Structural properties of Dirichlet series with harmonic coefficients
An infinite family of functional equations in the complex plane is obtained for Dirichlet series involving harmonic numbers. Trigonometric series whose coefficients are linear forms with rational coefficients in hyperharmonic numbers up to any order are evaluated via Bernoulli polynomials, Gauss sum...
Saved in:
Published in | The Ramanujan journal Vol. 45; no. 2; pp. 569 - 600 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1382-4090 1572-9303 |
DOI | 10.1007/s11139-017-9906-5 |
Cover
Abstract | An infinite family of functional equations in the complex plane is obtained for Dirichlet series involving harmonic numbers. Trigonometric series whose coefficients are linear forms with rational coefficients in hyperharmonic numbers up to any order are evaluated via Bernoulli polynomials, Gauss sums, and special values of
L
-functions subject to the parity obstruction. This in turn leads to new representations of Catalan’s constant, odd values of the Riemann zeta function, and polylogarithmic quantities. Consequently, a dichotomy result is deduced on the transcendentality of Catalan’s constant and a series with hyperharmonic terms. Moreover, making use of integrals of smooth functions, we establish Diophantine-type approximations of real numbers by values of an infinite family of Dirichlet series built from representations of harmonic numbers. |
---|---|
AbstractList | An infinite family of functional equations in the complex plane is obtained for Dirichlet series involving harmonic numbers. Trigonometric series whose coefficients are linear forms with rational coefficients in hyperharmonic numbers up to any order are evaluated via Bernoulli polynomials, Gauss sums, and special values of
L
-functions subject to the parity obstruction. This in turn leads to new representations of Catalan’s constant, odd values of the Riemann zeta function, and polylogarithmic quantities. Consequently, a dichotomy result is deduced on the transcendentality of Catalan’s constant and a series with hyperharmonic terms. Moreover, making use of integrals of smooth functions, we establish Diophantine-type approximations of real numbers by values of an infinite family of Dirichlet series built from representations of harmonic numbers. An infinite family of functional equations in the complex plane is obtained for Dirichlet series involving harmonic numbers. Trigonometric series whose coefficients are linear forms with rational coefficients in hyperharmonic numbers up to any order are evaluated via Bernoulli polynomials, Gauss sums, and special values of L-functions subject to the parity obstruction. This in turn leads to new representations of Catalan’s constant, odd values of the Riemann zeta function, and polylogarithmic quantities. Consequently, a dichotomy result is deduced on the transcendentality of Catalan’s constant and a series with hyperharmonic terms. Moreover, making use of integrals of smooth functions, we establish Diophantine-type approximations of real numbers by values of an infinite family of Dirichlet series built from representations of harmonic numbers. |
Author | Alkan, Emre Göral, Haydar |
Author_xml | – sequence: 1 givenname: Emre surname: Alkan fullname: Alkan, Emre email: ealkan@ku.edu.tr organization: Department of Mathematics, Koç University – sequence: 2 givenname: Haydar surname: Göral fullname: Göral, Haydar organization: Department of Mathematics, Koç University |
BookMark | eNp9kE9LxDAQxYOs4Lr6AbwVPFcnTdukR9n1Hyx4UM8hTaZulm6zJinitzdLPYigpxmG95t5807JbHADEnJB4YoC8OtAKWVNDpTnTQN1Xh2ROa14kTcM2Cz1TBR5CQ2ckNMQtgBQAuNzsnqOftRx9KrP9t7t0UeLIXNdtrLe6k2PMQvoD7MPGzfZRvmdG6zOtMOus9riEMMZOe5UH_D8uy7I693ty_IhXz_dPy5v1rlmtI45MkDDTM1qakStqWoNLTmIVmmqBW9Lw2pTcKwbYUxX6lahQFHpqlUgGBNsQS6nvcnp-4ghyq0b_ZBOSpq-FoLzokgqOqm0dyF47OTe253yn5KCPIQlp7BkCksewpJVYvgvRtuoonVD9Mr2_5LFRIZ0ZXhD_8PTn9AXONWBAQ |
CitedBy_id | crossref_primary_10_1016_j_jmaa_2018_12_034 |
Cites_doi | 10.1007/978-0-387-98098-0 10.1090/S0002-9904-1973-13259-8 10.1090/S0002-9939-2015-12649-4 10.1007/s11139-007-9083-z 10.1007/s11139-010-9292-8 10.1016/j.jmaa.2013.08.021 10.1007/s11139-014-9575-6 10.1007/978-1-4612-1624-7 10.1016/0022-314X(87)90012-6 10.4310/CNTP.2013.v7.n3.a5 10.1007/978-1-4612-1088-7 10.1007/978-1-4612-4072-3 10.1016/0377-0427(91)90112-W 10.1007/s11139-013-9511-1 10.1007/s11139-013-9510-2 10.2307/2975168 10.1016/0022-314X(84)90094-5 10.1090/surv/037/01 10.1145/1993886.1993899 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2017 Copyright Springer Science & Business Media 2018 |
Copyright_xml | – notice: Springer Science+Business Media New York 2017 – notice: Copyright Springer Science & Business Media 2018 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11139-017-9906-5 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1572-9303 |
EndPage | 600 |
ExternalDocumentID | 10_1007_s11139_017_9906_5 |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 203 29P 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 6TJ 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P9R PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7U ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c316t-e30ed3d6361d86c1abd14708bac1c87b4d36d27e698ddf4cbae8e85c5ba083383 |
IEDL.DBID | U2A |
ISSN | 1382-4090 |
IngestDate | Thu Sep 25 00:38:07 EDT 2025 Tue Jul 01 02:02:08 EDT 2025 Thu Apr 24 23:00:07 EDT 2025 Fri Feb 21 02:33:25 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Polylogarithm 11M41 Harmonic number 30B50 Functional equation 33B10 30D05 Dirichlet series Gauss sum Catalan’s constant |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-e30ed3d6361d86c1abd14708bac1c87b4d36d27e698ddf4cbae8e85c5ba083383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1990887722 |
PQPubID | 2043831 |
PageCount | 32 |
ParticipantIDs | proquest_journals_1990887722 crossref_primary_10_1007_s11139_017_9906_5 crossref_citationtrail_10_1007_s11139_017_9906_5 springer_journals_10_1007_s11139_017_9906_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-01 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal Devoted to the Areas of Mathematics Influenced by Ramanujan |
PublicationTitle | The Ramanujan journal |
PublicationTitleAbbrev | Ramanujan J |
PublicationYear | 2018 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Berndt (CR7) 1985 Ramanujan (CR20) 1957 Borwein, Zucker, Boersma (CR10) 2008; 15 Conway, Guy (CR12) 1996 Neukirch (CR19) 1999 Wang, Jia (CR22) 2014; 35 CR18 CR9 Davidson, Donsig (CR13) 2010 Jackson (CR16) 1994 Alkan (CR4) 2014; 410 Alkan (CR3) 2013; 7 Chen, Cheng (CR11) 2015; 38 Jordan (CR17) 1973; 79 Sitaramachandra (CR21) 1987; 25 Apostol, Vu (CR6) 1984; 19 De Doelder (CR14) 1991; 37 Wolstenholme (CR24) 1862; 5 Alkan (CR2) 2011; 26 Hardy, Wright (CR15) 1979 Wei, Gong (CR23) 2014; 34 Alkan (CR5) 2015; 143 Berndt (CR8) 1998 Alkan (CR1) 1994; 101 9906_CR9 E Alkan (9906_CR2) 2011; 26 KR Davidson (9906_CR13) 2010 E Alkan (9906_CR5) 2015; 143 9906_CR18 CP Chen (9906_CR11) 2015; 38 PJ Doelder De (9906_CR14) 1991; 37 GH Hardy (9906_CR15) 1979 J Neukirch (9906_CR19) 1999 C Wei (9906_CR23) 2014; 34 TM Apostol (9906_CR6) 1984; 19 JM Borwein (9906_CR10) 2008; 15 J Wolstenholme (9906_CR24) 1862; 5 BC Berndt (9906_CR7) 1985 BC Berndt (9906_CR8) 1998 R Sitaramachandra (9906_CR21) 1987; 25 W Wang (9906_CR22) 2014; 35 S Ramanujan (9906_CR20) 1957 PF Jordan (9906_CR17) 1973; 79 JH Conway (9906_CR12) 1996 E Alkan (9906_CR4) 2014; 410 E Alkan (9906_CR1) 1994; 101 E Alkan (9906_CR3) 2013; 7 D Jackson (9906_CR16) 1994 |
References_xml | – year: 2010 ident: CR13 publication-title: Real Analysis and Applications. Theory in Practice. Undergraduate Texts in Mathematics doi: 10.1007/978-0-387-98098-0 – volume: 79 start-page: 681 year: 1973 end-page: 683 ident: CR17 article-title: Infinite sums of psi functions publication-title: Bull. Am. Math. Soc. doi: 10.1090/S0002-9904-1973-13259-8 – ident: CR18 – year: 1999 ident: CR19 publication-title: Algebraic Number Theory. Grundlehren der Mathematischen Wissenschaften – year: 1979 ident: CR15 publication-title: An Introduction to the Theory of Numbers – volume: 143 start-page: 3743 year: 2015 end-page: 3752 ident: CR5 article-title: Special values of the Riemann zeta function capture all real numbers publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-2015-12649-4 – year: 1957 ident: CR20 publication-title: Note Books – volume: 5 start-page: 35 year: 1862 end-page: 39 ident: CR24 article-title: On certain properties of prime numbers publication-title: Q. J. Math. – volume: 15 start-page: 377 year: 2008 end-page: 405 ident: CR10 article-title: The evaluation of character Euler double sums publication-title: Ramanujan J. doi: 10.1007/s11139-007-9083-z – volume: 26 start-page: 375 year: 2011 end-page: 398 ident: CR2 article-title: Values of Dirichlet -functions, Gauss sums and trigonometric sums publication-title: Ramanujan J. doi: 10.1007/s11139-010-9292-8 – volume: 410 start-page: 11 year: 2014 end-page: 26 ident: CR4 article-title: Series representations in the spirit of Ramanujan publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2013.08.021 – volume: 38 start-page: 123 year: 2015 end-page: 128 ident: CR11 article-title: Ramanujan’s asymptotic expansion for the harmonic numbers publication-title: Ramanujan J. doi: 10.1007/s11139-014-9575-6 – year: 1998 ident: CR8 publication-title: Ramanujan’s Notebooks, Part V doi: 10.1007/978-1-4612-1624-7 – ident: CR9 – volume: 25 start-page: 1 year: 1987 end-page: 19 ident: CR21 article-title: A formula of S. Ramanujan publication-title: J. Number Theory doi: 10.1016/0022-314X(87)90012-6 – volume: 7 start-page: 515 year: 2013 end-page: 550 ident: CR3 article-title: Approximation by special values of harmonic zeta function and log-sine integrals publication-title: Commun. Number Theory Phys. doi: 10.4310/CNTP.2013.v7.n3.a5 – year: 1985 ident: CR7 publication-title: Ramanujan’s Notebooks, Part I doi: 10.1007/978-1-4612-1088-7 – year: 1996 ident: CR12 publication-title: The Book of Numbers doi: 10.1007/978-1-4612-4072-3 – volume: 37 start-page: 125 year: 1991 end-page: 141 ident: CR14 article-title: On some series containing and for certain values of and publication-title: J. Comput. Appl. Math. doi: 10.1016/0377-0427(91)90112-W – volume: 35 start-page: 263 year: 2014 end-page: 285 ident: CR22 article-title: Harmonic number identities via the Newton-Andrews method publication-title: Ramanujan J. doi: 10.1007/s11139-013-9511-1 – volume: 34 start-page: 361 year: 2014 end-page: 371 ident: CR23 article-title: The derivative operator and harmonic number identities publication-title: Ramanujan J. doi: 10.1007/s11139-013-9510-2 – volume: 101 start-page: 1001 year: 1994 end-page: 1004 ident: CR1 article-title: Variations on Wolstenholme’s theorem publication-title: Am. Math. Mon. doi: 10.2307/2975168 – volume: 19 start-page: 85 year: 1984 end-page: 102 ident: CR6 article-title: Dirichlet series related to the Riemann zeta function publication-title: J. Number Theory doi: 10.1016/0022-314X(84)90094-5 – year: 1994 ident: CR16 publication-title: The Theory of Approximation, Reprint of the 1930 Original, American Mathematical Society Colloquium Publications – volume-title: Ramanujan’s Notebooks, Part V year: 1998 ident: 9906_CR8 doi: 10.1007/978-1-4612-1624-7 – ident: 9906_CR18 doi: 10.1090/surv/037/01 – volume: 25 start-page: 1 year: 1987 ident: 9906_CR21 publication-title: J. Number Theory doi: 10.1016/0022-314X(87)90012-6 – volume: 410 start-page: 11 year: 2014 ident: 9906_CR4 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2013.08.021 – volume: 15 start-page: 377 year: 2008 ident: 9906_CR10 publication-title: Ramanujan J. doi: 10.1007/s11139-007-9083-z – volume: 143 start-page: 3743 year: 2015 ident: 9906_CR5 publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-2015-12649-4 – ident: 9906_CR9 doi: 10.1145/1993886.1993899 – volume: 5 start-page: 35 year: 1862 ident: 9906_CR24 publication-title: Q. J. Math. – volume-title: The Theory of Approximation, Reprint of the 1930 Original, American Mathematical Society Colloquium Publications year: 1994 ident: 9906_CR16 – volume: 35 start-page: 263 year: 2014 ident: 9906_CR22 publication-title: Ramanujan J. doi: 10.1007/s11139-013-9511-1 – volume: 38 start-page: 123 year: 2015 ident: 9906_CR11 publication-title: Ramanujan J. doi: 10.1007/s11139-014-9575-6 – volume-title: The Book of Numbers year: 1996 ident: 9906_CR12 doi: 10.1007/978-1-4612-4072-3 – volume-title: Real Analysis and Applications. Theory in Practice. Undergraduate Texts in Mathematics year: 2010 ident: 9906_CR13 doi: 10.1007/978-0-387-98098-0 – volume: 7 start-page: 515 year: 2013 ident: 9906_CR3 publication-title: Commun. Number Theory Phys. doi: 10.4310/CNTP.2013.v7.n3.a5 – volume: 101 start-page: 1001 year: 1994 ident: 9906_CR1 publication-title: Am. Math. Mon. doi: 10.2307/2975168 – volume: 19 start-page: 85 year: 1984 ident: 9906_CR6 publication-title: J. Number Theory doi: 10.1016/0022-314X(84)90094-5 – volume-title: Algebraic Number Theory. Grundlehren der Mathematischen Wissenschaften year: 1999 ident: 9906_CR19 – volume: 37 start-page: 125 year: 1991 ident: 9906_CR14 publication-title: J. Comput. Appl. Math. doi: 10.1016/0377-0427(91)90112-W – volume: 34 start-page: 361 year: 2014 ident: 9906_CR23 publication-title: Ramanujan J. doi: 10.1007/s11139-013-9510-2 – volume: 26 start-page: 375 year: 2011 ident: 9906_CR2 publication-title: Ramanujan J. doi: 10.1007/s11139-010-9292-8 – volume-title: Ramanujan’s Notebooks, Part I year: 1985 ident: 9906_CR7 doi: 10.1007/978-1-4612-1088-7 – volume-title: Note Books year: 1957 ident: 9906_CR20 – volume-title: An Introduction to the Theory of Numbers year: 1979 ident: 9906_CR15 – volume: 79 start-page: 681 year: 1973 ident: 9906_CR17 publication-title: Bull. Am. Math. Soc. doi: 10.1090/S0002-9904-1973-13259-8 |
SSID | ssj0004037 |
Score | 2.0936513 |
Snippet | An infinite family of functional equations in the complex plane is obtained for Dirichlet series involving harmonic numbers. Trigonometric series whose... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 569 |
SubjectTerms | Coefficients Combinatorics Dirichlet problem Field Theory and Polynomials Fourier Analysis Functional equations Functions (mathematics) Functions of a Complex Variable Mathematical analysis Mathematics Mathematics and Statistics Number Theory Real numbers Representations |
Title | Structural properties of Dirichlet series with harmonic coefficients |
URI | https://link.springer.com/article/10.1007/s11139-017-9906-5 https://www.proquest.com/docview/1990887722 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXWBAPEWhVB6YQJHi-BFnrKClAsEClcoUOX4IJNRWtP9f3KVJAwiQWBPbw3fn82f77jMh56lPBA-JjixnLhJOB4iDUkcevIkLzgsZygTZBzUai9uJnFR13Is6272-kiwjdVPsxoCtRBhVIYKqSG6StkQ5KXDicdJviiHjUigTtfVgc5StrzJ_GuLrYtQwzG-XouVaM9wlOxVJpP2VVffIhp_uk-37tcLq4oBcP5bCryiaQed4oP6Oyqh0FigEsVf7Auag6F3wDY9aKSpUowoutTNfqkZgAsUhGQ8HT1ejqHoRAaFUy8jz2DvuFFfMaWWZKRwTaawLY5nVaSEcVy5Jvcq0c0HYwnjttbSyMEC1YDN6RFrT2dQfExqCYgZ2K5kzTngVYGYrK7gWRmcGMOyQuIYmt5VcOL5a8ZY3QseIZg5o5ohmLjvkYt1lvtLK-Ktxt8Y7r6bNImcZpl0B4U865LK2waffvw128q_Wp2QLaI9e5V53SQvs5c-AWiyLHmn3b57vBr3SpT4Ah9XGPQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDMCAeIpCAQ9MoEh17DjOWPFQgbYLrdTNcvwQSKitaP-_uEuTBhAgsSa2h-_s83e-82dCLlMfCx5iFVnOXCScCuAHExV5mE1ccJ4noSiQHcjuSDyOk3F5j3teVbtXKcnCU9eX3RiwlQi9KnhQGSXrZAOzjBhxjeJOfRmyXQhlorYeBEfZKpX50xBfN6OaYX5LihZ7zf0u2SlJIu0srbpH1vxkn2z3Vwqr8wNy-1wIv6JoBp3hgfo7KqPSaaDgxF7tC5iD4uyCb3jUSlGhGlVwqZ36QjUCCygOyej-bnjTjcoXERBKuYg8b3vHneSSOSUtM7ljIm2r3FhmVZoLx6WLUy8z5VwQNjdeeZXYJDdAtSAYPSKNyXTijwkNQTID0UrmjBNeBljZ0gquhFGZAQybpF1Bo20pF46vVrzpWugY0dSApkY0ddIkV6sus6VWxl-NWxXeulw2c80yLLsCwh83yXVlg0-_fxvs5F-tL8hmd9jv6d7D4OmUbAEFUss67BZpgO38GdCMRX5eTKsPpFjHjA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT8MwDIAtGBKCA2_EYEAPnECFdUmz9DixjccAIQESnEqbh0CgbmLjwq_H7mMFBEiIa5tGbew6duJ8BthpmgZntiFdxTztci0t2kFfuga1iXHGYt-mCbIX4viGn976t3md02GR7V5sSWZnGojSlIwOBtoelAffPPRcXLKwaE2F60_CFKcSEhWYah3d9Trl0ch6is0k0h6GSsF4Y_O7Tj5PTaW_-WWLNJ15uvNwX7xzlnDytP86ivfV2xec4z8-agHmcq_UaWVqtAgTJlmC2fMx0nW4DO2rlDRLlA5nQCv4L4RidfrWQav5qB5Q_g6pM16jtV2HkNiE3XVU36SYCsrYWIGbbuf68NjNSzCQ7MTINaxuNNOCCU9Lobwo1h5v1mUcKU_JZsw1E7rRNCKQWluu4shII33lxxH6dhj9rkIl6SdmDRxrhRdheBToSHMjLJoSoTiTPJJBhGKqQr0Y_VDlfHIqk_EclmRlGqAQByikAQr9KuyOHxlkcI7fGtcKkYb5fzoMvYDyvDDCaFRhr5DQh9s_dbb-p9bbMH3Z7oZnJxe9DZhBl0tmed81qKDozCa6NaN4K1fddwIu7Ts |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+properties+of+Dirichlet+series+with+harmonic+coefficients&rft.jtitle=The+Ramanujan+journal&rft.au=Alkan%2C+Emre&rft.au=G%C3%B6ral%2C+Haydar&rft.date=2018-02-01&rft.issn=1382-4090&rft.eissn=1572-9303&rft.volume=45&rft.issue=2&rft.spage=569&rft.epage=600&rft_id=info:doi/10.1007%2Fs11139-017-9906-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11139_017_9906_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-4090&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-4090&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-4090&client=summon |