Multiplex image representation for enhanced recognition

A multiscale approach to exploiting existing image descriptors (LBP and HOG) is proposed recently in order to enhance face recognition performance (Ubiquitous computing and ambient intelligence. Personalisation and user adapted services. Springer, 532–539, 2014 ) and (A multiscale method for HOG-bas...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of machine learning and cybernetics Vol. 9; no. 3; pp. 383 - 392
Main Authors Wei, Xin, Wang, Hui, Guo, Gongde, Wan, Huan
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1868-8071
1868-808X
DOI10.1007/s13042-015-0427-5

Cover

Abstract A multiscale approach to exploiting existing image descriptors (LBP and HOG) is proposed recently in order to enhance face recognition performance (Ubiquitous computing and ambient intelligence. Personalisation and user adapted services. Springer, 532–539, 2014 ) and (A multiscale method for HOG-based face and palmprint recognition. Technical report, Ulster University, 2015 ), where multiple single-sourced, spatially-varied feature vectors at different scales are calculated from images and then fused through an image distance function. This multiscale approach has led to significant improvements in face recognition over the single scale approach. In this paper we present an analysis of this multiscale approach from feature engineering perspective and evaluation result for the image distance function on palmprint recognition, thus providing an insight into and also extending the applicability of this approach. We also present a new method of utilising these spatially-varied feature vectors from an image—joining these feature vectors head to tail to form a larger feature vector which is used as a multiplex representation of the image. Such an image representation can then be used by any vector-based feature extraction and classification algorithms. This representation scheme is evaluated experimentally in face recognition, and the results show this scheme is competitive to the distance-based method having the additional advantage of being usable in a wider range of machine learning algorithms. The main contributions of this paper are (1) an insight into this multiscale approach to utilising existing image descriptors such as LBP and HOG; (2) a new method of using these multiple feature vectors; and (3) extension of the multiscale approach to palmprint recognition.
AbstractList A multiscale approach to exploiting existing image descriptors (LBP and HOG) is proposed recently in order to enhance face recognition performance (Ubiquitous computing and ambient intelligence. Personalisation and user adapted services. Springer, 532–539, 2014) and (A multiscale method for HOG-based face and palmprint recognition. Technical report, Ulster University, 2015), where multiple single-sourced, spatially-varied feature vectors at different scales are calculated from images and then fused through an image distance function. This multiscale approach has led to significant improvements in face recognition over the single scale approach. In this paper we present an analysis of this multiscale approach from feature engineering perspective and evaluation result for the image distance function on palmprint recognition, thus providing an insight into and also extending the applicability of this approach. We also present a new method of utilising these spatially-varied feature vectors from an image—joining these feature vectors head to tail to form a larger feature vector which is used as a multiplex representation of the image. Such an image representation can then be used by any vector-based feature extraction and classification algorithms. This representation scheme is evaluated experimentally in face recognition, and the results show this scheme is competitive to the distance-based method having the additional advantage of being usable in a wider range of machine learning algorithms. The main contributions of this paper are (1) an insight into this multiscale approach to utilising existing image descriptors such as LBP and HOG; (2) a new method of using these multiple feature vectors; and (3) extension of the multiscale approach to palmprint recognition.
A multiscale approach to exploiting existing image descriptors (LBP and HOG) is proposed recently in order to enhance face recognition performance (Ubiquitous computing and ambient intelligence. Personalisation and user adapted services. Springer, 532–539, 2014 ) and (A multiscale method for HOG-based face and palmprint recognition. Technical report, Ulster University, 2015 ), where multiple single-sourced, spatially-varied feature vectors at different scales are calculated from images and then fused through an image distance function. This multiscale approach has led to significant improvements in face recognition over the single scale approach. In this paper we present an analysis of this multiscale approach from feature engineering perspective and evaluation result for the image distance function on palmprint recognition, thus providing an insight into and also extending the applicability of this approach. We also present a new method of utilising these spatially-varied feature vectors from an image—joining these feature vectors head to tail to form a larger feature vector which is used as a multiplex representation of the image. Such an image representation can then be used by any vector-based feature extraction and classification algorithms. This representation scheme is evaluated experimentally in face recognition, and the results show this scheme is competitive to the distance-based method having the additional advantage of being usable in a wider range of machine learning algorithms. The main contributions of this paper are (1) an insight into this multiscale approach to utilising existing image descriptors such as LBP and HOG; (2) a new method of using these multiple feature vectors; and (3) extension of the multiscale approach to palmprint recognition.
Author Wan, Huan
Wei, Xin
Guo, Gongde
Wang, Hui
Author_xml – sequence: 1
  givenname: Xin
  surname: Wei
  fullname: Wei, Xin
  email: xinwei.mail@qq.com
  organization: Key Lab of Network Security and Cryptology, School of Mathematics and Computer Science, Fujian Normal University
– sequence: 2
  givenname: Hui
  surname: Wang
  fullname: Wang, Hui
  organization: School of Computing and Mathematics, University of Ulster at Jordanstown
– sequence: 3
  givenname: Gongde
  surname: Guo
  fullname: Guo, Gongde
  organization: Key Lab of Network Security and Cryptology, School of Mathematics and Computer Science, Fujian Normal University
– sequence: 4
  givenname: Huan
  surname: Wan
  fullname: Wan, Huan
  organization: Key Lab of Network Security and Cryptology, School of Mathematics and Computer Science, Fujian Normal University
BookMark eNp9kE1LxDAQhoOs4LruD_BW8BxN0jRJj7L4BSteFLyFbDpZu9SkJi3ovzdLRUHQuczAzDPvzHuMZj54QOiUknNKiLxItCScYUIrnLPE1QGaUyUUVkQ9z75rSY_QMqUdySFIWRI2R_J-7Ia27-C9aF_NFooIfYQEfjBDG3zhQizAvxhvock9G7a-3TdO0KEzXYLlV16gp-urx9UtXj_c3K0u19iWVAzYWcMplUrVQnHGJKPONBYYsE3FpVV0o5zjIIgxSvFG1IxZ54ypGZRQ86ZcoLNpbx_D2whp0LswRp8lNasZYULVkucpOk3ZGFKK4HQf8zvxQ1Oi9xbpySKdLdJ7i3SVGfmLse309BBN2_1LsolMWcVvIf7c9Df0CTk0fEM
CitedBy_id crossref_primary_10_1007_s11277_021_08666_y
crossref_primary_10_1016_j_imavis_2023_104646
crossref_primary_10_1007_s13042_016_0627_7
crossref_primary_10_1088_1757_899X_1099_1_012063
crossref_primary_10_1142_S0218001420540075
Cites_doi 10.1109/ICCV.2009.5459169
10.1109/CVPR.2004.1315215
10.1109/34.531802
10.1023/B:VISI.0000029664.99615.94
10.1109/TPAMI.2006.244
10.2197/ipsjtcva.2.39
10.1109/34.879790
10.1016/j.imavis.2005.01.002
10.1109/TPAMI.2002.1017623
10.1016/j.imavis.2004.02.006
10.1109/ICIP.2010.5653119
10.1109/TIP.2002.999679
10.5244/C.25.28
10.1016/B978-1-55860-335-6.50023-4
10.1007/978-3-319-22879-2_49
10.1109/TSMCC.2010.2051328
10.1016/j.cviu.2013.09.004
10.1109/CVPR.1991.139758
10.1109/34.598228
10.3745/JIPS.2009.5.2.041
10.1007/978-3-319-13102-3_84
10.1109/CVPR.2005.177
10.1109/CVPR.2013.389
10.1016/j.patcog.2008.04.008
10.1016/j.patcog.2013.12.011
10.1109/TPAMI.2010.127
10.1016/j.patcog.2009.01.018
10.1016/j.sigpro.2010.08.010
10.1109/TPAMI.2004.1261097
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2015
Springer-Verlag Berlin Heidelberg 2015.
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2015
– notice: Springer-Verlag Berlin Heidelberg 2015.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s13042-015-0427-5
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1868-808X
EndPage 392
ExternalDocumentID 10_1007_s13042_015_0427_5
GrantInformation_xml – fundername: Hu Guozan Study-Abroad Grant for Graduates of Fujian Normal University
GroupedDBID -EM
06D
0R~
0VY
1N0
203
29~
2JY
2VQ
30V
4.4
406
408
409
40D
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARAPS
AUKKA
AXYYD
AYJHY
BENPR
BGLVJ
BGNMA
CCPQU
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
H13
HCIFZ
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KOV
LLZTM
M4Y
M7S
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9P
PT4
PTHSS
QOS
R89
R9I
RLLFE
ROL
RSV
S27
S3B
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7X
Z83
Z88
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c316t-fca411788968422721fadce2e2b547c81b8ff4e60aa884d6922cffaa92e3e94d3
IEDL.DBID 8FG
ISSN 1868-8071
IngestDate Mon Jul 21 01:56:56 EDT 2025
Wed Oct 01 04:29:27 EDT 2025
Thu Apr 24 23:12:33 EDT 2025
Fri Feb 21 02:41:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords HOG
Multiplex image representation
Feature fusion
LBP
Face recognition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-fca411788968422721fadce2e2b547c81b8ff4e60aa884d6922cffaa92e3e94d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2920268974
PQPubID 2043904
PageCount 10
ParticipantIDs proquest_journals_2920268974
crossref_primary_10_1007_s13042_015_0427_5
crossref_citationtrail_10_1007_s13042_015_0427_5
springer_journals_10_1007_s13042_015_0427_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180300
2018-3-00
20180301
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 3
  year: 2018
  text: 20180300
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle International journal of machine learning and cybernetics
PublicationTitleAbbrev Int. J. Mach. Learn. & Cyber
PublicationYear 2018
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Hertz T, Bar-Hillel A, Weinshall D (2004) Learning distance functions for image retrieval. In: Proceedings of IEEE conference in computer vision and pattern recognition, vol. 2
RamananDBakerSLocal distance functions: a taxonomy, new algorithms, and an evaluationPattern Anal Mach Intell IEEE Trans201133479480610.1109/TPAMI.2010.127
OjalaTPietikainenMMaenpaaTMultiresolution gray-scale and rotation invariant texture classification with local binary patternsPattern Anal Mach Intell IEEE Trans200224797198710.1109/TPAMI.2002.10176230977.68853
Quinlan JR (1993) C4. 5: Programs for machine learning
Zhou H, Yuan Y, Sadka AH (2008) Application of semantic features in face recognition. Pattern Recogn 41(10):3251–3256
Yang J, Zhang D, Frangi AF, Yang J (2004) Two-dimensional pca: a new approach to appearance-based face representation and recognition. Pattern Anal Mach Intell IEEE Trans 26(1):131–137
John GH, Kohavi R, Pfleger K et al (1994) Irrelevant features and the subset selection problem. In: Machine learning: proceedings of the eleventh international conference, pp 121–129
Wei X, Guo G, Wang H, Wan H (2015) A multiscale method for HOG-based face and palmprint recognition. In: Technical report. Ulster University. Accepted by 8th International Conference on Intelligent Robotics and Applications
MatasJChumOUrbanMPajdlaTRobust wide-baseline stereo from maximally stable extremal regionsImage Vision Comput2004221076176710.1016/j.imavis.2004.02.006
LoweDGDistinctive image features from scale-invariant keypointsInt J Comput Vision20046029111010.1023/B:VISI.0000029664.99615.94
ConnieTJinATBOngMGKLingDNCAn automated palmprint recognition systemImage Vision Comput200523550151510.1016/j.imavis.2005.01.002
Turk MA, Pentland AP (1991) Face recognition using eigenfaces. In: Computer vision and pattern recognition. Proceedings CVPR’91., IEEE Computer Society Conference on. IEEE, pp 586–591
Kira K, Rendell LA (1992) The feature selection problem: traditional methods and a new algorithm. In: AAAI, vol. 2, pp 129–134
PolyU Palmprint Palmprint Database. http://www. comp.polyu.edu.hk/ biometrics
Wei X, Wang H, Guo G, Wan H (2014) A general weighted multiscale method for improving lbp for face recognition. In: Ubiquitous computing and ambient intelligence. Personalisation and User Adapted Services. Springer, pp 532–539
Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: Computer Vision and Pattern Recognition. CVPR 2005. IEEE Computer Society Conference on, vol 1. IEEE, pp 886–893
GuyonIElisseeffAAn introduction to variable and feature selectionJ Mach Learn Res20033115711821102.68556
Zhou H, Miller PC, Zhang J (2011) Age classification using radon transform and entropy based scaling svm. In: BMVC, pp 1–12
SwetsDLWengJUsing discriminant eigenfeatures for image retrievalIEEE Trans Pattern Anal Mach Intell199618883183610.1109/34.531802
Sondhi P (2009) Feature construction methods: a survey. http://sifaka.cs.uiuc.edu
Gehler P, Nowozin S (2009) On feature combination for multiclass object classification. In: Computer vision, IEEE 12th International Conference on, pp 221–228
RaghavendraRBuschCNovel image fusion scheme based on dependency measure for robust multispectral palmprint recognitionPattern Recogn20144762205222110.1016/j.patcog.2013.12.011
Phillips PJ, Moon H, Rizvi SA, Rauss PJ (2000) The feret evaluation methodology for face-recognition algorithms. Pattern Anal Mach Intell IEEE Trans 22(10):1090–1104
JiaWRong-XiangHLeiYKZhaoYGuiJieHistogram of oriented lines for palmprint recognitionSyst Man Cybern2014443385395
KongAZhangDKamelMA survey of palmprint recognitionPattern Recogn20094271408141810.1016/j.patcog.2009.01.018
Jafri R, Arabnia HR (2009) A survey of face recognition techniques. JIPS 5(2):41–68
LiuCWechslerHGabor feature based classification using the enhanced fisher linear discriminant model for face recognitionImage Process IEEE Trans200211446747610.1109/TIP.2002.999679
PangYYuanYLiXPanJEfficient hog human detectionSig Process201191477378110.1016/j.sigpro.2010.08.0101217.94016
Zhou H, Sadka AH (2011) Combining perceptual features with diffusion distance for face recognition. Syst Man Cybern Part C 41(5):577–588
WatanabeTItoSYokoiKCo-occurrence histograms of oriented gradients for human detectionIPSJ Trans Comput Vision Appl20102394710.2197/ipsjtcva.2.39
OrtizEGBeckerBCFace recognition for web-scale datasetsComput Vis Image Underst201411815317010.1016/j.cviu.2013.09.004
Belhumeur PN, Hespanha JP, Kriegman D (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. Pattern Anal Mach Intell IEEE Trans 19(7):711–720
Chen D, Cao X, Wen F, Sun J (2013) Blessing of dimensionality: High-dimensional feature and its efficient compression for face verification. In: Computer vision and pattern recognition (CVPR), IEEE Conference on. IEEE, pp 3025–3032
AhonenTHadidAPietikainenMFace description with local binary patterns: application to face recognitionPattern Anal Mach Intell IEEE Trans200628122037204110.1109/TPAMI.2006.2441098.68717
Guo Z, Zhang D, Mou X (2010) Hierarchical multiscale lbp for face and palmprint recognition. In: Image processing (ICIP), 17th IEEE International Conference on. IEEE, pp 4521–4524
Martinez A, Benavente R (1998) The AR Face Database. CVC Tech. Report 24. Report 24
W Jia (427_CR9) 2014; 44
C Liu (427_CR14) 2002; 11
T Connie (427_CR4) 2005; 23
DG Lowe (427_CR18) 2004; 60
A Kong (427_CR3) 2009; 42
427_CR26
427_CR28
427_CR2
427_CR1
427_CR29
427_CR20
427_CR22
DL Swets (427_CR27) 1996; 18
R Raghavendra (427_CR10) 2014; 47
427_CR24
427_CR23
427_CR5
427_CR8
427_CR7
T Ojala (427_CR15) 2002; 24
T Ahonen (427_CR25) 2006; 28
427_CR36
J Matas (427_CR13) 2004; 22
427_CR17
D Ramanan (427_CR31) 2011; 33
427_CR16
T Watanabe (427_CR21) 2010; 2
I Guyon (427_CR33) 2003; 3
Y Pang (427_CR19) 2011; 91
427_CR30
427_CR11
427_CR32
EG Ortiz (427_CR6) 2014; 118
427_CR35
427_CR12
427_CR34
References_xml – reference: Guo Z, Zhang D, Mou X (2010) Hierarchical multiscale lbp for face and palmprint recognition. In: Image processing (ICIP), 17th IEEE International Conference on. IEEE, pp 4521–4524
– reference: Belhumeur PN, Hespanha JP, Kriegman D (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. Pattern Anal Mach Intell IEEE Trans 19(7):711–720
– reference: PolyU Palmprint Palmprint Database. http://www. comp.polyu.edu.hk/ biometrics/
– reference: WatanabeTItoSYokoiKCo-occurrence histograms of oriented gradients for human detectionIPSJ Trans Comput Vision Appl20102394710.2197/ipsjtcva.2.39
– reference: GuyonIElisseeffAAn introduction to variable and feature selectionJ Mach Learn Res20033115711821102.68556
– reference: Hertz T, Bar-Hillel A, Weinshall D (2004) Learning distance functions for image retrieval. In: Proceedings of IEEE conference in computer vision and pattern recognition, vol. 2
– reference: Zhou H, Sadka AH (2011) Combining perceptual features with diffusion distance for face recognition. Syst Man Cybern Part C 41(5):577–588
– reference: JiaWRong-XiangHLeiYKZhaoYGuiJieHistogram of oriented lines for palmprint recognitionSyst Man Cybern2014443385395
– reference: Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: Computer Vision and Pattern Recognition. CVPR 2005. IEEE Computer Society Conference on, vol 1. IEEE, pp 886–893
– reference: Zhou H, Yuan Y, Sadka AH (2008) Application of semantic features in face recognition. Pattern Recogn 41(10):3251–3256
– reference: Phillips PJ, Moon H, Rizvi SA, Rauss PJ (2000) The feret evaluation methodology for face-recognition algorithms. Pattern Anal Mach Intell IEEE Trans 22(10):1090–1104
– reference: LoweDGDistinctive image features from scale-invariant keypointsInt J Comput Vision20046029111010.1023/B:VISI.0000029664.99615.94
– reference: Wei X, Wang H, Guo G, Wan H (2014) A general weighted multiscale method for improving lbp for face recognition. In: Ubiquitous computing and ambient intelligence. Personalisation and User Adapted Services. Springer, pp 532–539
– reference: ConnieTJinATBOngMGKLingDNCAn automated palmprint recognition systemImage Vision Comput200523550151510.1016/j.imavis.2005.01.002
– reference: PangYYuanYLiXPanJEfficient hog human detectionSig Process201191477378110.1016/j.sigpro.2010.08.0101217.94016
– reference: Martinez A, Benavente R (1998) The AR Face Database. CVC Tech. Report 24. Report 24
– reference: OrtizEGBeckerBCFace recognition for web-scale datasetsComput Vis Image Underst201411815317010.1016/j.cviu.2013.09.004
– reference: Yang J, Zhang D, Frangi AF, Yang J (2004) Two-dimensional pca: a new approach to appearance-based face representation and recognition. Pattern Anal Mach Intell IEEE Trans 26(1):131–137
– reference: OjalaTPietikainenMMaenpaaTMultiresolution gray-scale and rotation invariant texture classification with local binary patternsPattern Anal Mach Intell IEEE Trans200224797198710.1109/TPAMI.2002.10176230977.68853
– reference: SwetsDLWengJUsing discriminant eigenfeatures for image retrievalIEEE Trans Pattern Anal Mach Intell199618883183610.1109/34.531802
– reference: Kira K, Rendell LA (1992) The feature selection problem: traditional methods and a new algorithm. In: AAAI, vol. 2, pp 129–134
– reference: Chen D, Cao X, Wen F, Sun J (2013) Blessing of dimensionality: High-dimensional feature and its efficient compression for face verification. In: Computer vision and pattern recognition (CVPR), IEEE Conference on. IEEE, pp 3025–3032
– reference: LiuCWechslerHGabor feature based classification using the enhanced fisher linear discriminant model for face recognitionImage Process IEEE Trans200211446747610.1109/TIP.2002.999679
– reference: Turk MA, Pentland AP (1991) Face recognition using eigenfaces. In: Computer vision and pattern recognition. Proceedings CVPR’91., IEEE Computer Society Conference on. IEEE, pp 586–591
– reference: Zhou H, Miller PC, Zhang J (2011) Age classification using radon transform and entropy based scaling svm. In: BMVC, pp 1–12
– reference: RaghavendraRBuschCNovel image fusion scheme based on dependency measure for robust multispectral palmprint recognitionPattern Recogn20144762205222110.1016/j.patcog.2013.12.011
– reference: MatasJChumOUrbanMPajdlaTRobust wide-baseline stereo from maximally stable extremal regionsImage Vision Comput2004221076176710.1016/j.imavis.2004.02.006
– reference: KongAZhangDKamelMA survey of palmprint recognitionPattern Recogn20094271408141810.1016/j.patcog.2009.01.018
– reference: Jafri R, Arabnia HR (2009) A survey of face recognition techniques. JIPS 5(2):41–68
– reference: RamananDBakerSLocal distance functions: a taxonomy, new algorithms, and an evaluationPattern Anal Mach Intell IEEE Trans201133479480610.1109/TPAMI.2010.127
– reference: John GH, Kohavi R, Pfleger K et al (1994) Irrelevant features and the subset selection problem. In: Machine learning: proceedings of the eleventh international conference, pp 121–129
– reference: Gehler P, Nowozin S (2009) On feature combination for multiclass object classification. In: Computer vision, IEEE 12th International Conference on, pp 221–228
– reference: Sondhi P (2009) Feature construction methods: a survey. http://sifaka.cs.uiuc.edu
– reference: Wei X, Guo G, Wang H, Wan H (2015) A multiscale method for HOG-based face and palmprint recognition. In: Technical report. Ulster University. Accepted by 8th International Conference on Intelligent Robotics and Applications
– reference: AhonenTHadidAPietikainenMFace description with local binary patterns: application to face recognitionPattern Anal Mach Intell IEEE Trans200628122037204110.1109/TPAMI.2006.2441098.68717
– reference: Quinlan JR (1993) C4. 5: Programs for machine learning
– ident: 427_CR20
  doi: 10.1109/ICCV.2009.5459169
– ident: 427_CR30
  doi: 10.1109/CVPR.2004.1315215
– ident: 427_CR35
– volume: 18
  start-page: 831
  issue: 8
  year: 1996
  ident: 427_CR27
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.531802
– volume: 60
  start-page: 91
  issue: 2
  year: 2004
  ident: 427_CR18
  publication-title: Int J Comput Vision
  doi: 10.1023/B:VISI.0000029664.99615.94
– volume: 28
  start-page: 2037
  issue: 12
  year: 2006
  ident: 427_CR25
  publication-title: Pattern Anal Mach Intell IEEE Trans
  doi: 10.1109/TPAMI.2006.244
– volume: 2
  start-page: 39
  year: 2010
  ident: 427_CR21
  publication-title: IPSJ Trans Comput Vision Appl
  doi: 10.2197/ipsjtcva.2.39
– ident: 427_CR23
  doi: 10.1109/34.879790
– volume: 23
  start-page: 501
  issue: 5
  year: 2005
  ident: 427_CR4
  publication-title: Image Vision Comput
  doi: 10.1016/j.imavis.2005.01.002
– volume: 24
  start-page: 971
  issue: 7
  year: 2002
  ident: 427_CR15
  publication-title: Pattern Anal Mach Intell IEEE Trans
  doi: 10.1109/TPAMI.2002.1017623
– volume: 22
  start-page: 761
  issue: 10
  year: 2004
  ident: 427_CR13
  publication-title: Image Vision Comput
  doi: 10.1016/j.imavis.2004.02.006
– ident: 427_CR17
  doi: 10.1109/ICIP.2010.5653119
– volume: 44
  start-page: 385
  issue: 3
  year: 2014
  ident: 427_CR9
  publication-title: Syst Man Cybern
– volume: 11
  start-page: 467
  issue: 4
  year: 2002
  ident: 427_CR14
  publication-title: Image Process IEEE Trans
  doi: 10.1109/TIP.2002.999679
– ident: 427_CR11
  doi: 10.5244/C.25.28
– ident: 427_CR36
  doi: 10.1016/B978-1-55860-335-6.50023-4
– ident: 427_CR2
  doi: 10.1007/978-3-319-22879-2_49
– ident: 427_CR8
  doi: 10.1109/TSMCC.2010.2051328
– volume: 118
  start-page: 153
  year: 2014
  ident: 427_CR6
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2013.09.004
– ident: 427_CR26
  doi: 10.1109/CVPR.1991.139758
– ident: 427_CR28
  doi: 10.1109/34.598228
– ident: 427_CR5
  doi: 10.3745/JIPS.2009.5.2.041
– ident: 427_CR1
  doi: 10.1007/978-3-319-13102-3_84
– ident: 427_CR34
– volume: 3
  start-page: 1157
  year: 2003
  ident: 427_CR33
  publication-title: J Mach Learn Res
– ident: 427_CR12
  doi: 10.1109/CVPR.2005.177
– ident: 427_CR16
  doi: 10.1109/CVPR.2013.389
– ident: 427_CR7
  doi: 10.1016/j.patcog.2008.04.008
– volume: 47
  start-page: 2205
  issue: 6
  year: 2014
  ident: 427_CR10
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2013.12.011
– volume: 33
  start-page: 794
  issue: 4
  year: 2011
  ident: 427_CR31
  publication-title: Pattern Anal Mach Intell IEEE Trans
  doi: 10.1109/TPAMI.2010.127
– volume: 42
  start-page: 1408
  issue: 7
  year: 2009
  ident: 427_CR3
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2009.01.018
– volume: 91
  start-page: 773
  issue: 4
  year: 2011
  ident: 427_CR19
  publication-title: Sig Process
  doi: 10.1016/j.sigpro.2010.08.010
– ident: 427_CR24
– ident: 427_CR32
– ident: 427_CR29
  doi: 10.1109/TPAMI.2004.1261097
– ident: 427_CR22
SSID ssj0000603302
ssib031263576
ssib033405570
Score 2.1324885
Snippet A multiscale approach to exploiting existing image descriptors (LBP and HOG) is proposed recently in order to enhance face recognition performance (Ubiquitous...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 383
SubjectTerms Algorithms
Ambient intelligence
Artificial Intelligence
Biometric recognition systems
Biometrics
Complex Systems
Computational Intelligence
Control
Cooperation
Engineering
Face recognition
Feature extraction
Image enhancement
Machine learning
Mechatronics
Multiplexing
Multiscale analysis
Original Article
Pattern Recognition
Representations
Robotics
Semantics
Systems Biology
Ubiquitous computing
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7odtGDuqk4ndKDB3_QsSZpmh6HbA5FTxvMU0nbBEXtxHUg_vUmbbLqUGHXNm3Jy0vyvb4v3wM49UiqVcWEG2DBVYCSCpfFaaBmfMgDX6JY8oIge0-HY3Iz8SfmHPfMst1tSrJYqavDbjryVqGv7-r6EK6_DnVfxyc1qPeuH2771o2wpwVWql0WY1IITS1-vXSpulayERllWo7Xs_nO377zc8eqYOhS5rTYkAbbMLJdKXkoz515HneSzyWVxxX7ugNbBqA6vdKjGrAmsiZsfpMtbELDLAgz58yoVp_vQnBnqIkfztOrWqScQi7THm3KHAWOHZE9FoQDZ0FbmmZ7MB70R1dD11RlcBPs0dyVCSeepyLnUKfwkIogJU8TgQSKfRIkCgYzKYmgXc4ZIykNEUqk5DxEAouQpHgfatk0EwfgUOUVQlIkaIxInFKWKDBKdB0jovxE4hZ0reWjxEiW68oZL1EltqwNFSlDRdpQkd-Ci8Ujb6Vex3-N23Y4IzN1Z5Eu34UoU3FWCy7t6FS3_3zZ4Uqtj2BDQS9WstnaUMvf5-JYwZs8PjHu_AV15uqQ
  priority: 102
  providerName: Springer Nature
Title Multiplex image representation for enhanced recognition
URI https://link.springer.com/article/10.1007/s13042-015-0427-5
https://www.proquest.com/docview/2920268974
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1868-808X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000603302
  issn: 1868-8071
  databaseCode: AFBBN
  dateStart: 20101201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1868-808X
  dateEnd: 20241003
  omitProxy: true
  ssIdentifier: ssj0000603302
  issn: 1868-8071
  databaseCode: BENPR
  dateStart: 20101201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1868-808X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000603302
  issn: 1868-8071
  databaseCode: AGYKE
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1868-808X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000603302
  issn: 1868-8071
  databaseCode: U2A
  dateStart: 20101201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA66vfgizgtO5-iDD14orkmapk8yZRcUh4iD-VTSXFDQbroJ_nxPsnRFQZ8KaZuHk5PkOzlfvoPQcUSVVRXTYUK0gABF6ZDnKoEZn4okNjg3whFkR2w4pjeTeOIP3OaeVlmuiW6hVlNpz8gvbFUlzDjA38vZe2irRtnsqi-hsY7qEQZPsjfF-4PSn4hti6vtlhDqFKdWZzAdBm1LWiJn3OryRmXi092us6E-xNpxaAtShPHPravCo79SqG5n6m-hTQ8pg-7SBxpoTRfbqOEn7Tw48crSpzsoufP0wa_g5Q0WksBJWpbXj4oAAGygi2dHCghW1KJpsYvG_d7j9TD0lRNCSSK2CI0UNIoguk1tmg1DlGeEkhprnMc0kQBVuTFUs44QnFPFUoylMUKkWBOdUkX2UK2YFnofBQxGThuGNcsxzRXjEgAjtbWGKIylIU3UKY2SSS8rbqtbvGaVILK1YwZ2zKwds7iJzla_zJaaGv993CotnfnpNc8qZ2ii89L61es_Ozv4v7NDtAF4iC8pZi1UW3x86iPAHIu87RyrjerdwdNtD55XvdH9A7SOcfcbOrLQ-w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHOCCKIsoFPABJBZFNLbjOAeEEFDKegKJW3ASWyBBCrQI-Cm-kXESNwIJblwTx4fJ8_iNZ_wGYM3nmVUV017ItMIAJdOeTLIQV3ykwsDQxKiiQPZSdK_56U1wMwKf7i6MLat0PrFw1FkvtWfkO7arEhUS6e_e07Nnu0bZ7KproVHC4kx_vGHI1t89OcT_u05p5-jqoOtVXQW8lPli4JlUcd_HyC-yKSiKEZBRWaqppknAwxRpnDSGa9FWSkqeiYjS1BilIqqZjnjGcN5RGOeMMavVLzvHDr_Mt8ou9faOAwqFq-GZT1vgs7IMUgppdYB9l2gtbvPZowWM7QPPNsDwgu9bZc1_f6Rsi52wMw1TFYUl-yXmGjCi8xloVE6iTzYqJevNWQgvqnLFd3L_iI6LFBKa7rpTTpAwE53fFUUIZFjK1Mvn4PpfbDoPY3kv1wtABCJFG0G1SChPMiFTJKjc9jbiiB3DmtB2RonTSsbcdtN4iGsBZmvHGO0YWzvGQRO2hp88lRoefw1uOUvH1XLuxzX4mrDtrF-__nWyxb8nW4WJ7tXFeXx-cnm2BJPIxWRZ3taCscHLq15GvjNIVgqQEbj9b1R_AUFqCnc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7oBNEHcVNxOjUPPnihuKZpmj4Odczb8MHB3kraJChoN1wFf74nvawqKvjaK5wkPd_X8-U7AIcuU9ZVTDuBpyUSFKUdEasAV3woA9_Q2MhcIDvkgxG7Hvvjss_prFK7VyXJYk-DdWlKs7OpMmf1xjfLwpEG-47tFeH4i7DEMFVb9jWivWpCea61Wqnzreex3HJq_hOmy_FYoUsUXFhjXreqfP70lq-5qwak32qoeWrqr8NaiSlJr5gETVjQaQtWPzkNtqBZruEZOSqNpo83ILgr1YTv5OkFvyskd7isdiOlBPEs0eljrhEgc6XRJN2EUf_y4XzglI0UnMRzeeaYRDLXRbIb2qobRdJnpEo01TT2WZAgchXGMM27UgrBFA8pTYyRMqTa0yFT3hY00kmqt4FwHEhtONU8pixWXCSIH5ltPcRwaI3Xhm4VoigpXcZts4vnqPZHtlGNMKqRjWrkt-Fkfsu0sNj46-JOFfeoXG2zyHbcolwgNWrDaTUW9elfH7bzr6sPYPn-oh_dXg1vdmEFgZMotGgdaGSvb3oPwUkW7-cT8APRcNUE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiplex+image+representation+for+enhanced+recognition&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.au=Wei%2C+Xin&rft.au=Wang%2C+Hui&rft.au=Guo%2C+Gongde&rft.au=Wan%2C+Huan&rft.date=2018-03-01&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=9&rft.issue=3&rft.spage=383&rft.epage=392&rft_id=info:doi/10.1007%2Fs13042-015-0427-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13042_015_0427_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon