacs.6b09634 10.1002/ange.201709182 10.1002/cmdc.201000485 10.1021/cr020049i 10.1002/anie.202002518 10.1021/ml500002n 10.1021/ol702952n 10.1039/C7CC06863H 10.1021/jacs.6b01458 10.1002/anie.201802963 10.1002/anie.200353240 10.1039/D0CC05432A 10.1002/ange.202004671 10.1021/acscatal.7b03759 10.1021/jacs.6b06009 10.1039/D0QO00534G 10.1002/anie.202004671 10.1039/C8OB00900G 10.1021/acs.chemrev.5b00136 10.1002/ange.201802963 10.1021/acschembio.9b00407 10.1021/jo500512s 10.1021/cr068374j 10.1021/np980511n 10.1021/acs.orglett.9b02143 10.1021/ar2000343 10.1016/j.tetlet.2014.10.101 10.1021/jm4017625 10.1021/jacs.0c00208 10.1021/acs.orglett.0c02214 10.1039/b807577h 10.1021/jacs.9b12299 10.1021/jacs.9b01911 10.3390/molecules200916103 10.1055/s-0039-1690228 10.1016/j.bmcl.2011.07.021 10.1002/cjoc.201900472 10.4155/fmc-2017-0152 10.1016/j.chempr.2020.06.001 10.1002/ange.200353240 10.1007/s11164-016-2768-4 10.1021/acs.accounts.9b00549 10.1021/acs.joc.0c01528 10.1021/acs.orglett.9b01731 10.1002/anie.201909855 10.1021/np800632f 10.1038/nchem.2866 10.1021/acs.accounts.7b00602 10.1002/ange.201608150 10.1016/j.jphotobiol.2017.05.043 10.1002/cjoc.202000022 10.1021/jm990150o 10.1038/ncomms10677 10.1038/s41467-019-12269-4 10.1055/s-0029-1218801 10.1016/j.bmcl.2017.11.050 10.1021/acs.accounts.8b00473 10.1039/C9CC05097C 10.1021/acs.joc.8b01390 10.1021/ol047824w 10.1039/C3CS60302D 10.1002/anie.201710537 10.1055/s-0034-1378837 10.1002/ange.202002518 10.1248/cpb.41.2096 10.1039/C4NP00121D 10.1039/c3ob40360b 10.1002/ange.201710537 10.1002/ange.201811177 10.1002/anie.201811177 10.1038/s41467-019-08447-z 10.1021/cr5001496 10.1002/ange.201908279 10.1021/jm070851i 10.1039/C8CS00436F 10.6023/cjoc202000027 10.1002/anie.200901719 10.1038/ncomms15489 10.1021/ja003488c 10.1002/anie.201608150 10.1021/acs.jmedchem.5b00736 10.1055/s-0040-1707814 10.1002/ange.200901719 10.1002/anie.201908279 10.1002/asia.202000681 10.1021/jo972105z 10.1021/acscatal.7b04337 10.1002/ange.201909855 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION |
DOI | 10.1002/cctc.202001750 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1867-3899 |
EndPage | 1289 |
ExternalDocumentID | 10_1002_cctc_202001750 CCTC202001750 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21602097; 21601006 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 5DZ 77Q 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABDBF ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACUHS ACXBN ACXQS ADBBV ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI DCZOG DRFUL DRSTM DU5 EBS ESX G-S HGLYW HZ~ I-F LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MXFUL MXSTM MY~ NNB O9- P2W P4E ROL SUPJJ TUS WBKPD WOHZO WXSBR WYJ XV2 ZZTAW AAYXX AEYWJ AGHNM AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c3170-db0888150c177c9ce333f49a55b66e6f8e329eb7730134c5154753d4e9f9b2013 |
ISSN | 1867-3880 |
IngestDate | Fri Jul 25 12:11:02 EDT 2025 Tue Jul 01 00:42:30 EDT 2025 Thu Apr 24 23:04:39 EDT 2025 Wed Jan 22 16:29:57 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3170-db0888150c177c9ce333f49a55b66e6f8e329eb7730134c5154753d4e9f9b2013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7834-7563 |
PQID | 2496949534 |
PQPubID | 986343 |
PageCount | 19 |
ParticipantIDs | proquest_journals_2496949534 crossref_citationtrail_10_1002_cctc_202001750 crossref_primary_10_1002_cctc_202001750 wiley_primary_10_1002_cctc_202001750_CCTC202001750 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 5, 2021 |
PublicationDateYYYYMMDD | 2021-03-05 |
PublicationDate_xml | – month: 03 year: 2021 text: March 5, 2021 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | ChemCatChem |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 8 2007; 107 2004; 126 2013; 25 2016; 308 2019; 52 2019; 55 2020; 362 2019; 10 2017; 43 2015; 32 2019; 14 2019; 17 2020; 15 2008; 35 1999; 42 1982; 104 2012; 18 2020; 56 2018; 83 1992; 12 2020; 7 2020; 6 2015; 47 2018; 8 2014; 5 2014; 4 2017 2017; 129 56 2020; 53 2013; 11 2015; 137 2020; 52 2019; 21 2019 2019; 131 58 2019; 25 2020; 49 2011; 21 2014; 57 2010; 6 2014; 55 2010; 8 2012; 83 2004 2004; 116 43 2018; 28 2001; 123 2015; 58 2019; 30 2020; 85 2010 2020; 40 2020; 142 2018 2018; 130 57 1993; 41 2020 2020; 132 59 2020; 38 2017; 173 2008; 10 2007; 50 1999; 62 1998; 63 2019; 141 2011; 6 2014; 114 2009 2009; 121 48 2014; 43 2017; 139 2017; 53 2016; 7 2015; 115 2017; 15 2009; 72 2020 2015; 20 2011; 44 2005; 7 2014; 79 2018; 51 2016; 138 2020; 22 2003; 103 2018; 10 2018; 16 e_1_2_10_44_2 Hall I. H. (e_1_2_10_111_2) 1992; 12 e_1_2_10_21_2 e_1_2_10_109_2 e_1_2_10_40_2 e_1_2_10_93_1 e_1_2_10_70_2 e_1_2_10_2_3 e_1_2_10_18_1 e_1_2_10_97_1 e_1_2_10_2_2 e_1_2_10_74_2 e_1_2_10_116_1 e_1_2_10_112_2 e_1_2_10_37_2 e_1_2_10_55_1 e_1_2_10_78_2 e_1_2_10_6_2 e_1_2_10_14_2 e_1_2_10_78_1 e_1_2_10_32_2 e_1_2_10_51_1 e_1_2_10_105_2 e_1_2_10_82_2 e_1_2_10_29_1 e_1_2_10_86_1 e_1_2_10_63_2 e_1_2_10_48_2 e_1_2_10_86_2 e_1_2_10_67_1 e_1_2_10_25_2 e_1_2_10_101_1 e_1_2_10_22_2 e_1_2_10_45_2 e_1_2_10_41_2 e_1_2_10_90_1 e_1_2_10_19_2 e_1_2_10_71_2 e_1_2_10_117_1 e_1_2_10_19_3 e_1_2_10_94_1 e_1_2_10_3_2 Zamfir A. (e_1_2_10_8_2) 2010; 8 e_1_2_10_38_3 e_1_2_10_52_2 e_1_2_10_75_1 e_1_2_10_15_2 e_1_2_10_38_2 e_1_2_10_113_1 e_1_2_10_98_1 e_1_2_10_7_2 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_33_2 e_1_2_10_10_2 Li T.-Z. (e_1_2_10_39_2) 2020 e_1_2_10_83_2 e_1_2_10_106_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_87_2 e_1_2_10_102_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 Zhang L. (e_1_2_10_60_1) 2020 e_1_2_10_68_1 e_1_2_10_46_1 e_1_2_10_23_2 e_1_2_10_69_2 e_1_2_10_42_2 e_1_2_10_110_1 e_1_2_10_91_1 e_1_2_10_91_2 e_1_2_10_95_1 e_1_2_10_72_2 e_1_2_10_4_1 e_1_2_10_114_2 e_1_2_10_95_2 e_1_2_10_53_2 e_1_2_10_99_1 e_1_2_10_16_2 e_1_2_10_76_2 e_1_2_10_114_1 e_1_2_10_35_2 e_1_2_10_57_1 e_1_2_10_99_2 e_1_2_10_11_2 e_1_2_10_34_2 e_1_2_10_58_1 e_1_2_10_30_2 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_103_2 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_27_2 e_1_2_10_88_2 e_1_2_10_20_2 e_1_2_10_43_2 e_1_2_10_108_2 e_1_2_10_92_1 e_1_2_10_1_1 e_1_2_10_73_2 e_1_2_10_115_1 e_1_2_10_96_1 e_1_2_10_5_2 e_1_2_10_54_2 e_1_2_10_13_2 e_1_2_10_36_2 e_1_2_10_77_2 e_1_2_10_9_2 e_1_2_10_12_2 e_1_2_10_59_1 Lin X. (e_1_2_10_17_2) 2020 e_1_2_10_31_2 e_1_2_10_50_1 e_1_2_10_81_2 e_1_2_10_28_2 e_1_2_10_62_2 e_1_2_10_85_1 e_1_2_10_104_2 e_1_2_10_66_1 e_1_2_10_24_2 e_1_2_10_47_2 e_1_2_10_100_1 e_1_2_10_89_1 |
References_xml | – volume: 25 start-page: 15694 year: 2019 end-page: 15701 publication-title: Chem. Eur. J. – volume: 132 59 start-page: 11470 11374 year: 2020 2020 end-page: 11474 11378 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 7 start-page: 95 year: 2005 end-page: 98 publication-title: Org. Lett. – volume: 62 start-page: 650 year: 1999 end-page: 652 publication-title: J. Nat. Prod. – volume: 8 start-page: 5262 year: 2010 end-page: 5276 publication-title: Org. Biomol. Chem. – volume: 5 start-page: 422 year: 2014 end-page: 427 publication-title: ACS Med. Chem. Lett. – volume: 62 start-page: 904 year: 1999 end-page: 905 publication-title: J. Nat. Prod. – volume: 49 start-page: 286 year: 2020 end-page: 300 publication-title: Chem. Soc. Rev. – volume: 50 start-page: 5547 year: 2007 end-page: 5549 publication-title: J. Med. Chem. – volume: 137 start-page: 15062 year: 2015 end-page: 15065 publication-title: J. Am. Chem. Soc. – volume: 115 start-page: 11239 year: 2015 end-page: 11300 publication-title: Chem. Rev. – volume: 38 start-page: 543 year: 2020 end-page: 552 publication-title: Chin. J. Chem. – volume: 20 start-page: 16103 year: 2015 end-page: 16126 publication-title: Molecules – volume: 53 start-page: 12385 year: 2017 end-page: 12393 publication-title: Chem. Commun. – volume: 129 56 start-page: 16526 16308 year: 2017 2017 end-page: 16530 16312 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 123 start-page: 2703 year: 2001 end-page: 2711 publication-title: J. Am. Chem. Soc. – volume: 47 start-page: 1990 year: 2015 end-page: 2016 publication-title: Synthesis – volume: 21 start-page: 6000 year: 2019 end-page: 6004 publication-title: Org. Lett. – volume: 103 start-page: 3029 year: 2003 end-page: 3070 publication-title: Chem. Rev. – volume: 15 start-page: 2939 year: 2020 end-page: 2951 publication-title: Chem. Asian J. – volume: 12 start-page: 1355 year: 1992 end-page: 1362 publication-title: Anticancer Res. – start-page: 1929 year: 2010 end-page: 1982 publication-title: Synthesis – volume: 8 start-page: 624 year: 2018 end-page: 643 publication-title: ACS Catal. – volume: 131 58 start-page: 3046 3014 year: 2019 2019 end-page: 3052 3020 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 72 start-page: 276 year: 2009 end-page: 279 publication-title: J. Nat. Prod. – volume: 22 start-page: 6966 year: 2020 end-page: 6971 publication-title: Org. Lett. – volume: 40 start-page: 1404 year: 2020 end-page: 1405 publication-title: Chin. J. Org. Chem. – volume: 28 start-page: 53 year: 2018 end-page: 60 publication-title: Bioorg. Med. Chem. Lett. – volume: 43 start-page: 819 year: 2014 end-page: 833 publication-title: Chem. Soc. Rev. – volume: 38 start-page: 583 year: 2020 end-page: 589 publication-title: Chin. J. Chem. – year: 2020 publication-title: Chin. J. Chem. – volume: 142 start-page: 15686 year: 2020 end-page: 15696 publication-title: J. Am. Chem. Soc. – volume: 43 start-page: 2387 year: 2017 end-page: 2399 publication-title: Res. Chem. Intermediat. – volume: 44 start-page: 1156 year: 2011 end-page: 1171 publication-title: Acc. Chem. Res. – volume: 129 56 start-page: 15555 15353 year: 2017 2017 end-page: 15559 15357 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 17 start-page: 6952 year: 2019 end-page: 6963 publication-title: Org. Biomol. Chem. – volume: 130 57 start-page: 6359 6251 year: 2018 2018 end-page: 6363 6255 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 41 start-page: 2096 year: 1993 end-page: 2100 publication-title: Chem. Pharm. Bull. – volume: 4 start-page: 34594 year: 2014 end-page: 34603 publication-title: RSC Adv. – volume: 362 start-page: 3081 year: 2020 end-page: 3099 publication-title: Adv. Synth. Catal. – volume: 21 start-page: 5336 year: 2011 end-page: 5341 publication-title: Bioorg. Med. Chem. Lett. – volume: 56 start-page: 7265 year: 2020 end-page: 7268 publication-title: Chem. Commun. – volume: 38 start-page: 213 year: 2020 end-page: 214 publication-title: Chin. J. Chem. – volume: 10 start-page: 409 year: 2018 end-page: 422 publication-title: Future Med. Chem. – volume: 55 start-page: 12715 year: 2019 end-page: 12718 publication-title: Chem. Commun. – volume: 15 start-page: 4506 year: 2017 end-page: 4516 publication-title: Org. Biomol. Chem. – volume: 53 start-page: 425 year: 2020 end-page: 446 publication-title: Acc. Chem. Res. – volume: 25 start-page: 265 year: 2013 end-page: 274 publication-title: Chirality – volume: 79 start-page: 5391 year: 2014 end-page: 5400 publication-title: J. Org. Chem. – volume: 138 start-page: 5202 year: 2016 end-page: 5205 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 15489 year: 2017 publication-title: Nat. Commun. – volume: 7 start-page: 2255 year: 2020 end-page: 2262 publication-title: Org. Chem. Front. – volume: 52 start-page: 199 year: 2019 end-page: 215 publication-title: Acc. Chem. Res. – volume: 131 58 start-page: 15248 15104 year: 2019 2019 end-page: 15254 15110 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 173 start-page: 216 year: 2017 end-page: 230 publication-title: J. Photochem. Photobiol. B-Biol. – volume: 104 start-page: 3628 year: 1982 end-page: 3635 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 58 year: 2018 end-page: 64 publication-title: Nat. Chem. – volume: 83 start-page: 10060 year: 2018 end-page: 10069 publication-title: J. Org. Chem. – volume: 83 start-page: 1275 year: 2012 end-page: 1280 publication-title: Fitoterapia – volume: 55 start-page: 11168 year: 2019 end-page: 11170 publication-title: Chem. Commun. – volume: 55 start-page: 6891 year: 2014 end-page: 6894 publication-title: Tetrahedron Lett. – volume: 107 start-page: 5744 year: 2007 end-page: 5758 publication-title: Chem. Rev. – volume: 56 start-page: 12648 year: 2020 end-page: 12651 publication-title: Chem. Commun. – volume: 14 start-page: 1930 year: 2019 end-page: 1939 publication-title: ACS Chem. Biol. – volume: 6 start-page: 442 year: 2010 end-page: 448 publication-title: Nat. Chem. Biol. – volume: 57 start-page: 5845 year: 2014 end-page: 5859 publication-title: J. Med. Chem. – volume: 129 56 start-page: 122 116 year: 2017 2017 end-page: 127 121 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 10 start-page: 4268 year: 2019 publication-title: Nat. Commun. – volume: 121 48 start-page: 6516 6398 year: 2009 2009 end-page: 6520 6401 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 138 start-page: 10413 year: 2016 end-page: 10416 publication-title: J. Am. Chem. Soc. – volume: 114 start-page: 9047 year: 2014 end-page: 9153 publication-title: Chem. Rev. – volume: 132 59 start-page: 6841 6775 year: 2020 2020 end-page: 6845 6779 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 126 start-page: 5356 year: 2004 end-page: 5357 publication-title: J. Am. Chem. Soc. – volume: 85 start-page: 10152 year: 2020 end-page: 10166 publication-title: J. Org. Chem. – year: 2020 publication-title: Angew. Chem. – volume: 10 start-page: 629 year: 2008 end-page: 631 publication-title: Org. Lett. – volume: 10 start-page: 566 year: 2019 publication-title: Nat. Commun. – volume: 7 start-page: 10677 year: 2016 publication-title: Nat. Commun. – volume: 116 43 start-page: 1592 1566 year: 2004 2004 end-page: 1594 1568 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – year: 2020 publication-title: Chem. Eur. J. – volume: 142 start-page: 2161 year: 2020 end-page: 2167 publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 2198 year: 2019 end-page: 2202 publication-title: Synlett – volume: 139 start-page: 1714 year: 2017 end-page: 1717 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 505 year: 2011 end-page: 513 publication-title: ChemMedChem – volume: 11 start-page: 4591 year: 2013 end-page: 4601 publication-title: Org. Biomol. Chem. – volume: 6 start-page: 2046 year: 2020 end-page: 2059 publication-title: Chem – volume: 32 start-page: 1562 year: 2015 end-page: 1583 publication-title: Nat. Prod. Rep. – volume: 42 start-page: 4462 year: 1999 end-page: 4470 publication-title: J. Med. Chem. – volume: 51 start-page: 534 year: 2018 end-page: 547 publication-title: Acc. Chem. Res. – volume: 10 start-page: 6777 year: 2019 end-page: 6784 publication-title: Chem. Sci. – volume: 8 start-page: 2981 year: 2018 end-page: 2988 publication-title: ACS Catal. – volume: 141 start-page: 6698 year: 2019 end-page: 6705 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 2450 year: 2020 end-page: 2468 publication-title: Synthesis – volume: 35 start-page: 4097 year: 2008 end-page: 4112 publication-title: Chem. Commun. – volume: 58 start-page: 6607 year: 2015 end-page: 6618 publication-title: J. Med. Chem. – volume: 21 start-page: 4831 year: 2019 end-page: 4836 publication-title: Org. Lett. – volume: 22 start-page: 6382 year: 2020 end-page: 6387 publication-title: Org. Lett. – volume: 308 start-page: 131 year: 2016 end-page: 190 publication-title: Coord. Chem. Rev. – volume: 132 59 start-page: 12723 12623 year: 2020 2020 end-page: 12734 12634 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 63 start-page: 2597 year: 1998 end-page: 2600 publication-title: J. Org. Chem. – volume: 18 start-page: 8827 year: 2012 end-page: 8834 publication-title: Chem. Eur. J. – volume: 16 start-page: 4753 year: 2018 end-page: 4777 publication-title: Org. Biomol. Chem. – volume: 131 58 start-page: 15971 15824 year: 2019 2019 end-page: 15975 15828 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – ident: e_1_2_10_32_2 doi: 10.1039/C7OB00908A – ident: e_1_2_10_97_1 doi: 10.1002/cjoc.202000131 – ident: e_1_2_10_20_2 doi: 10.1002/chir.22145 – ident: e_1_2_10_108_2 doi: 10.1002/chem.201103278 – ident: e_1_2_10_75_1 – ident: e_1_2_10_88_2 doi: 10.1002/anie.202000585 – ident: e_1_2_10_81_2 doi: 10.1021/jacs.5b10152 – ident: e_1_2_10_96_1 doi: 10.1002/chem.201904213 – ident: e_1_2_10_117_1 doi: 10.1039/D0CC02380A – ident: e_1_2_10_105_2 doi: 10.1021/np980495u – ident: e_1_2_10_116_1 doi: 10.1039/C9CC06360A – ident: e_1_2_10_112_2 doi: 10.1039/C4RA02917H – ident: e_1_2_10_69_2 doi: 10.1021/ja00377a014 – ident: e_1_2_10_114_2 doi: 10.1002/anie.201709182 – ident: e_1_2_10_88_1 doi: 10.1002/ange.202000585 – ident: e_1_2_10_3_2 doi: 10.1021/ja0491533 – ident: e_1_2_10_26_1 – ident: e_1_2_10_31_2 doi: 10.1016/j.ccr.2015.07.006 – ident: e_1_2_10_40_2 doi: 10.1002/adsc.202000354 – ident: e_1_2_10_47_2 doi: 10.1038/nchembio.370 – ident: e_1_2_10_29_1 – ident: e_1_2_10_103_2 doi: 10.1016/j.fitote.2012.06.005 – ident: e_1_2_10_77_2 doi: 10.1021/acs.orglett.0c02519 – ident: e_1_2_10_37_2 doi: 10.1039/C9OB01304K – ident: e_1_2_10_85_1 doi: 10.1039/C9SC00810A – ident: e_1_2_10_66_1 doi: 10.1021/jacs.6b09634 – ident: e_1_2_10_4_1 – ident: e_1_2_10_114_1 doi: 10.1002/ange.201709182 – ident: e_1_2_10_22_2 doi: 10.1002/cmdc.201000485 – ident: e_1_2_10_27_2 doi: 10.1021/cr020049i – ident: e_1_2_10_38_3 doi: 10.1002/anie.202002518 – ident: e_1_2_10_61_1 – ident: e_1_2_10_48_2 doi: 10.1021/ml500002n – ident: e_1_2_10_62_2 doi: 10.1021/ol702952n – ident: e_1_2_10_80_1 – ident: e_1_2_10_33_2 doi: 10.1039/C7CC06863H – ident: e_1_2_10_102_1 – ident: e_1_2_10_82_2 doi: 10.1021/jacs.6b01458 – ident: e_1_2_10_99_2 doi: 10.1002/anie.201802963 – ident: e_1_2_10_2_3 doi: 10.1002/anie.200353240 – ident: e_1_2_10_90_1 doi: 10.1039/D0CC05432A – ident: e_1_2_10_95_1 doi: 10.1002/ange.202004671 – ident: e_1_2_10_52_2 doi: 10.1021/acscatal.7b03759 – ident: e_1_2_10_55_1 doi: 10.1021/jacs.6b06009 – ident: e_1_2_10_58_1 doi: 10.1039/D0QO00534G – ident: e_1_2_10_46_1 – ident: e_1_2_10_95_2 doi: 10.1002/anie.202004671 – ident: e_1_2_10_13_2 doi: 10.1039/C8OB00900G – ident: e_1_2_10_30_2 doi: 10.1021/acs.chemrev.5b00136 – ident: e_1_2_10_99_1 doi: 10.1002/ange.201802963 – ident: e_1_2_10_25_2 doi: 10.1021/acschembio.9b00407 – volume: 8 start-page: 5262 year: 2010 ident: e_1_2_10_8_2 publication-title: Org. Biomol. Chem. – year: 2020 ident: e_1_2_10_60_1 publication-title: Angew. Chem. – ident: e_1_2_10_53_2 doi: 10.1021/jo500512s – ident: e_1_2_10_5_2 doi: 10.1021/cr068374j – ident: e_1_2_10_104_2 doi: 10.1021/np980511n – ident: e_1_2_10_84_1 doi: 10.1021/acs.orglett.9b02143 – ident: e_1_2_10_9_2 doi: 10.1021/ar2000343 – ident: e_1_2_10_65_1 doi: 10.1016/j.tetlet.2014.10.101 – ident: e_1_2_10_98_1 doi: 10.1021/jm4017625 – ident: e_1_2_10_45_2 doi: 10.1021/jacs.0c00208 – ident: e_1_2_10_101_1 doi: 10.1021/acs.orglett.0c02214 – ident: e_1_2_10_68_1 – ident: e_1_2_10_6_2 doi: 10.1039/b807577h – ident: e_1_2_10_44_2 doi: 10.1021/jacs.9b12299 – year: 2020 ident: e_1_2_10_17_2 publication-title: Chin. J. Chem. – ident: e_1_2_10_100_1 doi: 10.1021/jacs.9b01911 – ident: e_1_2_10_12_2 doi: 10.3390/molecules200916103 – ident: e_1_2_10_57_1 doi: 10.1055/s-0039-1690228 – ident: e_1_2_10_73_2 doi: 10.1016/j.bmcl.2011.07.021 – ident: e_1_2_10_14_2 doi: 10.1002/cjoc.201900472 – ident: e_1_2_10_23_2 doi: 10.4155/fmc-2017-0152 – ident: e_1_2_10_89_1 doi: 10.1016/j.chempr.2020.06.001 – ident: e_1_2_10_2_2 doi: 10.1002/ange.200353240 – ident: e_1_2_10_74_2 doi: 10.1007/s11164-016-2768-4 – ident: e_1_2_10_16_2 doi: 10.1021/acs.accounts.9b00549 – ident: e_1_2_10_92_1 doi: 10.1021/acs.joc.0c01528 – ident: e_1_2_10_56_1 doi: 10.1021/acs.orglett.9b01731 – volume: 12 start-page: 1355 year: 1992 ident: e_1_2_10_111_2 publication-title: Anticancer Res. – ident: e_1_2_10_87_2 doi: 10.1002/anie.201909855 – ident: e_1_2_10_63_2 doi: 10.1021/np800632f – ident: e_1_2_10_79_1 doi: 10.1038/nchem.2866 – ident: e_1_2_10_35_2 doi: 10.1021/acs.accounts.7b00602 – ident: e_1_2_10_78_1 doi: 10.1002/ange.201608150 – ident: e_1_2_10_50_1 doi: 10.1016/j.jphotobiol.2017.05.043 – ident: e_1_2_10_93_1 doi: 10.1002/cjoc.202000022 – ident: e_1_2_10_64_1 doi: 10.1021/jm990150o – ident: e_1_2_10_115_1 doi: 10.1038/ncomms10677 – ident: e_1_2_10_18_1 – ident: e_1_2_10_1_1 – ident: e_1_2_10_94_1 doi: 10.1038/s41467-019-12269-4 – ident: e_1_2_10_7_2 doi: 10.1055/s-0029-1218801 – ident: e_1_2_10_24_2 doi: 10.1016/j.bmcl.2017.11.050 – ident: e_1_2_10_36_2 doi: 10.1021/acs.accounts.8b00473 – ident: e_1_2_10_59_1 doi: 10.1039/C9CC05097C – ident: e_1_2_10_76_2 doi: 10.1021/acs.joc.8b01390 – ident: e_1_2_10_109_2 doi: 10.1021/ol047824w – ident: e_1_2_10_28_2 doi: 10.1039/C3CS60302D – ident: e_1_2_10_83_2 doi: 10.1002/anie.201710537 – ident: e_1_2_10_110_1 – ident: e_1_2_10_11_2 doi: 10.1055/s-0034-1378837 – ident: e_1_2_10_38_2 doi: 10.1002/ange.202002518 – ident: e_1_2_10_70_2 doi: 10.1248/cpb.41.2096 – ident: e_1_2_10_21_2 doi: 10.1039/C4NP00121D – ident: e_1_2_10_54_2 doi: 10.1039/c3ob40360b – ident: e_1_2_10_83_1 doi: 10.1002/ange.201710537 – ident: e_1_2_10_107_1 – ident: e_1_2_10_91_1 doi: 10.1002/ange.201811177 – ident: e_1_2_10_91_2 doi: 10.1002/anie.201811177 – ident: e_1_2_10_67_1 doi: 10.1038/s41467-019-08447-z – ident: e_1_2_10_10_2 doi: 10.1021/cr5001496 – ident: e_1_2_10_51_1 – ident: e_1_2_10_86_1 doi: 10.1002/ange.201908279 – ident: e_1_2_10_49_1 doi: 10.1021/jm070851i – ident: e_1_2_10_15_2 doi: 10.1039/C8CS00436F – ident: e_1_2_10_43_2 doi: 10.6023/cjoc202000027 – ident: e_1_2_10_19_3 doi: 10.1002/anie.200901719 – ident: e_1_2_10_113_1 doi: 10.1038/ncomms15489 – ident: e_1_2_10_71_2 doi: 10.1021/ja003488c – ident: e_1_2_10_78_2 doi: 10.1002/anie.201608150 – ident: e_1_2_10_72_2 doi: 10.1021/acs.jmedchem.5b00736 – ident: e_1_2_10_41_2 doi: 10.1055/s-0040-1707814 – ident: e_1_2_10_19_2 doi: 10.1002/ange.200901719 – ident: e_1_2_10_86_2 doi: 10.1002/anie.201908279 – ident: e_1_2_10_42_2 doi: 10.1002/asia.202000681 – ident: e_1_2_10_106_1 doi: 10.1021/jo972105z – year: 2020 ident: e_1_2_10_39_2 publication-title: Chem. Eur. J. – ident: e_1_2_10_34_2 doi: 10.1021/acscatal.7b04337 – ident: e_1_2_10_87_1 doi: 10.1002/ange.201909855 |
SSID | ssj0069375 |
Score | 2.5037353 |
SecondaryResourceType | review_article |
Snippet | The past two decades have witnessed unprecedented development and advancement of chiral phosphoric acid catalysis. Therefore, it is not surprising that the... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1271 |
SubjectTerms | Acids Atropisomerism Catalysis Chemical reactions Chiral phosphoric acid Enantioselectivity Heterocycle Phosphates Phosphoric acid Pyrazole Quinoline Substrates |
Title | Chiral Phosphoric Acid: A Powerful Organocatalyst for the Asymmetric Synthesis of Heterocycles with Chiral Atropisomerism |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcctc.202001750 https://www.proquest.com/docview/2496949534 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBZp9tBeSp807bboUOhhcbu2_Ih68zpdwkLLQrOwN2PJMgls4rB2Du5P6K_ujCXLNmxfe3GMMrGI5tPMSP40Q8h7iMED9AUOmDrh-CxUDtxwJxcqL9wsCLO2asnXb-Hyyr-4Dq4nk58D1tKhFh_ljzvPldxHq9AGesVTsv-hWftQaIB70C9cQcNw_ScdJ-sNnq-_XJfVfo3JPk5iucn1YfNLLH-GBOT2tGXZbtM0VW1phXHVbLdYTkuefG920GIykyyRH1PKBtlyepfW9BLXt-V-U5X4isekHewyHKzVNslq_LAbNuus3YMFY2LpFIvSeMmWTaC0kVmAXCdwcTBQNbsQnqZhBQPDOQeDi4lltF8ZtukCSNbasgGqgoHpdD1di8W4YfCb_E4Tr1PGStkmoERGWBSc9s6se4FvJYM_y7aePElWif3-ATnyIojDpuQoPlucnXd-PYRADgmx9p92KUBPvU_jHsYhTr9uGa5-2vBl9YQ8NusOGmsQPSUTtXtGHiZdub_npNFqpj2YKILpM41pByU6hhIFKFEADu2hRC2UaFnQIZQoQomaPsZQekGuzr-skqVj6nI4kmGdolyAa5rDHJduFEkuFWOs8HkWBCIMVVjMFfO4EhE6D-ZLiJh9WBTnvuIFFxBwspdkuit36hWh3OeFqySTvJjDQtgTbhG5fiBdJiCwZNGMON1QptIkrcfaKTepTrftpTj0qR36Gflg5fc6XctvJY87zaRmSlep5_OQI-PanxGv1dZfnpKOoPP6Pj96Qx71E-qYTOvbg3oLgW4t3hkE_gK8U58F |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chiral+Phosphoric+Acid%3A+A+Powerful+Organocatalyst+for+the+Asymmetric+Synthesis+of+Heterocycles+with+Chiral+Atropisomerism&rft.jtitle=ChemCatChem&rft.au=Shao%2C+You%E2%80%90Dong&rft.au=Cheng%2C+Dao%E2%80%90Juan&rft.date=2021-03-05&rft.issn=1867-3880&rft.eissn=1867-3899&rft.volume=13&rft.issue=5&rft.spage=1271&rft.epage=1289&rft_id=info:doi/10.1002%2Fcctc.202001750&rft.externalDBID=10.1002%252Fcctc.202001750&rft.externalDocID=CCTC202001750 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-3880&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-3880&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-3880&client=summon |