Organic−Inorganic Manganese Bromide Hybrids with Water‐Triggered Luminescence for Rewritable Paper

Stimuli‐responsive luminescent material‐based rewritable paper has received great attention for its potential application in a wide range of areas from anti‐counterfeiting to information encryption. Herein, a photoluminescence (PL) rewritable paper based on an organic metal halide, trans‐2,5‐dimethy...

Full description

Saved in:
Bibliographic Details
Published inAdvanced optical materials Vol. 10; no. 4
Main Authors Liu, Hua‐Li, Ru, Hua‐Yang, Sun, Meng‐En, Wang, Zhao‐Yang, Zang, Shuang‐Quan
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.02.2022
Subjects
Online AccessGet full text
ISSN2195-1071
2195-1071
DOI10.1002/adom.202101700

Cover

Abstract Stimuli‐responsive luminescent material‐based rewritable paper has received great attention for its potential application in a wide range of areas from anti‐counterfeiting to information encryption. Herein, a photoluminescence (PL) rewritable paper based on an organic metal halide, trans‐2,5‐dimethylpiperazine manganese(II) bromide (C6N2H16MnBr4) (1), is reported. This 0D organic metal halide hybrid exhibits green emission centered at 548 nm originating from 4T1–6A1 transition of tetrahedrally coordinated Mn2+ ions with a PL quantum efficiency of 82%. Interestingly, complex 1 can be transformed into the non‐emissive hydrated phase C6N2H16MnBr4(H2O)2 (2) by uptake of coordinating water molecules, wherein Mn2+ adopts a quasi‐octahedral coordination sphere. The reversible single‐crystal structure transformation between the hydrated and dehydrated phases can switch the PL on and off. Rewritable PL paper has been fabricated by coating complex 1 on filter paper, which exhibits high resolution and excellent “write‐erase‐write” cycle capability. This work presents a new avenue for low‐dimensional lead‐free organic metal halide hybrids toward multilevel information security applications. Water molecule‐triggered reversible structural transformation between two organic metal halide hybrids, tetrahedral C6H16N2MnBr4 (1) and octahedral C6H16N2MnBr4(H2O)2 (2), accompanied with photoluminescence (PL) on/off has been presented in this work. These heat, vacuum, and moisture‐responsive materials are used to fabricate rewritable paper which shows good resolution and contrast, and great recycling.
AbstractList Stimuli‐responsive luminescent material‐based rewritable paper has received great attention for its potential application in a wide range of areas from anti‐counterfeiting to information encryption. Herein, a photoluminescence (PL) rewritable paper based on an organic metal halide, trans‐2,5‐dimethylpiperazine manganese(II) bromide (C6N2H16MnBr4) (1), is reported. This 0D organic metal halide hybrid exhibits green emission centered at 548 nm originating from 4T1–6A1 transition of tetrahedrally coordinated Mn2+ ions with a PL quantum efficiency of 82%. Interestingly, complex 1 can be transformed into the non‐emissive hydrated phase C6N2H16MnBr4(H2O)2 (2) by uptake of coordinating water molecules, wherein Mn2+ adopts a quasi‐octahedral coordination sphere. The reversible single‐crystal structure transformation between the hydrated and dehydrated phases can switch the PL on and off. Rewritable PL paper has been fabricated by coating complex 1 on filter paper, which exhibits high resolution and excellent “write‐erase‐write” cycle capability. This work presents a new avenue for low‐dimensional lead‐free organic metal halide hybrids toward multilevel information security applications. Water molecule‐triggered reversible structural transformation between two organic metal halide hybrids, tetrahedral C6H16N2MnBr4 (1) and octahedral C6H16N2MnBr4(H2O)2 (2), accompanied with photoluminescence (PL) on/off has been presented in this work. These heat, vacuum, and moisture‐responsive materials are used to fabricate rewritable paper which shows good resolution and contrast, and great recycling.
Stimuli‐responsive luminescent material‐based rewritable paper has received great attention for its potential application in a wide range of areas from anti‐counterfeiting to information encryption. Herein, a photoluminescence (PL) rewritable paper based on an organic metal halide, trans ‐2,5‐dimethylpiperazine manganese(II) bromide (C 6 N 2 H 16 MnBr 4 ) (1), is reported. This 0D organic metal halide hybrid exhibits green emission centered at 548 nm originating from 4 T 1 – 6 A 1 transition of tetrahedrally coordinated Mn 2+ ions with a PL quantum efficiency of 82%. Interestingly, complex 1 can be transformed into the non‐emissive hydrated phase C 6 N 2 H 16 MnBr 4 (H 2 O) 2 (2) by uptake of coordinating water molecules, wherein Mn 2+ adopts a quasi‐octahedral coordination sphere. The reversible single‐crystal structure transformation between the hydrated and dehydrated phases can switch the PL on and off. Rewritable PL paper has been fabricated by coating complex 1 on filter paper, which exhibits high resolution and excellent “write‐erase‐write” cycle capability. This work presents a new avenue for low‐dimensional lead‐free organic metal halide hybrids toward multilevel information security applications.
Stimuli‐responsive luminescent material‐based rewritable paper has received great attention for its potential application in a wide range of areas from anti‐counterfeiting to information encryption. Herein, a photoluminescence (PL) rewritable paper based on an organic metal halide, trans‐2,5‐dimethylpiperazine manganese(II) bromide (C6N2H16MnBr4) (1), is reported. This 0D organic metal halide hybrid exhibits green emission centered at 548 nm originating from 4T1–6A1 transition of tetrahedrally coordinated Mn2+ ions with a PL quantum efficiency of 82%. Interestingly, complex 1 can be transformed into the non‐emissive hydrated phase C6N2H16MnBr4(H2O)2 (2) by uptake of coordinating water molecules, wherein Mn2+ adopts a quasi‐octahedral coordination sphere. The reversible single‐crystal structure transformation between the hydrated and dehydrated phases can switch the PL on and off. Rewritable PL paper has been fabricated by coating complex 1 on filter paper, which exhibits high resolution and excellent “write‐erase‐write” cycle capability. This work presents a new avenue for low‐dimensional lead‐free organic metal halide hybrids toward multilevel information security applications.
Author Zang, Shuang‐Quan
Sun, Meng‐En
Liu, Hua‐Li
Ru, Hua‐Yang
Wang, Zhao‐Yang
Author_xml – sequence: 1
  givenname: Hua‐Li
  surname: Liu
  fullname: Liu, Hua‐Li
  organization: Zhengzhou University
– sequence: 2
  givenname: Hua‐Yang
  surname: Ru
  fullname: Ru, Hua‐Yang
  organization: Zhengzhou University
– sequence: 3
  givenname: Meng‐En
  surname: Sun
  fullname: Sun, Meng‐En
  organization: Zhengzhou University
– sequence: 4
  givenname: Zhao‐Yang
  surname: Wang
  fullname: Wang, Zhao‐Yang
  organization: Zhengzhou University
– sequence: 5
  givenname: Shuang‐Quan
  orcidid: 0000-0002-6728-0559
  surname: Zang
  fullname: Zang, Shuang‐Quan
  email: zangsqzg@zzu.edu.cn
  organization: Zhengzhou University
BookMark eNqFkE1LAzEURYMoWGu3rgOuW18yX5llrR8ttFSk4nLIZN7UlM6kZqaU7ly6FH9if4kpIyqCuElu4Jy8xz0hh6UpkZAzBj0GwC9kZooeB86ARQAHpMVZHHQZROzwRz4mnapaAIB7eLEftUg-tXNZarV7fR-Vpsl0IksXsEJ6aU2hM6TDbWp1VtGNrp_oo6zR7l7eZlbP52gxo-N1oR2vsFRIc2PpPW6srmW6RHonV2hPyVEulxV2Pu82ebi5ng2G3fH0djToj7vKc3u7U4lA8DQUPIJI8ByjlIVRwCEUQZSlcRxj6AWgZMhS4SGAzzMWpoGvhFACvDY5b_5dWfO8xqpOFmZtSzcy4aHnaOHacZTfUMqaqrKYJ8otW2tT1lbqZcIg2Zea7EtNvkp1Wu-XtrK6kHb7txA3wkYvcfsPnfSvppNv9wP1po0t
CitedBy_id crossref_primary_10_1021_acsmaterialslett_2c00658
crossref_primary_10_3390_ijms24043280
crossref_primary_10_1002_smll_202205981
crossref_primary_10_1002_adma_202408777
crossref_primary_10_1002_ange_202309230
crossref_primary_10_1021_acsami_2c18363
crossref_primary_10_1039_D3DT03284A
crossref_primary_10_1021_acsami_4c09396
crossref_primary_10_1021_acs_cgd_4c00755
crossref_primary_10_1002_anie_202425661
crossref_primary_10_1021_acssuschemeng_4c08832
crossref_primary_10_1039_D4TC01344A
crossref_primary_10_1039_D3CC02093B
crossref_primary_10_1002_advs_202400879
crossref_primary_10_1002_lpor_202400440
crossref_primary_10_1002_adom_202202997
crossref_primary_10_1002_ange_202419333
crossref_primary_10_34133_research_0094
crossref_primary_10_1039_D2DT03831E
crossref_primary_10_1021_acs_inorgchem_3c02823
crossref_primary_10_1002_anie_202410416
crossref_primary_10_3390_nano13121890
crossref_primary_10_1088_1361_6463_ac7264
crossref_primary_10_1016_j_jallcom_2025_178551
crossref_primary_10_1021_acs_inorgchem_3c03326
crossref_primary_10_1002_lpor_202401982
crossref_primary_10_1039_D2TC04727F
crossref_primary_10_3390_cryst13121678
crossref_primary_10_1002_adma_202303611
crossref_primary_10_1021_acs_inorgchem_3c03924
crossref_primary_10_1002_adma_202301914
crossref_primary_10_1002_ange_202425661
crossref_primary_10_1002_adom_202300449
crossref_primary_10_3390_nano15060442
crossref_primary_10_1002_lpor_202400856
crossref_primary_10_1021_acsami_4c05411
crossref_primary_10_3390_molecules30061319
crossref_primary_10_1002_ange_202306853
crossref_primary_10_1039_D4QI02194K
crossref_primary_10_1002_anie_202309230
crossref_primary_10_1002_smo_20230028
crossref_primary_10_1039_D4MH01172D
crossref_primary_10_34133_research_0259
crossref_primary_10_1002_adom_202402641
crossref_primary_10_1021_acs_inorgchem_3c00422
crossref_primary_10_1039_D2QI01224C
crossref_primary_10_1039_D4TC03040K
crossref_primary_10_1016_j_cej_2024_151655
crossref_primary_10_1002_ange_202410416
crossref_primary_10_1007_s11426_024_2345_0
crossref_primary_10_1002_adom_202301010
crossref_primary_10_1002_anie_202419333
crossref_primary_10_1039_D4QI03036B
crossref_primary_10_1002_anie_202306853
crossref_primary_10_1002_agt2_574
crossref_primary_10_1039_D3TC04431A
Cites_doi 10.1016/j.matt.2019.08.016
10.1038/s41467-020-18119-y
10.1021/acs.inorgchem.9b02374
10.1080/21663831.2018.1500951
10.1002/anie.201814564
10.1038/nnano.2016.110
10.1038/s41467-018-07211-z
10.1021/jacs.8b05037
10.1002/adma.201705310
10.1021/acs.chemmater.9b03782
10.1039/C5TC01246E
10.1021/acsnano.0c07289
10.1016/j.matt.2020.05.018
10.1002/anie.201602445
10.1039/D0CE00057D
10.1002/adom.202000985
10.1039/C7CC01107E
10.1021/jacs.0c00156
10.1039/C8SC04711A
10.1039/D0DT00514B
10.1021/jacs.0c06039
10.1126/sciadv.abc2181
10.1016/j.ccr.2020.213331
10.1038/nmat1401
10.1126/science.aav7911
10.1021/jacs.5b01680
10.1021/jacs.5b08290
10.1021/acsami.8b14625
10.1002/adfm.202009973
10.1038/ncomms14051
10.1016/j.nanoen.2021.106166
10.1039/C6TC01075J
10.1002/anie.202012383
10.1002/adfm.202011191
10.1039/D1CC02353E
10.1002/anie.202105413
10.1039/D0DT03948A
10.1039/D0NR01889A
10.1038/natrevmats.2016.99
10.1002/adma.201605739
10.1103/PhysRevB.27.41
10.1021/acs.chemrev.5b00715
10.1002/adfm.202100855
10.1002/anie.202005933
10.1002/anie.201903945
10.1021/acs.jpclett.0c01933
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
DOI 10.1002/adom.202101700
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
CrossRef
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2195-1071
EndPage n/a
ExternalDocumentID 10_1002_adom_202101700
ADOM202101700
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 92061201; 21825106
– fundername: Program for Science & Technology Innovation Talents in Universities of Henan Province
  funderid: 164100510005
GroupedDBID 0R~
1OC
33P
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZFZN
AZVAB
BFHJK
BMXJE
BRXPI
D-B
DCZOG
DPXWK
EBS
G-S
HGLYW
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
P2W
R.K
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
31~
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
EJD
GODZA
7SP
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
H8D
L7M
ID FETCH-LOGICAL-c3170-c3c8582b68270782fe7b1675206857db999e6350ca61b83e0042d16b54c88c803
ISSN 2195-1071
IngestDate Fri Jul 25 11:53:38 EDT 2025
Tue Jul 01 00:35:48 EDT 2025
Thu Apr 24 22:54:12 EDT 2025
Wed Jan 22 16:26:05 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3170-c3c8582b68270782fe7b1675206857db999e6350ca61b83e0042d16b54c88c803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6728-0559
PQID 2630428700
PQPubID 2034581
PageCount 7
ParticipantIDs proquest_journals_2630428700
crossref_citationtrail_10_1002_adom_202101700
crossref_primary_10_1002_adom_202101700
wiley_primary_10_1002_adom_202101700_ADOM202101700
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced optical materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018 2015 2018; 9 3 10
2016; 4
2020 2017 2021; 49 29 31
2021; 57
2020; 6
2017 2020; 53 11
2016 2020; 55 59
2018 2019 2015; 140 31 137
2015; 137
2019 2020; 58 12
2020; 142
2019; 1
2017 2021; 8 87
2019; 58
2021 2020; 31 3
2021 2021 2021 2019 2020; 60 60 50 58 22
2016 2017 2018 2019 2016; 116 2 6 364 11
2021 2020 2020 2020 2020 2019; 31 11 8 416 142 10
2018 2005 2020; 30 4 14
1983; 27
e_1_2_8_7_5
e_1_2_8_8_4
e_1_2_8_9_3
e_1_2_8_7_4
e_1_2_8_8_3
e_1_2_8_9_2
e_1_2_8_8_6
e_1_2_8_8_5
e_1_2_8_1_3
e_1_2_8_2_2
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_2_1
e_1_2_8_3_3
e_1_2_8_4_2
e_1_2_8_5_1
e_1_2_8_3_2
e_1_2_8_4_1
e_1_2_8_4_4
e_1_2_8_7_1
e_1_2_8_4_3
e_1_2_8_6_1
e_1_2_8_7_3
e_1_2_8_8_2
e_1_2_8_9_1
e_1_2_8_4_5
e_1_2_8_7_2
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_20_2
e_1_2_8_1_1
e_1_2_8_16_2
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_13_2
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_15_2
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_10_2
e_1_2_8_11_1
e_1_2_8_10_3
e_1_2_8_12_1
References_xml – volume: 9 3 10
  start-page: 4819 7897
  year: 2018 2015 2018
  publication-title: Nat. Commun. J. Mater. Chem. C ACS Appl. Mater. Interfaces
– volume: 140 31 137
  start-page: 8110 4928
  year: 2018 2019 2015
  publication-title: J. Am. Chem. Soc. Chem. Mater. J. Am. Chem. Soc.
– volume: 31 11 8 416 142 10
  start-page: 4329 3836
  year: 2021 2020 2020 2020 2020 2019
  publication-title: Adv. Funct. Mater. Nat. Commun. Adv. Opt. Mater. Coord. Chem. Rev. J. Am. Chem. Soc. Chem. Sci.
– volume: 53 11
  start-page: 5954 5956
  year: 2017 2020
  publication-title: Chem. Commun. J. Phys. Chem. Lett.
– volume: 49 29 31
  start-page: 5662
  year: 2020 2017 2021
  publication-title: Dalton Trans. Adv. Mater. Adv. Funct. Mater.
– volume: 30 4 14
  start-page: 546
  year: 2018 2005 2020
  publication-title: Adv. Mater. Nat. Mater. ACS Nano
– volume: 142
  start-page: 6649
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 8 87
  year: 2017 2021
  publication-title: Nat. Commun. Nano Energy
– volume: 55 59
  start-page: 7231
  year: 2016 2020
  publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 116 2 6 364 11
  start-page: 4558 552 475 872
  year: 2016 2017 2018 2019 2016
  publication-title: Chem. Rev. Nat. Rev. Mater. Mater. Res. Lett. Science Nat. Nanotechnol.
– volume: 58 12
  start-page: 5277
  year: 2019 2020
  publication-title: Angew. Chem., Int. Ed. Nanoscale
– volume: 1
  start-page: 1644
  year: 2019
  publication-title: Matter
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 137
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 60 60 50 58 22
  start-page: 3699 2001 3395
  year: 2021 2021 2021 2019 2020
  publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Dalton Trans. Inorg. Chem. CrystEngComm
– volume: 31 3
  start-page: 892
  year: 2021 2020
  publication-title: Adv. Funct. Mater. Matter
– volume: 4
  start-page: 9651
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 27
  start-page: 41
  year: 1983
  publication-title: Phys. Rev. B
– volume: 58
  start-page: 9974
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 57
  start-page: 6907
  year: 2021
  publication-title: Chem. Commun.
– ident: e_1_2_8_11_1
  doi: 10.1016/j.matt.2019.08.016
– ident: e_1_2_8_8_2
  doi: 10.1038/s41467-020-18119-y
– ident: e_1_2_8_7_4
  doi: 10.1021/acs.inorgchem.9b02374
– ident: e_1_2_8_4_3
  doi: 10.1080/21663831.2018.1500951
– ident: e_1_2_8_16_1
  doi: 10.1002/anie.201814564
– ident: e_1_2_8_4_5
  doi: 10.1038/nnano.2016.110
– ident: e_1_2_8_3_1
  doi: 10.1038/s41467-018-07211-z
– ident: e_1_2_8_9_1
  doi: 10.1021/jacs.8b05037
– ident: e_1_2_8_1_1
  doi: 10.1002/adma.201705310
– ident: e_1_2_8_9_2
  doi: 10.1021/acs.chemmater.9b03782
– ident: e_1_2_8_3_2
  doi: 10.1039/C5TC01246E
– ident: e_1_2_8_1_3
  doi: 10.1021/acsnano.0c07289
– ident: e_1_2_8_13_2
  doi: 10.1016/j.matt.2020.05.018
– ident: e_1_2_8_2_1
  doi: 10.1002/anie.201602445
– ident: e_1_2_8_7_5
  doi: 10.1039/D0CE00057D
– ident: e_1_2_8_8_3
  doi: 10.1002/adom.202000985
– ident: e_1_2_8_15_1
  doi: 10.1039/C7CC01107E
– ident: e_1_2_8_18_1
  doi: 10.1021/jacs.0c00156
– ident: e_1_2_8_8_6
  doi: 10.1039/C8SC04711A
– ident: e_1_2_8_10_1
  doi: 10.1039/D0DT00514B
– ident: e_1_2_8_8_5
  doi: 10.1021/jacs.0c06039
– ident: e_1_2_8_6_1
  doi: 10.1126/sciadv.abc2181
– ident: e_1_2_8_8_4
  doi: 10.1016/j.ccr.2020.213331
– ident: e_1_2_8_1_2
  doi: 10.1038/nmat1401
– ident: e_1_2_8_4_4
  doi: 10.1126/science.aav7911
– ident: e_1_2_8_9_3
  doi: 10.1021/jacs.5b01680
– ident: e_1_2_8_14_1
  doi: 10.1021/jacs.5b08290
– ident: e_1_2_8_3_3
  doi: 10.1021/acsami.8b14625
– ident: e_1_2_8_8_1
  doi: 10.1002/adfm.202009973
– ident: e_1_2_8_20_1
  doi: 10.1038/ncomms14051
– ident: e_1_2_8_20_2
  doi: 10.1016/j.nanoen.2021.106166
– ident: e_1_2_8_17_1
  doi: 10.1039/C6TC01075J
– ident: e_1_2_8_7_1
  doi: 10.1002/anie.202012383
– ident: e_1_2_8_10_3
  doi: 10.1002/adfm.202011191
– ident: e_1_2_8_12_1
  doi: 10.1039/D1CC02353E
– ident: e_1_2_8_7_2
  doi: 10.1002/anie.202105413
– ident: e_1_2_8_7_3
  doi: 10.1039/D0DT03948A
– ident: e_1_2_8_16_2
  doi: 10.1039/D0NR01889A
– ident: e_1_2_8_4_2
  doi: 10.1038/natrevmats.2016.99
– ident: e_1_2_8_10_2
  doi: 10.1002/adma.201605739
– ident: e_1_2_8_19_1
  doi: 10.1103/PhysRevB.27.41
– ident: e_1_2_8_4_1
  doi: 10.1021/acs.chemrev.5b00715
– ident: e_1_2_8_13_1
  doi: 10.1002/adfm.202100855
– ident: e_1_2_8_2_2
  doi: 10.1002/anie.202005933
– ident: e_1_2_8_5_1
  doi: 10.1002/anie.201903945
– ident: e_1_2_8_15_2
  doi: 10.1021/acs.jpclett.0c01933
SSID ssj0001073947
Score 2.5198305
Snippet Stimuli‐responsive luminescent material‐based rewritable paper has received great attention for its potential application in a wide range of areas from...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Crystal structure
Dehydration
Filter paper
Manganese ions
Materials science
Metal halides
Optics
organic manganese halides
Photoluminescence
Quantum efficiency
reversible structure transformation
rewritable paper
Water chemistry
water‐triggered luminescence
Title Organic−Inorganic Manganese Bromide Hybrids with Water‐Triggered Luminescence for Rewritable Paper
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadom.202101700
https://www.proquest.com/docview/2630428700
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELZK98KFf8TCgnwAcVgFUsdJ3OOKXVRQCwi62oVLFLvOUok2FW2E4MSRI-J1eJt9EmZsx0nV5W8vUWQ7juL54vHY38wQcj-JerGKRRREPBcBLwqcBxkPBIBJ9KUGtYT-zqMXyeCQPz-Ojzudny3WUrWSj9SXM_1KziNVKAO5opfsf0jWdwoFcA_yhStIGK7_JGPrSKkMYUE86LNnc5ukSSGrBW70Eg__y9l0oncHn9E3yzmzHeV4Rl7zHMZgoZ9gzs7dYTVDGrwyvzsSEF_rT7h7gO5Vr_KFY_LWQWtr-kC5sBviM-wVv9qzfKaVUW1V7t81nPojno26t7lTo-aQypKMNcxFdf2BB_KR2-V-9z4vNx93mxhg_4aeEGLmOoYpI8EStUX6jLJ6sg5boOQtte2V2oZOsDFm80mJgQcYTkFh2Gi_-sTft4z_3NbGCt5_OfL1F8gWS2Hh1iVbe_uj4Ztmiw9PQU2KO_8pddjQkD1ef8n6sqixddoWk1nyjK-QS85WoXsWeFdJR8-vkcvObqFOKyyvk8Lh8PTbD49A6hFIHQKpQyBFBFKDwNOv3z32aBt7FLBHG-xRg70b5PDpwfjJIHD5OwIVYT4jFSkRCyYTwUxcxkKnsgcGKgsTEacTCbaJhvVuqPKkJ0WkUYFMeomMuRJCiTC6Sbrzcq5vEap5zGXKilTLgkMnkvWFliJJcyn7IVPbJKiHL1MuuD3mWPmQ2bDcLMPhzvxwb5OHvv3ChnX5bcudWhqZ-_WXGUsiSxGAamYk9JdesjXE3D7PQ3fIxebP2SHd1cdK34UF8Urec8D7BYGqqGs
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organic%E2%88%92Inorganic+Manganese+Bromide+Hybrids+with+Water%E2%80%90Triggered+Luminescence+for+Rewritable+Paper&rft.jtitle=Advanced+optical+materials&rft.au=Liu%2C+Hua%E2%80%90Li&rft.au=Ru%2C+Hua%E2%80%90Yang&rft.au=Sun%2C+Meng%E2%80%90En&rft.au=Wang%2C+Zhao%E2%80%90Yang&rft.date=2022-02-01&rft.issn=2195-1071&rft.eissn=2195-1071&rft.volume=10&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadom.202101700&rft.externalDBID=10.1002%252Fadom.202101700&rft.externalDocID=ADOM202101700
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2195-1071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2195-1071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2195-1071&client=summon