Adaptive thresholds determination for saving cloud energy using three-way decisions

Determining the two thresholds in three-way decisions is one of hot issues, it needs to be considered in a specific field and targetedly. In the research of cloud computing, on the one hand, it is necessary to pursue service quality and economy, on the other hand, there is a large number of problems...

Full description

Saved in:
Bibliographic Details
Published inCluster computing Vol. 22; no. Suppl 4; pp. 8475 - 8482
Main Authors Jiang, Chunmao, Wu, Junwei, Li, Zhicong
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1386-7857
1573-7543
DOI10.1007/s10586-018-1879-7

Cover

Abstract Determining the two thresholds in three-way decisions is one of hot issues, it needs to be considered in a specific field and targetedly. In the research of cloud computing, on the one hand, it is necessary to pursue service quality and economy, on the other hand, there is a large number of problems such as low utilization of cluster and high energy consumption. In this paper, the adaptive thresholds migration (ATM) algorithm is proposed by introducing three-way decisions into virtual machine migration. First of all, the proposed method evaluate load in cluster according to resource usage, and then dynamically determine two thresholds, thereby the VMs will be divided into three types with the help of ideas of three-way decisions, that is, idle state nodes, the normal nodes and overload nodes. Secondly, for nodes in different regions take different acting. For the normal nodes, we do nothing. For the idle and overloaded nodes in the cluster, ATM determine the virtual machine to be migrated and optimize the choice of target host based on the balance of resource usage and transmission overhead. Experiments based on CloudSim show that the ATM algorithm reduces power consumption by about 20% compared to TCEA and MM.
AbstractList Determining the two thresholds in three-way decisions is one of hot issues, it needs to be considered in a specific field and targetedly. In the research of cloud computing, on the one hand, it is necessary to pursue service quality and economy, on the other hand, there is a large number of problems such as low utilization of cluster and high energy consumption. In this paper, the adaptive thresholds migration (ATM) algorithm is proposed by introducing three-way decisions into virtual machine migration. First of all, the proposed method evaluate load in cluster according to resource usage, and then dynamically determine two thresholds, thereby the VMs will be divided into three types with the help of ideas of three-way decisions, that is, idle state nodes, the normal nodes and overload nodes. Secondly, for nodes in different regions take different acting. For the normal nodes, we do nothing. For the idle and overloaded nodes in the cluster, ATM determine the virtual machine to be migrated and optimize the choice of target host based on the balance of resource usage and transmission overhead. Experiments based on CloudSim show that the ATM algorithm reduces power consumption by about 20% compared to TCEA and MM.
Author Wu, Junwei
Li, Zhicong
Jiang, Chunmao
Author_xml – sequence: 1
  givenname: Chunmao
  surname: Jiang
  fullname: Jiang, Chunmao
  email: hsdrose@126.com
  organization: College of Computer Science and Information Engineer, Harbin Normal University
– sequence: 2
  givenname: Junwei
  surname: Wu
  fullname: Wu, Junwei
  organization: College of Computer Science and Information Engineer, Harbin Normal University
– sequence: 3
  givenname: Zhicong
  surname: Li
  fullname: Li, Zhicong
  organization: College of Computer Science and Information Engineer, Harbin Normal University
BookMark eNp9kN9LwzAQgINMcFP_AN8KPkdzSdM0j2P4CwY-qM8ha9Ito0tn0k7235taQRD06Y67--6Ob4YmvvUWoSsgN0CIuI1AeFlgAiWGUkgsTtAUuGBY8JxNUs5SV5RcnKFZjFtCiBRUTtHL3Oh95w426zbBxk3bmJgZ29mwc153rvVZ3YYs6oPz66xq2t5k1tuwPmZ9HEoDZvGHPiaqcjEB8QKd1rqJ9vI7nqO3-7vXxSNePj88LeZLXDEoOlybMqdWC9CEaJ2TlRUagDG54pBeLwHyspCGV1UtKC8oZdJIYmshKyPpqmbn6Hrcuw_te29jp7ZtH3w6qaiEkjLCGU9TME5VoY0x2Frtg9vpcFRA1OBOje5UcqcGd0okRvxiKtd92eiCds2_JB3JmK74tQ0_P_0NfQKn24W2
CitedBy_id crossref_primary_10_1016_j_jmsy_2024_07_013
crossref_primary_10_1109_ACCESS_2022_3145426
crossref_primary_10_1007_s00500_022_07524_8
crossref_primary_10_1007_s10489_021_02809_1
crossref_primary_10_1109_ACCESS_2024_3420173
crossref_primary_10_3390_app14167423
crossref_primary_10_3390_s20010153
crossref_primary_10_1016_j_ijar_2020_01_013
crossref_primary_10_1007_s12652_020_02309_z
crossref_primary_10_1007_s10489_021_02325_2
crossref_primary_10_1109_ACCESS_2021_3057405
crossref_primary_10_1007_s12559_022_09999_x
crossref_primary_10_1016_j_ins_2024_120127
crossref_primary_10_3233_JIFS_202207
crossref_primary_10_33889_IJMEMS_2022_7_5_045
Cites_doi 10.1109/ClusterW.2012.14
10.1016/j.future.2011.04.017
10.1155/2016/6208358
10.1016/0020-7373(92)90069-W
10.1145/2656204
10.1016/j.sysarc.2013.03.007
10.1109/UCC.2015.97
10.1016/j.ins.2012.10.041
10.1109/CloudCom.2011.25
10.1109/CloudNet.2012.6483650
10.1109/COMST.2015.2481183
10.1007/978-3-319-28034-9_8
10.3233/FI-2011-423
10.1109/IMTC.2006.328685
10.1007/s10586-008-0070-y
10.1007/978-3-319-25754-9_6
10.1007/978-3-642-31900-6_46
10.1109/TPDS.2012.283
10.1109/DSN.2008.4630101
10.1007/978-3-642-32115-3_1
10.1007/s12559-016-9397-5
10.1007/978-1-4757-6217-4_14
10.1007/978-3-642-41299-8_3
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Springer Science+Business Media, LLC, part of Springer Nature 2018.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2018.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s10586-018-1879-7
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7543
EndPage 8482
ExternalDocumentID 10_1007_s10586_018_1879_7
GrantInformation_xml – fundername: Harbin Science and Technology Innovation Talent Project
  grantid: 2014RFQXJ073
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29B
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P9O
PF0
PT4
PT5
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABRTQ
ADHKG
ADKFA
AFDZB
AFOHR
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c316t-fd842ea71a00aa40be7a11339b511578114869d5ccf72562239d90ef79cd92bf3
IEDL.DBID BENPR
ISSN 1386-7857
IngestDate Fri Jul 25 23:21:00 EDT 2025
Wed Oct 01 06:03:07 EDT 2025
Thu Apr 24 23:03:39 EDT 2025
Fri Feb 21 02:36:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue Suppl 4
Keywords Three-way decisions
Cloud computing
Energy consumption
Two thresholds
Adaptive
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-fd842ea71a00aa40be7a11339b511578114869d5ccf72562239d90ef79cd92bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918230535
PQPubID 2043865
PageCount 8
ParticipantIDs proquest_journals_2918230535
crossref_primary_10_1007_s10586_018_1879_7
crossref_citationtrail_10_1007_s10586_018_1879_7
springer_journals_10_1007_s10586_018_1879_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190700
2019-7-00
20190701
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 7
  year: 2019
  text: 20190700
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle The Journal of Networks, Software Tools and Applications
PublicationTitle Cluster computing
PublicationTitleAbbrev Cluster Comput
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References YaoYYWongSKA decision theoretic framework for approximating conceptsInt. J. Man-Mach. Stud.199237679380910.1016/0020-7373(92)90069-W
KusicDKephartJOHansonJEKandasamyNJiangGPower and performance management of virtualized computing environments via lookahead controlClust. Comput.20091211510.1007/s10586-008-0070-y
Tsai, L., Liao, W.: Cost-aware workload consolidation in green cloud datacenter. In: 2012 IEEE 1st International Conference on Cloud Networking (CLOUDNET), 28 Nov 2012 (pp. 29–34)
Yao, Y.: Granular computing and sequential three-way decisions. In: International Conference on Rough Sets and Knowledge Technology, Springer, Berlin, pp. 16–27 (2013)
LuoLWuWJZhangFEnergy modeling based on cloud data centerJ. Softw.201425713711387
Aldulaimy, A., Zantout, R., Zekri, A., Itani, W.: Job classification in cloud computing: the classification effects on energy efficiency. In: 2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing (UCC), 7 Dec 2015 (pp. 547–552)
Panda, S.K., Jana, P.K.: An efficient task consolidation algorithm for cloud computing systems. In: International Conference on Distributed Computing and Internet Technology, 15 Jan 2016 (pp. 61–74)
YaoYThree-way decisions and cognitive computingCogn. Comput.20168454355410.1007/s12559-016-9397-5
HerbertJPYaoJGame-theoretic rough setsFundam. Inf.20111083–4267862816400
YaoJHerbertJPA game-theoretic perspective on rough set analysisJ. Chongqing Univ. Posts Telecommun.2008203291298(Natural Science Edition)
GaoYQuality of service aware power management for virtualized data centersJ. Syst. Archit.201359424525910.1016/j.sysarc.2013.03.007
BeloglazovAAbawajyJBuyyaREnergy-aware resource allocation heuristics for efficient management of data centers for cloud computingFuture Gener. Comput. Syst.201228575576810.1016/j.future.2011.04.017
Xu, Lei, et al.: Smart-DRS: a strategy of dynamic resource scheduling in cloud data center. In: Proceedings of the 2012 IEEE International Conference on Cluster Computing Workshops
MastelicTOleksiakAClaussenHBrandicIPiersonJMVasilakosAVCloud computing: survey on energy efficiencyAcm Comput. Surv. (csur)201547233
XiaoZSongWChenQDynamic resource allocation using virtual machines for cloud computing environmentIEEE Trans. Parallel Distrib. Syst.20132461107111610.1109/TPDS.2012.283
Deng, X., Yao, Y.: An information-theoretic interpretation of thresholds in probabilistic rough sets. In: RSKT pp. 369–378 (2012)
Calheiros, R.N., Ranjan, R., De Rose, C.A., Buyya, R.: Cloudsim: A novel framework for modeling and simulation of cloud computing infrastructures and services. (2009). arXiv:0903.2525
HsuCHSlagterKDChenSCChungYCOptimizing energy consumption with task consolidation in cloudsInf. Sci.20141025845246210.1016/j.ins.2012.10.041
Lien, C. H. et al.: Measurement by the software design for the power consumption of streaming media servers. In: Instrumentation and Measurement Technology Conference (2006)
Hsu, C.H., Chen, S.C., Lee, C.C., Chang, H.Y., Lai, K.C., Li, K.C., Rong, C.: Energy-aware task consolidation technique for cloud computing. In: 2011 IEEE 3rd International Conference on Cloud Computing Technology and Science (CloudCom), 29 Nov 2011 (pp. 115–121)
Gmach, D., Rolia, J., Cherkasova, L.: An integrated approach to resource pool management: Policies, efficiency and quality metrics. International Conference on IEEE Dependable Systems and Networks With FTCS and DCC 2008, 326–335 (2008)
DayarathnaMWenYFanRData center energy consumption modeling: a surveyIEEE Commun. Surv. Tutor.201618173279410.1109/COMST.2015.2481183
Yao, Y.Y.: Rough sets and three-way decisions. In: RSKT 2015, LNCS (LNAI) 9436, Springer, pp. 62–73 (2015)
Yao, Y.Y.: An outline of a theory of three-way decisions. In: RSCTC 2012, LNCS (LNAI) 7413, Springer. pp. 1-17 (2012)
Bohrer, P., Elnozahy, E.N., Keller, T., Kistler, M., Lefurgy, C., McDowell, C., Rajamony, R.: The case for power management in web servers. In: Power Aware Computing, Springer, Boston, pp. 261–289 (2002)
Choi, H.S., Lim, J.B., Yu, H., et al.: Task classification based energy-aware consolidation in clouds. Sci. Programm. (2016) https://doi.org/10.1155/2016/6208358
J Yao (1879_CR16) 2008; 20
Y Yao (1879_CR11) 2016; 8
T Mastelic (1879_CR3) 2015; 47
1879_CR1
CH Hsu (1879_CR8) 2014; 10
1879_CR5
M Dayarathna (1879_CR4) 2016; 18
1879_CR6
1879_CR7
1879_CR9
1879_CR22
L Luo (1879_CR25) 2014; 25
1879_CR24
1879_CR26
D Kusic (1879_CR2) 2009; 12
JP Herbert (1879_CR15) 2011; 108
Z Xiao (1879_CR23) 2013; 24
1879_CR10
A Beloglazov (1879_CR21) 2012; 28
1879_CR12
1879_CR13
1879_CR14
Y Gao (1879_CR20) 2013; 59
1879_CR18
YY Yao (1879_CR17) 1992; 37
1879_CR19
References_xml – reference: HsuCHSlagterKDChenSCChungYCOptimizing energy consumption with task consolidation in cloudsInf. Sci.20141025845246210.1016/j.ins.2012.10.041
– reference: Xu, Lei, et al.: Smart-DRS: a strategy of dynamic resource scheduling in cloud data center. In: Proceedings of the 2012 IEEE International Conference on Cluster Computing Workshops
– reference: XiaoZSongWChenQDynamic resource allocation using virtual machines for cloud computing environmentIEEE Trans. Parallel Distrib. Syst.20132461107111610.1109/TPDS.2012.283
– reference: Deng, X., Yao, Y.: An information-theoretic interpretation of thresholds in probabilistic rough sets. In: RSKT pp. 369–378 (2012)
– reference: LuoLWuWJZhangFEnergy modeling based on cloud data centerJ. Softw.201425713711387
– reference: Yao, Y.Y.: An outline of a theory of three-way decisions. In: RSCTC 2012, LNCS (LNAI) 7413, Springer. pp. 1-17 (2012)
– reference: GaoYQuality of service aware power management for virtualized data centersJ. Syst. Archit.201359424525910.1016/j.sysarc.2013.03.007
– reference: BeloglazovAAbawajyJBuyyaREnergy-aware resource allocation heuristics for efficient management of data centers for cloud computingFuture Gener. Comput. Syst.201228575576810.1016/j.future.2011.04.017
– reference: Gmach, D., Rolia, J., Cherkasova, L.: An integrated approach to resource pool management: Policies, efficiency and quality metrics. International Conference on IEEE Dependable Systems and Networks With FTCS and DCC 2008, 326–335 (2008)
– reference: Panda, S.K., Jana, P.K.: An efficient task consolidation algorithm for cloud computing systems. In: International Conference on Distributed Computing and Internet Technology, 15 Jan 2016 (pp. 61–74)
– reference: YaoJHerbertJPA game-theoretic perspective on rough set analysisJ. Chongqing Univ. Posts Telecommun.2008203291298(Natural Science Edition)
– reference: YaoYYWongSKA decision theoretic framework for approximating conceptsInt. J. Man-Mach. Stud.199237679380910.1016/0020-7373(92)90069-W
– reference: YaoYThree-way decisions and cognitive computingCogn. Comput.20168454355410.1007/s12559-016-9397-5
– reference: MastelicTOleksiakAClaussenHBrandicIPiersonJMVasilakosAVCloud computing: survey on energy efficiencyAcm Comput. Surv. (csur)201547233
– reference: KusicDKephartJOHansonJEKandasamyNJiangGPower and performance management of virtualized computing environments via lookahead controlClust. Comput.20091211510.1007/s10586-008-0070-y
– reference: HerbertJPYaoJGame-theoretic rough setsFundam. Inf.20111083–4267862816400
– reference: Choi, H.S., Lim, J.B., Yu, H., et al.: Task classification based energy-aware consolidation in clouds. Sci. Programm. (2016) https://doi.org/10.1155/2016/6208358
– reference: Tsai, L., Liao, W.: Cost-aware workload consolidation in green cloud datacenter. In: 2012 IEEE 1st International Conference on Cloud Networking (CLOUDNET), 28 Nov 2012 (pp. 29–34)
– reference: Yao, Y.: Granular computing and sequential three-way decisions. In: International Conference on Rough Sets and Knowledge Technology, Springer, Berlin, pp. 16–27 (2013)
– reference: Bohrer, P., Elnozahy, E.N., Keller, T., Kistler, M., Lefurgy, C., McDowell, C., Rajamony, R.: The case for power management in web servers. In: Power Aware Computing, Springer, Boston, pp. 261–289 (2002)
– reference: Calheiros, R.N., Ranjan, R., De Rose, C.A., Buyya, R.: Cloudsim: A novel framework for modeling and simulation of cloud computing infrastructures and services. (2009). arXiv:0903.2525
– reference: Lien, C. H. et al.: Measurement by the software design for the power consumption of streaming media servers. In: Instrumentation and Measurement Technology Conference (2006)
– reference: DayarathnaMWenYFanRData center energy consumption modeling: a surveyIEEE Commun. Surv. Tutor.201618173279410.1109/COMST.2015.2481183
– reference: Hsu, C.H., Chen, S.C., Lee, C.C., Chang, H.Y., Lai, K.C., Li, K.C., Rong, C.: Energy-aware task consolidation technique for cloud computing. In: 2011 IEEE 3rd International Conference on Cloud Computing Technology and Science (CloudCom), 29 Nov 2011 (pp. 115–121)
– reference: Aldulaimy, A., Zantout, R., Zekri, A., Itani, W.: Job classification in cloud computing: the classification effects on energy efficiency. In: 2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing (UCC), 7 Dec 2015 (pp. 547–552)
– reference: Yao, Y.Y.: Rough sets and three-way decisions. In: RSKT 2015, LNCS (LNAI) 9436, Springer, pp. 62–73 (2015)
– ident: 1879_CR22
  doi: 10.1109/ClusterW.2012.14
– volume: 28
  start-page: 755
  issue: 5
  year: 2012
  ident: 1879_CR21
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2011.04.017
– ident: 1879_CR19
  doi: 10.1155/2016/6208358
– ident: 1879_CR26
– volume: 37
  start-page: 793
  issue: 6
  year: 1992
  ident: 1879_CR17
  publication-title: Int. J. Man-Mach. Stud.
  doi: 10.1016/0020-7373(92)90069-W
– volume: 47
  start-page: 33
  issue: 2
  year: 2015
  ident: 1879_CR3
  publication-title: Acm Comput. Surv. (csur)
  doi: 10.1145/2656204
– volume: 59
  start-page: 245
  issue: 4
  year: 2013
  ident: 1879_CR20
  publication-title: J. Syst. Archit.
  doi: 10.1016/j.sysarc.2013.03.007
– ident: 1879_CR7
  doi: 10.1109/UCC.2015.97
– volume: 10
  start-page: 452
  issue: 258
  year: 2014
  ident: 1879_CR8
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2012.10.041
– ident: 1879_CR6
  doi: 10.1109/CloudCom.2011.25
– ident: 1879_CR9
  doi: 10.1109/CloudNet.2012.6483650
– volume: 18
  start-page: 732
  issue: 1
  year: 2016
  ident: 1879_CR4
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2015.2481183
– ident: 1879_CR5
  doi: 10.1007/978-3-319-28034-9_8
– volume: 108
  start-page: 267
  issue: 3–4
  year: 2011
  ident: 1879_CR15
  publication-title: Fundam. Inf.
  doi: 10.3233/FI-2011-423
– ident: 1879_CR18
  doi: 10.1109/IMTC.2006.328685
– volume: 12
  start-page: 1
  issue: 1
  year: 2009
  ident: 1879_CR2
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-008-0070-y
– ident: 1879_CR13
  doi: 10.1007/978-3-319-25754-9_6
– volume: 25
  start-page: 1371
  issue: 7
  year: 2014
  ident: 1879_CR25
  publication-title: J. Softw.
– volume: 20
  start-page: 291
  issue: 3
  year: 2008
  ident: 1879_CR16
  publication-title: J. Chongqing Univ. Posts Telecommun.
– ident: 1879_CR14
  doi: 10.1007/978-3-642-31900-6_46
– volume: 24
  start-page: 1107
  issue: 6
  year: 2013
  ident: 1879_CR23
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2012.283
– ident: 1879_CR24
  doi: 10.1109/DSN.2008.4630101
– ident: 1879_CR10
  doi: 10.1007/978-3-642-32115-3_1
– volume: 8
  start-page: 543
  issue: 4
  year: 2016
  ident: 1879_CR11
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-016-9397-5
– ident: 1879_CR1
  doi: 10.1007/978-1-4757-6217-4_14
– ident: 1879_CR12
  doi: 10.1007/978-3-642-41299-8_3
SSID ssj0009729
Score 2.260699
Snippet Determining the two thresholds in three-way decisions is one of hot issues, it needs to be considered in a specific field and targetedly. In the research of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8475
SubjectTerms Algorithms
Cloud computing
Clusters
Computer Communication Networks
Computer Science
Decisions
Energy consumption
Information theory
Nodes
Operating Systems
Overloading
Power consumption
Processor Architectures
Regression analysis
Thresholds
Virtual environments
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66Xrz4FldXycGTEkjbpGmORVwWQS-6sLeSV70su4vtIv57J21jVVTw3JkUZjLJN5kXQpeUW-pUEpEMfAvCNDdExiknlnJVMs6s1f694_4hnUzZ3YzPujruKmS7h5Bkc1J_Knbjmfd-wevJhCRiE21x380LNvE0zvtOu6IZTRYlQCwyLkIo86clvl5GPcL8FhRt7prxHtrpQCLOW63uow23OEC7YQAD7uzxED3mVq38eYVrUEnlI0kVtiHBxYscAybFlfKvBtjMl2uLXVPsh32--3PD5siregOudtZOdYSm49unmwnppiQQk0RpTUqbsdgpESlKlWJUO6Ei8Dyl5r6RTuYdnlRabkwpAN8AHJBWUlcKaayMdZkco8FiuXAnCCstwIEBitgYxphQYO4ZlzpxaekixYeIBnEVpmsh7idZzIu--bGXcAESLryECzFEVx8sq7Z_xl_Eo6CDojOlqohl5IOBPIHfXwe99J9_Xez0X9RnaBugkGwTcUdoUL-s3TnAjVpfNNvrHdynyzI
  priority: 102
  providerName: Springer Nature
Title Adaptive thresholds determination for saving cloud energy using three-way decisions
URI https://link.springer.com/article/10.1007/s10586-018-1879-7
https://www.proquest.com/docview/2918230535
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-7543
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: BENPR
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7543
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: AGYKE
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7543
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: U2A
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB5BcuECLQ8RoJEPnKis7sNe24eqSqsEBCKqoJHgtPLaXi4oCWwQ4t_j2V2zAqlcd20fZuzxjGfm-wCOI24jp9OYSh9bUFZwQ1WScWojrkvGmbUFvndcTrOzGTu_4TdrMA29MFhWGWxibajtwuAb-Y9ExZgT4in_tXygyBqF2dVAoaFbagX7s4YYW4d-gshYPej_Hk__XnUwvKLmLYtTmVEhuQh5zqaZjkuMrn1UJYWi4v1N1bmfHzKm9UU0-QKbrQdJRo3Kv8Kam2_DVmBnIO1h3YHrkdVLNGZk5fVVYZqpIjZUv6A-iHdYSaXxSYGY-8WTJa7uBCRYDH9XT3P0Wb_4WQ0RT7ULs8n4358z2lIoUJPG2YqWVrLEaRHrKNKaRYUTOvZhqSo4ouxIjIYyZbkxpfDOj_cVlFWRK4UyViVFme5Bb76Yu30guhA-uvEjEmMYY0J7WyC5KlKXlS7WfABREFduWnxxpLm4zztkZJRw7iWco4RzMYCTtynLBlzjs8FHQQd5e86qvNsVA_ge9NL9_u9iB58vdggb3jFSTVnuEfRWj0_um3c-VsUQ1uXkdAj90entxXjY7i__dZaMXgHgRdhr
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOMClDwpiKW19oJciizzsOD6giragpcAKFZC4Bcd2uKx2t2QR4s_1t3UmiRu1Urlxju3DzGQ8n-fxAexE0kXepDHPEVtwUUrLdZJJ7iJpKiGFcyW9d5yNsuGV-H4trxfgV-iFobLK4BMbR-2mlt7I9xIdU05IpvLz7Ccn1ijKrgYKDdNRK7j9ZsRY19hx4h8fEMLV-8ffUN8fk-To8PLrkHcsA9ymcTbnlctF4o2KTRQZI6LSKxMjctOlpEE0OQGGTDtpbaUwPsDrVDsd-Upp63RSVimeuwjLIhUawd_yl8PR-Y9-7K9qeNLiNM-4yqUKedW2eU_mhOYRxeVKc_X3zdiHu_9kaJuL7-gVvOgiVnbQmthrWPCTNXgZ2CBY5xzewMWBMzNynmyO9lFTWqtmLlTbkP4ZBsisNvSEwex4eu-YbzoPGRXf3zbbPH8wj7irJf6p1-HqWYS5AUuT6cRvAjOlQjSFKxJrhRDKoO_JpS5Tn1U-NnIAURBXYbt55kSrMS76Scwk4QIlXJCECzWAT3-2zNphHk8t3g46KLr_ui56KxzAbtBL__m_h209fdgHWBlenp0Wp8ejk7ewikGZbkuCt2Fpfnfv32HgMy_fd9bF4Oa5Dfo3uZcRCw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aQbz4FqtVc_CkhO4j2WyORS31VQQt9LbktV5KW9wt4r93sg9XRQXPO8nCTB7fZGa-QejUY8azMvRJDL4FoYppIoKIEeMxmVJGjVHuveN-GA1G9GbMxlWf06zOdq9DkmVNg2NpmubduUm7nwrfWOw8YfCAYi4IX0Yr1PEkwIIeBb2GdZcXbcr8EIR5zHgd1vxpiq8XU4M2vwVIi3unv4nWK8CIe6WFt9CSnW6jjboZA6725g567Bk5d2cXzsE8mYsqZdjUyS5O_RjwKc6ke0HAejJbGGyLwj_sct-fi2GWvMo3GFX23cl20ah_9XQxIFXHBKJDP8pJamIaWMl96XlSUk9ZLn3wQoVijlQnds5PJAzTOuWAdQAaCCM8m3KhjQhUGu6h1nQ2tfsIS8XBmQGJQGtKKZew9WMmVGij1PqStZFXqyvRFZ2462oxSRoiZKfhBDScOA0nvI3OPobMSy6Nv4Q7tQ2SaltlSSB8FxhkIfz-vLZL8_nXyQ7-JX2CVh8u-8nd9fD2EK0BQhJlfm4HtfKXhT0CFJKr42KlvQOsnNJa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+thresholds+determination+for+saving+cloud+energy+using+three-way+decisions&rft.jtitle=Cluster+computing&rft.au=Jiang%2C+Chunmao&rft.au=Wu%2C+Junwei&rft.au=Li%2C+Zhicong&rft.date=2019-07-01&rft.pub=Springer+Nature+B.V&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=22&rft.spage=8475&rft.epage=8482&rft_id=info:doi/10.1007%2Fs10586-018-1879-7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon