Structural properties of Dirichlet series with harmonic coefficients

An infinite family of functional equations in the complex plane is obtained for Dirichlet series involving harmonic numbers. Trigonometric series whose coefficients are linear forms with rational coefficients in hyperharmonic numbers up to any order are evaluated via Bernoulli polynomials, Gauss sum...

Full description

Saved in:
Bibliographic Details
Published inThe Ramanujan journal Vol. 45; no. 2; pp. 569 - 600
Main Authors Alkan, Emre, Göral, Haydar
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1382-4090
1572-9303
DOI10.1007/s11139-017-9906-5

Cover

Abstract An infinite family of functional equations in the complex plane is obtained for Dirichlet series involving harmonic numbers. Trigonometric series whose coefficients are linear forms with rational coefficients in hyperharmonic numbers up to any order are evaluated via Bernoulli polynomials, Gauss sums, and special values of L -functions subject to the parity obstruction. This in turn leads to new representations of Catalan’s constant, odd values of the Riemann zeta function, and polylogarithmic quantities. Consequently, a dichotomy result is deduced on the transcendentality of Catalan’s constant and a series with hyperharmonic terms. Moreover, making use of integrals of smooth functions, we establish Diophantine-type approximations of real numbers by values of an infinite family of Dirichlet series built from representations of harmonic numbers.
AbstractList An infinite family of functional equations in the complex plane is obtained for Dirichlet series involving harmonic numbers. Trigonometric series whose coefficients are linear forms with rational coefficients in hyperharmonic numbers up to any order are evaluated via Bernoulli polynomials, Gauss sums, and special values of L -functions subject to the parity obstruction. This in turn leads to new representations of Catalan’s constant, odd values of the Riemann zeta function, and polylogarithmic quantities. Consequently, a dichotomy result is deduced on the transcendentality of Catalan’s constant and a series with hyperharmonic terms. Moreover, making use of integrals of smooth functions, we establish Diophantine-type approximations of real numbers by values of an infinite family of Dirichlet series built from representations of harmonic numbers.
An infinite family of functional equations in the complex plane is obtained for Dirichlet series involving harmonic numbers. Trigonometric series whose coefficients are linear forms with rational coefficients in hyperharmonic numbers up to any order are evaluated via Bernoulli polynomials, Gauss sums, and special values of L-functions subject to the parity obstruction. This in turn leads to new representations of Catalan’s constant, odd values of the Riemann zeta function, and polylogarithmic quantities. Consequently, a dichotomy result is deduced on the transcendentality of Catalan’s constant and a series with hyperharmonic terms. Moreover, making use of integrals of smooth functions, we establish Diophantine-type approximations of real numbers by values of an infinite family of Dirichlet series built from representations of harmonic numbers.
Author Alkan, Emre
Göral, Haydar
Author_xml – sequence: 1
  givenname: Emre
  surname: Alkan
  fullname: Alkan, Emre
  email: ealkan@ku.edu.tr
  organization: Department of Mathematics, Koç University
– sequence: 2
  givenname: Haydar
  surname: Göral
  fullname: Göral, Haydar
  organization: Department of Mathematics, Koç University
BookMark eNp9kE9LxDAQxYOs4Lr6AbwVPFcnTdukR9n1Hyx4UM8hTaZulm6zJinitzdLPYigpxmG95t5807JbHADEnJB4YoC8OtAKWVNDpTnTQN1Xh2ROa14kTcM2Cz1TBR5CQ2ckNMQtgBQAuNzsnqOftRx9KrP9t7t0UeLIXNdtrLe6k2PMQvoD7MPGzfZRvmdG6zOtMOus9riEMMZOe5UH_D8uy7I693ty_IhXz_dPy5v1rlmtI45MkDDTM1qakStqWoNLTmIVmmqBW9Lw2pTcKwbYUxX6lahQFHpqlUgGBNsQS6nvcnp-4ghyq0b_ZBOSpq-FoLzokgqOqm0dyF47OTe253yn5KCPIQlp7BkCksewpJVYvgvRtuoonVD9Mr2_5LFRIZ0ZXhD_8PTn9AXONWBAQ
CitedBy_id crossref_primary_10_1016_j_jmaa_2018_12_034
Cites_doi 10.1007/978-0-387-98098-0
10.1090/S0002-9904-1973-13259-8
10.1090/S0002-9939-2015-12649-4
10.1007/s11139-007-9083-z
10.1007/s11139-010-9292-8
10.1016/j.jmaa.2013.08.021
10.1007/s11139-014-9575-6
10.1007/978-1-4612-1624-7
10.1016/0022-314X(87)90012-6
10.4310/CNTP.2013.v7.n3.a5
10.1007/978-1-4612-1088-7
10.1007/978-1-4612-4072-3
10.1016/0377-0427(91)90112-W
10.1007/s11139-013-9511-1
10.1007/s11139-013-9510-2
10.2307/2975168
10.1016/0022-314X(84)90094-5
10.1090/surv/037/01
10.1145/1993886.1993899
ContentType Journal Article
Copyright Springer Science+Business Media New York 2017
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: Springer Science+Business Media New York 2017
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
DOI 10.1007/s11139-017-9906-5
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1572-9303
EndPage 600
ExternalDocumentID 10_1007_s11139_017_9906_5
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
29P
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
6TJ
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P9R
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7U
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c316t-e30ed3d6361d86c1abd14708bac1c87b4d36d27e698ddf4cbae8e85c5ba083383
IEDL.DBID U2A
ISSN 1382-4090
IngestDate Thu Sep 25 00:38:07 EDT 2025
Tue Jul 01 02:02:08 EDT 2025
Thu Apr 24 23:00:07 EDT 2025
Fri Feb 21 02:33:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Polylogarithm
11M41
Harmonic number
30B50
Functional equation
33B10
30D05
Dirichlet series
Gauss sum
Catalan’s constant
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-e30ed3d6361d86c1abd14708bac1c87b4d36d27e698ddf4cbae8e85c5ba083383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1990887722
PQPubID 2043831
PageCount 32
ParticipantIDs proquest_journals_1990887722
crossref_primary_10_1007_s11139_017_9906_5
crossref_citationtrail_10_1007_s11139_017_9906_5
springer_journals_10_1007_s11139_017_9906_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal Devoted to the Areas of Mathematics Influenced by Ramanujan
PublicationTitle The Ramanujan journal
PublicationTitleAbbrev Ramanujan J
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Berndt (CR7) 1985
Ramanujan (CR20) 1957
Borwein, Zucker, Boersma (CR10) 2008; 15
Conway, Guy (CR12) 1996
Neukirch (CR19) 1999
Wang, Jia (CR22) 2014; 35
CR18
CR9
Davidson, Donsig (CR13) 2010
Jackson (CR16) 1994
Alkan (CR4) 2014; 410
Alkan (CR3) 2013; 7
Chen, Cheng (CR11) 2015; 38
Jordan (CR17) 1973; 79
Sitaramachandra (CR21) 1987; 25
Apostol, Vu (CR6) 1984; 19
De Doelder (CR14) 1991; 37
Wolstenholme (CR24) 1862; 5
Alkan (CR2) 2011; 26
Hardy, Wright (CR15) 1979
Wei, Gong (CR23) 2014; 34
Alkan (CR5) 2015; 143
Berndt (CR8) 1998
Alkan (CR1) 1994; 101
9906_CR9
E Alkan (9906_CR2) 2011; 26
KR Davidson (9906_CR13) 2010
E Alkan (9906_CR5) 2015; 143
9906_CR18
CP Chen (9906_CR11) 2015; 38
PJ Doelder De (9906_CR14) 1991; 37
GH Hardy (9906_CR15) 1979
J Neukirch (9906_CR19) 1999
C Wei (9906_CR23) 2014; 34
TM Apostol (9906_CR6) 1984; 19
JM Borwein (9906_CR10) 2008; 15
J Wolstenholme (9906_CR24) 1862; 5
BC Berndt (9906_CR7) 1985
BC Berndt (9906_CR8) 1998
R Sitaramachandra (9906_CR21) 1987; 25
W Wang (9906_CR22) 2014; 35
S Ramanujan (9906_CR20) 1957
PF Jordan (9906_CR17) 1973; 79
JH Conway (9906_CR12) 1996
E Alkan (9906_CR4) 2014; 410
E Alkan (9906_CR1) 1994; 101
E Alkan (9906_CR3) 2013; 7
D Jackson (9906_CR16) 1994
References_xml – year: 2010
  ident: CR13
  publication-title: Real Analysis and Applications. Theory in Practice. Undergraduate Texts in Mathematics
  doi: 10.1007/978-0-387-98098-0
– volume: 79
  start-page: 681
  year: 1973
  end-page: 683
  ident: CR17
  article-title: Infinite sums of psi functions
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/S0002-9904-1973-13259-8
– ident: CR18
– year: 1999
  ident: CR19
  publication-title: Algebraic Number Theory. Grundlehren der Mathematischen Wissenschaften
– year: 1979
  ident: CR15
  publication-title: An Introduction to the Theory of Numbers
– volume: 143
  start-page: 3743
  year: 2015
  end-page: 3752
  ident: CR5
  article-title: Special values of the Riemann zeta function capture all real numbers
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-2015-12649-4
– year: 1957
  ident: CR20
  publication-title: Note Books
– volume: 5
  start-page: 35
  year: 1862
  end-page: 39
  ident: CR24
  article-title: On certain properties of prime numbers
  publication-title: Q. J. Math.
– volume: 15
  start-page: 377
  year: 2008
  end-page: 405
  ident: CR10
  article-title: The evaluation of character Euler double sums
  publication-title: Ramanujan J.
  doi: 10.1007/s11139-007-9083-z
– volume: 26
  start-page: 375
  year: 2011
  end-page: 398
  ident: CR2
  article-title: Values of Dirichlet -functions, Gauss sums and trigonometric sums
  publication-title: Ramanujan J.
  doi: 10.1007/s11139-010-9292-8
– volume: 410
  start-page: 11
  year: 2014
  end-page: 26
  ident: CR4
  article-title: Series representations in the spirit of Ramanujan
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2013.08.021
– volume: 38
  start-page: 123
  year: 2015
  end-page: 128
  ident: CR11
  article-title: Ramanujan’s asymptotic expansion for the harmonic numbers
  publication-title: Ramanujan J.
  doi: 10.1007/s11139-014-9575-6
– year: 1998
  ident: CR8
  publication-title: Ramanujan’s Notebooks, Part V
  doi: 10.1007/978-1-4612-1624-7
– ident: CR9
– volume: 25
  start-page: 1
  year: 1987
  end-page: 19
  ident: CR21
  article-title: A formula of S. Ramanujan
  publication-title: J. Number Theory
  doi: 10.1016/0022-314X(87)90012-6
– volume: 7
  start-page: 515
  year: 2013
  end-page: 550
  ident: CR3
  article-title: Approximation by special values of harmonic zeta function and log-sine integrals
  publication-title: Commun. Number Theory Phys.
  doi: 10.4310/CNTP.2013.v7.n3.a5
– year: 1985
  ident: CR7
  publication-title: Ramanujan’s Notebooks, Part I
  doi: 10.1007/978-1-4612-1088-7
– year: 1996
  ident: CR12
  publication-title: The Book of Numbers
  doi: 10.1007/978-1-4612-4072-3
– volume: 37
  start-page: 125
  year: 1991
  end-page: 141
  ident: CR14
  article-title: On some series containing and for certain values of and
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(91)90112-W
– volume: 35
  start-page: 263
  year: 2014
  end-page: 285
  ident: CR22
  article-title: Harmonic number identities via the Newton-Andrews method
  publication-title: Ramanujan J.
  doi: 10.1007/s11139-013-9511-1
– volume: 34
  start-page: 361
  year: 2014
  end-page: 371
  ident: CR23
  article-title: The derivative operator and harmonic number identities
  publication-title: Ramanujan J.
  doi: 10.1007/s11139-013-9510-2
– volume: 101
  start-page: 1001
  year: 1994
  end-page: 1004
  ident: CR1
  article-title: Variations on Wolstenholme’s theorem
  publication-title: Am. Math. Mon.
  doi: 10.2307/2975168
– volume: 19
  start-page: 85
  year: 1984
  end-page: 102
  ident: CR6
  article-title: Dirichlet series related to the Riemann zeta function
  publication-title: J. Number Theory
  doi: 10.1016/0022-314X(84)90094-5
– year: 1994
  ident: CR16
  publication-title: The Theory of Approximation, Reprint of the 1930 Original, American Mathematical Society Colloquium Publications
– volume-title: Ramanujan’s Notebooks, Part V
  year: 1998
  ident: 9906_CR8
  doi: 10.1007/978-1-4612-1624-7
– ident: 9906_CR18
  doi: 10.1090/surv/037/01
– volume: 25
  start-page: 1
  year: 1987
  ident: 9906_CR21
  publication-title: J. Number Theory
  doi: 10.1016/0022-314X(87)90012-6
– volume: 410
  start-page: 11
  year: 2014
  ident: 9906_CR4
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2013.08.021
– volume: 15
  start-page: 377
  year: 2008
  ident: 9906_CR10
  publication-title: Ramanujan J.
  doi: 10.1007/s11139-007-9083-z
– volume: 143
  start-page: 3743
  year: 2015
  ident: 9906_CR5
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-2015-12649-4
– ident: 9906_CR9
  doi: 10.1145/1993886.1993899
– volume: 5
  start-page: 35
  year: 1862
  ident: 9906_CR24
  publication-title: Q. J. Math.
– volume-title: The Theory of Approximation, Reprint of the 1930 Original, American Mathematical Society Colloquium Publications
  year: 1994
  ident: 9906_CR16
– volume: 35
  start-page: 263
  year: 2014
  ident: 9906_CR22
  publication-title: Ramanujan J.
  doi: 10.1007/s11139-013-9511-1
– volume: 38
  start-page: 123
  year: 2015
  ident: 9906_CR11
  publication-title: Ramanujan J.
  doi: 10.1007/s11139-014-9575-6
– volume-title: The Book of Numbers
  year: 1996
  ident: 9906_CR12
  doi: 10.1007/978-1-4612-4072-3
– volume-title: Real Analysis and Applications. Theory in Practice. Undergraduate Texts in Mathematics
  year: 2010
  ident: 9906_CR13
  doi: 10.1007/978-0-387-98098-0
– volume: 7
  start-page: 515
  year: 2013
  ident: 9906_CR3
  publication-title: Commun. Number Theory Phys.
  doi: 10.4310/CNTP.2013.v7.n3.a5
– volume: 101
  start-page: 1001
  year: 1994
  ident: 9906_CR1
  publication-title: Am. Math. Mon.
  doi: 10.2307/2975168
– volume: 19
  start-page: 85
  year: 1984
  ident: 9906_CR6
  publication-title: J. Number Theory
  doi: 10.1016/0022-314X(84)90094-5
– volume-title: Algebraic Number Theory. Grundlehren der Mathematischen Wissenschaften
  year: 1999
  ident: 9906_CR19
– volume: 37
  start-page: 125
  year: 1991
  ident: 9906_CR14
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(91)90112-W
– volume: 34
  start-page: 361
  year: 2014
  ident: 9906_CR23
  publication-title: Ramanujan J.
  doi: 10.1007/s11139-013-9510-2
– volume: 26
  start-page: 375
  year: 2011
  ident: 9906_CR2
  publication-title: Ramanujan J.
  doi: 10.1007/s11139-010-9292-8
– volume-title: Ramanujan’s Notebooks, Part I
  year: 1985
  ident: 9906_CR7
  doi: 10.1007/978-1-4612-1088-7
– volume-title: Note Books
  year: 1957
  ident: 9906_CR20
– volume-title: An Introduction to the Theory of Numbers
  year: 1979
  ident: 9906_CR15
– volume: 79
  start-page: 681
  year: 1973
  ident: 9906_CR17
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/S0002-9904-1973-13259-8
SSID ssj0004037
Score 2.0936513
Snippet An infinite family of functional equations in the complex plane is obtained for Dirichlet series involving harmonic numbers. Trigonometric series whose...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 569
SubjectTerms Coefficients
Combinatorics
Dirichlet problem
Field Theory and Polynomials
Fourier Analysis
Functional equations
Functions (mathematics)
Functions of a Complex Variable
Mathematical analysis
Mathematics
Mathematics and Statistics
Number Theory
Real numbers
Representations
Title Structural properties of Dirichlet series with harmonic coefficients
URI https://link.springer.com/article/10.1007/s11139-017-9906-5
https://www.proquest.com/docview/1990887722
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXWBAPEWhVB6YQJHi-BFnrKClAsEClcoUOX4IJNRWtP9f3KVJAwiQWBPbw3fn82f77jMh56lPBA-JjixnLhJOB4iDUkcevIkLzgsZygTZBzUai9uJnFR13Is6272-kiwjdVPsxoCtRBhVIYKqSG6StkQ5KXDicdJviiHjUigTtfVgc5StrzJ_GuLrYtQwzG-XouVaM9wlOxVJpP2VVffIhp_uk-37tcLq4oBcP5bCryiaQed4oP6Oyqh0FigEsVf7Auag6F3wDY9aKSpUowoutTNfqkZgAsUhGQ8HT1ejqHoRAaFUy8jz2DvuFFfMaWWZKRwTaawLY5nVaSEcVy5Jvcq0c0HYwnjttbSyMEC1YDN6RFrT2dQfExqCYgZ2K5kzTngVYGYrK7gWRmcGMOyQuIYmt5VcOL5a8ZY3QseIZg5o5ohmLjvkYt1lvtLK-Ktxt8Y7r6bNImcZpl0B4U865LK2waffvw128q_Wp2QLaI9e5V53SQvs5c-AWiyLHmn3b57vBr3SpT4Ah9XGPQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDMCAeIpCAQ9MoEh17DjOWPFQgbYLrdTNcvwQSKitaP-_uEuTBhAgsSa2h-_s83e-82dCLlMfCx5iFVnOXCScCuAHExV5mE1ccJ4noSiQHcjuSDyOk3F5j3teVbtXKcnCU9eX3RiwlQi9KnhQGSXrZAOzjBhxjeJOfRmyXQhlorYeBEfZKpX50xBfN6OaYX5LihZ7zf0u2SlJIu0srbpH1vxkn2z3Vwqr8wNy-1wIv6JoBp3hgfo7KqPSaaDgxF7tC5iD4uyCb3jUSlGhGlVwqZ36QjUCCygOyej-bnjTjcoXERBKuYg8b3vHneSSOSUtM7ljIm2r3FhmVZoLx6WLUy8z5VwQNjdeeZXYJDdAtSAYPSKNyXTijwkNQTID0UrmjBNeBljZ0gquhFGZAQybpF1Bo20pF46vVrzpWugY0dSApkY0ddIkV6sus6VWxl-NWxXeulw2c80yLLsCwh83yXVlg0-_fxvs5F-tL8hmd9jv6d7D4OmUbAEFUss67BZpgO38GdCMRX5eTKsPpFjHjA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT8MwDIAtGBKCA2_EYEAPnECFdUmz9DixjccAIQESnEqbh0CgbmLjwq_H7mMFBEiIa5tGbew6duJ8BthpmgZntiFdxTztci0t2kFfuga1iXHGYt-mCbIX4viGn976t3md02GR7V5sSWZnGojSlIwOBtoelAffPPRcXLKwaE2F60_CFKcSEhWYah3d9Trl0ch6is0k0h6GSsF4Y_O7Tj5PTaW_-WWLNJ15uvNwX7xzlnDytP86ivfV2xec4z8-agHmcq_UaWVqtAgTJlmC2fMx0nW4DO2rlDRLlA5nQCv4L4RidfrWQav5qB5Q_g6pM16jtV2HkNiE3XVU36SYCsrYWIGbbuf68NjNSzCQ7MTINaxuNNOCCU9Lobwo1h5v1mUcKU_JZsw1E7rRNCKQWluu4shII33lxxH6dhj9rkIl6SdmDRxrhRdheBToSHMjLJoSoTiTPJJBhGKqQr0Y_VDlfHIqk_EclmRlGqAQByikAQr9KuyOHxlkcI7fGtcKkYb5fzoMvYDyvDDCaFRhr5DQh9s_dbb-p9bbMH3Z7oZnJxe9DZhBl0tmed81qKDozCa6NaN4K1fddwIu7Ts
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+properties+of+Dirichlet+series+with+harmonic+coefficients&rft.jtitle=The+Ramanujan+journal&rft.au=Alkan%2C+Emre&rft.au=G%C3%B6ral%2C+Haydar&rft.date=2018-02-01&rft.issn=1382-4090&rft.eissn=1572-9303&rft.volume=45&rft.issue=2&rft.spage=569&rft.epage=600&rft_id=info:doi/10.1007%2Fs11139-017-9906-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11139_017_9906_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-4090&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-4090&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-4090&client=summon