Chiral Phosphoric Acid: A Powerful Organocatalyst for the Asymmetric Synthesis of Heterocycles with Chiral Atropisomerism

The past two decades have witnessed unprecedented development and advancement of chiral phosphoric acid catalysis. Therefore, it is not surprising that the attempts to synthesize enantioenriched axially chiral compounds via chiral phosphoric acid catalysis have achieved fruitful results in recent ye...

Full description

Saved in:
Bibliographic Details
Published inChemCatChem Vol. 13; no. 5; pp. 1271 - 1289
Main Authors Shao, You‐Dong, Cheng, Dao‐Juan
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 05.03.2021
Subjects
Online AccessGet full text
ISSN1867-3880
1867-3899
DOI10.1002/cctc.202001750

Cover

Abstract The past two decades have witnessed unprecedented development and advancement of chiral phosphoric acid catalysis. Therefore, it is not surprising that the attempts to synthesize enantioenriched axially chiral compounds via chiral phosphoric acid catalysis have achieved fruitful results in recent years although this area of research is still in its infancy. A number of structurally important heterocycles with chiral atropisomerism have been successfully designed and prepared by chiral phosphoric acid promoted transformations involving diverse strategies: including direct coupling, de novo formation of a heterocyclic ring and functionalization of prochiral or racemic substrates. In this minireview, we would like to highlight the advances in the field of atropisomeric heterocycles construction enabled by chiral phosphoric acid catalysis. In addition, this Minireview is organized based on the different types of atropisomeric heterocyclic frameworks generated covering quinoline, pyrrole, indole, benzimidazole, quinazolinone, isoindolinone, urazole, pyrazole and so on. We hope that this Minireview will motivate continuous interest on chiral phosphoric acid catalyzed atroposelective reactions. Organocatalysis: The advances in the field of chiral phosphoric acid catalyzed reactions for the asymmetric synthesis of heterocycles with chiral atropisomerism, including quinoline, pyrrole, indole, benzimidazole, quinazolinone, isoindolinone, urazole and pyrazole were reviewed. The substrates scope, mechanisms, limitations and applications were discussed.
AbstractList The past two decades have witnessed unprecedented development and advancement of chiral phosphoric acid catalysis. Therefore, it is not surprising that the attempts to synthesize enantioenriched axially chiral compounds via chiral phosphoric acid catalysis have achieved fruitful results in recent years although this area of research is still in its infancy. A number of structurally important heterocycles with chiral atropisomerism have been successfully designed and prepared by chiral phosphoric acid promoted transformations involving diverse strategies: including direct coupling, de novo formation of a heterocyclic ring and functionalization of prochiral or racemic substrates. In this minireview, we would like to highlight the advances in the field of atropisomeric heterocycles construction enabled by chiral phosphoric acid catalysis. In addition, this Minireview is organized based on the different types of atropisomeric heterocyclic frameworks generated covering quinoline, pyrrole, indole, benzimidazole, quinazolinone, isoindolinone, urazole, pyrazole and so on. We hope that this Minireview will motivate continuous interest on chiral phosphoric acid catalyzed atroposelective reactions.
The past two decades have witnessed unprecedented development and advancement of chiral phosphoric acid catalysis. Therefore, it is not surprising that the attempts to synthesize enantioenriched axially chiral compounds via chiral phosphoric acid catalysis have achieved fruitful results in recent years although this area of research is still in its infancy. A number of structurally important heterocycles with chiral atropisomerism have been successfully designed and prepared by chiral phosphoric acid promoted transformations involving diverse strategies: including direct coupling, de novo formation of a heterocyclic ring and functionalization of prochiral or racemic substrates. In this minireview, we would like to highlight the advances in the field of atropisomeric heterocycles construction enabled by chiral phosphoric acid catalysis. In addition, this Minireview is organized based on the different types of atropisomeric heterocyclic frameworks generated covering quinoline, pyrrole, indole, benzimidazole, quinazolinone, isoindolinone, urazole, pyrazole and so on. We hope that this Minireview will motivate continuous interest on chiral phosphoric acid catalyzed atroposelective reactions.
The past two decades have witnessed unprecedented development and advancement of chiral phosphoric acid catalysis. Therefore, it is not surprising that the attempts to synthesize enantioenriched axially chiral compounds via chiral phosphoric acid catalysis have achieved fruitful results in recent years although this area of research is still in its infancy. A number of structurally important heterocycles with chiral atropisomerism have been successfully designed and prepared by chiral phosphoric acid promoted transformations involving diverse strategies: including direct coupling, de novo formation of a heterocyclic ring and functionalization of prochiral or racemic substrates. In this minireview, we would like to highlight the advances in the field of atropisomeric heterocycles construction enabled by chiral phosphoric acid catalysis. In addition, this Minireview is organized based on the different types of atropisomeric heterocyclic frameworks generated covering quinoline, pyrrole, indole, benzimidazole, quinazolinone, isoindolinone, urazole, pyrazole and so on. We hope that this Minireview will motivate continuous interest on chiral phosphoric acid catalyzed atroposelective reactions. Organocatalysis: The advances in the field of chiral phosphoric acid catalyzed reactions for the asymmetric synthesis of heterocycles with chiral atropisomerism, including quinoline, pyrrole, indole, benzimidazole, quinazolinone, isoindolinone, urazole and pyrazole were reviewed. The substrates scope, mechanisms, limitations and applications were discussed.
Author Shao, You‐Dong
Cheng, Dao‐Juan
Author_xml – sequence: 1
  givenname: You‐Dong
  surname: Shao
  fullname: Shao, You‐Dong
  organization: Heze University
– sequence: 2
  givenname: Dao‐Juan
  orcidid: 0000-0001-7834-7563
  surname: Cheng
  fullname: Cheng, Dao‐Juan
  email: chengdaojuan0614@163.com
  organization: Anhui University of Chinese Medicine
BookMark eNqFkMFLwzAYxYNMcJtePQc8byZN0zTeSlEnDDZwnkuWfbUZbTOTjNH_3o6NCYJ4-h6P9_sevBEatLYFhO4pmVJCoketg55GJCKECk6u0JCmiZiwVMrBRafkBo283xKSSCb4EHV5ZZyq8bKyfldZZzTOtNk84Qwv7QFcua_xwn2q1moVVN35gEvrcKgAZ75rGghH5L1re8cbj22JZxDAWd3pGjw-mFDhc0cWnN0Zbxtwxje36LpUtYe78x2jj5fnVT6bzBevb3k2n2hGBZls1iRNU8qJpkJoqYExVsZScb5OEkjKFFgkYS0EI5TFmlMeC842MchSrqPeG6OH09-ds1978KHY2r1r-8oiimUiY8lZ3KfiU0o7672DstAmqGBsG5wydUFJcRy5OI5cXEbusekvbOdMo1z3NyBPwMHU0P2TLvJ8lf-w32vckoo
CitedBy_id crossref_primary_10_1002_anie_202218871
crossref_primary_10_1055_a_1833_8979
crossref_primary_10_1055_a_1965_2928
crossref_primary_10_1002_ange_202404545
crossref_primary_10_1039_D4QO00807C
crossref_primary_10_1021_acs_orglett_3c00384
crossref_primary_10_1002_anie_202213692
crossref_primary_10_1039_D3QO02125D
crossref_primary_10_1039_D1CC03568A
crossref_primary_10_1039_D2QO01209J
crossref_primary_10_1002_tcr_202200284
crossref_primary_10_1021_acsomega_4c04206
crossref_primary_10_1021_acs_chemrev_4c00869
crossref_primary_10_1002_slct_202300204
crossref_primary_10_1016_j_checat_2024_100918
crossref_primary_10_1039_D3CC05329F
crossref_primary_10_1002_ajoc_202300374
crossref_primary_10_6023_cjoc202304015
crossref_primary_10_1021_acs_orglett_2c00461
crossref_primary_10_1021_acs_orglett_3c04261
crossref_primary_10_1021_jacs_3c12015
crossref_primary_10_1002_adsc_202301484
crossref_primary_10_1016_j_mcat_2022_112648
crossref_primary_10_1021_acscatal_2c00064
crossref_primary_10_1002_anie_202404545
crossref_primary_10_1002_anie_202108747
crossref_primary_10_1039_D1CC00590A
crossref_primary_10_2139_ssrn_4145115
crossref_primary_10_1002_ange_202410112
crossref_primary_10_1039_D3OB00212H
crossref_primary_10_1002_chir_23478
crossref_primary_10_1039_D1CC03117A
crossref_primary_10_2174_0113852728331488240828074740
crossref_primary_10_1039_D3SC00610G
crossref_primary_10_3390_molecules27238517
crossref_primary_10_1016_j_molstruc_2023_136919
crossref_primary_10_59761_RCR5104
crossref_primary_10_1055_a_2003_2276
crossref_primary_10_1021_jacs_1c04648
crossref_primary_10_3390_molecules29143363
crossref_primary_10_3762_bjoc_17_185
crossref_primary_10_1002_ange_202218871
crossref_primary_10_1002_ange_202108747
crossref_primary_10_1038_s41467_023_41299_2
crossref_primary_10_1002_anie_202410112
crossref_primary_10_1039_D1RA06885G
crossref_primary_10_1002_ejoc_202200624
crossref_primary_10_1038_s44160_024_00533_5
crossref_primary_10_1055_a_2230_0759
crossref_primary_10_1021_acs_orglett_1c04330
crossref_primary_10_1039_D4OB01127A
crossref_primary_10_1002_cssc_202301604
crossref_primary_10_1039_D1SC05161J
crossref_primary_10_1055_a_1705_0307
crossref_primary_10_1002_ange_202213692
crossref_primary_10_1039_D3QO01083J
crossref_primary_10_1039_D3RA03438K
crossref_primary_10_1039_D3OB02011H
Cites_doi 10.1039/C7OB00908A
10.1002/cjoc.202000131
10.1002/chir.22145
10.1002/chem.201103278
10.1002/anie.202000585
10.1021/jacs.5b10152
10.1002/chem.201904213
10.1039/D0CC02380A
10.1021/np980495u
10.1039/C9CC06360A
10.1039/C4RA02917H
10.1021/ja00377a014
10.1002/anie.201709182
10.1002/ange.202000585
10.1021/ja0491533
10.1016/j.ccr.2015.07.006
10.1002/adsc.202000354
10.1038/nchembio.370
10.1016/j.fitote.2012.06.005
10.1021/acs.orglett.0c02519
10.1039/C9OB01304K
10.1039/C9SC00810A
10.1021/jacs.6b09634
10.1002/ange.201709182
10.1002/cmdc.201000485
10.1021/cr020049i
10.1002/anie.202002518
10.1021/ml500002n
10.1021/ol702952n
10.1039/C7CC06863H
10.1021/jacs.6b01458
10.1002/anie.201802963
10.1002/anie.200353240
10.1039/D0CC05432A
10.1002/ange.202004671
10.1021/acscatal.7b03759
10.1021/jacs.6b06009
10.1039/D0QO00534G
10.1002/anie.202004671
10.1039/C8OB00900G
10.1021/acs.chemrev.5b00136
10.1002/ange.201802963
10.1021/acschembio.9b00407
10.1021/jo500512s
10.1021/cr068374j
10.1021/np980511n
10.1021/acs.orglett.9b02143
10.1021/ar2000343
10.1016/j.tetlet.2014.10.101
10.1021/jm4017625
10.1021/jacs.0c00208
10.1021/acs.orglett.0c02214
10.1039/b807577h
10.1021/jacs.9b12299
10.1021/jacs.9b01911
10.3390/molecules200916103
10.1055/s-0039-1690228
10.1016/j.bmcl.2011.07.021
10.1002/cjoc.201900472
10.4155/fmc-2017-0152
10.1016/j.chempr.2020.06.001
10.1002/ange.200353240
10.1007/s11164-016-2768-4
10.1021/acs.accounts.9b00549
10.1021/acs.joc.0c01528
10.1021/acs.orglett.9b01731
10.1002/anie.201909855
10.1021/np800632f
10.1038/nchem.2866
10.1021/acs.accounts.7b00602
10.1002/ange.201608150
10.1016/j.jphotobiol.2017.05.043
10.1002/cjoc.202000022
10.1021/jm990150o
10.1038/ncomms10677
10.1038/s41467-019-12269-4
10.1055/s-0029-1218801
10.1016/j.bmcl.2017.11.050
10.1021/acs.accounts.8b00473
10.1039/C9CC05097C
10.1021/acs.joc.8b01390
10.1021/ol047824w
10.1039/C3CS60302D
10.1002/anie.201710537
10.1055/s-0034-1378837
10.1002/ange.202002518
10.1248/cpb.41.2096
10.1039/C4NP00121D
10.1039/c3ob40360b
10.1002/ange.201710537
10.1002/ange.201811177
10.1002/anie.201811177
10.1038/s41467-019-08447-z
10.1021/cr5001496
10.1002/ange.201908279
10.1021/jm070851i
10.1039/C8CS00436F
10.6023/cjoc202000027
10.1002/anie.200901719
10.1038/ncomms15489
10.1021/ja003488c
10.1002/anie.201608150
10.1021/acs.jmedchem.5b00736
10.1055/s-0040-1707814
10.1002/ange.200901719
10.1002/anie.201908279
10.1002/asia.202000681
10.1021/jo972105z
10.1021/acscatal.7b04337
10.1002/ange.201909855
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
DOI 10.1002/cctc.202001750
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1867-3899
EndPage 1289
ExternalDocumentID 10_1002_cctc_202001750
CCTC202001750
Genre reviewArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21602097; 21601006
GroupedDBID 05W
0R~
1OC
33P
4.4
5DZ
77Q
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
DCZOG
DRFUL
DRSTM
DU5
EBS
ESX
G-S
HGLYW
HZ~
I-F
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXSTM
MY~
NNB
O9-
P2W
P4E
ROL
SUPJJ
TUS
WBKPD
WOHZO
WXSBR
WYJ
XV2
ZZTAW
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c3170-db0888150c177c9ce333f49a55b66e6f8e329eb7730134c5154753d4e9f9b2013
ISSN 1867-3880
IngestDate Fri Jul 25 12:11:02 EDT 2025
Tue Jul 01 00:42:30 EDT 2025
Thu Apr 24 23:04:39 EDT 2025
Wed Jan 22 16:29:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3170-db0888150c177c9ce333f49a55b66e6f8e329eb7730134c5154753d4e9f9b2013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7834-7563
PQID 2496949534
PQPubID 986343
PageCount 19
ParticipantIDs proquest_journals_2496949534
crossref_citationtrail_10_1002_cctc_202001750
crossref_primary_10_1002_cctc_202001750
wiley_primary_10_1002_cctc_202001750_CCTC202001750
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 5, 2021
PublicationDateYYYYMMDD 2021-03-05
PublicationDate_xml – month: 03
  year: 2021
  text: March 5, 2021
  day: 05
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle ChemCatChem
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 8
2007; 107
2004; 126
2013; 25
2016; 308
2019; 52
2019; 55
2020; 362
2019; 10
2017; 43
2015; 32
2019; 14
2019; 17
2020; 15
2008; 35
1999; 42
1982; 104
2012; 18
2020; 56
2018; 83
1992; 12
2020; 7
2020; 6
2015; 47
2018; 8
2014; 5
2014; 4
2017 2017; 129 56
2020; 53
2013; 11
2015; 137
2020; 52
2019; 21
2019 2019; 131 58
2019; 25
2020; 49
2011; 21
2014; 57
2010; 6
2014; 55
2010; 8
2012; 83
2004 2004; 116 43
2018; 28
2001; 123
2015; 58
2019; 30
2020; 85
2010
2020; 40
2020; 142
2018 2018; 130 57
1993; 41
2020 2020; 132 59
2020; 38
2017; 173
2008; 10
2007; 50
1999; 62
1998; 63
2019; 141
2011; 6
2014; 114
2009 2009; 121 48
2014; 43
2017; 139
2017; 53
2016; 7
2015; 115
2017; 15
2009; 72
2020
2015; 20
2011; 44
2005; 7
2014; 79
2018; 51
2016; 138
2020; 22
2003; 103
2018; 10
2018; 16
e_1_2_10_44_2
Hall I. H. (e_1_2_10_111_2) 1992; 12
e_1_2_10_21_2
e_1_2_10_109_2
e_1_2_10_40_2
e_1_2_10_93_1
e_1_2_10_70_2
e_1_2_10_2_3
e_1_2_10_18_1
e_1_2_10_97_1
e_1_2_10_2_2
e_1_2_10_74_2
e_1_2_10_116_1
e_1_2_10_112_2
e_1_2_10_37_2
e_1_2_10_55_1
e_1_2_10_78_2
e_1_2_10_6_2
e_1_2_10_14_2
e_1_2_10_78_1
e_1_2_10_32_2
e_1_2_10_51_1
e_1_2_10_105_2
e_1_2_10_82_2
e_1_2_10_29_1
e_1_2_10_86_1
e_1_2_10_63_2
e_1_2_10_48_2
e_1_2_10_86_2
e_1_2_10_67_1
e_1_2_10_25_2
e_1_2_10_101_1
e_1_2_10_22_2
e_1_2_10_45_2
e_1_2_10_41_2
e_1_2_10_90_1
e_1_2_10_19_2
e_1_2_10_71_2
e_1_2_10_117_1
e_1_2_10_19_3
e_1_2_10_94_1
e_1_2_10_3_2
Zamfir A. (e_1_2_10_8_2) 2010; 8
e_1_2_10_38_3
e_1_2_10_52_2
e_1_2_10_75_1
e_1_2_10_15_2
e_1_2_10_38_2
e_1_2_10_113_1
e_1_2_10_98_1
e_1_2_10_7_2
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_33_2
e_1_2_10_10_2
Li T.-Z. (e_1_2_10_39_2) 2020
e_1_2_10_83_2
e_1_2_10_106_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_87_2
e_1_2_10_102_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
Zhang L. (e_1_2_10_60_1) 2020
e_1_2_10_68_1
e_1_2_10_46_1
e_1_2_10_23_2
e_1_2_10_69_2
e_1_2_10_42_2
e_1_2_10_110_1
e_1_2_10_91_1
e_1_2_10_91_2
e_1_2_10_95_1
e_1_2_10_72_2
e_1_2_10_4_1
e_1_2_10_114_2
e_1_2_10_95_2
e_1_2_10_53_2
e_1_2_10_99_1
e_1_2_10_16_2
e_1_2_10_76_2
e_1_2_10_114_1
e_1_2_10_35_2
e_1_2_10_57_1
e_1_2_10_99_2
e_1_2_10_11_2
e_1_2_10_34_2
e_1_2_10_58_1
e_1_2_10_30_2
e_1_2_10_80_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_103_2
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_27_2
e_1_2_10_88_2
e_1_2_10_20_2
e_1_2_10_43_2
e_1_2_10_108_2
e_1_2_10_92_1
e_1_2_10_1_1
e_1_2_10_73_2
e_1_2_10_115_1
e_1_2_10_96_1
e_1_2_10_5_2
e_1_2_10_54_2
e_1_2_10_13_2
e_1_2_10_36_2
e_1_2_10_77_2
e_1_2_10_9_2
e_1_2_10_12_2
e_1_2_10_59_1
Lin X. (e_1_2_10_17_2) 2020
e_1_2_10_31_2
e_1_2_10_50_1
e_1_2_10_81_2
e_1_2_10_28_2
e_1_2_10_62_2
e_1_2_10_85_1
e_1_2_10_104_2
e_1_2_10_66_1
e_1_2_10_24_2
e_1_2_10_47_2
e_1_2_10_100_1
e_1_2_10_89_1
References_xml – volume: 25
  start-page: 15694
  year: 2019
  end-page: 15701
  publication-title: Chem. Eur. J.
– volume: 132 59
  start-page: 11470 11374
  year: 2020 2020
  end-page: 11474 11378
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 7
  start-page: 95
  year: 2005
  end-page: 98
  publication-title: Org. Lett.
– volume: 62
  start-page: 650
  year: 1999
  end-page: 652
  publication-title: J. Nat. Prod.
– volume: 8
  start-page: 5262
  year: 2010
  end-page: 5276
  publication-title: Org. Biomol. Chem.
– volume: 5
  start-page: 422
  year: 2014
  end-page: 427
  publication-title: ACS Med. Chem. Lett.
– volume: 62
  start-page: 904
  year: 1999
  end-page: 905
  publication-title: J. Nat. Prod.
– volume: 49
  start-page: 286
  year: 2020
  end-page: 300
  publication-title: Chem. Soc. Rev.
– volume: 50
  start-page: 5547
  year: 2007
  end-page: 5549
  publication-title: J. Med. Chem.
– volume: 137
  start-page: 15062
  year: 2015
  end-page: 15065
  publication-title: J. Am. Chem. Soc.
– volume: 115
  start-page: 11239
  year: 2015
  end-page: 11300
  publication-title: Chem. Rev.
– volume: 38
  start-page: 543
  year: 2020
  end-page: 552
  publication-title: Chin. J. Chem.
– volume: 20
  start-page: 16103
  year: 2015
  end-page: 16126
  publication-title: Molecules
– volume: 53
  start-page: 12385
  year: 2017
  end-page: 12393
  publication-title: Chem. Commun.
– volume: 129 56
  start-page: 16526 16308
  year: 2017 2017
  end-page: 16530 16312
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 123
  start-page: 2703
  year: 2001
  end-page: 2711
  publication-title: J. Am. Chem. Soc.
– volume: 47
  start-page: 1990
  year: 2015
  end-page: 2016
  publication-title: Synthesis
– volume: 21
  start-page: 6000
  year: 2019
  end-page: 6004
  publication-title: Org. Lett.
– volume: 103
  start-page: 3029
  year: 2003
  end-page: 3070
  publication-title: Chem. Rev.
– volume: 15
  start-page: 2939
  year: 2020
  end-page: 2951
  publication-title: Chem. Asian J.
– volume: 12
  start-page: 1355
  year: 1992
  end-page: 1362
  publication-title: Anticancer Res.
– start-page: 1929
  year: 2010
  end-page: 1982
  publication-title: Synthesis
– volume: 8
  start-page: 624
  year: 2018
  end-page: 643
  publication-title: ACS Catal.
– volume: 131 58
  start-page: 3046 3014
  year: 2019 2019
  end-page: 3052 3020
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 72
  start-page: 276
  year: 2009
  end-page: 279
  publication-title: J. Nat. Prod.
– volume: 22
  start-page: 6966
  year: 2020
  end-page: 6971
  publication-title: Org. Lett.
– volume: 40
  start-page: 1404
  year: 2020
  end-page: 1405
  publication-title: Chin. J. Org. Chem.
– volume: 28
  start-page: 53
  year: 2018
  end-page: 60
  publication-title: Bioorg. Med. Chem. Lett.
– volume: 43
  start-page: 819
  year: 2014
  end-page: 833
  publication-title: Chem. Soc. Rev.
– volume: 38
  start-page: 583
  year: 2020
  end-page: 589
  publication-title: Chin. J. Chem.
– year: 2020
  publication-title: Chin. J. Chem.
– volume: 142
  start-page: 15686
  year: 2020
  end-page: 15696
  publication-title: J. Am. Chem. Soc.
– volume: 43
  start-page: 2387
  year: 2017
  end-page: 2399
  publication-title: Res. Chem. Intermediat.
– volume: 44
  start-page: 1156
  year: 2011
  end-page: 1171
  publication-title: Acc. Chem. Res.
– volume: 129 56
  start-page: 15555 15353
  year: 2017 2017
  end-page: 15559 15357
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 17
  start-page: 6952
  year: 2019
  end-page: 6963
  publication-title: Org. Biomol. Chem.
– volume: 130 57
  start-page: 6359 6251
  year: 2018 2018
  end-page: 6363 6255
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 41
  start-page: 2096
  year: 1993
  end-page: 2100
  publication-title: Chem. Pharm. Bull.
– volume: 4
  start-page: 34594
  year: 2014
  end-page: 34603
  publication-title: RSC Adv.
– volume: 362
  start-page: 3081
  year: 2020
  end-page: 3099
  publication-title: Adv. Synth. Catal.
– volume: 21
  start-page: 5336
  year: 2011
  end-page: 5341
  publication-title: Bioorg. Med. Chem. Lett.
– volume: 56
  start-page: 7265
  year: 2020
  end-page: 7268
  publication-title: Chem. Commun.
– volume: 38
  start-page: 213
  year: 2020
  end-page: 214
  publication-title: Chin. J. Chem.
– volume: 10
  start-page: 409
  year: 2018
  end-page: 422
  publication-title: Future Med. Chem.
– volume: 55
  start-page: 12715
  year: 2019
  end-page: 12718
  publication-title: Chem. Commun.
– volume: 15
  start-page: 4506
  year: 2017
  end-page: 4516
  publication-title: Org. Biomol. Chem.
– volume: 53
  start-page: 425
  year: 2020
  end-page: 446
  publication-title: Acc. Chem. Res.
– volume: 25
  start-page: 265
  year: 2013
  end-page: 274
  publication-title: Chirality
– volume: 79
  start-page: 5391
  year: 2014
  end-page: 5400
  publication-title: J. Org. Chem.
– volume: 138
  start-page: 5202
  year: 2016
  end-page: 5205
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 15489
  year: 2017
  publication-title: Nat. Commun.
– volume: 7
  start-page: 2255
  year: 2020
  end-page: 2262
  publication-title: Org. Chem. Front.
– volume: 52
  start-page: 199
  year: 2019
  end-page: 215
  publication-title: Acc. Chem. Res.
– volume: 131 58
  start-page: 15248 15104
  year: 2019 2019
  end-page: 15254 15110
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 173
  start-page: 216
  year: 2017
  end-page: 230
  publication-title: J. Photochem. Photobiol. B-Biol.
– volume: 104
  start-page: 3628
  year: 1982
  end-page: 3635
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 58
  year: 2018
  end-page: 64
  publication-title: Nat. Chem.
– volume: 83
  start-page: 10060
  year: 2018
  end-page: 10069
  publication-title: J. Org. Chem.
– volume: 83
  start-page: 1275
  year: 2012
  end-page: 1280
  publication-title: Fitoterapia
– volume: 55
  start-page: 11168
  year: 2019
  end-page: 11170
  publication-title: Chem. Commun.
– volume: 55
  start-page: 6891
  year: 2014
  end-page: 6894
  publication-title: Tetrahedron Lett.
– volume: 107
  start-page: 5744
  year: 2007
  end-page: 5758
  publication-title: Chem. Rev.
– volume: 56
  start-page: 12648
  year: 2020
  end-page: 12651
  publication-title: Chem. Commun.
– volume: 14
  start-page: 1930
  year: 2019
  end-page: 1939
  publication-title: ACS Chem. Biol.
– volume: 6
  start-page: 442
  year: 2010
  end-page: 448
  publication-title: Nat. Chem. Biol.
– volume: 57
  start-page: 5845
  year: 2014
  end-page: 5859
  publication-title: J. Med. Chem.
– volume: 129 56
  start-page: 122 116
  year: 2017 2017
  end-page: 127 121
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 10
  start-page: 4268
  year: 2019
  publication-title: Nat. Commun.
– volume: 121 48
  start-page: 6516 6398
  year: 2009 2009
  end-page: 6520 6401
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 138
  start-page: 10413
  year: 2016
  end-page: 10416
  publication-title: J. Am. Chem. Soc.
– volume: 114
  start-page: 9047
  year: 2014
  end-page: 9153
  publication-title: Chem. Rev.
– volume: 132 59
  start-page: 6841 6775
  year: 2020 2020
  end-page: 6845 6779
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 126
  start-page: 5356
  year: 2004
  end-page: 5357
  publication-title: J. Am. Chem. Soc.
– volume: 85
  start-page: 10152
  year: 2020
  end-page: 10166
  publication-title: J. Org. Chem.
– year: 2020
  publication-title: Angew. Chem.
– volume: 10
  start-page: 629
  year: 2008
  end-page: 631
  publication-title: Org. Lett.
– volume: 10
  start-page: 566
  year: 2019
  publication-title: Nat. Commun.
– volume: 7
  start-page: 10677
  year: 2016
  publication-title: Nat. Commun.
– volume: 116 43
  start-page: 1592 1566
  year: 2004 2004
  end-page: 1594 1568
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– year: 2020
  publication-title: Chem. Eur. J.
– volume: 142
  start-page: 2161
  year: 2020
  end-page: 2167
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: 2198
  year: 2019
  end-page: 2202
  publication-title: Synlett
– volume: 139
  start-page: 1714
  year: 2017
  end-page: 1717
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 505
  year: 2011
  end-page: 513
  publication-title: ChemMedChem
– volume: 11
  start-page: 4591
  year: 2013
  end-page: 4601
  publication-title: Org. Biomol. Chem.
– volume: 6
  start-page: 2046
  year: 2020
  end-page: 2059
  publication-title: Chem
– volume: 32
  start-page: 1562
  year: 2015
  end-page: 1583
  publication-title: Nat. Prod. Rep.
– volume: 42
  start-page: 4462
  year: 1999
  end-page: 4470
  publication-title: J. Med. Chem.
– volume: 51
  start-page: 534
  year: 2018
  end-page: 547
  publication-title: Acc. Chem. Res.
– volume: 10
  start-page: 6777
  year: 2019
  end-page: 6784
  publication-title: Chem. Sci.
– volume: 8
  start-page: 2981
  year: 2018
  end-page: 2988
  publication-title: ACS Catal.
– volume: 141
  start-page: 6698
  year: 2019
  end-page: 6705
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 2450
  year: 2020
  end-page: 2468
  publication-title: Synthesis
– volume: 35
  start-page: 4097
  year: 2008
  end-page: 4112
  publication-title: Chem. Commun.
– volume: 58
  start-page: 6607
  year: 2015
  end-page: 6618
  publication-title: J. Med. Chem.
– volume: 21
  start-page: 4831
  year: 2019
  end-page: 4836
  publication-title: Org. Lett.
– volume: 22
  start-page: 6382
  year: 2020
  end-page: 6387
  publication-title: Org. Lett.
– volume: 308
  start-page: 131
  year: 2016
  end-page: 190
  publication-title: Coord. Chem. Rev.
– volume: 132 59
  start-page: 12723 12623
  year: 2020 2020
  end-page: 12734 12634
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 63
  start-page: 2597
  year: 1998
  end-page: 2600
  publication-title: J. Org. Chem.
– volume: 18
  start-page: 8827
  year: 2012
  end-page: 8834
  publication-title: Chem. Eur. J.
– volume: 16
  start-page: 4753
  year: 2018
  end-page: 4777
  publication-title: Org. Biomol. Chem.
– volume: 131 58
  start-page: 15971 15824
  year: 2019 2019
  end-page: 15975 15828
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– ident: e_1_2_10_32_2
  doi: 10.1039/C7OB00908A
– ident: e_1_2_10_97_1
  doi: 10.1002/cjoc.202000131
– ident: e_1_2_10_20_2
  doi: 10.1002/chir.22145
– ident: e_1_2_10_108_2
  doi: 10.1002/chem.201103278
– ident: e_1_2_10_75_1
– ident: e_1_2_10_88_2
  doi: 10.1002/anie.202000585
– ident: e_1_2_10_81_2
  doi: 10.1021/jacs.5b10152
– ident: e_1_2_10_96_1
  doi: 10.1002/chem.201904213
– ident: e_1_2_10_117_1
  doi: 10.1039/D0CC02380A
– ident: e_1_2_10_105_2
  doi: 10.1021/np980495u
– ident: e_1_2_10_116_1
  doi: 10.1039/C9CC06360A
– ident: e_1_2_10_112_2
  doi: 10.1039/C4RA02917H
– ident: e_1_2_10_69_2
  doi: 10.1021/ja00377a014
– ident: e_1_2_10_114_2
  doi: 10.1002/anie.201709182
– ident: e_1_2_10_88_1
  doi: 10.1002/ange.202000585
– ident: e_1_2_10_3_2
  doi: 10.1021/ja0491533
– ident: e_1_2_10_26_1
– ident: e_1_2_10_31_2
  doi: 10.1016/j.ccr.2015.07.006
– ident: e_1_2_10_40_2
  doi: 10.1002/adsc.202000354
– ident: e_1_2_10_47_2
  doi: 10.1038/nchembio.370
– ident: e_1_2_10_29_1
– ident: e_1_2_10_103_2
  doi: 10.1016/j.fitote.2012.06.005
– ident: e_1_2_10_77_2
  doi: 10.1021/acs.orglett.0c02519
– ident: e_1_2_10_37_2
  doi: 10.1039/C9OB01304K
– ident: e_1_2_10_85_1
  doi: 10.1039/C9SC00810A
– ident: e_1_2_10_66_1
  doi: 10.1021/jacs.6b09634
– ident: e_1_2_10_4_1
– ident: e_1_2_10_114_1
  doi: 10.1002/ange.201709182
– ident: e_1_2_10_22_2
  doi: 10.1002/cmdc.201000485
– ident: e_1_2_10_27_2
  doi: 10.1021/cr020049i
– ident: e_1_2_10_38_3
  doi: 10.1002/anie.202002518
– ident: e_1_2_10_61_1
– ident: e_1_2_10_48_2
  doi: 10.1021/ml500002n
– ident: e_1_2_10_62_2
  doi: 10.1021/ol702952n
– ident: e_1_2_10_80_1
– ident: e_1_2_10_33_2
  doi: 10.1039/C7CC06863H
– ident: e_1_2_10_102_1
– ident: e_1_2_10_82_2
  doi: 10.1021/jacs.6b01458
– ident: e_1_2_10_99_2
  doi: 10.1002/anie.201802963
– ident: e_1_2_10_2_3
  doi: 10.1002/anie.200353240
– ident: e_1_2_10_90_1
  doi: 10.1039/D0CC05432A
– ident: e_1_2_10_95_1
  doi: 10.1002/ange.202004671
– ident: e_1_2_10_52_2
  doi: 10.1021/acscatal.7b03759
– ident: e_1_2_10_55_1
  doi: 10.1021/jacs.6b06009
– ident: e_1_2_10_58_1
  doi: 10.1039/D0QO00534G
– ident: e_1_2_10_46_1
– ident: e_1_2_10_95_2
  doi: 10.1002/anie.202004671
– ident: e_1_2_10_13_2
  doi: 10.1039/C8OB00900G
– ident: e_1_2_10_30_2
  doi: 10.1021/acs.chemrev.5b00136
– ident: e_1_2_10_99_1
  doi: 10.1002/ange.201802963
– ident: e_1_2_10_25_2
  doi: 10.1021/acschembio.9b00407
– volume: 8
  start-page: 5262
  year: 2010
  ident: e_1_2_10_8_2
  publication-title: Org. Biomol. Chem.
– year: 2020
  ident: e_1_2_10_60_1
  publication-title: Angew. Chem.
– ident: e_1_2_10_53_2
  doi: 10.1021/jo500512s
– ident: e_1_2_10_5_2
  doi: 10.1021/cr068374j
– ident: e_1_2_10_104_2
  doi: 10.1021/np980511n
– ident: e_1_2_10_84_1
  doi: 10.1021/acs.orglett.9b02143
– ident: e_1_2_10_9_2
  doi: 10.1021/ar2000343
– ident: e_1_2_10_65_1
  doi: 10.1016/j.tetlet.2014.10.101
– ident: e_1_2_10_98_1
  doi: 10.1021/jm4017625
– ident: e_1_2_10_45_2
  doi: 10.1021/jacs.0c00208
– ident: e_1_2_10_101_1
  doi: 10.1021/acs.orglett.0c02214
– ident: e_1_2_10_68_1
– ident: e_1_2_10_6_2
  doi: 10.1039/b807577h
– ident: e_1_2_10_44_2
  doi: 10.1021/jacs.9b12299
– year: 2020
  ident: e_1_2_10_17_2
  publication-title: Chin. J. Chem.
– ident: e_1_2_10_100_1
  doi: 10.1021/jacs.9b01911
– ident: e_1_2_10_12_2
  doi: 10.3390/molecules200916103
– ident: e_1_2_10_57_1
  doi: 10.1055/s-0039-1690228
– ident: e_1_2_10_73_2
  doi: 10.1016/j.bmcl.2011.07.021
– ident: e_1_2_10_14_2
  doi: 10.1002/cjoc.201900472
– ident: e_1_2_10_23_2
  doi: 10.4155/fmc-2017-0152
– ident: e_1_2_10_89_1
  doi: 10.1016/j.chempr.2020.06.001
– ident: e_1_2_10_2_2
  doi: 10.1002/ange.200353240
– ident: e_1_2_10_74_2
  doi: 10.1007/s11164-016-2768-4
– ident: e_1_2_10_16_2
  doi: 10.1021/acs.accounts.9b00549
– ident: e_1_2_10_92_1
  doi: 10.1021/acs.joc.0c01528
– ident: e_1_2_10_56_1
  doi: 10.1021/acs.orglett.9b01731
– volume: 12
  start-page: 1355
  year: 1992
  ident: e_1_2_10_111_2
  publication-title: Anticancer Res.
– ident: e_1_2_10_87_2
  doi: 10.1002/anie.201909855
– ident: e_1_2_10_63_2
  doi: 10.1021/np800632f
– ident: e_1_2_10_79_1
  doi: 10.1038/nchem.2866
– ident: e_1_2_10_35_2
  doi: 10.1021/acs.accounts.7b00602
– ident: e_1_2_10_78_1
  doi: 10.1002/ange.201608150
– ident: e_1_2_10_50_1
  doi: 10.1016/j.jphotobiol.2017.05.043
– ident: e_1_2_10_93_1
  doi: 10.1002/cjoc.202000022
– ident: e_1_2_10_64_1
  doi: 10.1021/jm990150o
– ident: e_1_2_10_115_1
  doi: 10.1038/ncomms10677
– ident: e_1_2_10_18_1
– ident: e_1_2_10_1_1
– ident: e_1_2_10_94_1
  doi: 10.1038/s41467-019-12269-4
– ident: e_1_2_10_7_2
  doi: 10.1055/s-0029-1218801
– ident: e_1_2_10_24_2
  doi: 10.1016/j.bmcl.2017.11.050
– ident: e_1_2_10_36_2
  doi: 10.1021/acs.accounts.8b00473
– ident: e_1_2_10_59_1
  doi: 10.1039/C9CC05097C
– ident: e_1_2_10_76_2
  doi: 10.1021/acs.joc.8b01390
– ident: e_1_2_10_109_2
  doi: 10.1021/ol047824w
– ident: e_1_2_10_28_2
  doi: 10.1039/C3CS60302D
– ident: e_1_2_10_83_2
  doi: 10.1002/anie.201710537
– ident: e_1_2_10_110_1
– ident: e_1_2_10_11_2
  doi: 10.1055/s-0034-1378837
– ident: e_1_2_10_38_2
  doi: 10.1002/ange.202002518
– ident: e_1_2_10_70_2
  doi: 10.1248/cpb.41.2096
– ident: e_1_2_10_21_2
  doi: 10.1039/C4NP00121D
– ident: e_1_2_10_54_2
  doi: 10.1039/c3ob40360b
– ident: e_1_2_10_83_1
  doi: 10.1002/ange.201710537
– ident: e_1_2_10_107_1
– ident: e_1_2_10_91_1
  doi: 10.1002/ange.201811177
– ident: e_1_2_10_91_2
  doi: 10.1002/anie.201811177
– ident: e_1_2_10_67_1
  doi: 10.1038/s41467-019-08447-z
– ident: e_1_2_10_10_2
  doi: 10.1021/cr5001496
– ident: e_1_2_10_51_1
– ident: e_1_2_10_86_1
  doi: 10.1002/ange.201908279
– ident: e_1_2_10_49_1
  doi: 10.1021/jm070851i
– ident: e_1_2_10_15_2
  doi: 10.1039/C8CS00436F
– ident: e_1_2_10_43_2
  doi: 10.6023/cjoc202000027
– ident: e_1_2_10_19_3
  doi: 10.1002/anie.200901719
– ident: e_1_2_10_113_1
  doi: 10.1038/ncomms15489
– ident: e_1_2_10_71_2
  doi: 10.1021/ja003488c
– ident: e_1_2_10_78_2
  doi: 10.1002/anie.201608150
– ident: e_1_2_10_72_2
  doi: 10.1021/acs.jmedchem.5b00736
– ident: e_1_2_10_41_2
  doi: 10.1055/s-0040-1707814
– ident: e_1_2_10_19_2
  doi: 10.1002/ange.200901719
– ident: e_1_2_10_86_2
  doi: 10.1002/anie.201908279
– ident: e_1_2_10_42_2
  doi: 10.1002/asia.202000681
– ident: e_1_2_10_106_1
  doi: 10.1021/jo972105z
– year: 2020
  ident: e_1_2_10_39_2
  publication-title: Chem. Eur. J.
– ident: e_1_2_10_34_2
  doi: 10.1021/acscatal.7b04337
– ident: e_1_2_10_87_1
  doi: 10.1002/ange.201909855
SSID ssj0069375
Score 2.5037353
SecondaryResourceType review_article
Snippet The past two decades have witnessed unprecedented development and advancement of chiral phosphoric acid catalysis. Therefore, it is not surprising that the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1271
SubjectTerms Acids
Atropisomerism
Catalysis
Chemical reactions
Chiral phosphoric acid
Enantioselectivity
Heterocycle
Phosphates
Phosphoric acid
Pyrazole
Quinoline
Substrates
Title Chiral Phosphoric Acid: A Powerful Organocatalyst for the Asymmetric Synthesis of Heterocycles with Chiral Atropisomerism
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcctc.202001750
https://www.proquest.com/docview/2496949534
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBZp9tBeSp807bboUOhhcbu2_Ih68zpdwkLLQrOwN2PJMgls4rB2Du5P6K_ujCXLNmxfe3GMMrGI5tPMSP40Q8h7iMED9AUOmDrh-CxUDtxwJxcqL9wsCLO2asnXb-Hyyr-4Dq4nk58D1tKhFh_ljzvPldxHq9AGesVTsv-hWftQaIB70C9cQcNw_ScdJ-sNnq-_XJfVfo3JPk5iucn1YfNLLH-GBOT2tGXZbtM0VW1phXHVbLdYTkuefG920GIykyyRH1PKBtlyepfW9BLXt-V-U5X4isekHewyHKzVNslq_LAbNuus3YMFY2LpFIvSeMmWTaC0kVmAXCdwcTBQNbsQnqZhBQPDOQeDi4lltF8ZtukCSNbasgGqgoHpdD1di8W4YfCb_E4Tr1PGStkmoERGWBSc9s6se4FvJYM_y7aePElWif3-ATnyIojDpuQoPlucnXd-PYRADgmx9p92KUBPvU_jHsYhTr9uGa5-2vBl9YQ8NusOGmsQPSUTtXtGHiZdub_npNFqpj2YKILpM41pByU6hhIFKFEADu2hRC2UaFnQIZQoQomaPsZQekGuzr-skqVj6nI4kmGdolyAa5rDHJduFEkuFWOs8HkWBCIMVVjMFfO4EhE6D-ZLiJh9WBTnvuIFFxBwspdkuit36hWh3OeFqySTvJjDQtgTbhG5fiBdJiCwZNGMON1QptIkrcfaKTepTrftpTj0qR36Gflg5fc6XctvJY87zaRmSlep5_OQI-PanxGv1dZfnpKOoPP6Pj96Qx71E-qYTOvbg3oLgW4t3hkE_gK8U58F
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chiral+Phosphoric+Acid%3A+A+Powerful+Organocatalyst+for+the+Asymmetric+Synthesis+of+Heterocycles+with+Chiral+Atropisomerism&rft.jtitle=ChemCatChem&rft.au=Shao%2C+You%E2%80%90Dong&rft.au=Cheng%2C+Dao%E2%80%90Juan&rft.date=2021-03-05&rft.issn=1867-3880&rft.eissn=1867-3899&rft.volume=13&rft.issue=5&rft.spage=1271&rft.epage=1289&rft_id=info:doi/10.1002%2Fcctc.202001750&rft.externalDBID=10.1002%252Fcctc.202001750&rft.externalDocID=CCTC202001750
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-3880&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-3880&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-3880&client=summon