Macrocycle‐Based Crystalline Sponge that Stabilizes and Lights Up Cationic Aggregation‐Caused Quenching Dyes

Solid‐state fluorescent materials play a critical role in the manufacture of light‐emitting diodes, laser dyes, storage materials, and fluorescence sensors. However, it remains challenging to produce solid‐state fluorescent materials using traditional organic dyes since most are subject to aggregati...

Full description

Saved in:
Bibliographic Details
Published inAdvanced optical materials Vol. 9; no. 24
Main Authors Sun, Xin, Yang, Yu‐Dong, Chen, Xu‐Lang, Sun, Ai‐Huan, Xiang, Jun‐Feng, Gong, Han‐Yuan
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.12.2021
Subjects
Online AccessGet full text
ISSN2195-1071
2195-1071
DOI10.1002/adom.202101670

Cover

Abstract Solid‐state fluorescent materials play a critical role in the manufacture of light‐emitting diodes, laser dyes, storage materials, and fluorescence sensors. However, it remains challenging to produce solid‐state fluorescent materials using traditional organic dyes since most are subject to aggregation‐caused quenching (ACQ) in the solid state. Here, a macrocycle‐derived crystalline framework is reported that captures various cationic test‐ACQ dyes (e.g., Basic Red 2 (BR2)) and stabilizes them in a fluorescent form. Cyclo[3](1,3‐benzene)[3](4,6‐benzene)(1,3‐dicarboxylic acid), CA‐3, is used as the core macrocyclic building block. When allowed to coordinate with Zn(NO3)2•6H2O or Cd(NO3)2•4H2O, crystalline sponge (CS‐Zn or CS‐Cd) is obtained. In the case of CS‐Zn, nano‐sized cavities are observed in the solid state that serve as containers to capture the cationic ACQ dye BR2 with loading yields up to 14.6 wt% and emission enhancements up to 41× of those seen for solid BR2. The resulting dye‐containing material, CS‐Zn@BR2, displays high stability in water or selected organic solvents at room temperature or under reflux, or when heated at 300 °C for 1 h open to the air, or in the presence of sodium hypochlorite solution (3.0 mm). This study highlights a new strategy for rendering fluorescent ACQ dyes in the solid state. A macrocycle‐based crystalline sponge selectively captures cationic aggregation‐caused quenching dyes with high loading quantity, and further, enormously improves the dye emission properties in solid state. Moreover, crystalline sponge container can enhance the structure and optical stability of tested dye‐containing solid state fluorescence materials under treatment of solvents at room or reflux temperatures, or at 300 °C in air or oxidant (NaClO) damage.
AbstractList Solid‐state fluorescent materials play a critical role in the manufacture of light‐emitting diodes, laser dyes, storage materials, and fluorescence sensors. However, it remains challenging to produce solid‐state fluorescent materials using traditional organic dyes since most are subject to aggregation‐caused quenching (ACQ) in the solid state. Here, a macrocycle‐derived crystalline framework is reported that captures various cationic test‐ACQ dyes (e.g., Basic Red 2 (BR2)) and stabilizes them in a fluorescent form. Cyclo[3](1,3‐benzene)[3](4,6‐benzene)(1,3‐dicarboxylic acid), CA‐3, is used as the core macrocyclic building block. When allowed to coordinate with Zn(NO3)2•6H2O or Cd(NO3)2•4H2O, crystalline sponge (CS‐Zn or CS‐Cd) is obtained. In the case of CS‐Zn, nano‐sized cavities are observed in the solid state that serve as containers to capture the cationic ACQ dye BR2 with loading yields up to 14.6 wt% and emission enhancements up to 41× of those seen for solid BR2. The resulting dye‐containing material, CS‐Zn@BR2, displays high stability in water or selected organic solvents at room temperature or under reflux, or when heated at 300 °C for 1 h open to the air, or in the presence of sodium hypochlorite solution (3.0 mm). This study highlights a new strategy for rendering fluorescent ACQ dyes in the solid state. A macrocycle‐based crystalline sponge selectively captures cationic aggregation‐caused quenching dyes with high loading quantity, and further, enormously improves the dye emission properties in solid state. Moreover, crystalline sponge container can enhance the structure and optical stability of tested dye‐containing solid state fluorescence materials under treatment of solvents at room or reflux temperatures, or at 300 °C in air or oxidant (NaClO) damage.
Solid‐state fluorescent materials play a critical role in the manufacture of light‐emitting diodes, laser dyes, storage materials, and fluorescence sensors. However, it remains challenging to produce solid‐state fluorescent materials using traditional organic dyes since most are subject to aggregation‐caused quenching (ACQ) in the solid state. Here, a macrocycle‐derived crystalline framework is reported that captures various cationic test‐ACQ dyes (e.g., Basic Red 2 (BR2)) and stabilizes them in a fluorescent form. Cyclo[3](1,3‐benzene)[3](4,6‐benzene)(1,3‐dicarboxylic acid), CA‐3, is used as the core macrocyclic building block. When allowed to coordinate with Zn(NO3)2•6H2O or Cd(NO3)2•4H2O, crystalline sponge (CS‐Zn or CS‐Cd) is obtained. In the case of CS‐Zn, nano‐sized cavities are observed in the solid state that serve as containers to capture the cationic ACQ dye BR2 with loading yields up to 14.6 wt% and emission enhancements up to 41× of those seen for solid BR2. The resulting dye‐containing material, CS‐Zn@BR2, displays high stability in water or selected organic solvents at room temperature or under reflux, or when heated at 300 °C for 1 h open to the air, or in the presence of sodium hypochlorite solution (3.0 mm). This study highlights a new strategy for rendering fluorescent ACQ dyes in the solid state.
Solid‐state fluorescent materials play a critical role in the manufacture of light‐emitting diodes, laser dyes, storage materials, and fluorescence sensors. However, it remains challenging to produce solid‐state fluorescent materials using traditional organic dyes since most are subject to aggregation‐caused quenching (ACQ) in the solid state. Here, a macrocycle‐derived crystalline framework is reported that captures various cationic test‐ACQ dyes (e.g., Basic Red 2 (BR2)) and stabilizes them in a fluorescent form. Cyclo[3](1,3‐benzene)[3](4,6‐benzene)(1,3‐dicarboxylic acid), CA‐3, is used as the core macrocyclic building block. When allowed to coordinate with Zn(NO 3 ) 2 •6H 2 O or Cd(NO 3 ) 2 •4H 2 O, crystalline sponge (CS‐Zn or CS‐Cd) is obtained. In the case of CS‐Zn, nano‐sized cavities are observed in the solid state that serve as containers to capture the cationic ACQ dye BR2 with loading yields up to 14.6 wt% and emission enhancements up to 41× of those seen for solid BR2. The resulting dye‐containing material, CS‐Zn@BR2, displays high stability in water or selected organic solvents at room temperature or under reflux, or when heated at 300 °C for 1 h open to the air, or in the presence of sodium hypochlorite solution (3.0 m m ). This study highlights a new strategy for rendering fluorescent ACQ dyes in the solid state.
Author Yang, Yu‐Dong
Sun, Ai‐Huan
Gong, Han‐Yuan
Xiang, Jun‐Feng
Sun, Xin
Chen, Xu‐Lang
Author_xml – sequence: 1
  givenname: Xin
  orcidid: 0000-0003-4702-8636
  surname: Sun
  fullname: Sun, Xin
  organization: Beijing Normal University
– sequence: 2
  givenname: Yu‐Dong
  surname: Yang
  fullname: Yang, Yu‐Dong
  organization: Beijing Normal University
– sequence: 3
  givenname: Xu‐Lang
  surname: Chen
  fullname: Chen, Xu‐Lang
  organization: Beijing Normal University
– sequence: 4
  givenname: Ai‐Huan
  surname: Sun
  fullname: Sun, Ai‐Huan
  organization: Beijing Normal University
– sequence: 5
  givenname: Jun‐Feng
  surname: Xiang
  fullname: Xiang, Jun‐Feng
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Han‐Yuan
  orcidid: 0000-0003-4168-7657
  surname: Gong
  fullname: Gong, Han‐Yuan
  email: hanyuangong@bnu.edu.cn
  organization: Beijing Normal University
BookMark eNqFkM1KxDAUhYOMoI5uXQdcz3jTn7RZjh3_YEREXZfbNu1EalqTDFJXPoLP6JPYzoiKIK7uvXC-cw9nj4x0oyUhhwymDMA7xqJ5nHrgMWA8gi2y6zERThhEbPRj3yEH1j4AQH_4Ioh2SXuFuWnyLq_l--vbCVpZ0MR01mFdKy3pbdvoSlK3REdvHWaqVi_SUtQFXahq6Sy9b2mCTjVa5XRWVUZW66t3S3A12N2spM6XSld03km7T7ZLrK08-Jxjcn92epdcTBbX55fJbDHJfRbBJPRjLHwOcSiBsaII_KBEBOBD7FDkWeZhKaIw9IICCsECHmfC4yWPIx6hYP6YHG18W9M8raR16UOzMrp_mXqcMRCcRX6vCjaqvgRrjSzTXLl1fmdQ1SmDdKg3HepNv-rtsekvrDXqEU33NyA2wLOqZfePOp3Nr6--2Q8-lZDS
CitedBy_id crossref_primary_10_1016_j_ccr_2024_216063
crossref_primary_10_1016_j_dyepig_2023_111244
crossref_primary_10_1038_s41570_023_00531_9
crossref_primary_10_1039_D2CC04735G
crossref_primary_10_1016_j_eurpolymj_2024_113669
crossref_primary_10_1039_D2TC05492B
Cites_doi 10.1002/adma.201903530
10.1016/j.dyepig.2008.09.013
10.1021/acsami.8b04937
10.1021/jacs.6b05817
10.1038/nnano.2012.128
10.1039/C9QM00607A
10.1021/acsami.7b11277
10.1021/acs.cgd.8b00891
10.1021/jacs.7b01574
10.1038/s41467-019-12204-7
10.1039/C6TC05474A
10.1016/j.micromeso.2017.02.005
10.1021/jacs.9b07236
10.1021/acs.accounts.9b00575
10.1038/nchem.742
10.1039/C6SC00594B
10.1021/jacs.5b11525
10.1002/anie.201909830
10.1039/C5CC08703A
10.1002/smll.201907074
10.1002/adma.202002914
10.1021/ja204818q
10.1039/C6SC04288K
10.1021/acs.chemrev.6b00127
10.1126/science.aaf9135
10.1021/jacs.8b11156
10.1002/adma.201903882
10.1038/ncomms7884
10.1002/anie.201901882
10.1021/acsami.0c10257
10.1016/j.chempr.2020.06.029
10.1002/adom.201800273
10.1002/anie.202100950
10.1002/adma.201806897
10.1021/acs.chemrev.5b00263
10.1002/adma.201601844
10.1063/1.2753723
10.1002/adpr.202000080
10.1038/nature12527
10.1021/acs.chemrev.9b00814
10.1021/acs.chemrev.6b00172
10.1039/D0TC02887H
10.1002/adma.202001457
10.1021/jacs.0c08751
10.1002/smll.201601516
10.1002/smll.201602993
10.1002/anie.202006438
10.1002/adfm.201501756
10.1039/D0NJ02969F
10.1002/anie.201007583
10.1021/ja2079064
10.1002/adfm.200900221
10.1021/jacs.0c08697
10.1021/acs.chemrev.8b00260
10.1039/C7SC01524K
10.1016/j.jnoncrysol.2016.07.037
10.1002/adma.201401356
10.1002/anie.202004857
10.1002/anie.201713219
10.1021/acsami.7b13486
10.1021/cg100316s
10.1021/jacs.0c00871
10.1002/smll.201601484
10.1021/jacs.8b09608
10.1021/ja502996h
10.1021/acs.accounts.6b00209
10.1002/anie.201509801
10.1002/anie.201914768
10.1021/ja511381f
10.1021/acscentsci.0c00071
10.1039/C7CS00879A
10.1021/jacs.7b12800
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
DOI 10.1002/adom.202101670
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Aerospace Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2195-1071
EndPage n/a
ExternalDocumentID 10_1002_adom_202101670
ADOM202101670
Genre article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
– fundername: National Natural Science Foundation of China
  funderid: 21971022
GroupedDBID 0R~
1OC
33P
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZFZN
AZVAB
BFHJK
BMXJE
BRXPI
D-B
DCZOG
DPXWK
EBS
G-S
HGLYW
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
P2W
R.K
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
31~
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
EJD
GODZA
7SP
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c3170-538ad36085e011dd434faa006394759cbb2af975524d0d91468b926f68767a913
ISSN 2195-1071
IngestDate Fri Jul 25 12:06:48 EDT 2025
Wed Oct 01 01:00:04 EDT 2025
Thu Apr 24 22:53:05 EDT 2025
Wed Jan 22 16:28:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3170-538ad36085e011dd434faa006394759cbb2af975524d0d91468b926f68767a913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4702-8636
0000-0003-4168-7657
PQID 2611096173
PQPubID 2034581
PageCount 10
ParticipantIDs proquest_journals_2611096173
crossref_citationtrail_10_1002_adom_202101670
crossref_primary_10_1002_adom_202101670
wiley_primary_10_1002_adom_202101670_ADOM202101670
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced optical materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2020 2020 2019 2018 2016 2018 2018; 142 59 58 140 138 140 6
2009; 81
2020 2020 2019; 142 6 10
2016 2014 2011; 55 136 133
2020 2018 2016 2016; 59 57 7 138
2017 2017; 8 8
2020 2018 2015 2014 2012; 4 140 6 8 7
2020; 32
2020 2021 2019 2009; 12 2 119 19
2017; 9
2017 2015; 243 137
2020 2020 2020 2014 2016; 32 120 59 26 12
2020; 8
2018; 18
2016 2015; 52 25
2011 2010; 50 10
2020 2019 2019 2020 2018 2018 2016; 53 31 141 32 47 10 28
2021 2020; 60 6
2020; 44
2016 2013 2011 2010; 353 501 133 2
2018; 10
2020 2017 2016 2016 2020; 142 139 49 116 16
2016; 450
2020 2020 2016 2016 2016; 32 59 12 116 12
2015 2007; 115 91
e_1_2_7_1_5
e_1_2_7_3_3
e_1_2_7_5_1
e_1_2_7_1_4
e_1_2_7_3_2
e_1_2_7_1_3
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_19_3
e_1_2_7_3_5
e_1_2_7_7_1
e_1_2_7_17_4
e_1_2_7_19_2
e_1_2_7_13_7
e_1_2_7_17_3
e_1_2_7_19_1
e_1_2_7_13_6
e_1_2_7_17_2
e_1_2_7_11_7
e_1_2_7_13_5
e_1_2_7_17_1
e_1_2_7_11_6
e_1_2_7_13_4
e_1_2_7_1_2
e_1_2_7_11_5
e_1_2_7_13_3
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_11_4
e_1_2_7_13_2
e_1_2_7_11_3
e_1_2_7_13_1
e_1_2_7_11_2
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_26_2
e_1_2_7_25_1
e_1_2_7_23_2
e_1_2_7_23_1
e_1_2_7_21_2
e_1_2_7_21_1
e_1_2_7_2_5
e_1_2_7_4_3
e_1_2_7_6_1
e_1_2_7_2_4
e_1_2_7_4_2
e_1_2_7_2_3
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_6_5
e_1_2_7_6_4
e_1_2_7_6_3
e_1_2_7_8_1
e_1_2_7_4_4
e_1_2_7_6_2
Lu Y. (e_1_2_7_3_4) 2014; 8
e_1_2_7_16_4
e_1_2_7_18_2
e_1_2_7_16_3
e_1_2_7_18_1
e_1_2_7_16_2
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_2
e_1_2_7_12_3
e_1_2_7_14_1
e_1_2_7_12_2
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_10_1
e_1_2_7_24_1
e_1_2_7_22_1
e_1_2_7_20_1
References_xml – volume: 12 2 119 19
  start-page: 322 2230
  year: 2020 2021 2019 2009
  publication-title: ACS Appl. Mater. Interfaces Adv. Photonics Res. Chem. Rev. Adv. Funct. Mater.
– volume: 18
  start-page: 6046
  year: 2018
  publication-title: Cryst. Growth Des.
– volume: 53 31 141 32 47 10 28
  start-page: 485 5740 7424
  year: 2020 2019 2019 2020 2018 2018 2016
  publication-title: Acc. Chem. Res. Adv. Mater. J. Am. Chem. Soc. Adv. Mater. Chem. Soc. Rev. ACS Appl. Mater. Interfaces Adv. Mater.
– volume: 353 501 133 2
  start-page: 808 262 780
  year: 2016 2013 2011 2010
  publication-title: Science Nature J. Am. Chem. Soc. Nat. Chem.
– volume: 52 25
  start-page: 3288 4796
  year: 2016 2015
  publication-title: Chem. Commun. Adv. Funct. Mater.
– volume: 32 59 12 116 12
  start-page: 6478 6554
  year: 2020 2020 2016 2016 2016
  publication-title: Adv. Mater. Angew. Chem., Int. Ed. Small Chem. Rev. Small
– volume: 59 57 7 138
  start-page: 3671 3910
  year: 2020 2018 2016 2016
  publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Chem. Sci. J. Am. Chem. Soc.
– volume: 10
  start-page: 1802
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 450
  start-page: 32
  year: 2016
  publication-title: J. Non‐Cryst. Solids
– volume: 243 137
  start-page: 69 1916
  year: 2017 2015
  publication-title: Microporous Mesoporous Mater. J. Am. Chem. Soc.
– volume: 5
  start-page: 5600
  year: 2017
  publication-title: J. Mater. Chem. C
– volume: 60 6
  start-page: 9450 1978
  year: 2021 2020
  publication-title: Angew. Chem., Int. Ed. Chem
– volume: 81
  start-page: 119
  year: 2009
  publication-title: Dyes Pigm.
– volume: 115 91
  year: 2015 2007
  publication-title: Chem. Rev. Appl. Phys. Lett.
– volume: 142 6 10
  start-page: 747 4285
  year: 2020 2020 2019
  publication-title: J. Am. Chem. Soc. ACS Cent. Sci. Nat. Commun.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 32 120 59 26 12
  start-page: 4534 8560 5429 6427
  year: 2020 2020 2020 2014 2016
  publication-title: Adv. Mater. Chem. Rev. Angew. Chem., Int. Ed. Adv. Mater. Small
– volume: 142 139 49 116 16
  start-page: 6332 6376 1691
  year: 2020 2017 2016 2016 2020
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. Acc. Chem. Res. Chem. Rev. Small
– volume: 8 8
  start-page: 1547 5132
  year: 2017 2017
  publication-title: Chem. Sci. Chem. Sci.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 142 59 58 140 138 140 6
  start-page: 2 6028 1118 1916
  year: 2020 2020 2019 2018 2016 2018 2018
  publication-title: J. Am. Chem. Soc. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. J. Am. Chem. Soc. J. Am. Chem. Soc. J. Am. Chem. Soc. Adv. Opt. Mater.
– volume: 4 140 6 8 7
  start-page: 1024 6884 33 557
  year: 2020 2018 2015 2014 2012
  publication-title: Mater. Chem. Front. J. Am. Chem. Soc. Nat. Commun. Nat. Photonics Nat. Nanotechnol.
– volume: 55 136 133
  start-page: 4919 6892
  year: 2016 2014 2011
  publication-title: Angew. Chem., Int. Ed. J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 44
  year: 2020
  publication-title: New J. Chem.
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. C
– volume: 50 10
  start-page: 3178 2775
  year: 2011 2010
  publication-title: Angew. Chem., Int. Ed. Cryst. Growth Des.
– ident: e_1_2_7_6_1
  doi: 10.1002/adma.201903530
– ident: e_1_2_7_9_1
  doi: 10.1016/j.dyepig.2008.09.013
– ident: e_1_2_7_11_6
  doi: 10.1021/acsami.8b04937
– ident: e_1_2_7_17_4
  doi: 10.1021/jacs.6b05817
– ident: e_1_2_7_3_5
  doi: 10.1038/nnano.2012.128
– ident: e_1_2_7_3_1
  doi: 10.1039/C9QM00607A
– ident: e_1_2_7_24_1
  doi: 10.1021/acsami.7b11277
– ident: e_1_2_7_25_1
  doi: 10.1021/acs.cgd.8b00891
– ident: e_1_2_7_2_2
  doi: 10.1021/jacs.7b01574
– ident: e_1_2_7_12_3
  doi: 10.1038/s41467-019-12204-7
– ident: e_1_2_7_7_1
  doi: 10.1039/C6TC05474A
– ident: e_1_2_7_10_1
  doi: 10.1016/j.micromeso.2017.02.005
– ident: e_1_2_7_11_3
  doi: 10.1021/jacs.9b07236
– ident: e_1_2_7_11_1
  doi: 10.1021/acs.accounts.9b00575
– ident: e_1_2_7_16_4
  doi: 10.1038/nchem.742
– ident: e_1_2_7_17_3
  doi: 10.1039/C6SC00594B
– ident: e_1_2_7_13_5
  doi: 10.1021/jacs.5b11525
– ident: e_1_2_7_6_3
  doi: 10.1002/anie.201909830
– ident: e_1_2_7_23_1
  doi: 10.1039/C5CC08703A
– ident: e_1_2_7_2_5
  doi: 10.1002/smll.201907074
– ident: e_1_2_7_11_4
  doi: 10.1002/adma.202002914
– ident: e_1_2_7_16_3
  doi: 10.1021/ja204818q
– ident: e_1_2_7_18_1
  doi: 10.1039/C6SC04288K
– ident: e_1_2_7_1_4
  doi: 10.1021/acs.chemrev.6b00127
– ident: e_1_2_7_16_1
  doi: 10.1126/science.aaf9135
– ident: e_1_2_7_13_4
  doi: 10.1021/jacs.8b11156
– ident: e_1_2_7_1_1
  doi: 10.1002/adma.201903882
– ident: e_1_2_7_3_3
  doi: 10.1038/ncomms7884
– volume: 8
  start-page: 33
  year: 2014
  ident: e_1_2_7_3_4
  publication-title: Nat. Photonics
– ident: e_1_2_7_13_3
  doi: 10.1002/anie.201901882
– ident: e_1_2_7_4_1
  doi: 10.1021/acsami.0c10257
– ident: e_1_2_7_14_2
  doi: 10.1016/j.chempr.2020.06.029
– ident: e_1_2_7_13_7
  doi: 10.1002/adom.201800273
– ident: e_1_2_7_14_1
  doi: 10.1002/anie.202100950
– ident: e_1_2_7_11_2
  doi: 10.1002/adma.201806897
– ident: e_1_2_7_26_1
  doi: 10.1021/acs.chemrev.5b00263
– ident: e_1_2_7_11_7
  doi: 10.1002/adma.201601844
– ident: e_1_2_7_26_2
  doi: 10.1063/1.2753723
– ident: e_1_2_7_4_2
  doi: 10.1002/adpr.202000080
– ident: e_1_2_7_16_2
  doi: 10.1038/nature12527
– ident: e_1_2_7_6_2
  doi: 10.1021/acs.chemrev.9b00814
– ident: e_1_2_7_2_4
  doi: 10.1021/acs.chemrev.6b00172
– ident: e_1_2_7_15_1
  doi: 10.1039/D0TC02887H
– ident: e_1_2_7_5_1
  doi: 10.1002/adma.202001457
– ident: e_1_2_7_13_1
  doi: 10.1021/jacs.0c08751
– ident: e_1_2_7_1_5
  doi: 10.1002/smll.201601516
– ident: e_1_2_7_6_5
  doi: 10.1002/smll.201602993
– ident: e_1_2_7_17_1
  doi: 10.1002/anie.202006438
– ident: e_1_2_7_23_2
  doi: 10.1002/adfm.201501756
– ident: e_1_2_7_20_1
  doi: 10.1039/D0NJ02969F
– ident: e_1_2_7_21_1
  doi: 10.1002/anie.201007583
– ident: e_1_2_7_19_3
  doi: 10.1021/ja2079064
– ident: e_1_2_7_4_4
  doi: 10.1002/adfm.200900221
– ident: e_1_2_7_12_1
  doi: 10.1021/jacs.0c08697
– ident: e_1_2_7_4_3
  doi: 10.1021/acs.chemrev.8b00260
– ident: e_1_2_7_18_2
  doi: 10.1039/C7SC01524K
– ident: e_1_2_7_8_1
  doi: 10.1016/j.jnoncrysol.2016.07.037
– ident: e_1_2_7_6_4
  doi: 10.1002/adma.201401356
– ident: e_1_2_7_1_2
  doi: 10.1002/anie.202004857
– ident: e_1_2_7_17_2
  doi: 10.1002/anie.201713219
– ident: e_1_2_7_22_1
  doi: 10.1021/acsami.7b13486
– ident: e_1_2_7_21_2
  doi: 10.1021/cg100316s
– ident: e_1_2_7_2_1
  doi: 10.1021/jacs.0c00871
– ident: e_1_2_7_1_3
  doi: 10.1002/smll.201601484
– ident: e_1_2_7_3_2
  doi: 10.1021/jacs.8b09608
– ident: e_1_2_7_19_2
  doi: 10.1021/ja502996h
– ident: e_1_2_7_2_3
  doi: 10.1021/acs.accounts.6b00209
– ident: e_1_2_7_19_1
  doi: 10.1002/anie.201509801
– ident: e_1_2_7_13_2
  doi: 10.1002/anie.201914768
– ident: e_1_2_7_10_2
  doi: 10.1021/ja511381f
– ident: e_1_2_7_12_2
  doi: 10.1021/acscentsci.0c00071
– ident: e_1_2_7_11_5
  doi: 10.1039/C7CS00879A
– ident: e_1_2_7_13_6
  doi: 10.1021/jacs.7b12800
SSID ssj0001073947
Score 2.3222404
Snippet Solid‐state fluorescent materials play a critical role in the manufacture of light‐emitting diodes, laser dyes, storage materials, and fluorescence sensors....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Agglomeration
aggregation‐caused quenching dye
Benzene
Cations
Crystal structure
crystalline sponge
Crystallinity
Dicarboxylic acids
Dyes
emission enhancement
Fluorescence
Hydrocarbons
Light emitting diodes
macrocycle
Materials science
Optics
Quenching
Room temperature
Sodium hypochlorite
Solid state
solid‐state fluorescent materials
Title Macrocycle‐Based Crystalline Sponge that Stabilizes and Lights Up Cationic Aggregation‐Caused Quenching Dyes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadom.202101670
https://www.proquest.com/docview/2611096173
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2195-1071
  dateEnd: 20241002
  omitProxy: false
  ssIdentifier: ssj0001073947
  issn: 2195-1071
  databaseCode: ADMLS
  dateStart: 20191203
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9MKFNyJQ0B4QHCpDvF6v46NJWkXIaYUaS-nJWr9CpMoxTXxIT_wE_gB_jl_CjHf9CK8CFyuxrYni-Tzzze48CHkpRjK1YpMb5ijKDKDUiQE0ghuxDS8Tc5jkIywUnp2KacDfL-xFr_e1k7VUbqM38fUv60r-R6twDvSKVbL_oNlGKJyAz6BfOIKG4fhXOp5JMKPxDs42OQvvwCslR-OrHbC-y4pCnhfrfJkCwZRbpJaYDHudqs7MPkbmm6OgwELAVTULx1tCAL5UKR-1zLEsUegHzLmuFqwmO515WLevrRMJ1oVaGgcarP5_u-dUWbfFqsHiRdnIn-C8owupfShcW7TXfIl5CR_bgjVv1Vyblmicyry7csHMH7JAbraPykdVxpDhTEkIVc2u5XY7AFWV2D85BNVgViZr7DrAcKlCzSnZ77x9ehaeBL4fzo8X81fFJwOHkuHmvZ7QcoscMEcI1icH3mTmn7eLeLjPyZ26GeiQvd3_pX2y00Yw3TioIjLze-SOjkCop-B0n_TS_AG5q6MRqm395iEpWnR9-_ylwhXt4IoqXFHEFW1xRQFXVOGKBgWtcUU7uAJpClG0QRRFRD0iwcnxfDw19HwOI7ZwXhH4SplYAkh7Cl4iSbjFMykr0otdJOMoYjJzHdtmPBkmLhb5RS4TmQAP7EjXtB6Tfr7O0yeEyiTLHGEKm2UOZ6mAoNfOkqGZ2SwyeewMiFE_yDDWzetxhsplqNpusxAffNg8-AF53dxfqLYtv73zsNZLqF_tTcgENuIFcm8NCKt0dYOU0JuczZpvT_8s8xm53b4Oh6S_vSrT50Btt9ELDbDvD9uk3g
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Macrocycle%E2%80%90Based+Crystalline+Sponge+that+Stabilizes+and+Lights+Up+Cationic+Aggregation%E2%80%90Caused+Quenching+Dyes&rft.jtitle=Advanced+optical+materials&rft.au=Sun%2C+Xin&rft.au=Yu%E2%80%90Dong+Yang&rft.au=Xu%E2%80%90Lang+Chen&rft.au=Ai%E2%80%90Huan+Sun&rft.date=2021-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=2195-1071&rft.volume=9&rft.issue=24&rft_id=info:doi/10.1002%2Fadom.202101670&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2195-1071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2195-1071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2195-1071&client=summon