Enhanced pothole detection system using YOLOX algorithm
The road is the most commonly used means of transportation and serves as a country’s arteries, so it is extremely important to keep the roads in good condition. Potholes that happen to appear in the road must be repaired to keep the road in good condition. Spotting potholes on the road is difficult,...
Saved in:
Published in | Autonomous intelligent systems Vol. 2; no. 1; pp. 1 - 16 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
31.08.2022
Springer |
Subjects | |
Online Access | Get full text |
ISSN | 2730-616X 2730-616X |
DOI | 10.1007/s43684-022-00037-z |
Cover
Abstract | The road is the most commonly used means of transportation and serves as a country’s arteries, so it is extremely important to keep the roads in good condition. Potholes that happen to appear in the road must be repaired to keep the road in good condition. Spotting potholes on the road is difficult, especially in a country like India where roads stretch millions of kilometres across the country. Therefore, there is a need to automate the identification of potholes with high speed and real-time precision. YOLOX is an object detection algorithm and our main goal of this article is to train and analyse the YOLOX model for pothole detection. The YOLOX model is trained with a pothole dataset and the results obtained are analysed by calculating the accuracy, recall and size of the model which is then compared to other YOLO algorithms. The experimental results in this article show that the YOLOX-Nano model predicts potholes with higher accuracy compared to other models while having low computational costs. We were able to achieve an Average Precision (AP) value of 85.6% from training the model and the total size of the model is 7.22 MB. The pothole detection capabilities of the newly developed YOLOX algorithm have never been tested before and this paper is one of the first to detect potholes using the YOLOX object detection algorithm. The research conducted in this paper will help reduce costs and increase the speed of pothole identification and will be of great help in road maintenance. |
---|---|
AbstractList | The road is the most commonly used means of transportation and serves as a country’s arteries, so it is extremely important to keep the roads in good condition. Potholes that happen to appear in the road must be repaired to keep the road in good condition. Spotting potholes on the road is difficult, especially in a country like India where roads stretch millions of kilometres across the country. Therefore, there is a need to automate the identification of potholes with high speed and real-time precision. YOLOX is an object detection algorithm and our main goal of this article is to train and analyse the YOLOX model for pothole detection. The YOLOX model is trained with a pothole dataset and the results obtained are analysed by calculating the accuracy, recall and size of the model which is then compared to other YOLO algorithms. The experimental results in this article show that the YOLOX-Nano model predicts potholes with higher accuracy compared to other models while having low computational costs. We were able to achieve an Average Precision (AP) value of 85.6% from training the model and the total size of the model is 7.22 MB. The pothole detection capabilities of the newly developed YOLOX algorithm have never been tested before and this paper is one of the first to detect potholes using the YOLOX object detection algorithm. The research conducted in this paper will help reduce costs and increase the speed of pothole identification and will be of great help in road maintenance. Abstract The road is the most commonly used means of transportation and serves as a country’s arteries, so it is extremely important to keep the roads in good condition. Potholes that happen to appear in the road must be repaired to keep the road in good condition. Spotting potholes on the road is difficult, especially in a country like India where roads stretch millions of kilometres across the country. Therefore, there is a need to automate the identification of potholes with high speed and real-time precision. YOLOX is an object detection algorithm and our main goal of this article is to train and analyse the YOLOX model for pothole detection. The YOLOX model is trained with a pothole dataset and the results obtained are analysed by calculating the accuracy, recall and size of the model which is then compared to other YOLO algorithms. The experimental results in this article show that the YOLOX-Nano model predicts potholes with higher accuracy compared to other models while having low computational costs. We were able to achieve an Average Precision (AP) value of 85.6% from training the model and the total size of the model is 7.22 MB. The pothole detection capabilities of the newly developed YOLOX algorithm have never been tested before and this paper is one of the first to detect potholes using the YOLOX object detection algorithm. The research conducted in this paper will help reduce costs and increase the speed of pothole identification and will be of great help in road maintenance. |
ArticleNumber | 22 |
Author | K.C, Sriharipriya B, Mohan Prakash |
Author_xml | – sequence: 1 givenname: Mohan Prakash orcidid: 0000-0002-5069-1597 surname: B fullname: B, Mohan Prakash email: mohanprakash.b2019@vitstudent.ac.in organization: SENSE, VIT University – sequence: 2 givenname: Sriharipriya surname: K.C fullname: K.C, Sriharipriya organization: SENSE, VIT University |
BookMark | eNp9kM1KAzEYRYNUsNa-gKt5gdH8TTJZSqlaKHSjUFchk5_plOmkJNNF-_SmHRFx0dV3-ci5Sc49GHW-swA8IviEIOTPkRJW0hxinEMICc9PN2CMOYE5Q2w9-pPvwDTGbTqEuSC0pGPA591GddqabO_7jW9tZmxvdd_4LovH2NtddohNV2dfq-Vqnam29qHpN7sHcOtUG-30Z07A5-v8Y_aeL1dvi9nLMtcEsVPOjOCOOAOtQjxFiCpjy0IoSyEUjmmOnHGMalZYi52uDBf0_DSBYOGwIxOwGHqNV1u5D81OhaP0qpGXhQ-1VKFvdGslg6YssOOKVJhapURFtah0-muplRE4deGhSwcfY7Dutw9BeTYpB5MymZQXk_KUoPIfpJtenf30QTXtdZQMaEz3dLUNcusPoUu6rlHfRAOLJg |
CitedBy_id | crossref_primary_10_1016_j_trpro_2025_03_105 crossref_primary_10_1007_s11042_024_19723_6 crossref_primary_10_3389_fbuil_2023_1323792 crossref_primary_10_1109_ACCESS_2024_3455093 crossref_primary_10_48175_IJARSCT_15360 crossref_primary_10_1016_j_rineng_2024_103081 crossref_primary_10_21266_2079_4304_2024_250_318_332 crossref_primary_10_1515_jisys_2024_0164 crossref_primary_10_1109_JSEN_2024_3399008 crossref_primary_10_1007_s43684_025_00096_y crossref_primary_10_3390_app14114583 crossref_primary_10_46632_cset_2_3_5 crossref_primary_10_1007_s11042_024_19579_w |
Cites_doi | 10.1109/TSE.2020.3032986 10.1007/978-981-16-2008-9_28 10.1109/ICISCT50599.2020.9351373 10.3390/rs13010089 10.1088/1757-899X/874/1/012012 10.1109/ICICT48043.2020.9112424 10.1109/ACCESS.2021.3114399 10.3390/app112311229 10.1109/IVCNZ51579.2020.9290547 10.1109/TPAMI.2009.167 10.1109/TPAMI.2016.2577031 10.1109/3DV.2016.78 10.1109/TPAMI.2021.3059968 10.3390/app11083725 10.1155/2015/869627 10.3390/app10134490 10.1016/j.ijtst.2020.07.004 10.1109/ISITIA.2019.8937176 10.1109/ACCESS.2020.3004590 10.1109/BigData.2017.8258427 10.1109/TITS.2021.3054026 10.1007/978-3-319-46448-0_2 10.1109/ICITEED.2018.8534769 10.1016/j.aei.2018.09.002 10.1155/2018/7419058 10.1063/5.0008282 10.1007/978-3-030-58568-6_32 10.1007/s41870-022-00881-5 10.1007/978-981-13-6577-5_48 10.1109/ICMA49215.2020.9233610 10.1155/2021/6262194 10.3390/s21248406 10.1088/1742-6596/1684/1/012094 10.1155/2021/8153474 10.1007/s00371-021-02357-2 10.1155/2015/968361 10.3390/info13010005 10.3390/s20195564 10.1007/s11263-009-0275-4 10.1109/CVPR.2017.690 10.5281/zenodo.6222936 10.1109/CVPR.2016.91 10.1109/CVPR46437.2021.00037 10.1109/SYNASC.2018.00041 10.1109/ICCV.2019.00972 10.1007/978-1-4899-7687-1_79 10.1109/ICCV.2017.593 10.1007/978-3-319-10602-1_48 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 |
Copyright_xml | – notice: The Author(s) 2022 |
DBID | C6C AAYXX CITATION DOA |
DOI | 10.1007/s43684-022-00037-z |
DatabaseName | Springer Nature OA Free Journals CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2730-616X |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_60d852f7a3b24eaa9b4c9bc0278cad92 10_1007_s43684_022_00037_z |
GroupedDBID | 0R~ AAKKN AAYZJ ABEEZ ABJCF ACACY ACULB AFGXO AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ C24 C6C CCPQU EBS GROUPED_DOAJ HCIFZ K7- M7S M~E OK1 PIMPY PTHSS RSV SOJ AAYXX CITATION PHGZM PHGZT PQGLB PUEGO |
ID | FETCH-LOGICAL-c316z-6d97f3fd0ea1797f01bde859ae4009f6c71fdf64c65ee2fcbd79493489105f2f3 |
IEDL.DBID | DOA |
ISSN | 2730-616X |
IngestDate | Wed Aug 27 01:24:28 EDT 2025 Tue Jul 01 03:39:18 EDT 2025 Thu Apr 24 23:03:36 EDT 2025 Fri Feb 21 02:44:58 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | YOLO YOLOX Pothole detection Object detection Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316z-6d97f3fd0ea1797f01bde859ae4009f6c71fdf64c65ee2fcbd79493489105f2f3 |
ORCID | 0000-0002-5069-1597 |
OpenAccessLink | https://doaj.org/article/60d852f7a3b24eaa9b4c9bc0278cad92 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_60d852f7a3b24eaa9b4c9bc0278cad92 crossref_primary_10_1007_s43684_022_00037_z crossref_citationtrail_10_1007_s43684_022_00037_z springer_journals_10_1007_s43684_022_00037_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220831 |
PublicationDateYYYYMMDD | 2022-08-31 |
PublicationDate_xml | – month: 8 year: 2022 text: 20220831 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Autonomous intelligent systems |
PublicationTitleAbbrev | Auton. Intell. Syst |
PublicationYear | 2022 |
Publisher | Springer Nature Singapore Springer |
Publisher_xml | – name: Springer Nature Singapore – name: Springer |
References | Liu, Zhou, Li, Wang (CR49) 2020 Muslim, Sulistyaningrum, Setiyono (CR8) 2020; 2242 CR39 CR37 Ahmed (CR38) 2021; 21 Omar, Kumar (CR35) 2020 Sutrisno, Syauqi, Hasin, Iskandar, Asmara, Suwondo, Ardiansyah, Setiawan (CR7) 2020; 874 CR34 Lu, Li, Li, Yan, Vedaldi, Bischof, Brox, Frahm (CR45) 2020 Wu, Wang, Hu, Lepine, Na, Ainalis, Stettler (CR11) 2020; 20 Panboonyuen, Thongbai, Wongweeranimit, Santitamnont, Suphan, Charoenphon (CR42) 2022; 13 Lin, Chen, Kuo (CR33) 2021; 11 Lu, Guo, Liang (CR19) 2021; 2021 Pramestya, Sulistyaningrum, Setiyono, Mukhlash, Firdaus (CR6) 2018 Hoque, Arafat, Xu, Maiti, Wei (CR12) 2021; 9 Bajammal, Stocco, Mazinanian, Mesbah (CR15) 2022; 48 Dharneeshkar, Dhakshana, Aniruthan, Karthika, Parameswaran (CR30) 2020 Poirson, Ammirato, Fu, Liu, Kosecka, Berg (CR48) 2016 Felzenszwalb, Girshick, Mcallester, Ramanan (CR24) 2010; 32 CR47 Minaee, Boykov, Porikli, Plaza, Kehtarnavaz, Terzopoulos (CR16) 2022; 44 CR46 CR43 Wang, Chen, Cheng, Lin, Lo (CR2) 2015; 2015 She, Hongwei, Wang, Yan (CR5) 2021; 10 Liu, Liu (CR14) 2021; 2021 CR40 Ukhwah, Yuniarno, Suprapto (CR31) 2019 Kawano, Mikami, Yokoyama, Yonezawa, Nakazawa (CR23) 2017 Sharma, Phan, Lee (CR3) 2020; 10 Ryu, Kim, Kim (CR9) 2015; 2015 Anandhalli, Tanuja, Baligar, Baligar (CR18) 2022 Hao, Zhili (CR52) 2020; 1684 Bibi, Saeed, Zeb, Ghazal, Said, Abbas, Ahmad, Khan (CR17) 2021; 2021 Ahmed, Ashfaque, Ulhaq, Mathavan, Kamal, Rahman (CR4) 2022; 23 Sharma, Sharma, Kumar, Pandey, Kumar (CR1) 2019 Sumalatha, Rao, Devi, Iyer, Ghosh, Balas (CR28) 2022 CR56 CR55 Liu, Anguelov, Erhan, Szegedy, Reed, Fu, Berg (CR27) 2016 CR54 Park, Tran, Lee (CR36) 2021; 11 CR53 CR51 Ren, He, Girshick, Sun (CR21) 2017; 39 Yousaf, Azhar, Murtaza, Hussain (CR10) 2018; 38 Carranza-García, Torres-Mateo, Lara-Benítez, García-Gutiérrez (CR44) 2021; 13 Liu, Anguelov, Erhan, Szegedy, Reed, Fu, Berg, Leibe, Matas, Sebe, Welling (CR41) 2016 Luo, Lu, Guo (CR20) 2020; 8 Hoang (CR13) 2018; 2018 CR29 CR25 Chitale, Kekre, Shenai, Karani, Gala (CR32) 2020 CR22 Everingham, Van Gool, Williams, Winn, Zisserman (CR26) 2010; 88 Zhang, Li, Sun, Zhu (CR50) 2022 T. Liu (37_CR14) 2021; 2021 37_CR39 N.-D. Hoang (37_CR13) 2018; 2018 H.-W. Wang (37_CR2) 2015; 2015 Y. Lu (37_CR19) 2021; 2021 Y.-C. Lin (37_CR33) 2021; 11 I. Sutrisno (37_CR7) 2020; 874 R.H. Pramestya (37_CR6) 2018 S. Hoque (37_CR12) 2021; 9 W. Liu (37_CR27) 2016 W. Liu (37_CR41) 2016 P. Felzenszwalb (37_CR24) 2010; 32 37_CR34 37_CR37 S.K. Sharma (37_CR3) 2020; 10 J. Dharneeshkar (37_CR30) 2020 X. She (37_CR5) 2021; 10 37_CR40 M. Carranza-García (37_CR44) 2021; 13 T. Zhang (37_CR50) 2022 37_CR43 W. Hao (37_CR52) 2020; 1684 37_CR46 S. Minaee (37_CR16) 2022; 44 37_CR47 C. Wu (37_CR11) 2020; 20 M. Bajammal (37_CR15) 2022; 48 S.-S. Park (37_CR36) 2021; 11 M.H. Yousaf (37_CR10) 2018; 38 X. Lu (37_CR45) 2020 P. Poirson (37_CR48) 2016 S. Liu (37_CR49) 2020 M. Omar (37_CR35) 2020 E.N. Ukhwah (37_CR31) 2019 37_CR51 37_CR55 37_CR56 37_CR53 37_CR54 M. Anandhalli (37_CR18) 2022 R. Bibi (37_CR17) 2021; 2021 37_CR29 M. Muslim (37_CR8) 2020; 2242 R. Sumalatha (37_CR28) 2022 S.-K. Ryu (37_CR9) 2015; 2015 M. Kawano (37_CR23) 2017 P.A. Chitale (37_CR32) 2020 A. Ahmed (37_CR4) 2022; 23 S. Ren (37_CR21) 2017; 39 K.R. Ahmed (37_CR38) 2021; 21 S.K. Sharma (37_CR1) 2019 D. Luo (37_CR20) 2020; 8 37_CR22 M. Everingham (37_CR26) 2010; 88 T. Panboonyuen (37_CR42) 2022; 13 37_CR25 |
References_xml | – volume: 48 start-page: 1722 issue: 5 year: 2022 end-page: 1742 ident: CR15 article-title: A survey on the use of computer vision to improve software engineering tasks publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2020.3032986 – start-page: 293 year: 2022 end-page: 300 ident: CR28 article-title: Pothole detection using yolov2 object detection network and convolutional neural network publication-title: Applied Information Processing Systems doi: 10.1007/978-981-16-2008-9_28 – ident: CR22 – start-page: 1 year: 2020 end-page: 6 ident: CR35 article-title: Detection of roads potholes using YOLOv4 publication-title: 2020 International Conference on Information Science and Communications Technologies (ICISCT) doi: 10.1109/ICISCT50599.2020.9351373 – volume: 13 issue: 1 year: 2021 ident: CR44 article-title: On the performance of one-stage and two-stage object detectors in autonomous vehicles using camera data publication-title: Remote Sens. doi: 10.3390/rs13010089 – volume: 874 year: 2020 ident: CR7 article-title: Design of pothole detector using gray level co-occurrence matrix (GLCM) and neural network (NN) publication-title: IOP Conf. Ser., Mater. Sci. Eng. doi: 10.1088/1757-899X/874/1/012012 – start-page: 381 year: 2020 end-page: 385 ident: CR30 article-title: Deep learning based detection of potholes in Indian roads using YOLO publication-title: 2020 International Conference on Inventive Computation Technologies (ICICT) doi: 10.1109/ICICT48043.2020.9112424 – ident: CR39 – volume: 9 start-page: 143746 year: 2021 end-page: 143770 ident: CR12 article-title: A comprehensive review on 3D object detection and 6D pose estimation with deep learning publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3114399 – volume: 11 issue: 23 year: 2021 ident: CR36 article-title: Application of various YOLO models for computer vision-based real-time pothole detection publication-title: Appl. Sci. doi: 10.3390/app112311229 – ident: CR51 – start-page: 1 year: 2020 end-page: 6 ident: CR32 article-title: Pothole detection and dimension estimation system using deep learning (YOLO) and image processing publication-title: 2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ) doi: 10.1109/IVCNZ51579.2020.9290547 – volume: 32 start-page: 1627 year: 2010 end-page: 1645 ident: CR24 article-title: Object detection with discriminatively trained part-based models publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2009.167 – volume: 39 start-page: 1137 issue: 6 year: 2017 end-page: 1149 ident: CR21 article-title: Faster R-CNN: towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – start-page: 676 year: 2016 end-page: 684 ident: CR48 article-title: Fast single shot detection and pose estimation publication-title: 2016 Fourth International Conference on 3D Vision (3DV) doi: 10.1109/3DV.2016.78 – volume: 44 start-page: 3523 issue: 7 year: 2022 end-page: 3542 ident: CR16 article-title: Image segmentation using deep learning: a survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2021.3059968 – ident: CR29 – ident: CR54 – volume: 11 issue: 8 year: 2021 ident: CR33 article-title: Implementation of pavement defect detection system on edge computing platform publication-title: Appl. Sci. doi: 10.3390/app11083725 – volume: 2015 year: 2015 ident: CR2 article-title: A real-time pothole detection approach for intelligent transportation system publication-title: Math. Probl. Eng. doi: 10.1155/2015/869627 – volume: 10 issue: 13 year: 2020 ident: CR3 article-title: An application study on road surface monitoring using dtw based image processing and ultrasonic sensors publication-title: Appl. Sci. doi: 10.3390/app10134490 – volume: 10 start-page: 83 issue: 1 year: 2021 end-page: 92 ident: CR5 article-title: Feasibility study of asphalt pavement pothole properties measurement using 3D line laser technology publication-title: Int. J. Transp. Sci. Technol. doi: 10.1016/j.ijtst.2020.07.004 – volume: 2021 year: 2021 ident: CR19 article-title: CNN-enabled visibility enhancement framework for vessel detection under haze environment publication-title: J. Adv. Transp. – ident: CR25 – ident: CR46 – start-page: 35 year: 2019 end-page: 40 ident: CR31 article-title: Asphalt pavement pothole detection using deep learning method based on yolo neural network publication-title: 2019 International Seminar on Intelligent Technology and Its Applications (ISITIA) doi: 10.1109/ISITIA.2019.8937176 – volume: 8 start-page: 117390 year: 2020 end-page: 117404 ident: CR20 article-title: Road anomaly detection through deep learning approaches publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3004590 – start-page: 4092 year: 2017 end-page: 4097 ident: CR23 article-title: Road marking blur detection with drive recorder publication-title: 2017 IEEE International Conference on Big Data (Big Data) doi: 10.1109/BigData.2017.8258427 – volume: 23 start-page: 4685 issue: 5 year: 2022 end-page: 4694 ident: CR4 article-title: Pothole 3D reconstruction with a novel imaging system and structure from motion techniques publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2021.3054026 – start-page: 21 year: 2016 end-page: 37 ident: CR41 article-title: SSD: single shot multibox detector publication-title: Computer Vision—ECCV 2016 doi: 10.1007/978-3-319-46448-0_2 – start-page: 285 year: 2018 end-page: 289 ident: CR6 article-title: Road defect classification using gray level co-occurrence matrix (GLCM) and radial basis function (RBF) publication-title: 2018 10th International Conference on Information Technology and Electrical Engineering (ICITEE) doi: 10.1109/ICITEED.2018.8534769 – volume: 38 start-page: 527 year: 2018 end-page: 537 ident: CR10 article-title: Visual analysis of asphalt pavement for detection and localization of potholes publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2018.09.002 – volume: 2018 year: 2018 ident: CR13 article-title: An artificial intelligence method for asphalt pavement pothole detection using least squares support vector machine and neural network with steerable filter based feature extraction publication-title: Adv. Civ. Eng. doi: 10.1155/2018/7419058 – volume: 2242 year: 2020 ident: CR8 article-title: Detection and counting potholes using morphological method from road video publication-title: AIP Conf. Proc. doi: 10.1063/5.0008282 – start-page: 541 year: 2020 end-page: 557 ident: CR45 article-title: Mimicdet: bridging the gap between one-stage and two-stage object detection publication-title: Computer Vision—ECCV 2020 doi: 10.1007/978-3-030-58568-6_32 – year: 2022 ident: CR18 article-title: Indian pothole detection based on CNN and anchor-based deep learning method publication-title: Int. J. Inf. Technol. doi: 10.1007/s41870-022-00881-5 – start-page: 511 year: 2019 end-page: 519 ident: CR1 article-title: Pothole detection and warning system for Indian roads publication-title: Advances in Interdisciplinary Engineering doi: 10.1007/978-981-13-6577-5_48 – ident: CR43 – ident: CR47 – ident: CR37 – ident: CR53 – start-page: 21 year: 2016 end-page: 37 ident: CR27 article-title: SSD: single shot MultiBox detector publication-title: Computer Vision—ECCV 2016 doi: 10.1007/978-3-319-46448-0_2 – start-page: 1058 year: 2020 end-page: 1065 ident: CR49 article-title: Analysis of anchor-based and anchor-free object detection methods based on deep learning publication-title: 2020 IEEE International Conference on Mechatronics and Automation (ICMA) doi: 10.1109/ICMA49215.2020.9233610 – ident: CR56 – ident: CR40 – volume: 2021 year: 2021 ident: CR17 article-title: Edge AI-based automated detection and classification of road anomalies in VANET using deep learning publication-title: Comput. Intell. Neurosci. doi: 10.1155/2021/6262194 – volume: 21 issue: 24 year: 2021 ident: CR38 article-title: Smart pothole detection using deep learning based on dilated convolution publication-title: Sensors doi: 10.3390/s21248406 – volume: 1684 issue: 1 year: 2020 ident: CR52 article-title: Improved mosaic: algorithms for more complex images publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1684/1/012094 – volume: 2021 year: 2021 ident: CR14 article-title: Moving camera-based object tracking using adaptive ground plane estimation and constrained multiple kernels publication-title: J. Adv. Transp. doi: 10.1155/2021/8153474 – year: 2022 ident: CR50 article-title: A fully convolutional anchor-free object detector publication-title: Vis. Comput. doi: 10.1007/s00371-021-02357-2 – volume: 2015 year: 2015 ident: CR9 article-title: Image-based pothole detection system for its service and road management system publication-title: Math. Probl. Eng. doi: 10.1155/2015/968361 – volume: 13 issue: 1 year: 2022 ident: CR42 article-title: Object detection of road assets using transformer-based yolox with feature pyramid decoder on Thai highway panorama publication-title: Information doi: 10.3390/info13010005 – ident: CR34 – ident: CR55 – volume: 20 issue: 19 year: 2020 ident: CR11 article-title: An automated machine-learning approach for road pothole detection using smartphone sensor data publication-title: Sensors doi: 10.3390/s20195564 – volume: 88 start-page: 303 issue: 2 year: 2010 end-page: 338 ident: CR26 article-title: The Pascal visual object classes (VOC) challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-009-0275-4 – volume: 9 start-page: 143746 year: 2021 ident: 37_CR12 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3114399 – volume: 2021 year: 2021 ident: 37_CR14 publication-title: J. Adv. Transp. doi: 10.1155/2021/8153474 – volume: 23 start-page: 4685 issue: 5 year: 2022 ident: 37_CR4 publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2021.3054026 – volume: 2242 year: 2020 ident: 37_CR8 publication-title: AIP Conf. Proc. doi: 10.1063/5.0008282 – year: 2022 ident: 37_CR50 publication-title: Vis. Comput. doi: 10.1007/s00371-021-02357-2 – ident: 37_CR25 doi: 10.1109/CVPR.2017.690 – ident: 37_CR39 – start-page: 541 volume-title: Computer Vision—ECCV 2020 year: 2020 ident: 37_CR45 doi: 10.1007/978-3-030-58568-6_32 – volume: 88 start-page: 303 issue: 2 year: 2010 ident: 37_CR26 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-009-0275-4 – ident: 37_CR37 doi: 10.5281/zenodo.6222936 – volume: 2015 year: 2015 ident: 37_CR2 publication-title: Math. Probl. Eng. doi: 10.1155/2015/869627 – start-page: 35 volume-title: 2019 International Seminar on Intelligent Technology and Its Applications (ISITIA) year: 2019 ident: 37_CR31 doi: 10.1109/ISITIA.2019.8937176 – start-page: 511 volume-title: Advances in Interdisciplinary Engineering year: 2019 ident: 37_CR1 doi: 10.1007/978-981-13-6577-5_48 – volume: 2015 year: 2015 ident: 37_CR9 publication-title: Math. Probl. Eng. doi: 10.1155/2015/968361 – ident: 37_CR22 doi: 10.1109/CVPR.2016.91 – volume: 10 start-page: 83 issue: 1 year: 2021 ident: 37_CR5 publication-title: Int. J. Transp. Sci. Technol. doi: 10.1016/j.ijtst.2020.07.004 – ident: 37_CR54 doi: 10.1109/CVPR46437.2021.00037 – volume: 13 issue: 1 year: 2022 ident: 37_CR42 publication-title: Information doi: 10.3390/info13010005 – ident: 37_CR46 – year: 2022 ident: 37_CR18 publication-title: Int. J. Inf. Technol. doi: 10.1007/s41870-022-00881-5 – start-page: 1 volume-title: 2020 International Conference on Information Science and Communications Technologies (ICISCT) year: 2020 ident: 37_CR35 doi: 10.1109/ICISCT50599.2020.9351373 – ident: 37_CR29 – volume: 874 year: 2020 ident: 37_CR7 publication-title: IOP Conf. Ser., Mater. Sci. Eng. doi: 10.1088/1757-899X/874/1/012012 – volume: 11 issue: 8 year: 2021 ident: 37_CR33 publication-title: Appl. Sci. doi: 10.3390/app11083725 – ident: 37_CR47 doi: 10.1109/SYNASC.2018.00041 – volume: 11 issue: 23 year: 2021 ident: 37_CR36 publication-title: Appl. Sci. doi: 10.3390/app112311229 – ident: 37_CR43 – volume: 2018 year: 2018 ident: 37_CR13 publication-title: Adv. Civ. Eng. doi: 10.1155/2018/7419058 – volume: 2021 year: 2021 ident: 37_CR17 publication-title: Comput. Intell. Neurosci. doi: 10.1155/2021/6262194 – start-page: 381 volume-title: 2020 International Conference on Inventive Computation Technologies (ICICT) year: 2020 ident: 37_CR30 doi: 10.1109/ICICT48043.2020.9112424 – volume: 21 issue: 24 year: 2021 ident: 37_CR38 publication-title: Sensors doi: 10.3390/s21248406 – volume: 48 start-page: 1722 issue: 5 year: 2022 ident: 37_CR15 publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2020.3032986 – volume: 20 issue: 19 year: 2020 ident: 37_CR11 publication-title: Sensors doi: 10.3390/s20195564 – start-page: 21 volume-title: Computer Vision—ECCV 2016 year: 2016 ident: 37_CR27 doi: 10.1007/978-3-319-46448-0_2 – start-page: 1 volume-title: 2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ) year: 2020 ident: 37_CR32 doi: 10.1109/IVCNZ51579.2020.9290547 – ident: 37_CR51 doi: 10.1109/ICCV.2019.00972 – start-page: 293 volume-title: Applied Information Processing Systems year: 2022 ident: 37_CR28 doi: 10.1007/978-981-16-2008-9_28 – start-page: 4092 volume-title: 2017 IEEE International Conference on Big Data (Big Data) year: 2017 ident: 37_CR23 doi: 10.1109/BigData.2017.8258427 – ident: 37_CR40 – volume: 2021 year: 2021 ident: 37_CR19 publication-title: J. Adv. Transp. – start-page: 1058 volume-title: 2020 IEEE International Conference on Mechatronics and Automation (ICMA) year: 2020 ident: 37_CR49 doi: 10.1109/ICMA49215.2020.9233610 – ident: 37_CR53 doi: 10.1007/978-1-4899-7687-1_79 – ident: 37_CR34 – volume: 44 start-page: 3523 issue: 7 year: 2022 ident: 37_CR16 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2021.3059968 – volume: 8 start-page: 117390 year: 2020 ident: 37_CR20 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3004590 – ident: 37_CR55 doi: 10.1109/ICCV.2017.593 – volume: 38 start-page: 527 year: 2018 ident: 37_CR10 publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2018.09.002 – start-page: 676 volume-title: 2016 Fourth International Conference on 3D Vision (3DV) year: 2016 ident: 37_CR48 doi: 10.1109/3DV.2016.78 – volume: 1684 issue: 1 year: 2020 ident: 37_CR52 publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1684/1/012094 – ident: 37_CR56 doi: 10.1007/978-3-319-10602-1_48 – volume: 39 start-page: 1137 issue: 6 year: 2017 ident: 37_CR21 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – volume: 13 issue: 1 year: 2021 ident: 37_CR44 publication-title: Remote Sens. doi: 10.3390/rs13010089 – volume: 10 issue: 13 year: 2020 ident: 37_CR3 publication-title: Appl. Sci. doi: 10.3390/app10134490 – volume: 32 start-page: 1627 year: 2010 ident: 37_CR24 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2009.167 – start-page: 285 volume-title: 2018 10th International Conference on Information Technology and Electrical Engineering (ICITEE) year: 2018 ident: 37_CR6 doi: 10.1109/ICITEED.2018.8534769 – start-page: 21 volume-title: Computer Vision—ECCV 2016 year: 2016 ident: 37_CR41 doi: 10.1007/978-3-319-46448-0_2 |
SSID | ssj0002793484 |
Score | 2.391737 |
Snippet | The road is the most commonly used means of transportation and serves as a country’s arteries, so it is extremely important to keep the roads in good... Abstract The road is the most commonly used means of transportation and serves as a country’s arteries, so it is extremely important to keep the roads in good... |
SourceID | doaj crossref springer |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Artificial Intelligence Control and Systems Theory Engineering Machine Learning Object detection Original Article Pothole detection Recent Advances of AI for Engineering Service and Maintenance Robotics and Automation YOLO YOLOX |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDAgnqK85IENLBq_Eo9QtaoQoguVymT52Q4lrWhZ-uux3TTiJSTW6Jwod_flLnfnzwBc8RA3rBYECcI0og4TpLHDKCMmU5bonNvE9vnEewP6MGTDiiYn7oX51r-_nUeGdIrizHniSkHLTbDFwoc3enObt-t6Cg6ORgta7Yv5femX2JMo-n_0P1NY6e6B3SofhHcrA-6DDVcegJ1PLIGHIO-U49Snh7NpLGI6aN0iTVCVcEXEDOP0-gi-9B_7Q6gmo2n44x-_HoFBt_Pc7qHqvANkSMaXiFuRe-Jty6kAk9y3Mm1dwYRyAWjCc5Nn3npODWfOYW-0DWCKbx1CPvPYk2PQKKelOwGQByB7UeSYuJDvEC6YazmbWRzuFwlnmiBba0Kaigw8nkkxkTWNcdKeDNqTSXty2QTX9ZrZigrjT-n7qOBaMtJYpwvBurJCheQtWzDsc0U0pk4poakR2sRuqFFW4Ca4WZtHVtia__HM0_-Jn4FtnLwjVojPQWPx9u4uQoqx0JfJtz4A5HvG-g priority: 102 providerName: Springer Nature |
Title | Enhanced pothole detection system using YOLOX algorithm |
URI | https://link.springer.com/article/10.1007/s43684-022-00037-z https://doaj.org/article/60d852f7a3b24eaa9b4c9bc0278cad92 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagLDAgnqI8Kg9sYJHYjhOPtGpVIdQiRKUyWfGrFSppBWXpr8d20qoIqSwsGSInjr_z5c6-83cAXDNnN7TkBHGSSEQNJkhig1FMVJxrIlOmA9tnj3UH9GGYDNdKffmcsJIeuATujkU6S7BNcyIxNXnOJVVcKh8wU7nm4e8b8WhtMfUWwmmc0IxWp2TCWTlPtU6RT14PpCto8cMSBcL-X9HQYGQ6B2C_8g7hfflVh2DLFEdgb40z8Bik7WIcovZwNvVbmgZqMw_5VAUsaZmhz2Ufwdf-Y38I88lo6tb_4_cTMOi0X1pdVFU_QIrEbIGY5qklVkcmd0qT2iiW2mQJz41TO26ZSmOrLaOKJcZgq6R2quVH7RyAxGJLTkGtmBbmDEDm1NryLMXEOO-HMJ6YyOhYY_c-Tz9TB_ESCaEqanBfoWIiVqTGAT3h0BMBPbGog5vVM7OSGGNj66YHeNXSk1qHG07UohK1-EvUdXC7FI-oNO1zQ5_n_9HnBdjFYc74XeRLUJt_fJkr54bMZQPsNNu9p-cG2G5h6q-s1Qiz8BtSD9o6 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDMCAeIryzMAGlho7ceIRUKsCpV1aqUxW_GqFSlK1Zemvx3adCASqxBqdE-XsL3fxd_cZgBti4obkFEOKYw4jhTDkSCEYYhFmEvOESKf22SXtQfQ8jIe-KWxeVruXlKT7UlfNblYrPYK2-typpsDlJtiyHKajaH2Pw7uj0iiO0sh3yPw99EcUcmL9v5hQF2Ba-2DPZ4bB_WoqD8CGyg_B7je9wCOQNPOxY-yDaWG3M1Ug1cLVUuXBSpI5sHXso-Ct1-kNg2wyKsy___jjGAxazf5jG_qTD6DAIVlCImmisZYNlRnAJLoRcqnSmGbKQI5qIpJQS00iQWKlkBZcGljZtzbBP9ZI4xNQy4tcnYKAGEhrmiYIK5P5YEJj1VAylMjcz0rP1EFYeoIJLwtuT6eYsErQ2HmPGe8x5z22rIPbasx0JYqx1vrBOriytILW7kIxGzGPD0YaMo2RTjLMUaSyjPJIUC4sLyoySVEd3JXTwzzK5mueefY_82uw3e6_dljnqftyDnaQWyl23_gC1BazT3VpEo8Fv3Lr7AtiiM3N |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NS8MwFMCDThA9iJ84P3vwpmFr0qbNUefG1LF5cDBPofnahNmOWS_7603SrkwUwWt5aelLHu_xPn4B4IoYvyE5xZDikMNAIQw5Ugj6WPiJxDwi0tE--6Q7DB5H4Whlit91uy9LksVMg6U0pXljJnWjGnyz3PQA2k50R1CBi3WwYVldtqmvRVpVlgWZ4xfEQTkt8_vSbx7Jgft_VEWds-nsgp0ySvRui23dA2sq3QfbK-zAAxC104mr3nuzzKY2lSdV7vqqUq_AM3u2p33svQ56g5GXTMfZ_C2fvB-CYaf90urC8hYEKLBPFpBIGmmsZVMlxngi3fS5VHFIE2XMj2oiIl9LTQJBQqWQFlwaE7N_bQKBUCONj0AtzVJ1DDxizFvTOEJYmSgIExqqppK-ROZ9FkNTB_5SE0yUiHB7U8WUVXBjpz1mtMec9tiiDq6rNbMCkPGn9J1VcCVp4dbuQTYfs9JWGGnKOEQ6SjBHgUoSygNBubA1UpFIiurgZrk9rLS4jz--efI_8Uuw-XzfYb2H_tMp2ELuoNgU8hmo5fNPdW5ikJxfuGP2BcIg0jk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+pothole+detection+system+using+YOLOX+algorithm&rft.jtitle=Autonomous+intelligent+systems&rft.au=Mohan+Prakash+B&rft.au=Sriharipriya+K.C&rft.date=2022-08-31&rft.pub=Springer&rft.eissn=2730-616X&rft.volume=2&rft.issue=1&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1007%2Fs43684-022-00037-z&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_60d852f7a3b24eaa9b4c9bc0278cad92 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2730-616X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2730-616X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2730-616X&client=summon |