Organic−Inorganic Manganese Bromide Hybrids with Water‐Triggered Luminescence for Rewritable Paper
Stimuli‐responsive luminescent material‐based rewritable paper has received great attention for its potential application in a wide range of areas from anti‐counterfeiting to information encryption. Herein, a photoluminescence (PL) rewritable paper based on an organic metal halide, trans‐2,5‐dimethy...
Saved in:
Published in | Advanced optical materials Vol. 10; no. 4 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.02.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2195-1071 2195-1071 |
DOI | 10.1002/adom.202101700 |
Cover
Abstract | Stimuli‐responsive luminescent material‐based rewritable paper has received great attention for its potential application in a wide range of areas from anti‐counterfeiting to information encryption. Herein, a photoluminescence (PL) rewritable paper based on an organic metal halide, trans‐2,5‐dimethylpiperazine manganese(II) bromide (C6N2H16MnBr4) (1), is reported. This 0D organic metal halide hybrid exhibits green emission centered at 548 nm originating from 4T1–6A1 transition of tetrahedrally coordinated Mn2+ ions with a PL quantum efficiency of 82%. Interestingly, complex 1 can be transformed into the non‐emissive hydrated phase C6N2H16MnBr4(H2O)2 (2) by uptake of coordinating water molecules, wherein Mn2+ adopts a quasi‐octahedral coordination sphere. The reversible single‐crystal structure transformation between the hydrated and dehydrated phases can switch the PL on and off. Rewritable PL paper has been fabricated by coating complex 1 on filter paper, which exhibits high resolution and excellent “write‐erase‐write” cycle capability. This work presents a new avenue for low‐dimensional lead‐free organic metal halide hybrids toward multilevel information security applications.
Water molecule‐triggered reversible structural transformation between two organic metal halide hybrids, tetrahedral C6H16N2MnBr4 (1) and octahedral C6H16N2MnBr4(H2O)2 (2), accompanied with photoluminescence (PL) on/off has been presented in this work. These heat, vacuum, and moisture‐responsive materials are used to fabricate rewritable paper which shows good resolution and contrast, and great recycling. |
---|---|
AbstractList | Stimuli‐responsive luminescent material‐based rewritable paper has received great attention for its potential application in a wide range of areas from anti‐counterfeiting to information encryption. Herein, a photoluminescence (PL) rewritable paper based on an organic metal halide, trans‐2,5‐dimethylpiperazine manganese(II) bromide (C6N2H16MnBr4) (1), is reported. This 0D organic metal halide hybrid exhibits green emission centered at 548 nm originating from 4T1–6A1 transition of tetrahedrally coordinated Mn2+ ions with a PL quantum efficiency of 82%. Interestingly, complex 1 can be transformed into the non‐emissive hydrated phase C6N2H16MnBr4(H2O)2 (2) by uptake of coordinating water molecules, wherein Mn2+ adopts a quasi‐octahedral coordination sphere. The reversible single‐crystal structure transformation between the hydrated and dehydrated phases can switch the PL on and off. Rewritable PL paper has been fabricated by coating complex 1 on filter paper, which exhibits high resolution and excellent “write‐erase‐write” cycle capability. This work presents a new avenue for low‐dimensional lead‐free organic metal halide hybrids toward multilevel information security applications.
Water molecule‐triggered reversible structural transformation between two organic metal halide hybrids, tetrahedral C6H16N2MnBr4 (1) and octahedral C6H16N2MnBr4(H2O)2 (2), accompanied with photoluminescence (PL) on/off has been presented in this work. These heat, vacuum, and moisture‐responsive materials are used to fabricate rewritable paper which shows good resolution and contrast, and great recycling. Stimuli‐responsive luminescent material‐based rewritable paper has received great attention for its potential application in a wide range of areas from anti‐counterfeiting to information encryption. Herein, a photoluminescence (PL) rewritable paper based on an organic metal halide, trans ‐2,5‐dimethylpiperazine manganese(II) bromide (C 6 N 2 H 16 MnBr 4 ) (1), is reported. This 0D organic metal halide hybrid exhibits green emission centered at 548 nm originating from 4 T 1 – 6 A 1 transition of tetrahedrally coordinated Mn 2+ ions with a PL quantum efficiency of 82%. Interestingly, complex 1 can be transformed into the non‐emissive hydrated phase C 6 N 2 H 16 MnBr 4 (H 2 O) 2 (2) by uptake of coordinating water molecules, wherein Mn 2+ adopts a quasi‐octahedral coordination sphere. The reversible single‐crystal structure transformation between the hydrated and dehydrated phases can switch the PL on and off. Rewritable PL paper has been fabricated by coating complex 1 on filter paper, which exhibits high resolution and excellent “write‐erase‐write” cycle capability. This work presents a new avenue for low‐dimensional lead‐free organic metal halide hybrids toward multilevel information security applications. Stimuli‐responsive luminescent material‐based rewritable paper has received great attention for its potential application in a wide range of areas from anti‐counterfeiting to information encryption. Herein, a photoluminescence (PL) rewritable paper based on an organic metal halide, trans‐2,5‐dimethylpiperazine manganese(II) bromide (C6N2H16MnBr4) (1), is reported. This 0D organic metal halide hybrid exhibits green emission centered at 548 nm originating from 4T1–6A1 transition of tetrahedrally coordinated Mn2+ ions with a PL quantum efficiency of 82%. Interestingly, complex 1 can be transformed into the non‐emissive hydrated phase C6N2H16MnBr4(H2O)2 (2) by uptake of coordinating water molecules, wherein Mn2+ adopts a quasi‐octahedral coordination sphere. The reversible single‐crystal structure transformation between the hydrated and dehydrated phases can switch the PL on and off. Rewritable PL paper has been fabricated by coating complex 1 on filter paper, which exhibits high resolution and excellent “write‐erase‐write” cycle capability. This work presents a new avenue for low‐dimensional lead‐free organic metal halide hybrids toward multilevel information security applications. |
Author | Zang, Shuang‐Quan Sun, Meng‐En Liu, Hua‐Li Ru, Hua‐Yang Wang, Zhao‐Yang |
Author_xml | – sequence: 1 givenname: Hua‐Li surname: Liu fullname: Liu, Hua‐Li organization: Zhengzhou University – sequence: 2 givenname: Hua‐Yang surname: Ru fullname: Ru, Hua‐Yang organization: Zhengzhou University – sequence: 3 givenname: Meng‐En surname: Sun fullname: Sun, Meng‐En organization: Zhengzhou University – sequence: 4 givenname: Zhao‐Yang surname: Wang fullname: Wang, Zhao‐Yang organization: Zhengzhou University – sequence: 5 givenname: Shuang‐Quan orcidid: 0000-0002-6728-0559 surname: Zang fullname: Zang, Shuang‐Quan email: zangsqzg@zzu.edu.cn organization: Zhengzhou University |
BookMark | eNqFkE1LAzEURYMoWGu3rgOuW18yX5llrR8ttFSk4nLIZN7UlM6kZqaU7ly6FH9if4kpIyqCuElu4Jy8xz0hh6UpkZAzBj0GwC9kZooeB86ARQAHpMVZHHQZROzwRz4mnapaAIB7eLEftUg-tXNZarV7fR-Vpsl0IksXsEJ6aU2hM6TDbWp1VtGNrp_oo6zR7l7eZlbP52gxo-N1oR2vsFRIc2PpPW6srmW6RHonV2hPyVEulxV2Pu82ebi5ng2G3fH0djToj7vKc3u7U4lA8DQUPIJI8ByjlIVRwCEUQZSlcRxj6AWgZMhS4SGAzzMWpoGvhFACvDY5b_5dWfO8xqpOFmZtSzcy4aHnaOHacZTfUMqaqrKYJ8otW2tT1lbqZcIg2Zea7EtNvkp1Wu-XtrK6kHb7txA3wkYvcfsPnfSvppNv9wP1po0t |
CitedBy_id | crossref_primary_10_1021_acsmaterialslett_2c00658 crossref_primary_10_3390_ijms24043280 crossref_primary_10_1002_smll_202205981 crossref_primary_10_1002_adma_202408777 crossref_primary_10_1002_ange_202309230 crossref_primary_10_1021_acsami_2c18363 crossref_primary_10_1039_D3DT03284A crossref_primary_10_1021_acsami_4c09396 crossref_primary_10_1021_acs_cgd_4c00755 crossref_primary_10_1002_anie_202425661 crossref_primary_10_1021_acssuschemeng_4c08832 crossref_primary_10_1039_D4TC01344A crossref_primary_10_1039_D3CC02093B crossref_primary_10_1002_advs_202400879 crossref_primary_10_1002_lpor_202400440 crossref_primary_10_1002_adom_202202997 crossref_primary_10_1002_ange_202419333 crossref_primary_10_34133_research_0094 crossref_primary_10_1039_D2DT03831E crossref_primary_10_1021_acs_inorgchem_3c02823 crossref_primary_10_1002_anie_202410416 crossref_primary_10_3390_nano13121890 crossref_primary_10_1088_1361_6463_ac7264 crossref_primary_10_1016_j_jallcom_2025_178551 crossref_primary_10_1021_acs_inorgchem_3c03326 crossref_primary_10_1002_lpor_202401982 crossref_primary_10_1039_D2TC04727F crossref_primary_10_3390_cryst13121678 crossref_primary_10_1002_adma_202303611 crossref_primary_10_1021_acs_inorgchem_3c03924 crossref_primary_10_1002_adma_202301914 crossref_primary_10_1002_ange_202425661 crossref_primary_10_1002_adom_202300449 crossref_primary_10_3390_nano15060442 crossref_primary_10_1002_lpor_202400856 crossref_primary_10_1021_acsami_4c05411 crossref_primary_10_3390_molecules30061319 crossref_primary_10_1002_ange_202306853 crossref_primary_10_1039_D4QI02194K crossref_primary_10_1002_anie_202309230 crossref_primary_10_1002_smo_20230028 crossref_primary_10_1039_D4MH01172D crossref_primary_10_34133_research_0259 crossref_primary_10_1002_adom_202402641 crossref_primary_10_1021_acs_inorgchem_3c00422 crossref_primary_10_1039_D2QI01224C crossref_primary_10_1039_D4TC03040K crossref_primary_10_1016_j_cej_2024_151655 crossref_primary_10_1002_ange_202410416 crossref_primary_10_1007_s11426_024_2345_0 crossref_primary_10_1002_adom_202301010 crossref_primary_10_1002_anie_202419333 crossref_primary_10_1039_D4QI03036B crossref_primary_10_1002_anie_202306853 crossref_primary_10_1002_agt2_574 crossref_primary_10_1039_D3TC04431A |
Cites_doi | 10.1016/j.matt.2019.08.016 10.1038/s41467-020-18119-y 10.1021/acs.inorgchem.9b02374 10.1080/21663831.2018.1500951 10.1002/anie.201814564 10.1038/nnano.2016.110 10.1038/s41467-018-07211-z 10.1021/jacs.8b05037 10.1002/adma.201705310 10.1021/acs.chemmater.9b03782 10.1039/C5TC01246E 10.1021/acsnano.0c07289 10.1016/j.matt.2020.05.018 10.1002/anie.201602445 10.1039/D0CE00057D 10.1002/adom.202000985 10.1039/C7CC01107E 10.1021/jacs.0c00156 10.1039/C8SC04711A 10.1039/D0DT00514B 10.1021/jacs.0c06039 10.1126/sciadv.abc2181 10.1016/j.ccr.2020.213331 10.1038/nmat1401 10.1126/science.aav7911 10.1021/jacs.5b01680 10.1021/jacs.5b08290 10.1021/acsami.8b14625 10.1002/adfm.202009973 10.1038/ncomms14051 10.1016/j.nanoen.2021.106166 10.1039/C6TC01075J 10.1002/anie.202012383 10.1002/adfm.202011191 10.1039/D1CC02353E 10.1002/anie.202105413 10.1039/D0DT03948A 10.1039/D0NR01889A 10.1038/natrevmats.2016.99 10.1002/adma.201605739 10.1103/PhysRevB.27.41 10.1021/acs.chemrev.5b00715 10.1002/adfm.202100855 10.1002/anie.202005933 10.1002/anie.201903945 10.1021/acs.jpclett.0c01933 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7U5 8FD H8D L7M |
DOI | 10.1002/adom.202101700 |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2195-1071 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adom_202101700 ADOM202101700 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 92061201; 21825106 – fundername: Program for Science & Technology Innovation Talents in Universities of Henan Province funderid: 164100510005 |
GroupedDBID | 0R~ 1OC 33P 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZFZN AZVAB BFHJK BMXJE BRXPI D-B DCZOG DPXWK EBS G-S HGLYW HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- P2W R.K ROL SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW 31~ AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION EJD GODZA 7SP 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY H8D L7M |
ID | FETCH-LOGICAL-c3170-c3c8582b68270782fe7b1675206857db999e6350ca61b83e0042d16b54c88c803 |
ISSN | 2195-1071 |
IngestDate | Fri Jul 25 11:53:38 EDT 2025 Tue Jul 01 00:35:48 EDT 2025 Thu Apr 24 22:54:12 EDT 2025 Wed Jan 22 16:26:05 EST 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3170-c3c8582b68270782fe7b1675206857db999e6350ca61b83e0042d16b54c88c803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6728-0559 |
PQID | 2630428700 |
PQPubID | 2034581 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2630428700 crossref_citationtrail_10_1002_adom_202101700 crossref_primary_10_1002_adom_202101700 wiley_primary_10_1002_adom_202101700_ADOM202101700 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced optical materials |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018 2015 2018; 9 3 10 2016; 4 2020 2017 2021; 49 29 31 2021; 57 2020; 6 2017 2020; 53 11 2016 2020; 55 59 2018 2019 2015; 140 31 137 2015; 137 2019 2020; 58 12 2020; 142 2019; 1 2017 2021; 8 87 2019; 58 2021 2020; 31 3 2021 2021 2021 2019 2020; 60 60 50 58 22 2016 2017 2018 2019 2016; 116 2 6 364 11 2021 2020 2020 2020 2020 2019; 31 11 8 416 142 10 2018 2005 2020; 30 4 14 1983; 27 e_1_2_8_7_5 e_1_2_8_8_4 e_1_2_8_9_3 e_1_2_8_7_4 e_1_2_8_8_3 e_1_2_8_9_2 e_1_2_8_8_6 e_1_2_8_8_5 e_1_2_8_1_3 e_1_2_8_2_2 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_2_1 e_1_2_8_3_3 e_1_2_8_4_2 e_1_2_8_5_1 e_1_2_8_3_2 e_1_2_8_4_1 e_1_2_8_4_4 e_1_2_8_7_1 e_1_2_8_4_3 e_1_2_8_6_1 e_1_2_8_7_3 e_1_2_8_8_2 e_1_2_8_9_1 e_1_2_8_4_5 e_1_2_8_7_2 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_20_2 e_1_2_8_1_1 e_1_2_8_16_2 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_13_2 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_15_2 e_1_2_8_16_1 e_1_2_8_10_1 e_1_2_8_10_2 e_1_2_8_11_1 e_1_2_8_10_3 e_1_2_8_12_1 |
References_xml | – volume: 9 3 10 start-page: 4819 7897 year: 2018 2015 2018 publication-title: Nat. Commun. J. Mater. Chem. C ACS Appl. Mater. Interfaces – volume: 140 31 137 start-page: 8110 4928 year: 2018 2019 2015 publication-title: J. Am. Chem. Soc. Chem. Mater. J. Am. Chem. Soc. – volume: 31 11 8 416 142 10 start-page: 4329 3836 year: 2021 2020 2020 2020 2020 2019 publication-title: Adv. Funct. Mater. Nat. Commun. Adv. Opt. Mater. Coord. Chem. Rev. J. Am. Chem. Soc. Chem. Sci. – volume: 53 11 start-page: 5954 5956 year: 2017 2020 publication-title: Chem. Commun. J. Phys. Chem. Lett. – volume: 49 29 31 start-page: 5662 year: 2020 2017 2021 publication-title: Dalton Trans. Adv. Mater. Adv. Funct. Mater. – volume: 30 4 14 start-page: 546 year: 2018 2005 2020 publication-title: Adv. Mater. Nat. Mater. ACS Nano – volume: 142 start-page: 6649 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 8 87 year: 2017 2021 publication-title: Nat. Commun. Nano Energy – volume: 55 59 start-page: 7231 year: 2016 2020 publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 116 2 6 364 11 start-page: 4558 552 475 872 year: 2016 2017 2018 2019 2016 publication-title: Chem. Rev. Nat. Rev. Mater. Mater. Res. Lett. Science Nat. Nanotechnol. – volume: 58 12 start-page: 5277 year: 2019 2020 publication-title: Angew. Chem., Int. Ed. Nanoscale – volume: 1 start-page: 1644 year: 2019 publication-title: Matter – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 137 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 60 60 50 58 22 start-page: 3699 2001 3395 year: 2021 2021 2021 2019 2020 publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Dalton Trans. Inorg. Chem. CrystEngComm – volume: 31 3 start-page: 892 year: 2021 2020 publication-title: Adv. Funct. Mater. Matter – volume: 4 start-page: 9651 year: 2016 publication-title: J. Mater. Chem. C – volume: 27 start-page: 41 year: 1983 publication-title: Phys. Rev. B – volume: 58 start-page: 9974 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 57 start-page: 6907 year: 2021 publication-title: Chem. Commun. – ident: e_1_2_8_11_1 doi: 10.1016/j.matt.2019.08.016 – ident: e_1_2_8_8_2 doi: 10.1038/s41467-020-18119-y – ident: e_1_2_8_7_4 doi: 10.1021/acs.inorgchem.9b02374 – ident: e_1_2_8_4_3 doi: 10.1080/21663831.2018.1500951 – ident: e_1_2_8_16_1 doi: 10.1002/anie.201814564 – ident: e_1_2_8_4_5 doi: 10.1038/nnano.2016.110 – ident: e_1_2_8_3_1 doi: 10.1038/s41467-018-07211-z – ident: e_1_2_8_9_1 doi: 10.1021/jacs.8b05037 – ident: e_1_2_8_1_1 doi: 10.1002/adma.201705310 – ident: e_1_2_8_9_2 doi: 10.1021/acs.chemmater.9b03782 – ident: e_1_2_8_3_2 doi: 10.1039/C5TC01246E – ident: e_1_2_8_1_3 doi: 10.1021/acsnano.0c07289 – ident: e_1_2_8_13_2 doi: 10.1016/j.matt.2020.05.018 – ident: e_1_2_8_2_1 doi: 10.1002/anie.201602445 – ident: e_1_2_8_7_5 doi: 10.1039/D0CE00057D – ident: e_1_2_8_8_3 doi: 10.1002/adom.202000985 – ident: e_1_2_8_15_1 doi: 10.1039/C7CC01107E – ident: e_1_2_8_18_1 doi: 10.1021/jacs.0c00156 – ident: e_1_2_8_8_6 doi: 10.1039/C8SC04711A – ident: e_1_2_8_10_1 doi: 10.1039/D0DT00514B – ident: e_1_2_8_8_5 doi: 10.1021/jacs.0c06039 – ident: e_1_2_8_6_1 doi: 10.1126/sciadv.abc2181 – ident: e_1_2_8_8_4 doi: 10.1016/j.ccr.2020.213331 – ident: e_1_2_8_1_2 doi: 10.1038/nmat1401 – ident: e_1_2_8_4_4 doi: 10.1126/science.aav7911 – ident: e_1_2_8_9_3 doi: 10.1021/jacs.5b01680 – ident: e_1_2_8_14_1 doi: 10.1021/jacs.5b08290 – ident: e_1_2_8_3_3 doi: 10.1021/acsami.8b14625 – ident: e_1_2_8_8_1 doi: 10.1002/adfm.202009973 – ident: e_1_2_8_20_1 doi: 10.1038/ncomms14051 – ident: e_1_2_8_20_2 doi: 10.1016/j.nanoen.2021.106166 – ident: e_1_2_8_17_1 doi: 10.1039/C6TC01075J – ident: e_1_2_8_7_1 doi: 10.1002/anie.202012383 – ident: e_1_2_8_10_3 doi: 10.1002/adfm.202011191 – ident: e_1_2_8_12_1 doi: 10.1039/D1CC02353E – ident: e_1_2_8_7_2 doi: 10.1002/anie.202105413 – ident: e_1_2_8_7_3 doi: 10.1039/D0DT03948A – ident: e_1_2_8_16_2 doi: 10.1039/D0NR01889A – ident: e_1_2_8_4_2 doi: 10.1038/natrevmats.2016.99 – ident: e_1_2_8_10_2 doi: 10.1002/adma.201605739 – ident: e_1_2_8_19_1 doi: 10.1103/PhysRevB.27.41 – ident: e_1_2_8_4_1 doi: 10.1021/acs.chemrev.5b00715 – ident: e_1_2_8_13_1 doi: 10.1002/adfm.202100855 – ident: e_1_2_8_2_2 doi: 10.1002/anie.202005933 – ident: e_1_2_8_5_1 doi: 10.1002/anie.201903945 – ident: e_1_2_8_15_2 doi: 10.1021/acs.jpclett.0c01933 |
SSID | ssj0001073947 |
Score | 2.5198305 |
Snippet | Stimuli‐responsive luminescent material‐based rewritable paper has received great attention for its potential application in a wide range of areas from... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Crystal structure Dehydration Filter paper Manganese ions Materials science Metal halides Optics organic manganese halides Photoluminescence Quantum efficiency reversible structure transformation rewritable paper Water chemistry water‐triggered luminescence |
Title | Organic−Inorganic Manganese Bromide Hybrids with Water‐Triggered Luminescence for Rewritable Paper |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadom.202101700 https://www.proquest.com/docview/2630428700 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELZK98KFf8TCgnwAcVgFUsdJ3OOKXVRQCwi62oVLFLvOUok2FW2E4MSRI-J1eJt9EmZsx0nV5W8vUWQ7juL54vHY38wQcj-JerGKRRREPBcBLwqcBxkPBIBJ9KUGtYT-zqMXyeCQPz-Ojzudny3WUrWSj9SXM_1KziNVKAO5opfsf0jWdwoFcA_yhStIGK7_JGPrSKkMYUE86LNnc5ukSSGrBW70Eg__y9l0oncHn9E3yzmzHeV4Rl7zHMZgoZ9gzs7dYTVDGrwyvzsSEF_rT7h7gO5Vr_KFY_LWQWtr-kC5sBviM-wVv9qzfKaVUW1V7t81nPojno26t7lTo-aQypKMNcxFdf2BB_KR2-V-9z4vNx93mxhg_4aeEGLmOoYpI8EStUX6jLJ6sg5boOQtte2V2oZOsDFm80mJgQcYTkFh2Gi_-sTft4z_3NbGCt5_OfL1F8gWS2Hh1iVbe_uj4Ztmiw9PQU2KO_8pddjQkD1ef8n6sqixddoWk1nyjK-QS85WoXsWeFdJR8-vkcvObqFOKyyvk8Lh8PTbD49A6hFIHQKpQyBFBFKDwNOv3z32aBt7FLBHG-xRg70b5PDpwfjJIHD5OwIVYT4jFSkRCyYTwUxcxkKnsgcGKgsTEacTCbaJhvVuqPKkJ0WkUYFMeomMuRJCiTC6Sbrzcq5vEap5zGXKilTLgkMnkvWFliJJcyn7IVPbJKiHL1MuuD3mWPmQ2bDcLMPhzvxwb5OHvv3ChnX5bcudWhqZ-_WXGUsiSxGAamYk9JdesjXE3D7PQ3fIxebP2SHd1cdK34UF8Urec8D7BYGqqGs |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organic%E2%88%92Inorganic+Manganese+Bromide+Hybrids+with+Water%E2%80%90Triggered+Luminescence+for+Rewritable+Paper&rft.jtitle=Advanced+optical+materials&rft.au=Liu%2C+Hua%E2%80%90Li&rft.au=Ru%2C+Hua%E2%80%90Yang&rft.au=Sun%2C+Meng%E2%80%90En&rft.au=Wang%2C+Zhao%E2%80%90Yang&rft.date=2022-02-01&rft.issn=2195-1071&rft.eissn=2195-1071&rft.volume=10&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadom.202101700&rft.externalDBID=10.1002%252Fadom.202101700&rft.externalDocID=ADOM202101700 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2195-1071&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2195-1071&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2195-1071&client=summon |