Enhanced pothole detection system using YOLOX algorithm

The road is the most commonly used means of transportation and serves as a country’s arteries, so it is extremely important to keep the roads in good condition. Potholes that happen to appear in the road must be repaired to keep the road in good condition. Spotting potholes on the road is difficult,...

Full description

Saved in:
Bibliographic Details
Published inAutonomous intelligent systems Vol. 2; no. 1; pp. 1 - 16
Main Authors B, Mohan Prakash, K.C, Sriharipriya
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 31.08.2022
Springer
Subjects
Online AccessGet full text
ISSN2730-616X
2730-616X
DOI10.1007/s43684-022-00037-z

Cover

Abstract The road is the most commonly used means of transportation and serves as a country’s arteries, so it is extremely important to keep the roads in good condition. Potholes that happen to appear in the road must be repaired to keep the road in good condition. Spotting potholes on the road is difficult, especially in a country like India where roads stretch millions of kilometres across the country. Therefore, there is a need to automate the identification of potholes with high speed and real-time precision. YOLOX is an object detection algorithm and our main goal of this article is to train and analyse the YOLOX model for pothole detection. The YOLOX model is trained with a pothole dataset and the results obtained are analysed by calculating the accuracy, recall and size of the model which is then compared to other YOLO algorithms. The experimental results in this article show that the YOLOX-Nano model predicts potholes with higher accuracy compared to other models while having low computational costs. We were able to achieve an Average Precision (AP) value of 85.6% from training the model and the total size of the model is 7.22 MB. The pothole detection capabilities of the newly developed YOLOX algorithm have never been tested before and this paper is one of the first to detect potholes using the YOLOX object detection algorithm. The research conducted in this paper will help reduce costs and increase the speed of pothole identification and will be of great help in road maintenance.
AbstractList The road is the most commonly used means of transportation and serves as a country’s arteries, so it is extremely important to keep the roads in good condition. Potholes that happen to appear in the road must be repaired to keep the road in good condition. Spotting potholes on the road is difficult, especially in a country like India where roads stretch millions of kilometres across the country. Therefore, there is a need to automate the identification of potholes with high speed and real-time precision. YOLOX is an object detection algorithm and our main goal of this article is to train and analyse the YOLOX model for pothole detection. The YOLOX model is trained with a pothole dataset and the results obtained are analysed by calculating the accuracy, recall and size of the model which is then compared to other YOLO algorithms. The experimental results in this article show that the YOLOX-Nano model predicts potholes with higher accuracy compared to other models while having low computational costs. We were able to achieve an Average Precision (AP) value of 85.6% from training the model and the total size of the model is 7.22 MB. The pothole detection capabilities of the newly developed YOLOX algorithm have never been tested before and this paper is one of the first to detect potholes using the YOLOX object detection algorithm. The research conducted in this paper will help reduce costs and increase the speed of pothole identification and will be of great help in road maintenance.
Abstract The road is the most commonly used means of transportation and serves as a country’s arteries, so it is extremely important to keep the roads in good condition. Potholes that happen to appear in the road must be repaired to keep the road in good condition. Spotting potholes on the road is difficult, especially in a country like India where roads stretch millions of kilometres across the country. Therefore, there is a need to automate the identification of potholes with high speed and real-time precision. YOLOX is an object detection algorithm and our main goal of this article is to train and analyse the YOLOX model for pothole detection. The YOLOX model is trained with a pothole dataset and the results obtained are analysed by calculating the accuracy, recall and size of the model which is then compared to other YOLO algorithms. The experimental results in this article show that the YOLOX-Nano model predicts potholes with higher accuracy compared to other models while having low computational costs. We were able to achieve an Average Precision (AP) value of 85.6% from training the model and the total size of the model is 7.22 MB. The pothole detection capabilities of the newly developed YOLOX algorithm have never been tested before and this paper is one of the first to detect potholes using the YOLOX object detection algorithm. The research conducted in this paper will help reduce costs and increase the speed of pothole identification and will be of great help in road maintenance.
ArticleNumber 22
Author K.C, Sriharipriya
B, Mohan Prakash
Author_xml – sequence: 1
  givenname: Mohan Prakash
  orcidid: 0000-0002-5069-1597
  surname: B
  fullname: B, Mohan Prakash
  email: mohanprakash.b2019@vitstudent.ac.in
  organization: SENSE, VIT University
– sequence: 2
  givenname: Sriharipriya
  surname: K.C
  fullname: K.C, Sriharipriya
  organization: SENSE, VIT University
BookMark eNp9kM1KAzEYRYNUsNa-gKt5gdH8TTJZSqlaKHSjUFchk5_plOmkJNNF-_SmHRFx0dV3-ci5Sc49GHW-swA8IviEIOTPkRJW0hxinEMICc9PN2CMOYE5Q2w9-pPvwDTGbTqEuSC0pGPA591GddqabO_7jW9tZmxvdd_4LovH2NtddohNV2dfq-Vqnam29qHpN7sHcOtUG-30Z07A5-v8Y_aeL1dvi9nLMtcEsVPOjOCOOAOtQjxFiCpjy0IoSyEUjmmOnHGMalZYi52uDBf0_DSBYOGwIxOwGHqNV1u5D81OhaP0qpGXhQ-1VKFvdGslg6YssOOKVJhapURFtah0-muplRE4deGhSwcfY7Dutw9BeTYpB5MymZQXk_KUoPIfpJtenf30QTXtdZQMaEz3dLUNcusPoUu6rlHfRAOLJg
CitedBy_id crossref_primary_10_1016_j_trpro_2025_03_105
crossref_primary_10_1007_s11042_024_19723_6
crossref_primary_10_3389_fbuil_2023_1323792
crossref_primary_10_1109_ACCESS_2024_3455093
crossref_primary_10_48175_IJARSCT_15360
crossref_primary_10_1016_j_rineng_2024_103081
crossref_primary_10_21266_2079_4304_2024_250_318_332
crossref_primary_10_1515_jisys_2024_0164
crossref_primary_10_1109_JSEN_2024_3399008
crossref_primary_10_1007_s43684_025_00096_y
crossref_primary_10_3390_app14114583
crossref_primary_10_46632_cset_2_3_5
crossref_primary_10_1007_s11042_024_19579_w
Cites_doi 10.1109/TSE.2020.3032986
10.1007/978-981-16-2008-9_28
10.1109/ICISCT50599.2020.9351373
10.3390/rs13010089
10.1088/1757-899X/874/1/012012
10.1109/ICICT48043.2020.9112424
10.1109/ACCESS.2021.3114399
10.3390/app112311229
10.1109/IVCNZ51579.2020.9290547
10.1109/TPAMI.2009.167
10.1109/TPAMI.2016.2577031
10.1109/3DV.2016.78
10.1109/TPAMI.2021.3059968
10.3390/app11083725
10.1155/2015/869627
10.3390/app10134490
10.1016/j.ijtst.2020.07.004
10.1109/ISITIA.2019.8937176
10.1109/ACCESS.2020.3004590
10.1109/BigData.2017.8258427
10.1109/TITS.2021.3054026
10.1007/978-3-319-46448-0_2
10.1109/ICITEED.2018.8534769
10.1016/j.aei.2018.09.002
10.1155/2018/7419058
10.1063/5.0008282
10.1007/978-3-030-58568-6_32
10.1007/s41870-022-00881-5
10.1007/978-981-13-6577-5_48
10.1109/ICMA49215.2020.9233610
10.1155/2021/6262194
10.3390/s21248406
10.1088/1742-6596/1684/1/012094
10.1155/2021/8153474
10.1007/s00371-021-02357-2
10.1155/2015/968361
10.3390/info13010005
10.3390/s20195564
10.1007/s11263-009-0275-4
10.1109/CVPR.2017.690
10.5281/zenodo.6222936
10.1109/CVPR.2016.91
10.1109/CVPR46437.2021.00037
10.1109/SYNASC.2018.00041
10.1109/ICCV.2019.00972
10.1007/978-1-4899-7687-1_79
10.1109/ICCV.2017.593
10.1007/978-3-319-10602-1_48
ContentType Journal Article
Copyright The Author(s) 2022
Copyright_xml – notice: The Author(s) 2022
DBID C6C
AAYXX
CITATION
DOA
DOI 10.1007/s43684-022-00037-z
DatabaseName Springer Nature OA Free Journals
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2730-616X
EndPage 16
ExternalDocumentID oai_doaj_org_article_60d852f7a3b24eaa9b4c9bc0278cad92
10_1007_s43684_022_00037_z
GroupedDBID 0R~
AAKKN
AAYZJ
ABEEZ
ABJCF
ACACY
ACULB
AFGXO
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
C24
C6C
CCPQU
EBS
GROUPED_DOAJ
HCIFZ
K7-
M7S
M~E
OK1
PIMPY
PTHSS
RSV
SOJ
AAYXX
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
ID FETCH-LOGICAL-c316z-6d97f3fd0ea1797f01bde859ae4009f6c71fdf64c65ee2fcbd79493489105f2f3
IEDL.DBID DOA
ISSN 2730-616X
IngestDate Wed Aug 27 01:24:28 EDT 2025
Tue Jul 01 03:39:18 EDT 2025
Thu Apr 24 23:03:36 EDT 2025
Fri Feb 21 02:44:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords YOLO
YOLOX
Pothole detection
Object detection
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316z-6d97f3fd0ea1797f01bde859ae4009f6c71fdf64c65ee2fcbd79493489105f2f3
ORCID 0000-0002-5069-1597
OpenAccessLink https://doaj.org/article/60d852f7a3b24eaa9b4c9bc0278cad92
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_60d852f7a3b24eaa9b4c9bc0278cad92
crossref_primary_10_1007_s43684_022_00037_z
crossref_citationtrail_10_1007_s43684_022_00037_z
springer_journals_10_1007_s43684_022_00037_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220831
PublicationDateYYYYMMDD 2022-08-31
PublicationDate_xml – month: 8
  year: 2022
  text: 20220831
  day: 31
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Autonomous intelligent systems
PublicationTitleAbbrev Auton. Intell. Syst
PublicationYear 2022
Publisher Springer Nature Singapore
Springer
Publisher_xml – name: Springer Nature Singapore
– name: Springer
References Liu, Zhou, Li, Wang (CR49) 2020
Muslim, Sulistyaningrum, Setiyono (CR8) 2020; 2242
CR39
CR37
Ahmed (CR38) 2021; 21
Omar, Kumar (CR35) 2020
Sutrisno, Syauqi, Hasin, Iskandar, Asmara, Suwondo, Ardiansyah, Setiawan (CR7) 2020; 874
CR34
Lu, Li, Li, Yan, Vedaldi, Bischof, Brox, Frahm (CR45) 2020
Wu, Wang, Hu, Lepine, Na, Ainalis, Stettler (CR11) 2020; 20
Panboonyuen, Thongbai, Wongweeranimit, Santitamnont, Suphan, Charoenphon (CR42) 2022; 13
Lin, Chen, Kuo (CR33) 2021; 11
Lu, Guo, Liang (CR19) 2021; 2021
Pramestya, Sulistyaningrum, Setiyono, Mukhlash, Firdaus (CR6) 2018
Hoque, Arafat, Xu, Maiti, Wei (CR12) 2021; 9
Bajammal, Stocco, Mazinanian, Mesbah (CR15) 2022; 48
Dharneeshkar, Dhakshana, Aniruthan, Karthika, Parameswaran (CR30) 2020
Poirson, Ammirato, Fu, Liu, Kosecka, Berg (CR48) 2016
Felzenszwalb, Girshick, Mcallester, Ramanan (CR24) 2010; 32
CR47
Minaee, Boykov, Porikli, Plaza, Kehtarnavaz, Terzopoulos (CR16) 2022; 44
CR46
CR43
Wang, Chen, Cheng, Lin, Lo (CR2) 2015; 2015
She, Hongwei, Wang, Yan (CR5) 2021; 10
Liu, Liu (CR14) 2021; 2021
CR40
Ukhwah, Yuniarno, Suprapto (CR31) 2019
Kawano, Mikami, Yokoyama, Yonezawa, Nakazawa (CR23) 2017
Sharma, Phan, Lee (CR3) 2020; 10
Ryu, Kim, Kim (CR9) 2015; 2015
Anandhalli, Tanuja, Baligar, Baligar (CR18) 2022
Hao, Zhili (CR52) 2020; 1684
Bibi, Saeed, Zeb, Ghazal, Said, Abbas, Ahmad, Khan (CR17) 2021; 2021
Ahmed, Ashfaque, Ulhaq, Mathavan, Kamal, Rahman (CR4) 2022; 23
Sharma, Sharma, Kumar, Pandey, Kumar (CR1) 2019
Sumalatha, Rao, Devi, Iyer, Ghosh, Balas (CR28) 2022
CR56
CR55
Liu, Anguelov, Erhan, Szegedy, Reed, Fu, Berg (CR27) 2016
CR54
Park, Tran, Lee (CR36) 2021; 11
CR53
CR51
Ren, He, Girshick, Sun (CR21) 2017; 39
Yousaf, Azhar, Murtaza, Hussain (CR10) 2018; 38
Carranza-García, Torres-Mateo, Lara-Benítez, García-Gutiérrez (CR44) 2021; 13
Liu, Anguelov, Erhan, Szegedy, Reed, Fu, Berg, Leibe, Matas, Sebe, Welling (CR41) 2016
Luo, Lu, Guo (CR20) 2020; 8
Hoang (CR13) 2018; 2018
CR29
CR25
Chitale, Kekre, Shenai, Karani, Gala (CR32) 2020
CR22
Everingham, Van Gool, Williams, Winn, Zisserman (CR26) 2010; 88
Zhang, Li, Sun, Zhu (CR50) 2022
T. Liu (37_CR14) 2021; 2021
37_CR39
N.-D. Hoang (37_CR13) 2018; 2018
H.-W. Wang (37_CR2) 2015; 2015
Y. Lu (37_CR19) 2021; 2021
Y.-C. Lin (37_CR33) 2021; 11
I. Sutrisno (37_CR7) 2020; 874
R.H. Pramestya (37_CR6) 2018
S. Hoque (37_CR12) 2021; 9
W. Liu (37_CR27) 2016
W. Liu (37_CR41) 2016
P. Felzenszwalb (37_CR24) 2010; 32
37_CR34
37_CR37
S.K. Sharma (37_CR3) 2020; 10
J. Dharneeshkar (37_CR30) 2020
X. She (37_CR5) 2021; 10
37_CR40
M. Carranza-García (37_CR44) 2021; 13
T. Zhang (37_CR50) 2022
37_CR43
W. Hao (37_CR52) 2020; 1684
37_CR46
S. Minaee (37_CR16) 2022; 44
37_CR47
C. Wu (37_CR11) 2020; 20
M. Bajammal (37_CR15) 2022; 48
S.-S. Park (37_CR36) 2021; 11
M.H. Yousaf (37_CR10) 2018; 38
X. Lu (37_CR45) 2020
P. Poirson (37_CR48) 2016
S. Liu (37_CR49) 2020
M. Omar (37_CR35) 2020
E.N. Ukhwah (37_CR31) 2019
37_CR51
37_CR55
37_CR56
37_CR53
37_CR54
M. Anandhalli (37_CR18) 2022
R. Bibi (37_CR17) 2021; 2021
37_CR29
M. Muslim (37_CR8) 2020; 2242
R. Sumalatha (37_CR28) 2022
S.-K. Ryu (37_CR9) 2015; 2015
M. Kawano (37_CR23) 2017
P.A. Chitale (37_CR32) 2020
A. Ahmed (37_CR4) 2022; 23
S. Ren (37_CR21) 2017; 39
K.R. Ahmed (37_CR38) 2021; 21
S.K. Sharma (37_CR1) 2019
D. Luo (37_CR20) 2020; 8
37_CR22
M. Everingham (37_CR26) 2010; 88
T. Panboonyuen (37_CR42) 2022; 13
37_CR25
References_xml – volume: 48
  start-page: 1722
  issue: 5
  year: 2022
  end-page: 1742
  ident: CR15
  article-title: A survey on the use of computer vision to improve software engineering tasks
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.2020.3032986
– start-page: 293
  year: 2022
  end-page: 300
  ident: CR28
  article-title: Pothole detection using yolov2 object detection network and convolutional neural network
  publication-title: Applied Information Processing Systems
  doi: 10.1007/978-981-16-2008-9_28
– ident: CR22
– start-page: 1
  year: 2020
  end-page: 6
  ident: CR35
  article-title: Detection of roads potholes using YOLOv4
  publication-title: 2020 International Conference on Information Science and Communications Technologies (ICISCT)
  doi: 10.1109/ICISCT50599.2020.9351373
– volume: 13
  issue: 1
  year: 2021
  ident: CR44
  article-title: On the performance of one-stage and two-stage object detectors in autonomous vehicles using camera data
  publication-title: Remote Sens.
  doi: 10.3390/rs13010089
– volume: 874
  year: 2020
  ident: CR7
  article-title: Design of pothole detector using gray level co-occurrence matrix (GLCM) and neural network (NN)
  publication-title: IOP Conf. Ser., Mater. Sci. Eng.
  doi: 10.1088/1757-899X/874/1/012012
– start-page: 381
  year: 2020
  end-page: 385
  ident: CR30
  article-title: Deep learning based detection of potholes in Indian roads using YOLO
  publication-title: 2020 International Conference on Inventive Computation Technologies (ICICT)
  doi: 10.1109/ICICT48043.2020.9112424
– ident: CR39
– volume: 9
  start-page: 143746
  year: 2021
  end-page: 143770
  ident: CR12
  article-title: A comprehensive review on 3D object detection and 6D pose estimation with deep learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3114399
– volume: 11
  issue: 23
  year: 2021
  ident: CR36
  article-title: Application of various YOLO models for computer vision-based real-time pothole detection
  publication-title: Appl. Sci.
  doi: 10.3390/app112311229
– ident: CR51
– start-page: 1
  year: 2020
  end-page: 6
  ident: CR32
  article-title: Pothole detection and dimension estimation system using deep learning (YOLO) and image processing
  publication-title: 2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)
  doi: 10.1109/IVCNZ51579.2020.9290547
– volume: 32
  start-page: 1627
  year: 2010
  end-page: 1645
  ident: CR24
  article-title: Object detection with discriminatively trained part-based models
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2009.167
– volume: 39
  start-page: 1137
  issue: 6
  year: 2017
  end-page: 1149
  ident: CR21
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– start-page: 676
  year: 2016
  end-page: 684
  ident: CR48
  article-title: Fast single shot detection and pose estimation
  publication-title: 2016 Fourth International Conference on 3D Vision (3DV)
  doi: 10.1109/3DV.2016.78
– volume: 44
  start-page: 3523
  issue: 7
  year: 2022
  end-page: 3542
  ident: CR16
  article-title: Image segmentation using deep learning: a survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2021.3059968
– ident: CR29
– ident: CR54
– volume: 11
  issue: 8
  year: 2021
  ident: CR33
  article-title: Implementation of pavement defect detection system on edge computing platform
  publication-title: Appl. Sci.
  doi: 10.3390/app11083725
– volume: 2015
  year: 2015
  ident: CR2
  article-title: A real-time pothole detection approach for intelligent transportation system
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2015/869627
– volume: 10
  issue: 13
  year: 2020
  ident: CR3
  article-title: An application study on road surface monitoring using dtw based image processing and ultrasonic sensors
  publication-title: Appl. Sci.
  doi: 10.3390/app10134490
– volume: 10
  start-page: 83
  issue: 1
  year: 2021
  end-page: 92
  ident: CR5
  article-title: Feasibility study of asphalt pavement pothole properties measurement using 3D line laser technology
  publication-title: Int. J. Transp. Sci. Technol.
  doi: 10.1016/j.ijtst.2020.07.004
– volume: 2021
  year: 2021
  ident: CR19
  article-title: CNN-enabled visibility enhancement framework for vessel detection under haze environment
  publication-title: J. Adv. Transp.
– ident: CR25
– ident: CR46
– start-page: 35
  year: 2019
  end-page: 40
  ident: CR31
  article-title: Asphalt pavement pothole detection using deep learning method based on yolo neural network
  publication-title: 2019 International Seminar on Intelligent Technology and Its Applications (ISITIA)
  doi: 10.1109/ISITIA.2019.8937176
– volume: 8
  start-page: 117390
  year: 2020
  end-page: 117404
  ident: CR20
  article-title: Road anomaly detection through deep learning approaches
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3004590
– start-page: 4092
  year: 2017
  end-page: 4097
  ident: CR23
  article-title: Road marking blur detection with drive recorder
  publication-title: 2017 IEEE International Conference on Big Data (Big Data)
  doi: 10.1109/BigData.2017.8258427
– volume: 23
  start-page: 4685
  issue: 5
  year: 2022
  end-page: 4694
  ident: CR4
  article-title: Pothole 3D reconstruction with a novel imaging system and structure from motion techniques
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2021.3054026
– start-page: 21
  year: 2016
  end-page: 37
  ident: CR41
  article-title: SSD: single shot multibox detector
  publication-title: Computer Vision—ECCV 2016
  doi: 10.1007/978-3-319-46448-0_2
– start-page: 285
  year: 2018
  end-page: 289
  ident: CR6
  article-title: Road defect classification using gray level co-occurrence matrix (GLCM) and radial basis function (RBF)
  publication-title: 2018 10th International Conference on Information Technology and Electrical Engineering (ICITEE)
  doi: 10.1109/ICITEED.2018.8534769
– volume: 38
  start-page: 527
  year: 2018
  end-page: 537
  ident: CR10
  article-title: Visual analysis of asphalt pavement for detection and localization of potholes
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2018.09.002
– volume: 2018
  year: 2018
  ident: CR13
  article-title: An artificial intelligence method for asphalt pavement pothole detection using least squares support vector machine and neural network with steerable filter based feature extraction
  publication-title: Adv. Civ. Eng.
  doi: 10.1155/2018/7419058
– volume: 2242
  year: 2020
  ident: CR8
  article-title: Detection and counting potholes using morphological method from road video
  publication-title: AIP Conf. Proc.
  doi: 10.1063/5.0008282
– start-page: 541
  year: 2020
  end-page: 557
  ident: CR45
  article-title: Mimicdet: bridging the gap between one-stage and two-stage object detection
  publication-title: Computer Vision—ECCV 2020
  doi: 10.1007/978-3-030-58568-6_32
– year: 2022
  ident: CR18
  article-title: Indian pothole detection based on CNN and anchor-based deep learning method
  publication-title: Int. J. Inf. Technol.
  doi: 10.1007/s41870-022-00881-5
– start-page: 511
  year: 2019
  end-page: 519
  ident: CR1
  article-title: Pothole detection and warning system for Indian roads
  publication-title: Advances in Interdisciplinary Engineering
  doi: 10.1007/978-981-13-6577-5_48
– ident: CR43
– ident: CR47
– ident: CR37
– ident: CR53
– start-page: 21
  year: 2016
  end-page: 37
  ident: CR27
  article-title: SSD: single shot MultiBox detector
  publication-title: Computer Vision—ECCV 2016
  doi: 10.1007/978-3-319-46448-0_2
– start-page: 1058
  year: 2020
  end-page: 1065
  ident: CR49
  article-title: Analysis of anchor-based and anchor-free object detection methods based on deep learning
  publication-title: 2020 IEEE International Conference on Mechatronics and Automation (ICMA)
  doi: 10.1109/ICMA49215.2020.9233610
– ident: CR56
– ident: CR40
– volume: 2021
  year: 2021
  ident: CR17
  article-title: Edge AI-based automated detection and classification of road anomalies in VANET using deep learning
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2021/6262194
– volume: 21
  issue: 24
  year: 2021
  ident: CR38
  article-title: Smart pothole detection using deep learning based on dilated convolution
  publication-title: Sensors
  doi: 10.3390/s21248406
– volume: 1684
  issue: 1
  year: 2020
  ident: CR52
  article-title: Improved mosaic: algorithms for more complex images
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1684/1/012094
– volume: 2021
  year: 2021
  ident: CR14
  article-title: Moving camera-based object tracking using adaptive ground plane estimation and constrained multiple kernels
  publication-title: J. Adv. Transp.
  doi: 10.1155/2021/8153474
– year: 2022
  ident: CR50
  article-title: A fully convolutional anchor-free object detector
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-021-02357-2
– volume: 2015
  year: 2015
  ident: CR9
  article-title: Image-based pothole detection system for its service and road management system
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2015/968361
– volume: 13
  issue: 1
  year: 2022
  ident: CR42
  article-title: Object detection of road assets using transformer-based yolox with feature pyramid decoder on Thai highway panorama
  publication-title: Information
  doi: 10.3390/info13010005
– ident: CR34
– ident: CR55
– volume: 20
  issue: 19
  year: 2020
  ident: CR11
  article-title: An automated machine-learning approach for road pothole detection using smartphone sensor data
  publication-title: Sensors
  doi: 10.3390/s20195564
– volume: 88
  start-page: 303
  issue: 2
  year: 2010
  end-page: 338
  ident: CR26
  article-title: The Pascal visual object classes (VOC) challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-009-0275-4
– volume: 9
  start-page: 143746
  year: 2021
  ident: 37_CR12
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3114399
– volume: 2021
  year: 2021
  ident: 37_CR14
  publication-title: J. Adv. Transp.
  doi: 10.1155/2021/8153474
– volume: 23
  start-page: 4685
  issue: 5
  year: 2022
  ident: 37_CR4
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2021.3054026
– volume: 2242
  year: 2020
  ident: 37_CR8
  publication-title: AIP Conf. Proc.
  doi: 10.1063/5.0008282
– year: 2022
  ident: 37_CR50
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-021-02357-2
– ident: 37_CR25
  doi: 10.1109/CVPR.2017.690
– ident: 37_CR39
– start-page: 541
  volume-title: Computer Vision—ECCV 2020
  year: 2020
  ident: 37_CR45
  doi: 10.1007/978-3-030-58568-6_32
– volume: 88
  start-page: 303
  issue: 2
  year: 2010
  ident: 37_CR26
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-009-0275-4
– ident: 37_CR37
  doi: 10.5281/zenodo.6222936
– volume: 2015
  year: 2015
  ident: 37_CR2
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2015/869627
– start-page: 35
  volume-title: 2019 International Seminar on Intelligent Technology and Its Applications (ISITIA)
  year: 2019
  ident: 37_CR31
  doi: 10.1109/ISITIA.2019.8937176
– start-page: 511
  volume-title: Advances in Interdisciplinary Engineering
  year: 2019
  ident: 37_CR1
  doi: 10.1007/978-981-13-6577-5_48
– volume: 2015
  year: 2015
  ident: 37_CR9
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2015/968361
– ident: 37_CR22
  doi: 10.1109/CVPR.2016.91
– volume: 10
  start-page: 83
  issue: 1
  year: 2021
  ident: 37_CR5
  publication-title: Int. J. Transp. Sci. Technol.
  doi: 10.1016/j.ijtst.2020.07.004
– ident: 37_CR54
  doi: 10.1109/CVPR46437.2021.00037
– volume: 13
  issue: 1
  year: 2022
  ident: 37_CR42
  publication-title: Information
  doi: 10.3390/info13010005
– ident: 37_CR46
– year: 2022
  ident: 37_CR18
  publication-title: Int. J. Inf. Technol.
  doi: 10.1007/s41870-022-00881-5
– start-page: 1
  volume-title: 2020 International Conference on Information Science and Communications Technologies (ICISCT)
  year: 2020
  ident: 37_CR35
  doi: 10.1109/ICISCT50599.2020.9351373
– ident: 37_CR29
– volume: 874
  year: 2020
  ident: 37_CR7
  publication-title: IOP Conf. Ser., Mater. Sci. Eng.
  doi: 10.1088/1757-899X/874/1/012012
– volume: 11
  issue: 8
  year: 2021
  ident: 37_CR33
  publication-title: Appl. Sci.
  doi: 10.3390/app11083725
– ident: 37_CR47
  doi: 10.1109/SYNASC.2018.00041
– volume: 11
  issue: 23
  year: 2021
  ident: 37_CR36
  publication-title: Appl. Sci.
  doi: 10.3390/app112311229
– ident: 37_CR43
– volume: 2018
  year: 2018
  ident: 37_CR13
  publication-title: Adv. Civ. Eng.
  doi: 10.1155/2018/7419058
– volume: 2021
  year: 2021
  ident: 37_CR17
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2021/6262194
– start-page: 381
  volume-title: 2020 International Conference on Inventive Computation Technologies (ICICT)
  year: 2020
  ident: 37_CR30
  doi: 10.1109/ICICT48043.2020.9112424
– volume: 21
  issue: 24
  year: 2021
  ident: 37_CR38
  publication-title: Sensors
  doi: 10.3390/s21248406
– volume: 48
  start-page: 1722
  issue: 5
  year: 2022
  ident: 37_CR15
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.2020.3032986
– volume: 20
  issue: 19
  year: 2020
  ident: 37_CR11
  publication-title: Sensors
  doi: 10.3390/s20195564
– start-page: 21
  volume-title: Computer Vision—ECCV 2016
  year: 2016
  ident: 37_CR27
  doi: 10.1007/978-3-319-46448-0_2
– start-page: 1
  volume-title: 2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)
  year: 2020
  ident: 37_CR32
  doi: 10.1109/IVCNZ51579.2020.9290547
– ident: 37_CR51
  doi: 10.1109/ICCV.2019.00972
– start-page: 293
  volume-title: Applied Information Processing Systems
  year: 2022
  ident: 37_CR28
  doi: 10.1007/978-981-16-2008-9_28
– start-page: 4092
  volume-title: 2017 IEEE International Conference on Big Data (Big Data)
  year: 2017
  ident: 37_CR23
  doi: 10.1109/BigData.2017.8258427
– ident: 37_CR40
– volume: 2021
  year: 2021
  ident: 37_CR19
  publication-title: J. Adv. Transp.
– start-page: 1058
  volume-title: 2020 IEEE International Conference on Mechatronics and Automation (ICMA)
  year: 2020
  ident: 37_CR49
  doi: 10.1109/ICMA49215.2020.9233610
– ident: 37_CR53
  doi: 10.1007/978-1-4899-7687-1_79
– ident: 37_CR34
– volume: 44
  start-page: 3523
  issue: 7
  year: 2022
  ident: 37_CR16
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2021.3059968
– volume: 8
  start-page: 117390
  year: 2020
  ident: 37_CR20
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3004590
– ident: 37_CR55
  doi: 10.1109/ICCV.2017.593
– volume: 38
  start-page: 527
  year: 2018
  ident: 37_CR10
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2018.09.002
– start-page: 676
  volume-title: 2016 Fourth International Conference on 3D Vision (3DV)
  year: 2016
  ident: 37_CR48
  doi: 10.1109/3DV.2016.78
– volume: 1684
  issue: 1
  year: 2020
  ident: 37_CR52
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1684/1/012094
– ident: 37_CR56
  doi: 10.1007/978-3-319-10602-1_48
– volume: 39
  start-page: 1137
  issue: 6
  year: 2017
  ident: 37_CR21
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– volume: 13
  issue: 1
  year: 2021
  ident: 37_CR44
  publication-title: Remote Sens.
  doi: 10.3390/rs13010089
– volume: 10
  issue: 13
  year: 2020
  ident: 37_CR3
  publication-title: Appl. Sci.
  doi: 10.3390/app10134490
– volume: 32
  start-page: 1627
  year: 2010
  ident: 37_CR24
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2009.167
– start-page: 285
  volume-title: 2018 10th International Conference on Information Technology and Electrical Engineering (ICITEE)
  year: 2018
  ident: 37_CR6
  doi: 10.1109/ICITEED.2018.8534769
– start-page: 21
  volume-title: Computer Vision—ECCV 2016
  year: 2016
  ident: 37_CR41
  doi: 10.1007/978-3-319-46448-0_2
SSID ssj0002793484
Score 2.391737
Snippet The road is the most commonly used means of transportation and serves as a country’s arteries, so it is extremely important to keep the roads in good...
Abstract The road is the most commonly used means of transportation and serves as a country’s arteries, so it is extremely important to keep the roads in good...
SourceID doaj
crossref
springer
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Artificial Intelligence
Control and Systems Theory
Engineering
Machine Learning
Object detection
Original Article
Pothole detection
Recent Advances of AI for Engineering Service and Maintenance
Robotics and Automation
YOLO
YOLOX
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDAgnqK85IENLBq_Eo9QtaoQoguVymT52Q4lrWhZ-uux3TTiJSTW6Jwod_flLnfnzwBc8RA3rBYECcI0og4TpLHDKCMmU5bonNvE9vnEewP6MGTDiiYn7oX51r-_nUeGdIrizHniSkHLTbDFwoc3enObt-t6Cg6ORgta7Yv5femX2JMo-n_0P1NY6e6B3SofhHcrA-6DDVcegJ1PLIGHIO-U49Snh7NpLGI6aN0iTVCVcEXEDOP0-gi-9B_7Q6gmo2n44x-_HoFBt_Pc7qHqvANkSMaXiFuRe-Jty6kAk9y3Mm1dwYRyAWjCc5Nn3npODWfOYW-0DWCKbx1CPvPYk2PQKKelOwGQByB7UeSYuJDvEC6YazmbWRzuFwlnmiBba0Kaigw8nkkxkTWNcdKeDNqTSXty2QTX9ZrZigrjT-n7qOBaMtJYpwvBurJCheQtWzDsc0U0pk4poakR2sRuqFFW4Ca4WZtHVtia__HM0_-Jn4FtnLwjVojPQWPx9u4uQoqx0JfJtz4A5HvG-g
  priority: 102
  providerName: Springer Nature
Title Enhanced pothole detection system using YOLOX algorithm
URI https://link.springer.com/article/10.1007/s43684-022-00037-z
https://doaj.org/article/60d852f7a3b24eaa9b4c9bc0278cad92
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagLDAgnqI8Kg9sYJHYjhOPtGpVIdQiRKUyWfGrFSppBWXpr8d20qoIqSwsGSInjr_z5c6-83cAXDNnN7TkBHGSSEQNJkhig1FMVJxrIlOmA9tnj3UH9GGYDNdKffmcsJIeuATujkU6S7BNcyIxNXnOJVVcKh8wU7nm4e8b8WhtMfUWwmmc0IxWp2TCWTlPtU6RT14PpCto8cMSBcL-X9HQYGQ6B2C_8g7hfflVh2DLFEdgb40z8Bik7WIcovZwNvVbmgZqMw_5VAUsaZmhz2Ufwdf-Y38I88lo6tb_4_cTMOi0X1pdVFU_QIrEbIGY5qklVkcmd0qT2iiW2mQJz41TO26ZSmOrLaOKJcZgq6R2quVH7RyAxGJLTkGtmBbmDEDm1NryLMXEOO-HMJ6YyOhYY_c-Tz9TB_ESCaEqanBfoWIiVqTGAT3h0BMBPbGog5vVM7OSGGNj66YHeNXSk1qHG07UohK1-EvUdXC7FI-oNO1zQ5_n_9HnBdjFYc74XeRLUJt_fJkr54bMZQPsNNu9p-cG2G5h6q-s1Qiz8BtSD9o6
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDMCAeIryzMAGlho7ceIRUKsCpV1aqUxW_GqFSlK1Zemvx3adCASqxBqdE-XsL3fxd_cZgBti4obkFEOKYw4jhTDkSCEYYhFmEvOESKf22SXtQfQ8jIe-KWxeVruXlKT7UlfNblYrPYK2-typpsDlJtiyHKajaH2Pw7uj0iiO0sh3yPw99EcUcmL9v5hQF2Ba-2DPZ4bB_WoqD8CGyg_B7je9wCOQNPOxY-yDaWG3M1Ug1cLVUuXBSpI5sHXso-Ct1-kNg2wyKsy___jjGAxazf5jG_qTD6DAIVlCImmisZYNlRnAJLoRcqnSmGbKQI5qIpJQS00iQWKlkBZcGljZtzbBP9ZI4xNQy4tcnYKAGEhrmiYIK5P5YEJj1VAylMjcz0rP1EFYeoIJLwtuT6eYsErQ2HmPGe8x5z22rIPbasx0JYqx1vrBOriytILW7kIxGzGPD0YaMo2RTjLMUaSyjPJIUC4sLyoySVEd3JXTwzzK5mueefY_82uw3e6_dljnqftyDnaQWyl23_gC1BazT3VpEo8Fv3Lr7AtiiM3N
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NS8MwFMCDThA9iJ84P3vwpmFr0qbNUefG1LF5cDBPofnahNmOWS_7603SrkwUwWt5aelLHu_xPn4B4IoYvyE5xZDikMNAIQw5Ugj6WPiJxDwi0tE--6Q7DB5H4Whlit91uy9LksVMg6U0pXljJnWjGnyz3PQA2k50R1CBi3WwYVldtqmvRVpVlgWZ4xfEQTkt8_vSbx7Jgft_VEWds-nsgp0ySvRui23dA2sq3QfbK-zAAxC104mr3nuzzKY2lSdV7vqqUq_AM3u2p33svQ56g5GXTMfZ_C2fvB-CYaf90urC8hYEKLBPFpBIGmmsZVMlxngi3fS5VHFIE2XMj2oiIl9LTQJBQqWQFlwaE7N_bQKBUCONj0AtzVJ1DDxizFvTOEJYmSgIExqqppK-ROZ9FkNTB_5SE0yUiHB7U8WUVXBjpz1mtMec9tiiDq6rNbMCkPGn9J1VcCVp4dbuQTYfs9JWGGnKOEQ6SjBHgUoSygNBubA1UpFIiurgZrk9rLS4jz--efI_8Uuw-XzfYb2H_tMp2ELuoNgU8hmo5fNPdW5ikJxfuGP2BcIg0jk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+pothole+detection+system+using+YOLOX+algorithm&rft.jtitle=Autonomous+intelligent+systems&rft.au=Mohan+Prakash+B&rft.au=Sriharipriya+K.C&rft.date=2022-08-31&rft.pub=Springer&rft.eissn=2730-616X&rft.volume=2&rft.issue=1&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1007%2Fs43684-022-00037-z&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_60d852f7a3b24eaa9b4c9bc0278cad92
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2730-616X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2730-616X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2730-616X&client=summon