Multiplex image representation for enhanced recognition
A multiscale approach to exploiting existing image descriptors (LBP and HOG) is proposed recently in order to enhance face recognition performance (Ubiquitous computing and ambient intelligence. Personalisation and user adapted services. Springer, 532–539, 2014 ) and (A multiscale method for HOG-bas...
Saved in:
Published in | International journal of machine learning and cybernetics Vol. 9; no. 3; pp. 383 - 392 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1868-8071 1868-808X |
DOI | 10.1007/s13042-015-0427-5 |
Cover
Abstract | A multiscale approach to exploiting existing image descriptors (LBP and HOG) is proposed recently in order to enhance face recognition performance (Ubiquitous computing and ambient intelligence. Personalisation and user adapted services. Springer, 532–539,
2014
) and (A multiscale method for HOG-based face and palmprint recognition. Technical report, Ulster University,
2015
), where multiple single-sourced, spatially-varied feature vectors at different scales are calculated from images and then fused through an image distance function. This multiscale approach has led to significant improvements in face recognition over the single scale approach. In this paper we present an analysis of this multiscale approach from feature engineering perspective and evaluation result for the image distance function on palmprint recognition, thus providing an insight into and also extending the applicability of this approach. We also present a new method of utilising these spatially-varied feature vectors from an image—joining these feature vectors head to tail to form a larger feature vector which is used as a
multiplex representation
of the image. Such an image representation can then be used by any vector-based feature extraction and classification algorithms. This representation scheme is evaluated experimentally in face recognition, and the results show this scheme is competitive to the distance-based method having the additional advantage of being usable in a wider range of machine learning algorithms. The main contributions of this paper are (1) an insight into this multiscale approach to utilising existing image descriptors such as LBP and HOG; (2) a new method of using these multiple feature vectors; and (3) extension of the multiscale approach to palmprint recognition. |
---|---|
AbstractList | A multiscale approach to exploiting existing image descriptors (LBP and HOG) is proposed recently in order to enhance face recognition performance (Ubiquitous computing and ambient intelligence. Personalisation and user adapted services. Springer, 532–539, 2014) and (A multiscale method for HOG-based face and palmprint recognition. Technical report, Ulster University, 2015), where multiple single-sourced, spatially-varied feature vectors at different scales are calculated from images and then fused through an image distance function. This multiscale approach has led to significant improvements in face recognition over the single scale approach. In this paper we present an analysis of this multiscale approach from feature engineering perspective and evaluation result for the image distance function on palmprint recognition, thus providing an insight into and also extending the applicability of this approach. We also present a new method of utilising these spatially-varied feature vectors from an image—joining these feature vectors head to tail to form a larger feature vector which is used as a multiplex representation of the image. Such an image representation can then be used by any vector-based feature extraction and classification algorithms. This representation scheme is evaluated experimentally in face recognition, and the results show this scheme is competitive to the distance-based method having the additional advantage of being usable in a wider range of machine learning algorithms. The main contributions of this paper are (1) an insight into this multiscale approach to utilising existing image descriptors such as LBP and HOG; (2) a new method of using these multiple feature vectors; and (3) extension of the multiscale approach to palmprint recognition. A multiscale approach to exploiting existing image descriptors (LBP and HOG) is proposed recently in order to enhance face recognition performance (Ubiquitous computing and ambient intelligence. Personalisation and user adapted services. Springer, 532–539, 2014 ) and (A multiscale method for HOG-based face and palmprint recognition. Technical report, Ulster University, 2015 ), where multiple single-sourced, spatially-varied feature vectors at different scales are calculated from images and then fused through an image distance function. This multiscale approach has led to significant improvements in face recognition over the single scale approach. In this paper we present an analysis of this multiscale approach from feature engineering perspective and evaluation result for the image distance function on palmprint recognition, thus providing an insight into and also extending the applicability of this approach. We also present a new method of utilising these spatially-varied feature vectors from an image—joining these feature vectors head to tail to form a larger feature vector which is used as a multiplex representation of the image. Such an image representation can then be used by any vector-based feature extraction and classification algorithms. This representation scheme is evaluated experimentally in face recognition, and the results show this scheme is competitive to the distance-based method having the additional advantage of being usable in a wider range of machine learning algorithms. The main contributions of this paper are (1) an insight into this multiscale approach to utilising existing image descriptors such as LBP and HOG; (2) a new method of using these multiple feature vectors; and (3) extension of the multiscale approach to palmprint recognition. |
Author | Wan, Huan Wei, Xin Guo, Gongde Wang, Hui |
Author_xml | – sequence: 1 givenname: Xin surname: Wei fullname: Wei, Xin email: xinwei.mail@qq.com organization: Key Lab of Network Security and Cryptology, School of Mathematics and Computer Science, Fujian Normal University – sequence: 2 givenname: Hui surname: Wang fullname: Wang, Hui organization: School of Computing and Mathematics, University of Ulster at Jordanstown – sequence: 3 givenname: Gongde surname: Guo fullname: Guo, Gongde organization: Key Lab of Network Security and Cryptology, School of Mathematics and Computer Science, Fujian Normal University – sequence: 4 givenname: Huan surname: Wan fullname: Wan, Huan organization: Key Lab of Network Security and Cryptology, School of Mathematics and Computer Science, Fujian Normal University |
BookMark | eNp9kE1LxDAQhoOs4LruD_BW8BxN0jRJj7L4BSteFLyFbDpZu9SkJi3ovzdLRUHQuczAzDPvzHuMZj54QOiUknNKiLxItCScYUIrnLPE1QGaUyUUVkQ9z75rSY_QMqUdySFIWRI2R_J-7Ia27-C9aF_NFooIfYQEfjBDG3zhQizAvxhvock9G7a-3TdO0KEzXYLlV16gp-urx9UtXj_c3K0u19iWVAzYWcMplUrVQnHGJKPONBYYsE3FpVV0o5zjIIgxSvFG1IxZ54ypGZRQ86ZcoLNpbx_D2whp0LswRp8lNasZYULVkucpOk3ZGFKK4HQf8zvxQ1Oi9xbpySKdLdJ7i3SVGfmLse309BBN2_1LsolMWcVvIf7c9Df0CTk0fEM |
CitedBy_id | crossref_primary_10_1007_s11277_021_08666_y crossref_primary_10_1016_j_imavis_2023_104646 crossref_primary_10_1007_s13042_016_0627_7 crossref_primary_10_1088_1757_899X_1099_1_012063 crossref_primary_10_1142_S0218001420540075 |
Cites_doi | 10.1109/ICCV.2009.5459169 10.1109/CVPR.2004.1315215 10.1109/34.531802 10.1023/B:VISI.0000029664.99615.94 10.1109/TPAMI.2006.244 10.2197/ipsjtcva.2.39 10.1109/34.879790 10.1016/j.imavis.2005.01.002 10.1109/TPAMI.2002.1017623 10.1016/j.imavis.2004.02.006 10.1109/ICIP.2010.5653119 10.1109/TIP.2002.999679 10.5244/C.25.28 10.1016/B978-1-55860-335-6.50023-4 10.1007/978-3-319-22879-2_49 10.1109/TSMCC.2010.2051328 10.1016/j.cviu.2013.09.004 10.1109/CVPR.1991.139758 10.1109/34.598228 10.3745/JIPS.2009.5.2.041 10.1007/978-3-319-13102-3_84 10.1109/CVPR.2005.177 10.1109/CVPR.2013.389 10.1016/j.patcog.2008.04.008 10.1016/j.patcog.2013.12.011 10.1109/TPAMI.2010.127 10.1016/j.patcog.2009.01.018 10.1016/j.sigpro.2010.08.010 10.1109/TPAMI.2004.1261097 |
ContentType | Journal Article |
Copyright | Springer-Verlag Berlin Heidelberg 2015 Springer-Verlag Berlin Heidelberg 2015. |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2015 – notice: Springer-Verlag Berlin Heidelberg 2015. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s13042-015-0427-5 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 1868-808X |
EndPage | 392 |
ExternalDocumentID | 10_1007_s13042_015_0427_5 |
GrantInformation_xml | – fundername: Hu Guozan Study-Abroad Grant for Graduates of Fujian Normal University |
GroupedDBID | -EM 06D 0R~ 0VY 1N0 203 29~ 2JY 2VQ 30V 4.4 406 408 409 40D 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ARAPS AUKKA AXYYD AYJHY BENPR BGLVJ BGNMA CCPQU CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 H13 HCIFZ HMJXF HQYDN HRMNR HZ~ I0C IKXTQ IWAJR IXD IZIGR J-C J0Z JBSCW JCJTX JZLTJ K7- KOV LLZTM M4Y M7S NPVJJ NQJWS NU0 O9- O93 O9J P2P P9P PT4 PTHSS QOS R89 R9I RLLFE ROL RSV S27 S3B SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7X Z83 Z88 ZMTXR ~A9 AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c316t-fca411788968422721fadce2e2b547c81b8ff4e60aa884d6922cffaa92e3e94d3 |
IEDL.DBID | 8FG |
ISSN | 1868-8071 |
IngestDate | Mon Jul 21 01:56:56 EDT 2025 Wed Oct 01 04:29:27 EDT 2025 Thu Apr 24 23:12:33 EDT 2025 Fri Feb 21 02:41:05 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | HOG Multiplex image representation Feature fusion LBP Face recognition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-fca411788968422721fadce2e2b547c81b8ff4e60aa884d6922cffaa92e3e94d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2920268974 |
PQPubID | 2043904 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2920268974 crossref_primary_10_1007_s13042_015_0427_5 crossref_citationtrail_10_1007_s13042_015_0427_5 springer_journals_10_1007_s13042_015_0427_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180300 2018-3-00 20180301 |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 3 year: 2018 text: 20180300 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | International journal of machine learning and cybernetics |
PublicationTitleAbbrev | Int. J. Mach. Learn. & Cyber |
PublicationYear | 2018 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Hertz T, Bar-Hillel A, Weinshall D (2004) Learning distance functions for image retrieval. In: Proceedings of IEEE conference in computer vision and pattern recognition, vol. 2 RamananDBakerSLocal distance functions: a taxonomy, new algorithms, and an evaluationPattern Anal Mach Intell IEEE Trans201133479480610.1109/TPAMI.2010.127 OjalaTPietikainenMMaenpaaTMultiresolution gray-scale and rotation invariant texture classification with local binary patternsPattern Anal Mach Intell IEEE Trans200224797198710.1109/TPAMI.2002.10176230977.68853 Quinlan JR (1993) C4. 5: Programs for machine learning Zhou H, Yuan Y, Sadka AH (2008) Application of semantic features in face recognition. Pattern Recogn 41(10):3251–3256 Yang J, Zhang D, Frangi AF, Yang J (2004) Two-dimensional pca: a new approach to appearance-based face representation and recognition. Pattern Anal Mach Intell IEEE Trans 26(1):131–137 John GH, Kohavi R, Pfleger K et al (1994) Irrelevant features and the subset selection problem. In: Machine learning: proceedings of the eleventh international conference, pp 121–129 Wei X, Guo G, Wang H, Wan H (2015) A multiscale method for HOG-based face and palmprint recognition. In: Technical report. Ulster University. Accepted by 8th International Conference on Intelligent Robotics and Applications MatasJChumOUrbanMPajdlaTRobust wide-baseline stereo from maximally stable extremal regionsImage Vision Comput2004221076176710.1016/j.imavis.2004.02.006 LoweDGDistinctive image features from scale-invariant keypointsInt J Comput Vision20046029111010.1023/B:VISI.0000029664.99615.94 ConnieTJinATBOngMGKLingDNCAn automated palmprint recognition systemImage Vision Comput200523550151510.1016/j.imavis.2005.01.002 Turk MA, Pentland AP (1991) Face recognition using eigenfaces. In: Computer vision and pattern recognition. Proceedings CVPR’91., IEEE Computer Society Conference on. IEEE, pp 586–591 Kira K, Rendell LA (1992) The feature selection problem: traditional methods and a new algorithm. In: AAAI, vol. 2, pp 129–134 PolyU Palmprint Palmprint Database. http://www. comp.polyu.edu.hk/ biometrics Wei X, Wang H, Guo G, Wan H (2014) A general weighted multiscale method for improving lbp for face recognition. In: Ubiquitous computing and ambient intelligence. Personalisation and User Adapted Services. Springer, pp 532–539 Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: Computer Vision and Pattern Recognition. CVPR 2005. IEEE Computer Society Conference on, vol 1. IEEE, pp 886–893 GuyonIElisseeffAAn introduction to variable and feature selectionJ Mach Learn Res20033115711821102.68556 Zhou H, Miller PC, Zhang J (2011) Age classification using radon transform and entropy based scaling svm. In: BMVC, pp 1–12 SwetsDLWengJUsing discriminant eigenfeatures for image retrievalIEEE Trans Pattern Anal Mach Intell199618883183610.1109/34.531802 Sondhi P (2009) Feature construction methods: a survey. http://sifaka.cs.uiuc.edu Gehler P, Nowozin S (2009) On feature combination for multiclass object classification. In: Computer vision, IEEE 12th International Conference on, pp 221–228 RaghavendraRBuschCNovel image fusion scheme based on dependency measure for robust multispectral palmprint recognitionPattern Recogn20144762205222110.1016/j.patcog.2013.12.011 Phillips PJ, Moon H, Rizvi SA, Rauss PJ (2000) The feret evaluation methodology for face-recognition algorithms. Pattern Anal Mach Intell IEEE Trans 22(10):1090–1104 JiaWRong-XiangHLeiYKZhaoYGuiJieHistogram of oriented lines for palmprint recognitionSyst Man Cybern2014443385395 KongAZhangDKamelMA survey of palmprint recognitionPattern Recogn20094271408141810.1016/j.patcog.2009.01.018 Jafri R, Arabnia HR (2009) A survey of face recognition techniques. JIPS 5(2):41–68 LiuCWechslerHGabor feature based classification using the enhanced fisher linear discriminant model for face recognitionImage Process IEEE Trans200211446747610.1109/TIP.2002.999679 PangYYuanYLiXPanJEfficient hog human detectionSig Process201191477378110.1016/j.sigpro.2010.08.0101217.94016 Zhou H, Sadka AH (2011) Combining perceptual features with diffusion distance for face recognition. Syst Man Cybern Part C 41(5):577–588 WatanabeTItoSYokoiKCo-occurrence histograms of oriented gradients for human detectionIPSJ Trans Comput Vision Appl20102394710.2197/ipsjtcva.2.39 OrtizEGBeckerBCFace recognition for web-scale datasetsComput Vis Image Underst201411815317010.1016/j.cviu.2013.09.004 Belhumeur PN, Hespanha JP, Kriegman D (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. Pattern Anal Mach Intell IEEE Trans 19(7):711–720 Chen D, Cao X, Wen F, Sun J (2013) Blessing of dimensionality: High-dimensional feature and its efficient compression for face verification. In: Computer vision and pattern recognition (CVPR), IEEE Conference on. IEEE, pp 3025–3032 AhonenTHadidAPietikainenMFace description with local binary patterns: application to face recognitionPattern Anal Mach Intell IEEE Trans200628122037204110.1109/TPAMI.2006.2441098.68717 Guo Z, Zhang D, Mou X (2010) Hierarchical multiscale lbp for face and palmprint recognition. In: Image processing (ICIP), 17th IEEE International Conference on. IEEE, pp 4521–4524 Martinez A, Benavente R (1998) The AR Face Database. CVC Tech. Report 24. Report 24 W Jia (427_CR9) 2014; 44 C Liu (427_CR14) 2002; 11 T Connie (427_CR4) 2005; 23 DG Lowe (427_CR18) 2004; 60 A Kong (427_CR3) 2009; 42 427_CR26 427_CR28 427_CR2 427_CR1 427_CR29 427_CR20 427_CR22 DL Swets (427_CR27) 1996; 18 R Raghavendra (427_CR10) 2014; 47 427_CR24 427_CR23 427_CR5 427_CR8 427_CR7 T Ojala (427_CR15) 2002; 24 T Ahonen (427_CR25) 2006; 28 427_CR36 J Matas (427_CR13) 2004; 22 427_CR17 D Ramanan (427_CR31) 2011; 33 427_CR16 T Watanabe (427_CR21) 2010; 2 I Guyon (427_CR33) 2003; 3 Y Pang (427_CR19) 2011; 91 427_CR30 427_CR11 427_CR32 EG Ortiz (427_CR6) 2014; 118 427_CR35 427_CR12 427_CR34 |
References_xml | – reference: Guo Z, Zhang D, Mou X (2010) Hierarchical multiscale lbp for face and palmprint recognition. In: Image processing (ICIP), 17th IEEE International Conference on. IEEE, pp 4521–4524 – reference: Belhumeur PN, Hespanha JP, Kriegman D (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. Pattern Anal Mach Intell IEEE Trans 19(7):711–720 – reference: PolyU Palmprint Palmprint Database. http://www. comp.polyu.edu.hk/ biometrics/ – reference: WatanabeTItoSYokoiKCo-occurrence histograms of oriented gradients for human detectionIPSJ Trans Comput Vision Appl20102394710.2197/ipsjtcva.2.39 – reference: GuyonIElisseeffAAn introduction to variable and feature selectionJ Mach Learn Res20033115711821102.68556 – reference: Hertz T, Bar-Hillel A, Weinshall D (2004) Learning distance functions for image retrieval. In: Proceedings of IEEE conference in computer vision and pattern recognition, vol. 2 – reference: Zhou H, Sadka AH (2011) Combining perceptual features with diffusion distance for face recognition. Syst Man Cybern Part C 41(5):577–588 – reference: JiaWRong-XiangHLeiYKZhaoYGuiJieHistogram of oriented lines for palmprint recognitionSyst Man Cybern2014443385395 – reference: Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: Computer Vision and Pattern Recognition. CVPR 2005. IEEE Computer Society Conference on, vol 1. IEEE, pp 886–893 – reference: Zhou H, Yuan Y, Sadka AH (2008) Application of semantic features in face recognition. Pattern Recogn 41(10):3251–3256 – reference: Phillips PJ, Moon H, Rizvi SA, Rauss PJ (2000) The feret evaluation methodology for face-recognition algorithms. Pattern Anal Mach Intell IEEE Trans 22(10):1090–1104 – reference: LoweDGDistinctive image features from scale-invariant keypointsInt J Comput Vision20046029111010.1023/B:VISI.0000029664.99615.94 – reference: Wei X, Wang H, Guo G, Wan H (2014) A general weighted multiscale method for improving lbp for face recognition. In: Ubiquitous computing and ambient intelligence. Personalisation and User Adapted Services. Springer, pp 532–539 – reference: ConnieTJinATBOngMGKLingDNCAn automated palmprint recognition systemImage Vision Comput200523550151510.1016/j.imavis.2005.01.002 – reference: PangYYuanYLiXPanJEfficient hog human detectionSig Process201191477378110.1016/j.sigpro.2010.08.0101217.94016 – reference: Martinez A, Benavente R (1998) The AR Face Database. CVC Tech. Report 24. Report 24 – reference: OrtizEGBeckerBCFace recognition for web-scale datasetsComput Vis Image Underst201411815317010.1016/j.cviu.2013.09.004 – reference: Yang J, Zhang D, Frangi AF, Yang J (2004) Two-dimensional pca: a new approach to appearance-based face representation and recognition. Pattern Anal Mach Intell IEEE Trans 26(1):131–137 – reference: OjalaTPietikainenMMaenpaaTMultiresolution gray-scale and rotation invariant texture classification with local binary patternsPattern Anal Mach Intell IEEE Trans200224797198710.1109/TPAMI.2002.10176230977.68853 – reference: SwetsDLWengJUsing discriminant eigenfeatures for image retrievalIEEE Trans Pattern Anal Mach Intell199618883183610.1109/34.531802 – reference: Kira K, Rendell LA (1992) The feature selection problem: traditional methods and a new algorithm. In: AAAI, vol. 2, pp 129–134 – reference: Chen D, Cao X, Wen F, Sun J (2013) Blessing of dimensionality: High-dimensional feature and its efficient compression for face verification. In: Computer vision and pattern recognition (CVPR), IEEE Conference on. IEEE, pp 3025–3032 – reference: LiuCWechslerHGabor feature based classification using the enhanced fisher linear discriminant model for face recognitionImage Process IEEE Trans200211446747610.1109/TIP.2002.999679 – reference: Turk MA, Pentland AP (1991) Face recognition using eigenfaces. In: Computer vision and pattern recognition. Proceedings CVPR’91., IEEE Computer Society Conference on. IEEE, pp 586–591 – reference: Zhou H, Miller PC, Zhang J (2011) Age classification using radon transform and entropy based scaling svm. In: BMVC, pp 1–12 – reference: RaghavendraRBuschCNovel image fusion scheme based on dependency measure for robust multispectral palmprint recognitionPattern Recogn20144762205222110.1016/j.patcog.2013.12.011 – reference: MatasJChumOUrbanMPajdlaTRobust wide-baseline stereo from maximally stable extremal regionsImage Vision Comput2004221076176710.1016/j.imavis.2004.02.006 – reference: KongAZhangDKamelMA survey of palmprint recognitionPattern Recogn20094271408141810.1016/j.patcog.2009.01.018 – reference: Jafri R, Arabnia HR (2009) A survey of face recognition techniques. JIPS 5(2):41–68 – reference: RamananDBakerSLocal distance functions: a taxonomy, new algorithms, and an evaluationPattern Anal Mach Intell IEEE Trans201133479480610.1109/TPAMI.2010.127 – reference: John GH, Kohavi R, Pfleger K et al (1994) Irrelevant features and the subset selection problem. In: Machine learning: proceedings of the eleventh international conference, pp 121–129 – reference: Gehler P, Nowozin S (2009) On feature combination for multiclass object classification. In: Computer vision, IEEE 12th International Conference on, pp 221–228 – reference: Sondhi P (2009) Feature construction methods: a survey. http://sifaka.cs.uiuc.edu – reference: Wei X, Guo G, Wang H, Wan H (2015) A multiscale method for HOG-based face and palmprint recognition. In: Technical report. Ulster University. Accepted by 8th International Conference on Intelligent Robotics and Applications – reference: AhonenTHadidAPietikainenMFace description with local binary patterns: application to face recognitionPattern Anal Mach Intell IEEE Trans200628122037204110.1109/TPAMI.2006.2441098.68717 – reference: Quinlan JR (1993) C4. 5: Programs for machine learning – ident: 427_CR20 doi: 10.1109/ICCV.2009.5459169 – ident: 427_CR30 doi: 10.1109/CVPR.2004.1315215 – ident: 427_CR35 – volume: 18 start-page: 831 issue: 8 year: 1996 ident: 427_CR27 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.531802 – volume: 60 start-page: 91 issue: 2 year: 2004 ident: 427_CR18 publication-title: Int J Comput Vision doi: 10.1023/B:VISI.0000029664.99615.94 – volume: 28 start-page: 2037 issue: 12 year: 2006 ident: 427_CR25 publication-title: Pattern Anal Mach Intell IEEE Trans doi: 10.1109/TPAMI.2006.244 – volume: 2 start-page: 39 year: 2010 ident: 427_CR21 publication-title: IPSJ Trans Comput Vision Appl doi: 10.2197/ipsjtcva.2.39 – ident: 427_CR23 doi: 10.1109/34.879790 – volume: 23 start-page: 501 issue: 5 year: 2005 ident: 427_CR4 publication-title: Image Vision Comput doi: 10.1016/j.imavis.2005.01.002 – volume: 24 start-page: 971 issue: 7 year: 2002 ident: 427_CR15 publication-title: Pattern Anal Mach Intell IEEE Trans doi: 10.1109/TPAMI.2002.1017623 – volume: 22 start-page: 761 issue: 10 year: 2004 ident: 427_CR13 publication-title: Image Vision Comput doi: 10.1016/j.imavis.2004.02.006 – ident: 427_CR17 doi: 10.1109/ICIP.2010.5653119 – volume: 44 start-page: 385 issue: 3 year: 2014 ident: 427_CR9 publication-title: Syst Man Cybern – volume: 11 start-page: 467 issue: 4 year: 2002 ident: 427_CR14 publication-title: Image Process IEEE Trans doi: 10.1109/TIP.2002.999679 – ident: 427_CR11 doi: 10.5244/C.25.28 – ident: 427_CR36 doi: 10.1016/B978-1-55860-335-6.50023-4 – ident: 427_CR2 doi: 10.1007/978-3-319-22879-2_49 – ident: 427_CR8 doi: 10.1109/TSMCC.2010.2051328 – volume: 118 start-page: 153 year: 2014 ident: 427_CR6 publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2013.09.004 – ident: 427_CR26 doi: 10.1109/CVPR.1991.139758 – ident: 427_CR28 doi: 10.1109/34.598228 – ident: 427_CR5 doi: 10.3745/JIPS.2009.5.2.041 – ident: 427_CR1 doi: 10.1007/978-3-319-13102-3_84 – ident: 427_CR34 – volume: 3 start-page: 1157 year: 2003 ident: 427_CR33 publication-title: J Mach Learn Res – ident: 427_CR12 doi: 10.1109/CVPR.2005.177 – ident: 427_CR16 doi: 10.1109/CVPR.2013.389 – ident: 427_CR7 doi: 10.1016/j.patcog.2008.04.008 – volume: 47 start-page: 2205 issue: 6 year: 2014 ident: 427_CR10 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2013.12.011 – volume: 33 start-page: 794 issue: 4 year: 2011 ident: 427_CR31 publication-title: Pattern Anal Mach Intell IEEE Trans doi: 10.1109/TPAMI.2010.127 – volume: 42 start-page: 1408 issue: 7 year: 2009 ident: 427_CR3 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2009.01.018 – volume: 91 start-page: 773 issue: 4 year: 2011 ident: 427_CR19 publication-title: Sig Process doi: 10.1016/j.sigpro.2010.08.010 – ident: 427_CR24 – ident: 427_CR32 – ident: 427_CR29 doi: 10.1109/TPAMI.2004.1261097 – ident: 427_CR22 |
SSID | ssj0000603302 ssib031263576 ssib033405570 |
Score | 2.1324885 |
Snippet | A multiscale approach to exploiting existing image descriptors (LBP and HOG) is proposed recently in order to enhance face recognition performance (Ubiquitous... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 383 |
SubjectTerms | Algorithms Ambient intelligence Artificial Intelligence Biometric recognition systems Biometrics Complex Systems Computational Intelligence Control Cooperation Engineering Face recognition Feature extraction Image enhancement Machine learning Mechatronics Multiplexing Multiscale analysis Original Article Pattern Recognition Representations Robotics Semantics Systems Biology Ubiquitous computing |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7odtGDuqk4ndKDB3_QsSZpmh6HbA5FTxvMU0nbBEXtxHUg_vUmbbLqUGHXNm3Jy0vyvb4v3wM49UiqVcWEG2DBVYCSCpfFaaBmfMgDX6JY8oIge0-HY3Iz8SfmHPfMst1tSrJYqavDbjryVqGv7-r6EK6_DnVfxyc1qPeuH2771o2wpwVWql0WY1IITS1-vXSpulayERllWo7Xs_nO377zc8eqYOhS5rTYkAbbMLJdKXkoz515HneSzyWVxxX7ugNbBqA6vdKjGrAmsiZsfpMtbELDLAgz58yoVp_vQnBnqIkfztOrWqScQi7THm3KHAWOHZE9FoQDZ0FbmmZ7MB70R1dD11RlcBPs0dyVCSeepyLnUKfwkIogJU8TgQSKfRIkCgYzKYmgXc4ZIykNEUqk5DxEAouQpHgfatk0EwfgUOUVQlIkaIxInFKWKDBKdB0jovxE4hZ0reWjxEiW68oZL1EltqwNFSlDRdpQkd-Ci8Ujb6Vex3-N23Y4IzN1Z5Eu34UoU3FWCy7t6FS3_3zZ4Uqtj2BDQS9WstnaUMvf5-JYwZs8PjHu_AV15uqQ priority: 102 providerName: Springer Nature |
Title | Multiplex image representation for enhanced recognition |
URI | https://link.springer.com/article/10.1007/s13042-015-0427-5 https://www.proquest.com/docview/2920268974 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1868-808X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000603302 issn: 1868-8071 databaseCode: AFBBN dateStart: 20101201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1868-808X dateEnd: 20241003 omitProxy: true ssIdentifier: ssj0000603302 issn: 1868-8071 databaseCode: BENPR dateStart: 20101201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1868-808X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000603302 issn: 1868-8071 databaseCode: AGYKE dateStart: 20100101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1868-808X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000603302 issn: 1868-8071 databaseCode: U2A dateStart: 20101201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA66vfgizgtO5-iDD14orkmapk8yZRcUh4iD-VTSXFDQbroJ_nxPsnRFQZ8KaZuHk5PkOzlfvoPQcUSVVRXTYUK0gABF6ZDnKoEZn4okNjg3whFkR2w4pjeTeOIP3OaeVlmuiW6hVlNpz8gvbFUlzDjA38vZe2irRtnsqi-hsY7qEQZPsjfF-4PSn4hti6vtlhDqFKdWZzAdBm1LWiJn3OryRmXi092us6E-xNpxaAtShPHPravCo79SqG5n6m-hTQ8pg-7SBxpoTRfbqOEn7Tw48crSpzsoufP0wa_g5Q0WksBJWpbXj4oAAGygi2dHCghW1KJpsYvG_d7j9TD0lRNCSSK2CI0UNIoguk1tmg1DlGeEkhprnMc0kQBVuTFUs44QnFPFUoylMUKkWBOdUkX2UK2YFnofBQxGThuGNcsxzRXjEgAjtbWGKIylIU3UKY2SSS8rbqtbvGaVILK1YwZ2zKwds7iJzla_zJaaGv993CotnfnpNc8qZ2ii89L61es_Ozv4v7NDtAF4iC8pZi1UW3x86iPAHIu87RyrjerdwdNtD55XvdH9A7SOcfcbOrLQ-w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHOCCKIsoFPABJBZFNLbjOAeEEFDKegKJW3ASWyBBCrQI-Cm-kXESNwIJblwTx4fJ8_iNZ_wGYM3nmVUV017ItMIAJdOeTLIQV3ykwsDQxKiiQPZSdK_56U1wMwKf7i6MLat0PrFw1FkvtWfkO7arEhUS6e_e07Nnu0bZ7KproVHC4kx_vGHI1t89OcT_u05p5-jqoOtVXQW8lPli4JlUcd_HyC-yKSiKEZBRWaqppknAwxRpnDSGa9FWSkqeiYjS1BilIqqZjnjGcN5RGOeMMavVLzvHDr_Mt8ou9faOAwqFq-GZT1vgs7IMUgppdYB9l2gtbvPZowWM7QPPNsDwgu9bZc1_f6Rsi52wMw1TFYUl-yXmGjCi8xloVE6iTzYqJevNWQgvqnLFd3L_iI6LFBKa7rpTTpAwE53fFUUIZFjK1Mvn4PpfbDoPY3kv1wtABCJFG0G1SChPMiFTJKjc9jbiiB3DmtB2RonTSsbcdtN4iGsBZmvHGO0YWzvGQRO2hp88lRoefw1uOUvH1XLuxzX4mrDtrF-__nWyxb8nW4WJ7tXFeXx-cnm2BJPIxWRZ3taCscHLq15GvjNIVgqQEbj9b1R_AUFqCnc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7oBNEHcVNxOjUPPnihuKZpmj4Odczb8MHB3kraJChoN1wFf74nvawqKvjaK5wkPd_X8-U7AIcuU9ZVTDuBpyUSFKUdEasAV3woA9_Q2MhcIDvkgxG7Hvvjss_prFK7VyXJYk-DdWlKs7OpMmf1xjfLwpEG-47tFeH4i7DEMFVb9jWivWpCea61Wqnzreex3HJq_hOmy_FYoUsUXFhjXreqfP70lq-5qwak32qoeWrqr8NaiSlJr5gETVjQaQtWPzkNtqBZruEZOSqNpo83ILgr1YTv5OkFvyskd7isdiOlBPEs0eljrhEgc6XRJN2EUf_y4XzglI0UnMRzeeaYRDLXRbIb2qobRdJnpEo01TT2WZAgchXGMM27UgrBFA8pTYyRMqTa0yFT3hY00kmqt4FwHEhtONU8pixWXCSIH5ltPcRwaI3Xhm4VoigpXcZts4vnqPZHtlGNMKqRjWrkt-Fkfsu0sNj46-JOFfeoXG2zyHbcolwgNWrDaTUW9elfH7bzr6sPYPn-oh_dXg1vdmEFgZMotGgdaGSvb3oPwUkW7-cT8APRcNUE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiplex+image+representation+for+enhanced+recognition&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.au=Wei%2C+Xin&rft.au=Wang%2C+Hui&rft.au=Guo%2C+Gongde&rft.au=Wan%2C+Huan&rft.date=2018-03-01&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=9&rft.issue=3&rft.spage=383&rft.epage=392&rft_id=info:doi/10.1007%2Fs13042-015-0427-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13042_015_0427_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon |