Ontology-based NLP tool for tracing software requirements and conceptual models: an empirical study
Software traceability refers to maintaining, using, and generating traces among software artefacts—i.e., triples comprised of a source artefact, a target artefact, and a trace link—to support software quality assurance. Due to the effort of manually discovering trace links and the variety of softwar...
Saved in:
| Published in | Requirements engineering Vol. 30; no. 3; pp. 341 - 369 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Springer London
01.09.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0947-3602 1432-010X 1432-010X |
| DOI | 10.1007/s00766-025-00447-4 |
Cover
| Abstract | Software traceability refers to maintaining, using, and generating traces among software artefacts—i.e., triples comprised of a source artefact, a target artefact, and a trace link—to support software quality assurance. Due to the effort of manually discovering trace links and the variety of software artefacts, trace link discovery tools have been proposed. Among these is OntoTraceV2.0, an ontology-based automatic reasoning and Natural Language Processing (NLP) tool for trace link discovery. In this paper, we evaluate how OntoTraceV2.0 affects subjects’ efficiency, effectiveness, and satisfaction during trace link discovery. We conducted three quasi-experiments with 70 subjects in total. We asked subjects to discover trace links between a set of semi-structured software requirements in natural language—i.e., user stories—and a conceptual model—i.e., existence dependency graphs (EDGs)—with the support of OntoTraceV2.0 and without tool support. OntoTraceV2.0 increased subjects’ median precision compared to manual trace link discovery, with an average recall decrease of 7%. Despite this, OntoTraceV2.0 enabled subjects to discover trace links 1.41–2.55 times faster, indicating a significant increase in efficiency. Moreover, OntoTraceV2.0 positively affected subjects’ perceived usefulness, while ease of use and intention to use remain areas for improvement. Qualitative feedback highlighted the need for better guidance, automation, clearer benefits of long-term traceability, and improved user experience. To improve lower recall and enhance effectiveness while improving satisfaction, we propose an improved architecture for OntoTrace. We expect our experience to allow researchers and practitioners to devise new and better tools for trace link discovery automation. |
|---|---|
| AbstractList | Software traceability refers to maintaining, using, and generating traces among software artefacts—i.e., triples comprised of a source artefact, a target artefact, and a trace link—to support software quality assurance. Due to the effort of manually discovering trace links and the variety of software artefacts, trace link discovery tools have been proposed. Among these is OntoTraceV2.0, an ontology-based automatic reasoning and Natural Language Processing (NLP) tool for trace link discovery. In this paper, we evaluate how OntoTraceV2.0 affects subjects’ efficiency, effectiveness, and satisfaction during trace link discovery. We conducted three quasi-experiments with 70 subjects in total. We asked subjects to discover trace links between a set of semi-structured software requirements in natural language—i.e., user stories—and a conceptual model—i.e., existence dependency graphs (EDGs)—with the support of OntoTraceV2.0 and without tool support. OntoTraceV2.0 increased subjects’ median precision compared to manual trace link discovery, with an average recall decrease of 7%. Despite this, OntoTraceV2.0 enabled subjects to discover trace links 1.41–2.55 times faster, indicating a significant increase in efficiency. Moreover, OntoTraceV2.0 positively affected subjects’ perceived usefulness, while ease of use and intention to use remain areas for improvement. Qualitative feedback highlighted the need for better guidance, automation, clearer benefits of long-term traceability, and improved user experience. To improve lower recall and enhance effectiveness while improving satisfaction, we propose an improved architecture for OntoTrace. We expect our experience to allow researchers and practitioners to devise new and better tools for trace link discovery automation. Software traceability refers to maintaining, using, and generating traces among software artefacts—i.e., triples comprised of a source artefact, a target artefact, and a trace link—to support software quality assurance. Due to the effort of manually discovering trace links and the variety of software artefacts, trace link discovery tools have been proposed. Among these is OntoTraceV2.0, an ontology-based automatic reasoning and Natural Language Processing (NLP) tool for trace link discovery. In this paper, we evaluate how OntoTraceV2.0 affects subjects’ efficiency, effectiveness, and satisfaction during trace link discovery. We conducted three quasi-experiments with 70 subjects in total. We asked subjects to discover trace links between a set of semi-structured software requirements in natural language—i.e., user stories—and a conceptual model—i.e., existence dependency graphs (EDGs)—with the support of OntoTraceV2.0 and without tool support. OntoTraceV2.0 increased subjects’ median precision compared to manual trace link discovery, with an average recall decrease of 7%. Despite this, OntoTraceV2.0 enabled subjects to discover trace links 1.41–2.55 times faster, indicating a significant increase in efficiency. Moreover, OntoTraceV2.0 positively affected subjects’ perceived usefulness, while ease of use and intention to use remain areas for improvement. Qualitative feedback highlighted the need for better guidance, automation, clearer benefits of long-term traceability, and improved user experience. To improve lower recall and enhance effectiveness while improving satisfaction, we propose an improved architecture for OntoTrace. We expect our experience to allow researchers and practitioners to devise new and better tools for trace link discovery automation. |
| Author | Ruiz, Marcela Pastor, Oscar Mosquera, David |
| Author_xml | – sequence: 1 givenname: David orcidid: 0000-0002-0552-7878 surname: Mosquera fullname: Mosquera, David email: mosq@zhaw.ch organization: Institute of Computer Sciences (InIT), ZHAW Zurich University of Applied Sciences – sequence: 2 givenname: Marcela surname: Ruiz fullname: Ruiz, Marcela organization: Institute of Computer Sciences (InIT), ZHAW Zurich University of Applied Sciences – sequence: 3 givenname: Oscar surname: Pastor fullname: Pastor, Oscar organization: Valencian Research Institute for Artificial Intelligence, Universitat Politècnica de València |
| BookMark | eNqNkEtLAzEUhYNUsFb_gKuA69E7SeblToovKNaFgruQZu6UKTPJNMlQ-u-NtuBO3OSSwzmHw3dOJsYaJOQqhZsUoLj18cnzBFiWAAhRJOKETFPBWQIpfE7IFKoo8hzYGTn3fgPARFFVU6KXJtjOrvfJSnms6evijQZrO9pYR4NTujVr6m0TdsohdbgdW4c9muCpMjXV1mgcwqg62tsaO38XZYr90LpWR9GHsd5fkNNGdR4vj3dGPh4f3ufPyWL59DK_XySap3lIGoYlKBWn1SViWZbFqsa0YhqwEoJxscp4BqJuVIY6LVRRFVyXuilKVPGf8Rnhh97RDGq_U10nB9f2yu1lCvKbkzxwkpGT_OEkRUxdH1KDs9sRfZAbOzoTh0rOsqysGHAeXezg0s5677D5X_VxkI9ms0b3W_1H6gtlhopI |
| Cites_doi | 10.1007/s10664-021-09986-0 10.1109/RE.2018.00-52 10.1007/s00766-009-0096-6 10.1109/ICIS.2016.7550829 10.1007/978-3-642-41278-3_74 10.1007/978-3-319-10145-3 10.1109/ICSM.1999.792612 10.1109/APSEC.2010.51 10.1007/978-981-16-1249-7_3 10.1109/rew57809.2023.00087 10.1007/s10664-020-09831-w 10.1109/ICSE.2017.9 10.1007/s10489-021-02672-0 10.1002/0471028959.sof142 10.1109/COMPSAC.2012.10 10.1007/s13218-021-00713-x 10.1007/978-3-030-77246-8_34 10.1109/RE.2016.19 10.1109/RE.2013.6636704 10.1007/978-3-319-90421-4_7 10.1109/iri62200.2024.00035 10.1007/s00766-023-00408-9 10.1109/MARK.2011.6046559 10.1007/978-3-031-29786-1_10 10.1049/sfw2.12035 10.5281/zenodo.15211007 10.1016/j.infsof.2015.02.012 10.5220/0006471701860198 10.1109/MIC.2002.1067737 10.1145/2950290.2950354 10.1007/978-3-030-98464-9_11 10.1145/1107656.1107661 10.1177/1094428120971683 10.1007/978-3-031-07481-3_9 10.1007/978-3-319-46523-4_27 10.1016/j.websem.2007.03.004 10.1016/j.procs.2020.03.148 10.1109/DCABES.2017.42 10.1007/978-3-642-29044-2 10.1007/978-1-4471-2239-5 10.1007/978-3-030-15538-4_6 10.1145/3011784.3011810 10.1109/ICSE43902.2021.00040 10.1109/ICPC.2012.6240502 10.1016/j.websem.2022.100761 10.1002/smr.2294 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D ADTOC UNPAY |
| DOI | 10.1007/s00766-025-00447-4 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Link url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1432-010X |
| EndPage | 369 |
| ExternalDocumentID | 10.1007/s00766-025-00447-4 10_1007_s00766_025_00447_4 |
| GrantInformation_xml | – fundername: ZHAW Zurich University of Applied Sciences – fundername: Zü Hochschule für Angewandte Wissenschaften grantid: School of Engineering and Institute of Computer Sciences PhD Programme Scholarship; Innosuisse Flagship Initiative SHIFT; sub project C3 funderid: http://dx.doi.org/10.13039/501100022500 – fundername: Innosuisse - Schweizerische Agentur für Innovationsförderung grantid: Innosuisse Flagship Initiative SHIFT; sub project C3 funderid: http://dx.doi.org/10.13039/501100013348 – fundername: Zü Hochschule für Angewandte Wissenschaften grantid: School of Engineering and Institute of Computer Sciences PhD Programme Scholarship funderid: http://dx.doi.org/10.13039/501100022500 |
| GroupedDBID | -CS -D8 -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29P 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 88I 8AO 8FE 8FG 8FW 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTV ABHFT ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACSTC ACUHS ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW KZ1 L6V LAS LLZTM LMP M2P M4Y M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PHGZM PHGZT PQGLB PQQKQ PROAC PT4 PT5 PTHSS PUEGO Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~8M ~EX AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c316t-f2e80aa002d8ee8887bde192c0e944234b53504dfa5ec17a7973c8cf78eac1753 |
| IEDL.DBID | C6C |
| ISSN | 0947-3602 1432-010X |
| IngestDate | Tue Aug 19 23:33:55 EDT 2025 Mon Oct 06 16:36:44 EDT 2025 Thu Oct 02 04:24:36 EDT 2025 Sat Sep 27 01:12:35 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Traceability Evaluation NLP Ontology Arbitrary artefact Trace link discovery |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-f2e80aa002d8ee8887bde192c0e944234b53504dfa5ec17a7973c8cf78eac1753 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0552-7878 |
| OpenAccessLink | https://doi.org/10.1007/s00766-025-00447-4 |
| PQID | 3255892033 |
| PQPubID | 43844 |
| PageCount | 29 |
| ParticipantIDs | unpaywall_primary_10_1007_s00766_025_00447_4 proquest_journals_3255892033 crossref_primary_10_1007_s00766_025_00447_4 springer_journals_10_1007_s00766_025_00447_4 |
| PublicationCentury | 2000 |
| PublicationDate | 20250900 2025-09-00 20250901 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 9 year: 2025 text: 20250900 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Requirements engineering |
| PublicationTitleAbbrev | Requirements Eng |
| PublicationYear | 2025 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | 447_CR43 S Demi (447_CR24) 2021; 15 447_CR44 AC Ngonga Ngomo (447_CR51) 2021; 35 447_CR41 447_CR42 447_CR40 L Hickman (447_CR39) 2022; 25 447_CR49 447_CR47 447_CR9 447_CR8 447_CR7 M Snoeck (447_CR29) 2014 B McBride (447_CR37) 2002; 6 J Cleland-Huang (447_CR2) 2012 447_CR33 447_CR30 E Sirin (447_CR36) 2007; 5 447_CR31 447_CR38 JI Panach (447_CR46) 2015; 62 447_CR6 447_CR3 447_CR35 C Wohlin (447_CR45) 2012 447_CR21 447_CR22 447_CR20 447_CR27 447_CR28 447_CR25 447_CR26 447_CR23 J Liu (447_CR34) 2023; 76 P Hübner (447_CR16) 2020; 25 M Ruiz (447_CR5) 2023; 28 S Nasiri (447_CR32) 2020; 170 L Chen (447_CR53) 2021; 52 447_CR10 447_CR11 SK Sundaram (447_CR4) 2010; 15 447_CR52 447_CR50 447_CR18 447_CR19 447_CR17 447_CR14 447_CR15 447_CR12 447_CR13 DM Berry (447_CR48) 2021; 26 S Charalampidou (447_CR1) 2021; 33 |
| References_xml | – volume: 26 start-page: 1 issue: 6 year: 2021 ident: 447_CR48 publication-title: Empir Softw Eng doi: 10.1007/s10664-021-09986-0 – ident: 447_CR22 doi: 10.1109/RE.2018.00-52 – volume: 15 start-page: 313 issue: 3 year: 2010 ident: 447_CR4 publication-title: Requirements Eng doi: 10.1007/s00766-009-0096-6 – ident: 447_CR28 doi: 10.1109/ICIS.2016.7550829 – ident: 447_CR40 doi: 10.1007/978-3-642-41278-3_74 – volume-title: Enterprise information systems engineering year: 2014 ident: 447_CR29 doi: 10.1007/978-3-319-10145-3 – ident: 447_CR3 doi: 10.1109/ICSM.1999.792612 – ident: 447_CR11 doi: 10.1109/APSEC.2010.51 – ident: 447_CR43 doi: 10.1007/978-981-16-1249-7_3 – ident: 447_CR49 doi: 10.1109/rew57809.2023.00087 – volume: 25 start-page: 4350 issue: 5 year: 2020 ident: 447_CR16 publication-title: Empir Softw Eng doi: 10.1007/s10664-020-09831-w – ident: 447_CR15 – ident: 447_CR38 – ident: 447_CR7 doi: 10.1109/ICSE.2017.9 – ident: 447_CR30 – volume: 52 start-page: 4715 issue: 4 year: 2021 ident: 447_CR53 publication-title: Appl Intell doi: 10.1007/s10489-021-02672-0 – ident: 447_CR44 doi: 10.1002/0471028959.sof142 – ident: 447_CR9 doi: 10.1109/COMPSAC.2012.10 – volume: 35 start-page: 413 issue: 4 year: 2021 ident: 447_CR51 publication-title: KI - Künstliche Intelligenz doi: 10.1007/s13218-021-00713-x – ident: 447_CR21 doi: 10.1007/978-3-030-77246-8_34 – ident: 447_CR19 doi: 10.1109/RE.2016.19 – ident: 447_CR12 doi: 10.1109/RE.2013.6636704 – ident: 447_CR8 doi: 10.1007/978-3-319-90421-4_7 – ident: 447_CR50 doi: 10.1109/iri62200.2024.00035 – volume: 28 start-page: 619 issue: 4 year: 2023 ident: 447_CR5 publication-title: Requirements Eng doi: 10.1007/s00766-023-00408-9 – ident: 447_CR14 doi: 10.1109/MARK.2011.6046559 – ident: 447_CR17 doi: 10.1007/978-3-031-29786-1_10 – volume: 15 start-page: 391 issue: 6 year: 2021 ident: 447_CR24 publication-title: IET Softw doi: 10.1049/sfw2.12035 – ident: 447_CR47 doi: 10.5281/zenodo.15211007 – ident: 447_CR42 – volume: 62 start-page: 164 issue: 1 year: 2015 ident: 447_CR46 publication-title: Inf Softw Technol doi: 10.1016/j.infsof.2015.02.012 – ident: 447_CR52 doi: 10.5220/0006471701860198 – volume: 6 start-page: 55 issue: 6 year: 2002 ident: 447_CR37 publication-title: IEEE Internet Comput doi: 10.1109/MIC.2002.1067737 – ident: 447_CR27 doi: 10.1145/2950290.2950354 – ident: 447_CR31 doi: 10.1007/978-3-030-98464-9_11 – ident: 447_CR25 doi: 10.1145/1107656.1107661 – volume: 25 start-page: 114 issue: 1 year: 2022 ident: 447_CR39 publication-title: Organ Res Methods doi: 10.1177/1094428120971683 – ident: 447_CR18 doi: 10.1007/978-3-031-07481-3_9 – ident: 447_CR33 doi: 10.1007/978-3-319-46523-4_27 – volume: 5 start-page: 51 issue: 2 year: 2007 ident: 447_CR36 publication-title: J Web Semant doi: 10.1016/j.websem.2007.03.004 – volume: 170 start-page: 831 issue: 1 year: 2020 ident: 447_CR32 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2020.03.148 – ident: 447_CR10 doi: 10.1109/DCABES.2017.42 – volume-title: Experimentation in software engineering year: 2012 ident: 447_CR45 doi: 10.1007/978-3-642-29044-2 – volume-title: Software and systems traceability year: 2012 ident: 447_CR2 doi: 10.1007/978-1-4471-2239-5 – ident: 447_CR20 – ident: 447_CR23 doi: 10.1007/978-3-030-15538-4_6 – ident: 447_CR13 doi: 10.1145/3011784.3011810 – ident: 447_CR6 doi: 10.1109/ICSE43902.2021.00040 – ident: 447_CR41 – ident: 447_CR35 – ident: 447_CR26 doi: 10.1109/ICPC.2012.6240502 – volume: 76 issue: 1 year: 2023 ident: 447_CR34 publication-title: J Web Semant doi: 10.1016/j.websem.2022.100761 – volume: 33 start-page: 1 issue: 2 year: 2021 ident: 447_CR1 publication-title: J Softw Evolut Process doi: 10.1002/smr.2294 |
| SSID | ssj0024799 |
| Score | 2.3984463 |
| Snippet | Software traceability refers to maintaining, using, and generating traces among software artefacts—i.e., triples comprised of a source artefact, a target... |
| SourceID | unpaywall proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 341 |
| SubjectTerms | Algorithms Automation Computer Science Design of experiments Effectiveness Efficiency Knowledge representation Language Links Motivation Natural language processing Neural networks Ontology Original Article Quality assurance Recall Recommender systems Software Software Engineering Taxonomy User experience |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT8IwEL8oPBgfxM-IQdMH32Sw0e7LN6ISYhR5kASflq7rEiMOAiME_3qv3QZqjNH4ui7t2t56v-vd_Q7gHBG-Lxl3DElFbCjuHOXfRSuFtxiii5BlUZX3Pac7YLdDe7gB10UujI52L1ySWU6DYmlK0uYkipurxDflQFLBs7ahPJKuwRrYvAllx0ZEXoLyoNdvP2maPWykThZ6yKiKQjCHee7M9x191k9r0Lnyk27D1jyZ8OWCj0YfVFGnArKYRBaB8tKYp2FDvH3hd_zvLHdhJ8eqpJ0J1x5syGQfKkUdCJIfCwcgHhJdBXdpKJ0Ykd5dn6Tj8YggICbplAv8ADLD837Bp5JMpQo-1reSM8KTiIgsc3KOQ-m6PLNLfEzk6-RZ05cQzYB7CIPOzeNV18iLNxiCWk5qxC3pmZzjgRt5UqKd7YaRRDgpTOkzxHAstKltsijmthSWy13fpcITseuhKlD0oUdQSsaJPAaifLGusFGmlH3FmE8RRlkWteJY5YF7VbgotiyYZBwdwYqNWa9hgGsY6DUMWBVqxa4G-f86CyhaVp7fMimtQr3YmHXzT73VV9Lwi8FP_vZ6DUrpdC5PEfek4Vku1u8EZfh- priority: 102 providerName: Unpaywall |
| Title | Ontology-based NLP tool for tracing software requirements and conceptual models: an empirical study |
| URI | https://link.springer.com/article/10.1007/s00766-025-00447-4 https://www.proquest.com/docview/3255892033 https://link.springer.com/content/pdf/10.1007/s00766-025-00447-4.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 30 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1432-010X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024799 issn: 0947-3602 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1432-010X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024799 issn: 0947-3602 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1432-010X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0024799 issn: 0947-3602 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEL8oPKgPfhtBJH3wTZawtVs33wgBiR_IgyTwtJSuS0xwEBgh_PdeuwFqotGXPXRLm9y1vd_t7n4HcIMIP1BMeJaiMrY0d46O76KXIhyG6GLEsqzK567X6bOHgTvIaXJ0Lcy3-L0m--SeTpN1LR175BbbhSIaKc8EZr3mllePBxmvHn5DPZ21U_55jq9GaIssN8HQA9hbJFOxWorx-JO9aR_DYQ4USSPT7AnsqOQUjtZNGEh-Js9AviSmBe3K0gYpIt2nHkknkzFBNErSmZC4EpnjZbsUM0VmSmf-ml-CcyKSiMisbHGBS5mmOPM7HCbqffpmuEOIoZ89h3679drsWHnnBEtS20ut2FF-XQgUS-QrhU4uH0UKsZysq4AhgGIjl7p1FsXCVdLmggecSl_G3Md7WHN3XkAhmSTqEogOhHLpokK1c8NYQBHD2Da141gXYfsluF2LMpxmBBnhhgrZCD5EwYdG8CErQWUt7TA_LPOQolvjB06d0hLU1hrYvv5tttpGS39YvPy_2a9g3zF7RieUVaCQzhbqGhFIOqpCsXE_fGxVzRbEZ99p4Fi_22sMPwDV4NIj |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHIAD4yk2BuTAjRWtTbq23CYEDPaAwybBqUrTVEKMblo7Ifj1OGm7ARIIrm2VtLaTfK7tzwAniPA9yXjTkFREhuLOUfFd9FK4xRBdBCzLquz1m-0hu32wH_KisKTIdi9Cknqnnhe7qaCRSpi1DRWFdAy2DCsMHRSrBCut68fO5YJjz_Eyjj18ijZVBk_151G-HkgLlDkPjK7D6iye8LdXPhp9OnuuyjAs3jpLOXk-m6XBmXj_Ruj438_ahI0cjJJWZj1bsCTjbSgXjR5Ivu53QNzFus3tm6EOvZD0u_ckHY9HBBEvSadc4IQkwQ39lU8lmUqVXax_OyaExyERWWnkDKfSjXeSc7xM5MvkSfOTEE1xuwvDq8vBRdvIuzMYgprN1Igs6TY4R3GHrpToSDtBKBEviob0GII0FtjUbrAw4rYUpsMdz6HCFZHj4l6v-EH3oBSPY7kPRAVbHWGj0SgHijGPIk4yTWpGkSr0ditwWqjIn2QkHP6cblnLz0f5-Vp-PqtArdCiny_IxKfoOrme1aC0AvVCEYvbv41Wn2v_D5NX_zf6May2B72u373pdw5gzdJmoBLYalBKpzN5iIgnDY5yA_8AL5_x-w |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oJj4Ovo0g6h68SUPb3b68GZSgInKQhFuzbLeJCRYCJYR_7-yWFjxo9No2s8nM7s43nZlvAG4Q4QeScdeQVMSG4s5R-V2MUrjNEF0MWFZV-dpxWz323Hf6a138uto9T0lmPQ2KpSlJ6-MorheNbyqBpIpnHUNlJD2DbcIWQ--mZhg03MaKbc8LMrY9_Ia6qpan8rOM765phTeLFOke7MySMV_M-XC45oWah7C_hI_kPrP3EWzI5BgO8tEMZHlST0C8JXow7cJQbioinXaXpKPRkCBGJemEC1yJTPEKnvOJJBOp6oH1j8Ip4UlERNbMOMOl9Kic6R0-JvJz_KEZRYgmpT2FXvPxvdEylvMUDEEtNzViW_om56iWyJcSQ19vEElEeMKUAUNYxQYOdUwWxdyRwvK4F3hU-CL2fLydFaPnGZSSUSLPgaj0qCccNLMKeRgLKCIby6JWHKvWbL8Mt7kqw3FGmxEWBMla8SEqPtSKD1kZqrm2w-URmoYUgx0_sE1Ky1DLLbB6_Zu0WmGlPyxe-Z_0a9juPjTD9lPn5QJ2bb19VMVZFUrpZCYvEaKkgyu9C78ABj_ZLA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT8IwEL8oPBgfxM-IQdMH32Sw0e7LN6ISYhR5kASflq7rEiMOAiME_3qv3QZqjNH4ui7t2t56v-vd_Q7gHBG-Lxl3DElFbCjuHOXfRSuFtxiii5BlUZX3Pac7YLdDe7gB10UujI52L1ySWU6DYmlK0uYkipurxDflQFLBs7ahPJKuwRrYvAllx0ZEXoLyoNdvP2maPWykThZ6yKiKQjCHee7M9x191k9r0Lnyk27D1jyZ8OWCj0YfVFGnArKYRBaB8tKYp2FDvH3hd_zvLHdhJ8eqpJ0J1x5syGQfKkUdCJIfCwcgHhJdBXdpKJ0Ykd5dn6Tj8YggICbplAv8ADLD837Bp5JMpQo-1reSM8KTiIgsc3KOQ-m6PLNLfEzk6-RZ05cQzYB7CIPOzeNV18iLNxiCWk5qxC3pmZzjgRt5UqKd7YaRRDgpTOkzxHAstKltsijmthSWy13fpcITseuhKlD0oUdQSsaJPAaifLGusFGmlH3FmE8RRlkWteJY5YF7VbgotiyYZBwdwYqNWa9hgGsY6DUMWBVqxa4G-f86CyhaVp7fMimtQr3YmHXzT73VV9Lwi8FP_vZ6DUrpdC5PEfek4Vku1u8EZfh- |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ontology-based+NLP+tool+for+tracing+software+requirements+and+conceptual+models%3A+an+empirical+study&rft.jtitle=Requirements+engineering&rft.au=Mosquera%2C+David&rft.au=Ruiz%2C+Marcela&rft.au=Pastor%2C+Oscar&rft.date=2025-09-01&rft.pub=Springer+London&rft.issn=0947-3602&rft.eissn=1432-010X&rft.volume=30&rft.issue=3&rft.spage=341&rft.epage=369&rft_id=info:doi/10.1007%2Fs00766-025-00447-4&rft.externalDocID=10_1007_s00766_025_00447_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-3602&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-3602&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-3602&client=summon |