Macrocycle‐Based Crystalline Sponge that Stabilizes and Lights Up Cationic Aggregation‐Caused Quenching Dyes
Solid‐state fluorescent materials play a critical role in the manufacture of light‐emitting diodes, laser dyes, storage materials, and fluorescence sensors. However, it remains challenging to produce solid‐state fluorescent materials using traditional organic dyes since most are subject to aggregati...
Saved in:
Published in | Advanced optical materials Vol. 9; no. 24 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.12.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2195-1071 2195-1071 |
DOI | 10.1002/adom.202101670 |
Cover
Abstract | Solid‐state fluorescent materials play a critical role in the manufacture of light‐emitting diodes, laser dyes, storage materials, and fluorescence sensors. However, it remains challenging to produce solid‐state fluorescent materials using traditional organic dyes since most are subject to aggregation‐caused quenching (ACQ) in the solid state. Here, a macrocycle‐derived crystalline framework is reported that captures various cationic test‐ACQ dyes (e.g., Basic Red 2 (BR2)) and stabilizes them in a fluorescent form. Cyclo[3](1,3‐benzene)[3](4,6‐benzene)(1,3‐dicarboxylic acid), CA‐3, is used as the core macrocyclic building block. When allowed to coordinate with Zn(NO3)2•6H2O or Cd(NO3)2•4H2O, crystalline sponge (CS‐Zn or CS‐Cd) is obtained. In the case of CS‐Zn, nano‐sized cavities are observed in the solid state that serve as containers to capture the cationic ACQ dye BR2 with loading yields up to 14.6 wt% and emission enhancements up to 41× of those seen for solid BR2. The resulting dye‐containing material, CS‐Zn@BR2, displays high stability in water or selected organic solvents at room temperature or under reflux, or when heated at 300 °C for 1 h open to the air, or in the presence of sodium hypochlorite solution (3.0 mm). This study highlights a new strategy for rendering fluorescent ACQ dyes in the solid state.
A macrocycle‐based crystalline sponge selectively captures cationic aggregation‐caused quenching dyes with high loading quantity, and further, enormously improves the dye emission properties in solid state. Moreover, crystalline sponge container can enhance the structure and optical stability of tested dye‐containing solid state fluorescence materials under treatment of solvents at room or reflux temperatures, or at 300 °C in air or oxidant (NaClO) damage. |
---|---|
AbstractList | Solid‐state fluorescent materials play a critical role in the manufacture of light‐emitting diodes, laser dyes, storage materials, and fluorescence sensors. However, it remains challenging to produce solid‐state fluorescent materials using traditional organic dyes since most are subject to aggregation‐caused quenching (ACQ) in the solid state. Here, a macrocycle‐derived crystalline framework is reported that captures various cationic test‐ACQ dyes (e.g., Basic Red 2 (BR2)) and stabilizes them in a fluorescent form. Cyclo[3](1,3‐benzene)[3](4,6‐benzene)(1,3‐dicarboxylic acid), CA‐3, is used as the core macrocyclic building block. When allowed to coordinate with Zn(NO3)2•6H2O or Cd(NO3)2•4H2O, crystalline sponge (CS‐Zn or CS‐Cd) is obtained. In the case of CS‐Zn, nano‐sized cavities are observed in the solid state that serve as containers to capture the cationic ACQ dye BR2 with loading yields up to 14.6 wt% and emission enhancements up to 41× of those seen for solid BR2. The resulting dye‐containing material, CS‐Zn@BR2, displays high stability in water or selected organic solvents at room temperature or under reflux, or when heated at 300 °C for 1 h open to the air, or in the presence of sodium hypochlorite solution (3.0 mm). This study highlights a new strategy for rendering fluorescent ACQ dyes in the solid state.
A macrocycle‐based crystalline sponge selectively captures cationic aggregation‐caused quenching dyes with high loading quantity, and further, enormously improves the dye emission properties in solid state. Moreover, crystalline sponge container can enhance the structure and optical stability of tested dye‐containing solid state fluorescence materials under treatment of solvents at room or reflux temperatures, or at 300 °C in air or oxidant (NaClO) damage. Solid‐state fluorescent materials play a critical role in the manufacture of light‐emitting diodes, laser dyes, storage materials, and fluorescence sensors. However, it remains challenging to produce solid‐state fluorescent materials using traditional organic dyes since most are subject to aggregation‐caused quenching (ACQ) in the solid state. Here, a macrocycle‐derived crystalline framework is reported that captures various cationic test‐ACQ dyes (e.g., Basic Red 2 (BR2)) and stabilizes them in a fluorescent form. Cyclo[3](1,3‐benzene)[3](4,6‐benzene)(1,3‐dicarboxylic acid), CA‐3, is used as the core macrocyclic building block. When allowed to coordinate with Zn(NO3)2•6H2O or Cd(NO3)2•4H2O, crystalline sponge (CS‐Zn or CS‐Cd) is obtained. In the case of CS‐Zn, nano‐sized cavities are observed in the solid state that serve as containers to capture the cationic ACQ dye BR2 with loading yields up to 14.6 wt% and emission enhancements up to 41× of those seen for solid BR2. The resulting dye‐containing material, CS‐Zn@BR2, displays high stability in water or selected organic solvents at room temperature or under reflux, or when heated at 300 °C for 1 h open to the air, or in the presence of sodium hypochlorite solution (3.0 mm). This study highlights a new strategy for rendering fluorescent ACQ dyes in the solid state. Solid‐state fluorescent materials play a critical role in the manufacture of light‐emitting diodes, laser dyes, storage materials, and fluorescence sensors. However, it remains challenging to produce solid‐state fluorescent materials using traditional organic dyes since most are subject to aggregation‐caused quenching (ACQ) in the solid state. Here, a macrocycle‐derived crystalline framework is reported that captures various cationic test‐ACQ dyes (e.g., Basic Red 2 (BR2)) and stabilizes them in a fluorescent form. Cyclo[3](1,3‐benzene)[3](4,6‐benzene)(1,3‐dicarboxylic acid), CA‐3, is used as the core macrocyclic building block. When allowed to coordinate with Zn(NO 3 ) 2 •6H 2 O or Cd(NO 3 ) 2 •4H 2 O, crystalline sponge (CS‐Zn or CS‐Cd) is obtained. In the case of CS‐Zn, nano‐sized cavities are observed in the solid state that serve as containers to capture the cationic ACQ dye BR2 with loading yields up to 14.6 wt% and emission enhancements up to 41× of those seen for solid BR2. The resulting dye‐containing material, CS‐Zn@BR2, displays high stability in water or selected organic solvents at room temperature or under reflux, or when heated at 300 °C for 1 h open to the air, or in the presence of sodium hypochlorite solution (3.0 m m ). This study highlights a new strategy for rendering fluorescent ACQ dyes in the solid state. |
Author | Yang, Yu‐Dong Sun, Ai‐Huan Gong, Han‐Yuan Xiang, Jun‐Feng Sun, Xin Chen, Xu‐Lang |
Author_xml | – sequence: 1 givenname: Xin orcidid: 0000-0003-4702-8636 surname: Sun fullname: Sun, Xin organization: Beijing Normal University – sequence: 2 givenname: Yu‐Dong surname: Yang fullname: Yang, Yu‐Dong organization: Beijing Normal University – sequence: 3 givenname: Xu‐Lang surname: Chen fullname: Chen, Xu‐Lang organization: Beijing Normal University – sequence: 4 givenname: Ai‐Huan surname: Sun fullname: Sun, Ai‐Huan organization: Beijing Normal University – sequence: 5 givenname: Jun‐Feng surname: Xiang fullname: Xiang, Jun‐Feng organization: Chinese Academy of Sciences – sequence: 6 givenname: Han‐Yuan orcidid: 0000-0003-4168-7657 surname: Gong fullname: Gong, Han‐Yuan email: hanyuangong@bnu.edu.cn organization: Beijing Normal University |
BookMark | eNqFkM1KxDAUhYOMoI5uXQdcz3jTn7RZjh3_YEREXZfbNu1EalqTDFJXPoLP6JPYzoiKIK7uvXC-cw9nj4x0oyUhhwymDMA7xqJ5nHrgMWA8gi2y6zERThhEbPRj3yEH1j4AQH_4Ioh2SXuFuWnyLq_l--vbCVpZ0MR01mFdKy3pbdvoSlK3REdvHWaqVi_SUtQFXahq6Sy9b2mCTjVa5XRWVUZW66t3S3A12N2spM6XSld03km7T7ZLrK08-Jxjcn92epdcTBbX55fJbDHJfRbBJPRjLHwOcSiBsaII_KBEBOBD7FDkWeZhKaIw9IICCsECHmfC4yWPIx6hYP6YHG18W9M8raR16UOzMrp_mXqcMRCcRX6vCjaqvgRrjSzTXLl1fmdQ1SmDdKg3HepNv-rtsekvrDXqEU33NyA2wLOqZfePOp3Nr6--2Q8-lZDS |
CitedBy_id | crossref_primary_10_1016_j_ccr_2024_216063 crossref_primary_10_1016_j_dyepig_2023_111244 crossref_primary_10_1038_s41570_023_00531_9 crossref_primary_10_1039_D2CC04735G crossref_primary_10_1016_j_eurpolymj_2024_113669 crossref_primary_10_1039_D2TC05492B |
Cites_doi | 10.1002/adma.201903530 10.1016/j.dyepig.2008.09.013 10.1021/acsami.8b04937 10.1021/jacs.6b05817 10.1038/nnano.2012.128 10.1039/C9QM00607A 10.1021/acsami.7b11277 10.1021/acs.cgd.8b00891 10.1021/jacs.7b01574 10.1038/s41467-019-12204-7 10.1039/C6TC05474A 10.1016/j.micromeso.2017.02.005 10.1021/jacs.9b07236 10.1021/acs.accounts.9b00575 10.1038/nchem.742 10.1039/C6SC00594B 10.1021/jacs.5b11525 10.1002/anie.201909830 10.1039/C5CC08703A 10.1002/smll.201907074 10.1002/adma.202002914 10.1021/ja204818q 10.1039/C6SC04288K 10.1021/acs.chemrev.6b00127 10.1126/science.aaf9135 10.1021/jacs.8b11156 10.1002/adma.201903882 10.1038/ncomms7884 10.1002/anie.201901882 10.1021/acsami.0c10257 10.1016/j.chempr.2020.06.029 10.1002/adom.201800273 10.1002/anie.202100950 10.1002/adma.201806897 10.1021/acs.chemrev.5b00263 10.1002/adma.201601844 10.1063/1.2753723 10.1002/adpr.202000080 10.1038/nature12527 10.1021/acs.chemrev.9b00814 10.1021/acs.chemrev.6b00172 10.1039/D0TC02887H 10.1002/adma.202001457 10.1021/jacs.0c08751 10.1002/smll.201601516 10.1002/smll.201602993 10.1002/anie.202006438 10.1002/adfm.201501756 10.1039/D0NJ02969F 10.1002/anie.201007583 10.1021/ja2079064 10.1002/adfm.200900221 10.1021/jacs.0c08697 10.1021/acs.chemrev.8b00260 10.1039/C7SC01524K 10.1016/j.jnoncrysol.2016.07.037 10.1002/adma.201401356 10.1002/anie.202004857 10.1002/anie.201713219 10.1021/acsami.7b13486 10.1021/cg100316s 10.1021/jacs.0c00871 10.1002/smll.201601484 10.1021/jacs.8b09608 10.1021/ja502996h 10.1021/acs.accounts.6b00209 10.1002/anie.201509801 10.1002/anie.201914768 10.1021/ja511381f 10.1021/acscentsci.0c00071 10.1039/C7CS00879A 10.1021/jacs.7b12800 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7U5 8FD H8D L7M |
DOI | 10.1002/adom.202101670 |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2195-1071 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adom_202101670 ADOM202101670 |
Genre | article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities – fundername: National Natural Science Foundation of China funderid: 21971022 |
GroupedDBID | 0R~ 1OC 33P 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZFZN AZVAB BFHJK BMXJE BRXPI D-B DCZOG DPXWK EBS G-S HGLYW HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- P2W R.K ROL SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW 31~ AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION EJD GODZA 7SP 7U5 8FD H8D L7M |
ID | FETCH-LOGICAL-c3170-538ad36085e011dd434faa006394759cbb2af975524d0d91468b926f68767a913 |
ISSN | 2195-1071 |
IngestDate | Fri Jul 25 12:06:48 EDT 2025 Wed Oct 01 01:00:04 EDT 2025 Thu Apr 24 22:53:05 EDT 2025 Wed Jan 22 16:28:20 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3170-538ad36085e011dd434faa006394759cbb2af975524d0d91468b926f68767a913 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4702-8636 0000-0003-4168-7657 |
PQID | 2611096173 |
PQPubID | 2034581 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2611096173 crossref_citationtrail_10_1002_adom_202101670 crossref_primary_10_1002_adom_202101670 wiley_primary_10_1002_adom_202101670_ADOM202101670 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced optical materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2020 2020 2019 2018 2016 2018 2018; 142 59 58 140 138 140 6 2009; 81 2020 2020 2019; 142 6 10 2016 2014 2011; 55 136 133 2020 2018 2016 2016; 59 57 7 138 2017 2017; 8 8 2020 2018 2015 2014 2012; 4 140 6 8 7 2020; 32 2020 2021 2019 2009; 12 2 119 19 2017; 9 2017 2015; 243 137 2020 2020 2020 2014 2016; 32 120 59 26 12 2020; 8 2018; 18 2016 2015; 52 25 2011 2010; 50 10 2020 2019 2019 2020 2018 2018 2016; 53 31 141 32 47 10 28 2021 2020; 60 6 2020; 44 2016 2013 2011 2010; 353 501 133 2 2018; 10 2020 2017 2016 2016 2020; 142 139 49 116 16 2016; 450 2020 2020 2016 2016 2016; 32 59 12 116 12 2015 2007; 115 91 e_1_2_7_1_5 e_1_2_7_3_3 e_1_2_7_5_1 e_1_2_7_1_4 e_1_2_7_3_2 e_1_2_7_1_3 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_19_3 e_1_2_7_3_5 e_1_2_7_7_1 e_1_2_7_17_4 e_1_2_7_19_2 e_1_2_7_13_7 e_1_2_7_17_3 e_1_2_7_19_1 e_1_2_7_13_6 e_1_2_7_17_2 e_1_2_7_11_7 e_1_2_7_13_5 e_1_2_7_17_1 e_1_2_7_11_6 e_1_2_7_13_4 e_1_2_7_1_2 e_1_2_7_11_5 e_1_2_7_13_3 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_11_4 e_1_2_7_13_2 e_1_2_7_11_3 e_1_2_7_13_1 e_1_2_7_11_2 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_26_2 e_1_2_7_25_1 e_1_2_7_23_2 e_1_2_7_23_1 e_1_2_7_21_2 e_1_2_7_21_1 e_1_2_7_2_5 e_1_2_7_4_3 e_1_2_7_6_1 e_1_2_7_2_4 e_1_2_7_4_2 e_1_2_7_2_3 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_6_5 e_1_2_7_6_4 e_1_2_7_6_3 e_1_2_7_8_1 e_1_2_7_4_4 e_1_2_7_6_2 Lu Y. (e_1_2_7_3_4) 2014; 8 e_1_2_7_16_4 e_1_2_7_18_2 e_1_2_7_16_3 e_1_2_7_18_1 e_1_2_7_16_2 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_2 e_1_2_7_12_3 e_1_2_7_14_1 e_1_2_7_12_2 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_10_1 e_1_2_7_24_1 e_1_2_7_22_1 e_1_2_7_20_1 |
References_xml | – volume: 12 2 119 19 start-page: 322 2230 year: 2020 2021 2019 2009 publication-title: ACS Appl. Mater. Interfaces Adv. Photonics Res. Chem. Rev. Adv. Funct. Mater. – volume: 18 start-page: 6046 year: 2018 publication-title: Cryst. Growth Des. – volume: 53 31 141 32 47 10 28 start-page: 485 5740 7424 year: 2020 2019 2019 2020 2018 2018 2016 publication-title: Acc. Chem. Res. Adv. Mater. J. Am. Chem. Soc. Adv. Mater. Chem. Soc. Rev. ACS Appl. Mater. Interfaces Adv. Mater. – volume: 353 501 133 2 start-page: 808 262 780 year: 2016 2013 2011 2010 publication-title: Science Nature J. Am. Chem. Soc. Nat. Chem. – volume: 52 25 start-page: 3288 4796 year: 2016 2015 publication-title: Chem. Commun. Adv. Funct. Mater. – volume: 32 59 12 116 12 start-page: 6478 6554 year: 2020 2020 2016 2016 2016 publication-title: Adv. Mater. Angew. Chem., Int. Ed. Small Chem. Rev. Small – volume: 59 57 7 138 start-page: 3671 3910 year: 2020 2018 2016 2016 publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Chem. Sci. J. Am. Chem. Soc. – volume: 10 start-page: 1802 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 450 start-page: 32 year: 2016 publication-title: J. Non‐Cryst. Solids – volume: 243 137 start-page: 69 1916 year: 2017 2015 publication-title: Microporous Mesoporous Mater. J. Am. Chem. Soc. – volume: 5 start-page: 5600 year: 2017 publication-title: J. Mater. Chem. C – volume: 60 6 start-page: 9450 1978 year: 2021 2020 publication-title: Angew. Chem., Int. Ed. Chem – volume: 81 start-page: 119 year: 2009 publication-title: Dyes Pigm. – volume: 115 91 year: 2015 2007 publication-title: Chem. Rev. Appl. Phys. Lett. – volume: 142 6 10 start-page: 747 4285 year: 2020 2020 2019 publication-title: J. Am. Chem. Soc. ACS Cent. Sci. Nat. Commun. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 32 120 59 26 12 start-page: 4534 8560 5429 6427 year: 2020 2020 2020 2014 2016 publication-title: Adv. Mater. Chem. Rev. Angew. Chem., Int. Ed. Adv. Mater. Small – volume: 142 139 49 116 16 start-page: 6332 6376 1691 year: 2020 2017 2016 2016 2020 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. Acc. Chem. Res. Chem. Rev. Small – volume: 8 8 start-page: 1547 5132 year: 2017 2017 publication-title: Chem. Sci. Chem. Sci. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 142 59 58 140 138 140 6 start-page: 2 6028 1118 1916 year: 2020 2020 2019 2018 2016 2018 2018 publication-title: J. Am. Chem. Soc. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. J. Am. Chem. Soc. J. Am. Chem. Soc. J. Am. Chem. Soc. Adv. Opt. Mater. – volume: 4 140 6 8 7 start-page: 1024 6884 33 557 year: 2020 2018 2015 2014 2012 publication-title: Mater. Chem. Front. J. Am. Chem. Soc. Nat. Commun. Nat. Photonics Nat. Nanotechnol. – volume: 55 136 133 start-page: 4919 6892 year: 2016 2014 2011 publication-title: Angew. Chem., Int. Ed. J. Am. Chem. Soc. J. Am. Chem. Soc. – volume: 44 year: 2020 publication-title: New J. Chem. – volume: 8 year: 2020 publication-title: J. Mater. Chem. C – volume: 50 10 start-page: 3178 2775 year: 2011 2010 publication-title: Angew. Chem., Int. Ed. Cryst. Growth Des. – ident: e_1_2_7_6_1 doi: 10.1002/adma.201903530 – ident: e_1_2_7_9_1 doi: 10.1016/j.dyepig.2008.09.013 – ident: e_1_2_7_11_6 doi: 10.1021/acsami.8b04937 – ident: e_1_2_7_17_4 doi: 10.1021/jacs.6b05817 – ident: e_1_2_7_3_5 doi: 10.1038/nnano.2012.128 – ident: e_1_2_7_3_1 doi: 10.1039/C9QM00607A – ident: e_1_2_7_24_1 doi: 10.1021/acsami.7b11277 – ident: e_1_2_7_25_1 doi: 10.1021/acs.cgd.8b00891 – ident: e_1_2_7_2_2 doi: 10.1021/jacs.7b01574 – ident: e_1_2_7_12_3 doi: 10.1038/s41467-019-12204-7 – ident: e_1_2_7_7_1 doi: 10.1039/C6TC05474A – ident: e_1_2_7_10_1 doi: 10.1016/j.micromeso.2017.02.005 – ident: e_1_2_7_11_3 doi: 10.1021/jacs.9b07236 – ident: e_1_2_7_11_1 doi: 10.1021/acs.accounts.9b00575 – ident: e_1_2_7_16_4 doi: 10.1038/nchem.742 – ident: e_1_2_7_17_3 doi: 10.1039/C6SC00594B – ident: e_1_2_7_13_5 doi: 10.1021/jacs.5b11525 – ident: e_1_2_7_6_3 doi: 10.1002/anie.201909830 – ident: e_1_2_7_23_1 doi: 10.1039/C5CC08703A – ident: e_1_2_7_2_5 doi: 10.1002/smll.201907074 – ident: e_1_2_7_11_4 doi: 10.1002/adma.202002914 – ident: e_1_2_7_16_3 doi: 10.1021/ja204818q – ident: e_1_2_7_18_1 doi: 10.1039/C6SC04288K – ident: e_1_2_7_1_4 doi: 10.1021/acs.chemrev.6b00127 – ident: e_1_2_7_16_1 doi: 10.1126/science.aaf9135 – ident: e_1_2_7_13_4 doi: 10.1021/jacs.8b11156 – ident: e_1_2_7_1_1 doi: 10.1002/adma.201903882 – ident: e_1_2_7_3_3 doi: 10.1038/ncomms7884 – volume: 8 start-page: 33 year: 2014 ident: e_1_2_7_3_4 publication-title: Nat. Photonics – ident: e_1_2_7_13_3 doi: 10.1002/anie.201901882 – ident: e_1_2_7_4_1 doi: 10.1021/acsami.0c10257 – ident: e_1_2_7_14_2 doi: 10.1016/j.chempr.2020.06.029 – ident: e_1_2_7_13_7 doi: 10.1002/adom.201800273 – ident: e_1_2_7_14_1 doi: 10.1002/anie.202100950 – ident: e_1_2_7_11_2 doi: 10.1002/adma.201806897 – ident: e_1_2_7_26_1 doi: 10.1021/acs.chemrev.5b00263 – ident: e_1_2_7_11_7 doi: 10.1002/adma.201601844 – ident: e_1_2_7_26_2 doi: 10.1063/1.2753723 – ident: e_1_2_7_4_2 doi: 10.1002/adpr.202000080 – ident: e_1_2_7_16_2 doi: 10.1038/nature12527 – ident: e_1_2_7_6_2 doi: 10.1021/acs.chemrev.9b00814 – ident: e_1_2_7_2_4 doi: 10.1021/acs.chemrev.6b00172 – ident: e_1_2_7_15_1 doi: 10.1039/D0TC02887H – ident: e_1_2_7_5_1 doi: 10.1002/adma.202001457 – ident: e_1_2_7_13_1 doi: 10.1021/jacs.0c08751 – ident: e_1_2_7_1_5 doi: 10.1002/smll.201601516 – ident: e_1_2_7_6_5 doi: 10.1002/smll.201602993 – ident: e_1_2_7_17_1 doi: 10.1002/anie.202006438 – ident: e_1_2_7_23_2 doi: 10.1002/adfm.201501756 – ident: e_1_2_7_20_1 doi: 10.1039/D0NJ02969F – ident: e_1_2_7_21_1 doi: 10.1002/anie.201007583 – ident: e_1_2_7_19_3 doi: 10.1021/ja2079064 – ident: e_1_2_7_4_4 doi: 10.1002/adfm.200900221 – ident: e_1_2_7_12_1 doi: 10.1021/jacs.0c08697 – ident: e_1_2_7_4_3 doi: 10.1021/acs.chemrev.8b00260 – ident: e_1_2_7_18_2 doi: 10.1039/C7SC01524K – ident: e_1_2_7_8_1 doi: 10.1016/j.jnoncrysol.2016.07.037 – ident: e_1_2_7_6_4 doi: 10.1002/adma.201401356 – ident: e_1_2_7_1_2 doi: 10.1002/anie.202004857 – ident: e_1_2_7_17_2 doi: 10.1002/anie.201713219 – ident: e_1_2_7_22_1 doi: 10.1021/acsami.7b13486 – ident: e_1_2_7_21_2 doi: 10.1021/cg100316s – ident: e_1_2_7_2_1 doi: 10.1021/jacs.0c00871 – ident: e_1_2_7_1_3 doi: 10.1002/smll.201601484 – ident: e_1_2_7_3_2 doi: 10.1021/jacs.8b09608 – ident: e_1_2_7_19_2 doi: 10.1021/ja502996h – ident: e_1_2_7_2_3 doi: 10.1021/acs.accounts.6b00209 – ident: e_1_2_7_19_1 doi: 10.1002/anie.201509801 – ident: e_1_2_7_13_2 doi: 10.1002/anie.201914768 – ident: e_1_2_7_10_2 doi: 10.1021/ja511381f – ident: e_1_2_7_12_2 doi: 10.1021/acscentsci.0c00071 – ident: e_1_2_7_11_5 doi: 10.1039/C7CS00879A – ident: e_1_2_7_13_6 doi: 10.1021/jacs.7b12800 |
SSID | ssj0001073947 |
Score | 2.3222404 |
Snippet | Solid‐state fluorescent materials play a critical role in the manufacture of light‐emitting diodes, laser dyes, storage materials, and fluorescence sensors.... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Agglomeration aggregation‐caused quenching dye Benzene Cations Crystal structure crystalline sponge Crystallinity Dicarboxylic acids Dyes emission enhancement Fluorescence Hydrocarbons Light emitting diodes macrocycle Materials science Optics Quenching Room temperature Sodium hypochlorite Solid state solid‐state fluorescent materials |
Title | Macrocycle‐Based Crystalline Sponge that Stabilizes and Lights Up Cationic Aggregation‐Caused Quenching Dyes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadom.202101670 https://www.proquest.com/docview/2611096173 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2195-1071 dateEnd: 20241002 omitProxy: false ssIdentifier: ssj0001073947 issn: 2195-1071 databaseCode: ADMLS dateStart: 20191203 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9MKFNyJQ0B4QHCpDvF6v46NJWkXIaYUaS-nJWr9CpMoxTXxIT_wE_gB_jl_CjHf9CK8CFyuxrYni-Tzzze48CHkpRjK1YpMb5ijKDKDUiQE0ghuxDS8Tc5jkIywUnp2KacDfL-xFr_e1k7VUbqM38fUv60r-R6twDvSKVbL_oNlGKJyAz6BfOIKG4fhXOp5JMKPxDs42OQvvwCslR-OrHbC-y4pCnhfrfJkCwZRbpJaYDHudqs7MPkbmm6OgwELAVTULx1tCAL5UKR-1zLEsUegHzLmuFqwmO515WLevrRMJ1oVaGgcarP5_u-dUWbfFqsHiRdnIn-C8owupfShcW7TXfIl5CR_bgjVv1Vyblmicyry7csHMH7JAbraPykdVxpDhTEkIVc2u5XY7AFWV2D85BNVgViZr7DrAcKlCzSnZ77x9ehaeBL4fzo8X81fFJwOHkuHmvZ7QcoscMEcI1icH3mTmn7eLeLjPyZ26GeiQvd3_pX2y00Yw3TioIjLze-SOjkCop-B0n_TS_AG5q6MRqm395iEpWnR9-_ylwhXt4IoqXFHEFW1xRQFXVOGKBgWtcUU7uAJpClG0QRRFRD0iwcnxfDw19HwOI7ZwXhH4SplYAkh7Cl4iSbjFMykr0otdJOMoYjJzHdtmPBkmLhb5RS4TmQAP7EjXtB6Tfr7O0yeEyiTLHGEKm2UOZ6mAoNfOkqGZ2SwyeewMiFE_yDDWzetxhsplqNpusxAffNg8-AF53dxfqLYtv73zsNZLqF_tTcgENuIFcm8NCKt0dYOU0JuczZpvT_8s8xm53b4Oh6S_vSrT50Btt9ELDbDvD9uk3g |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Macrocycle%E2%80%90Based+Crystalline+Sponge+that+Stabilizes+and+Lights+Up+Cationic+Aggregation%E2%80%90Caused+Quenching+Dyes&rft.jtitle=Advanced+optical+materials&rft.au=Sun%2C+Xin&rft.au=Yu%E2%80%90Dong+Yang&rft.au=Xu%E2%80%90Lang+Chen&rft.au=Ai%E2%80%90Huan+Sun&rft.date=2021-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=2195-1071&rft.volume=9&rft.issue=24&rft_id=info:doi/10.1002%2Fadom.202101670&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2195-1071&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2195-1071&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2195-1071&client=summon |