Theoretical Study of Interaction Between Methanol and Metal Encapsulated Single Walled Carbon Nanotubes

Interaction of methanol (MeOH) with the outer (exohedral) and inner (endohedral) sides of (10, 0) single walled carbon nanotube (SWCNT) and transition metal (Ni, Pd) encapsulated SWCNT were investigated using density functional theory (DFT). MeOH was inserted to the nanotube from both –CH 3 and –OH...

Full description

Saved in:
Bibliographic Details
Published inJournal of inorganic and organometallic polymers and materials Vol. 29; no. 2; pp. 465 - 476
Main Authors Kalantari Fotooh, Forough, Askari Baghemiyani, Tayebeh
Format Journal Article
LanguageEnglish
Published New York Springer US 15.03.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1574-1443
1574-1451
DOI10.1007/s10904-018-1018-1

Cover

Abstract Interaction of methanol (MeOH) with the outer (exohedral) and inner (endohedral) sides of (10, 0) single walled carbon nanotube (SWCNT) and transition metal (Ni, Pd) encapsulated SWCNT were investigated using density functional theory (DFT). MeOH was inserted to the nanotube from both –CH 3 and –OH sides and all structures were fully relaxed. Binding energies show the exothermic interaction of MeOH and SWCNT which increases by inserting Metals to SWCNT. It was found that Endohedral adsorption is more favored over the exohedral one in all structures. Electronic results show a few modifications in band structures and density of states of pristine SWCNT. However endohedral adsorption of MeOH to Ni@SWCNT alters its electronic and magnetic properties. Methanol adsorption reduces the band gap of Pd@SWCNT too. Spin polarized partial densities of states (PDOS) were also investigated for further comparative studies. According to our results Ni or Pd encapsulated SWCNT are expected to be a potential candidate for MeOH adsorption.
AbstractList Interaction of methanol (MeOH) with the outer (exohedral) and inner (endohedral) sides of (10, 0) single walled carbon nanotube (SWCNT) and transition metal (Ni, Pd) encapsulated SWCNT were investigated using density functional theory (DFT). MeOH was inserted to the nanotube from both –CH3 and –OH sides and all structures were fully relaxed. Binding energies show the exothermic interaction of MeOH and SWCNT which increases by inserting Metals to SWCNT. It was found that Endohedral adsorption is more favored over the exohedral one in all structures. Electronic results show a few modifications in band structures and density of states of pristine SWCNT. However endohedral adsorption of MeOH to Ni@SWCNT alters its electronic and magnetic properties. Methanol adsorption reduces the band gap of Pd@SWCNT too. Spin polarized partial densities of states (PDOS) were also investigated for further comparative studies. According to our results Ni or Pd encapsulated SWCNT are expected to be a potential candidate for MeOH adsorption.
Interaction of methanol (MeOH) with the outer (exohedral) and inner (endohedral) sides of (10, 0) single walled carbon nanotube (SWCNT) and transition metal (Ni, Pd) encapsulated SWCNT were investigated using density functional theory (DFT). MeOH was inserted to the nanotube from both –CH 3 and –OH sides and all structures were fully relaxed. Binding energies show the exothermic interaction of MeOH and SWCNT which increases by inserting Metals to SWCNT. It was found that Endohedral adsorption is more favored over the exohedral one in all structures. Electronic results show a few modifications in band structures and density of states of pristine SWCNT. However endohedral adsorption of MeOH to Ni@SWCNT alters its electronic and magnetic properties. Methanol adsorption reduces the band gap of Pd@SWCNT too. Spin polarized partial densities of states (PDOS) were also investigated for further comparative studies. According to our results Ni or Pd encapsulated SWCNT are expected to be a potential candidate for MeOH adsorption.
Author Kalantari Fotooh, Forough
Askari Baghemiyani, Tayebeh
Author_xml – sequence: 1
  givenname: Forough
  orcidid: 0000-0002-3905-0705
  surname: Kalantari Fotooh
  fullname: Kalantari Fotooh, Forough
  email: f-kalantari-f@iauyazd.ac.ir
  organization: Department of Chemistry, Yazd Branch, Islamic Azad University
– sequence: 2
  givenname: Tayebeh
  surname: Askari Baghemiyani
  fullname: Askari Baghemiyani, Tayebeh
  organization: Department of Chemistry, Yazd Branch, Islamic Azad University
BookMark eNp9kE1Lw0AQhhdRUKs_wFvAc3Qnu0mao5aqhaqHFjyG2c2kjcRN3d0g_fduG1EQ9DIf8D7z8Z6yQ9MZYuwC-BVwnl874AWXMYdxDPtwwE4gzWUMMoXD71qKY3bq3CvnYsxTOGGr5Zo6S77R2EYL31fbqKujmfFkUfumM9Et-Q8iEz2SX6Pp2ghNtWuCfmo0blzfoqcqWjRm1VL0gm0buglaFeCnQPhekTtjRzW2js6_8ogt76bLyUM8f76fTW7msRaQ-bgqqoKnqlBCK8WzhGoq6gwzxDFySivIK4RcjiUJpatcK4GiEFpKVDIXiRixy2HsxnbvPTlfvna9NWFjmUDBIUvyrAiqfFBp2zlnqS5143H3rbfYtCXwcmdqOZhaBj9L2IdAwi9yY5s3tNt_mWRgXNCaFdmfm_6GPgE6N4yJ
CitedBy_id crossref_primary_10_1007_s10904_018_1040_3
crossref_primary_10_1007_s00894_021_04761_w
Cites_doi 10.1016/j.apsusc.2012.03.048
10.1016/S0009-2614(99)01334-2
10.1016/j.cplett.2007.05.094
10.3367/UFNe.0183.201311a.1145
10.1002/adfm.201400921
10.1021/jp0763432
10.1016/j.commatsci.2013.09.046
10.1109/TED.2007.894376
10.1038/34145
10.1143/JPSJ.64.4382
10.1016/j.commatsci.2013.10.021
10.1021/jp044727b
10.1016/j.cplett.2010.09.008
10.1007/s00894-014-2094-y
10.12693/APhysPolA.126.732
10.1016/S0039-6028(97)00629-8
10.1007/s00894-012-1662-2
10.1088/0957-4484/19/12/125701
10.1016/j.physe.2011.05.029
10.1080/00268977000101561
10.1007/s10904-017-0578-9
10.1016/j.susc.2003.08.006
10.1103/PhysRevB.65.153405
10.1016/j.physb.2011.12.120
10.1016/j.jpowsour.2006.02.054
10.1016/j.physb.2009.09.103
10.1002/anie.201705258
10.1088/0253-6102/55/2/30
10.1016/j.diamond.2005.09.043
10.1016/j.sna.2013.07.018
10.1103/PhysRevLett.74.1123
10.1021/nl025789l
10.1016/j.mattod.2015.05.017
10.1016/j.commatsci.2008.01.071
10.1140/epjb/e2009-00328-7
10.1103/PhysRevB.65.155411
10.1016/j.ijhydene.2015.04.064
10.1016/j.apsusc.2014.07.056
10.1039/B614300H
10.1016/j.comptc.2016.12.006
10.1103/PhysRevB.45.13244
10.1016/j.snb.2010.09.054
10.1016/j.molstruc.2014.07.017
10.1002/adma.200700126
10.7498/aps.63.077302
10.1016/j.snb.2011.05.031
10.1016/j.apsusc.2015.03.181
10.1016/j.jcis.2017.09.002
10.1039/C5TA10551J
10.1038/415599a
10.1088/0957-4484/20/23/235502
10.1039/C8TC01269E
10.1016/j.spmi.2013.12.025
10.1016/j.ces.2005.08.007
10.1103/PhysRevLett.43.1494
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
DOI 10.1007/s10904-018-1018-1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1574-1451
EndPage 476
ExternalDocumentID 10_1007_s10904_018_1018_1
GroupedDBID -58
-5G
-BR
-EM
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
203
29K
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9I
O9J
OAM
P9N
PF0
PT4
PT5
QOR
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7V
Z7X
Z7Y
Z86
Z8P
Z8S
ZMTXR
~A9
-Y2
2.D
2P1
2VQ
AAIKT
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABULA
ACBXY
ACMFV
ACSTC
ADHKG
AEBTG
AEKMD
AEZWR
AFDZB
AFEXP
AFGCZ
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
CAG
CITATION
COF
H13
N2Q
NDZJH
O9-
RNI
RZC
RZE
S1Z
S26
S28
SCLPG
T16
W4F
ZE2
ABRTQ
ID FETCH-LOGICAL-c316t-d9d905b9b3cbb062efe9f6a6aa8a0e5d17da17484e3bcd7cb3a393c44ab47323
IEDL.DBID U2A
ISSN 1574-1443
IngestDate Wed Sep 17 13:50:56 EDT 2025
Tue Jul 01 01:45:27 EDT 2025
Thu Apr 24 22:51:02 EDT 2025
Fri Feb 21 02:37:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Band structures
Density of states
Transition metals
DFT calculations
Nanotube
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-d9d905b9b3cbb062efe9f6a6aa8a0e5d17da17484e3bcd7cb3a393c44ab47323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3905-0705
PQID 2190162769
PQPubID 2044289
PageCount 12
ParticipantIDs proquest_journals_2190162769
crossref_citationtrail_10_1007_s10904_018_1018_1
crossref_primary_10_1007_s10904_018_1018_1
springer_journals_10_1007_s10904_018_1018_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190315
PublicationDateYYYYMMDD 2019-03-15
PublicationDate_xml – month: 3
  year: 2019
  text: 20190315
  day: 15
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of inorganic and organometallic polymers and materials
PublicationTitleAbbrev J Inorg Organomet Polym
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References GanjiMDGoodarziMNashtahosseiniMCommun. Theor. Phys.20115536510.1088/0253-6102/55/2/301:CAS:528:DC%2BC3MXjsFOgtr4%3D
PanjaCSalibaNKoelBESurf. Sci.199839524810.1016/S0039-6028(97)00629-81:CAS:528:DyaK1cXhs1Wmu7o%3D
AjikiHAndoTJ. Phys. Soc. Jpn.199564438210.1143/JPSJ.64.43821:CAS:528:DyaK2MXps1Oqu7k%3D
WachsIESurf. Sci.2003544110.1016/j.susc.2003.08.0061:CAS:528:DC%2BD3sXnsVaiurk%3D
RossettiIRamisGGalloAInt. J. Hydrogen Energy201540760910.1016/j.ijhydene.2015.04.0641:CAS:528:DC%2BC2MXns1Oksbg%3D
DhallSJaggiNNathawatRSens. Actuators, A201320132110.1016/j.sna.2013.07.0181:CAS:528:DC%2BC3sXhsFKjtrbI
ZhuangHLZhengGPSohAKComput. Mater. Sci.20084382310.1016/j.commatsci.2008.01.0711:CAS:528:DC%2BD1cXhtFOksrrK
SinghAKumarVKawazoeYEur. Phys. J.2005342952981:CAS:528:DC%2BD2MXmtFOqtrk%3D
ReichSThomsenCOrdejónPPhys. Rev. B20026515541110.1103/PhysRevB.65.1554111:CAS:528:DC%2BD38XjtV2ntb8%3D
LuCChiuHChem. Eng. Sci.200661113810.1016/j.ces.2005.08.0071:CAS:528:DC%2BD28Xks1Cn
BaghemiyaniTAKalantari FotoohFJ. Inorg. Organomet. Polym Mater.201727127410.1007/s10904-017-0578-91:CAS:528:DC%2BC2sXotlWhtbk%3D
JinLZhaoXQianXJ Coll. Interface Sci,201750924525310.1016/j.jcis.2017.09.0021:CAS:528:DC%2BC2sXhsV2ltr%2FE
Nieto-OrtegaBVillalvaJVera-HidalgoMAngew. Chem. Int. Ed.2017561224010.1002/anie.2017052581:CAS:528:DC%2BC2sXhtlOrsr3L
PankewitzTKlopperWChem. Phys. Lett.201049834510.1016/j.cplett.2010.09.0081:CAS:528:DC%2BC3cXht1els7zL
DuXJZhangJMWangSFEur. Phys. J. B20097211910.1140/epjb/e2009-00328-71:CAS:528:DC%2BD1MXhsVyrsb7M
PerdewJPWangYPhys. Rev. B1992451324410.1103/PhysRevB.45.132441:STN:280:DC%2BC2sflvVWktw%3D%3D
LiD-CDaiLHuangSChem. Phys. Lett.200031634910.1016/S0009-2614(99)01334-21:CAS:528:DC%2BD3cXltVagsQ%3D%3D
TallaJAPhys. B201240796610.1016/j.physb.2011.12.1201:CAS:528:DC%2BC38XhslyrurY%3D
ZhouXTianWQWangX-LSens. Actuators B20101515610.1016/j.snb.2010.09.0541:CAS:528:DC%2BC3cXhtlGntbnK
ZhouQWangCFuZComput. Mater. Sci.20148233710.1016/j.commatsci.2013.09.0461:CAS:528:DC%2BC3sXhvFeitr7K
TaoXYZhangXBChengJPDiamond Relat. Mater.200615127110.1016/j.diamond.2005.09.0431:CAS:528:DC%2BD28XotFequ7o%3D
GowthamSRalphHSRavindraPNanotechnology20081912570110.1088/0957-4484/19/12/1257011:CAS:528:DC%2BD1cXmvVSgs7Y%3D21817742
EllisonMDMorrisSTSenderMRJ. Phys. Chem. C20071111812710.1021/jp07634321:CAS:528:DC%2BD2sXht1OqtLvL
ZhangXGuiYDaiZAppl. Surf. Sci.201431519610.1016/j.apsusc.2014.07.0561:CAS:528:DC%2BC2cXhtlCktrbP
SeanBSteveCRobertGNanotechnology20092023550210.1088/0957-4484/20/23/2355021:CAS:528:DC%2BD1MXptVygs70%3D
WangX-HOrikasaHInokumaNJ. Mater. Chem.20071798610.1039/B614300H1:CAS:528:DC%2BD2sXitFCiu78%3D
AhmadiABeheshtianJHadipourNLPhysica E201143171710.1016/j.physe.2011.05.0291:CAS:528:DC%2BC3MXotl2kt7w%3D
XinHHongYHuitengTAdv. Funct. Mater.201424651610.1002/adfm.2014009211:CAS:528:DC%2BC2cXhsVSnurbO
PaoloGStefanoBNicolaBJ. Phys.200921395502
GülserenOYildirimTCiraciSPhys. Rev. B20026515340510.1103/PhysRevB.65.1534051:CAS:528:DC%2BD38XjtV2nt70%3D
DicksALJ. Power Sources200615612810.1016/j.jpowsour.2006.02.0541:CAS:528:DC%2BD28XltVOlt7o%3D
FlatteMEIEEE Trans. Electron Devices20075490710.1109/TED.2007.894376
C.P.M.F. J.GDAdv. Mater.200719193710.1002/adma.2007001261:CAS:528:DC%2BD2sXpsVGru7k%3D
WangQLiuYJZhaoJXJ. Mol. Model.201319114310.1007/s00894-012-1662-21:CAS:528:DC%2BC3sXjtlWgu7k%3D23149764
GaoYBandoYNature200241559910.1038/415599a1:CAS:528:DC%2BD38XhsVCjsrk%3D11832929
TangZ-RPhys. B201040577010.1016/j.physb.2009.09.1031:CAS:528:DC%2BD1MXhsVyqtL3J
BoysSFBernardiFMol. Phys.19701955310.1080/002689770001015611:CAS:528:DC%2BD2sXht1alt7fM
XieYHuoY-PZhangJ-MAppl. Surf. Sci.2012258639110.1016/j.apsusc.2012.03.0481:CAS:528:DC%2BC38XkvVOksro%3D
VasuKSPramanikDKunduSJ. Mater. Chem. C20186648310.1039/C8TC01269E1:CAS:528:DC%2BC1cXhtVOlu7%2FE
MaPXiaoHLiCMater. Today20151855410.1016/j.mattod.2015.05.0171:CAS:528:DC%2BC2MXps1SksLY%3D
LvovaLMastroianniMPomaricoGSens. Actuators, B201217016310.1016/j.snb.2011.05.0311:CAS:528:DC%2BC38Xht1ShsrjK
HamadanianMTavangarZNooriBJ. Mol. Struct.201410764910.1016/j.molstruc.2014.07.0171:CAS:528:DC%2BC2cXht1GktbzN
Liu ManYQLi-PingZQinHActa Phys. Sin.20146377302
LiuYJiangHZhuYJ. Mater. Chem. A20164169410.1039/C5TA10551J1:CAS:528:DC%2BC28XktleitQ%3D%3D
HamannDRSchlüterMChiangCPhys. Rev. Lett.197943149410.1103/PhysRevLett.43.14941:CAS:528:DyaL3cXhtFGgtQ%3D%3D
KimH-SLeeHHanK-SJ. Phys. Chem. B2005109898310.1021/jp044727b1:CAS:528:DC%2BD2MXjtl2gtbo%3D16852070
HamadanianMFotoohFKComput. Mater. Sci.20148249710.1016/j.commatsci.2013.10.0211:CAS:528:DC%2BC3sXhvFeitr7E
BurghausUByeDCosertKChem. Phys. Lett.200744234410.1016/j.cplett.2007.05.0941:CAS:528:DC%2BD2sXnsVSrs7w%3D
KharlamovaMVPhys. Usp.201356104710.3367/UFNe.0183.201311a.11451:CAS:528:DC%2BC2cXnslKitr4%3D
LarijaniMMSafaSActa Phys. Pol.201412673210.12693/APhysPolA.126.7321:CAS:528:DC%2BC2cXhs12hsrbP
BastosMCampsIJ. Mol. Model.201420110.1007/s00894-014-2094-y1:CAS:528:DC%2BC2cXisFSgu7g%3D
NguyenTTHLeVKLe MinhCComput. Theor. Chem.201711004610.1016/j.comptc.2016.12.0061:CAS:528:DC%2BC28XitFamtbrK
SinghAKKumarVBriereTMNano Lett.20022124310.1021/nl025789l1:CAS:528:DC%2BD38XnvFWnsb8%3D
A. Soltani, A. Sousaraei, M. Mirarab, H. Balakheyli, J. Saudi Chem. Soc. (2015)
KuangAWangGLiYAppl. Surf. Sci.20153462410.1016/j.apsusc.2015.03.1811:CAS:528:DC%2BC2MXmt1yrtbk%3D
LuJPPhys. Rev. Lett.199574112310.1103/PhysRevLett.74.11231:CAS:528:DyaK2MXjs1KisLc%3D10058940
WannoBTabtimsaiCSuperlatt. Microstruct.20146711010.1016/j.spmi.2013.12.0251:CAS:528:DC%2BC2cXitF2jtrY%3D
OdomTWHuangJ-LKimPNature19983916210.1038/341451:CAS:528:DyaK1cXjvFahtw%3D%3D
M Hamadanian (1018_CR5) 2014; 82
X-H Wang (1018_CR26) 2007; 17
B Wanno (1018_CR19) 2014; 67
D-C Li (1018_CR22) 2000; 316
SF Boys (1018_CR50) 1970; 19
C Lu (1018_CR1) 2006; 61
G Paolo (1018_CR45) 2009; 21
H-S Kim (1018_CR35) 2005; 109
AK Singh (1018_CR32) 2002; 2
S Dhall (1018_CR11) 2013; 201
Y Gao (1018_CR25) 2002; 415
A Ahmadi (1018_CR48) 2011; 43
IE Wachs (1018_CR43) 2003; 544
C Panja (1018_CR44) 1998; 395
A Singh (1018_CR31) 2005; 34
A Kuang (1018_CR6) 2015; 346
AL Dicks (1018_CR37) 2006; 156
JP Perdew (1018_CR46) 1992; 45
Q Zhou (1018_CR2) 2014; 82
DR Hamann (1018_CR47) 1979; 43
T Pankewitz (1018_CR38) 2010; 498
ME Flatte (1018_CR58) 2007; 54
YQ Liu Man (1018_CR30) 2014; 63
GD C.P.M.F. J. (1018_CR24) 2007; 19
L Jin (1018_CR34) 2017; 509
MV Kharlamova (1018_CR49) 2013; 56
TW Odom (1018_CR57) 1998; 391
S Gowtham (1018_CR52) 2008; 19
HL Zhuang (1018_CR12) 2008; 43
X Zhang (1018_CR21) 2014; 315
U Burghaus (1018_CR41) 2007; 442
Y Liu (1018_CR28) 2016; 4
1018_CR3
Z-R Tang (1018_CR42) 2010; 405
MM Larijani (1018_CR17) 2014; 126
MD Ellison (1018_CR40) 2007; 111
Y Xie (1018_CR51) 2012; 258
O Gülseren (1018_CR54) 2002; 65
X Zhou (1018_CR20) 2010; 151
M Hamadanian (1018_CR14) 2014; 1076
JP Lu (1018_CR56) 1995; 74
H Ajiki (1018_CR55) 1995; 64
KS Vasu (1018_CR8) 2018; 6
B Nieto-Ortega (1018_CR7) 2017; 56
JA Talla (1018_CR10) 2012; 407
I Rossetti (1018_CR18) 2015; 40
H Xin (1018_CR29) 2014; 24
MD Ganji (1018_CR39) 2011; 55
M Bastos (1018_CR15) 2014; 20
P Ma (1018_CR27) 2015; 18
S Reich (1018_CR53) 2002; 65
Q Wang (1018_CR33) 2013; 19
XJ Du (1018_CR13) 2009; 72
XY Tao (1018_CR23) 2006; 15
TA Baghemiyani (1018_CR4) 2017; 27
L Lvova (1018_CR9) 2012; 170
B Sean (1018_CR36) 2009; 20
TTH Nguyen (1018_CR16) 2017; 1100
References_xml – reference: GaoYBandoYNature200241559910.1038/415599a1:CAS:528:DC%2BD38XhsVCjsrk%3D11832929
– reference: LvovaLMastroianniMPomaricoGSens. Actuators, B201217016310.1016/j.snb.2011.05.0311:CAS:528:DC%2BC38Xht1ShsrjK
– reference: ZhangXGuiYDaiZAppl. Surf. Sci.201431519610.1016/j.apsusc.2014.07.0561:CAS:528:DC%2BC2cXhtlCktrbP
– reference: Liu ManYQLi-PingZQinHActa Phys. Sin.20146377302
– reference: BurghausUByeDCosertKChem. Phys. Lett.200744234410.1016/j.cplett.2007.05.0941:CAS:528:DC%2BD2sXnsVSrs7w%3D
– reference: BastosMCampsIJ. Mol. Model.201420110.1007/s00894-014-2094-y1:CAS:528:DC%2BC2cXisFSgu7g%3D
– reference: PaoloGStefanoBNicolaBJ. Phys.200921395502
– reference: DicksALJ. Power Sources200615612810.1016/j.jpowsour.2006.02.0541:CAS:528:DC%2BD28XltVOlt7o%3D
– reference: LiD-CDaiLHuangSChem. Phys. Lett.200031634910.1016/S0009-2614(99)01334-21:CAS:528:DC%2BD3cXltVagsQ%3D%3D
– reference: LuJPPhys. Rev. Lett.199574112310.1103/PhysRevLett.74.11231:CAS:528:DyaK2MXjs1KisLc%3D10058940
– reference: DuXJZhangJMWangSFEur. Phys. J. B20097211910.1140/epjb/e2009-00328-71:CAS:528:DC%2BD1MXhsVyrsb7M
– reference: TaoXYZhangXBChengJPDiamond Relat. Mater.200615127110.1016/j.diamond.2005.09.0431:CAS:528:DC%2BD28XotFequ7o%3D
– reference: ReichSThomsenCOrdejónPPhys. Rev. B20026515541110.1103/PhysRevB.65.1554111:CAS:528:DC%2BD38XjtV2ntb8%3D
– reference: HamannDRSchlüterMChiangCPhys. Rev. Lett.197943149410.1103/PhysRevLett.43.14941:CAS:528:DyaL3cXhtFGgtQ%3D%3D
– reference: OdomTWHuangJ-LKimPNature19983916210.1038/341451:CAS:528:DyaK1cXjvFahtw%3D%3D
– reference: BoysSFBernardiFMol. Phys.19701955310.1080/002689770001015611:CAS:528:DC%2BD2sXht1alt7fM
– reference: JinLZhaoXQianXJ Coll. Interface Sci,201750924525310.1016/j.jcis.2017.09.0021:CAS:528:DC%2BC2sXhsV2ltr%2FE
– reference: SinghAKumarVKawazoeYEur. Phys. J.2005342952981:CAS:528:DC%2BD2MXmtFOqtrk%3D
– reference: KharlamovaMVPhys. Usp.201356104710.3367/UFNe.0183.201311a.11451:CAS:528:DC%2BC2cXnslKitr4%3D
– reference: MaPXiaoHLiCMater. Today20151855410.1016/j.mattod.2015.05.0171:CAS:528:DC%2BC2MXps1SksLY%3D
– reference: C.P.M.F. J.GDAdv. Mater.200719193710.1002/adma.2007001261:CAS:528:DC%2BD2sXpsVGru7k%3D
– reference: FlatteMEIEEE Trans. Electron Devices20075490710.1109/TED.2007.894376
– reference: LarijaniMMSafaSActa Phys. Pol.201412673210.12693/APhysPolA.126.7321:CAS:528:DC%2BC2cXhs12hsrbP
– reference: PanjaCSalibaNKoelBESurf. Sci.199839524810.1016/S0039-6028(97)00629-81:CAS:528:DyaK1cXhs1Wmu7o%3D
– reference: GülserenOYildirimTCiraciSPhys. Rev. B20026515340510.1103/PhysRevB.65.1534051:CAS:528:DC%2BD38XjtV2nt70%3D
– reference: ZhouXTianWQWangX-LSens. Actuators B20101515610.1016/j.snb.2010.09.0541:CAS:528:DC%2BC3cXhtlGntbnK
– reference: WannoBTabtimsaiCSuperlatt. Microstruct.20146711010.1016/j.spmi.2013.12.0251:CAS:528:DC%2BC2cXitF2jtrY%3D
– reference: XieYHuoY-PZhangJ-MAppl. Surf. Sci.2012258639110.1016/j.apsusc.2012.03.0481:CAS:528:DC%2BC38XkvVOksro%3D
– reference: LuCChiuHChem. Eng. Sci.200661113810.1016/j.ces.2005.08.0071:CAS:528:DC%2BD28Xks1Cn
– reference: Nieto-OrtegaBVillalvaJVera-HidalgoMAngew. Chem. Int. Ed.2017561224010.1002/anie.2017052581:CAS:528:DC%2BC2sXhtlOrsr3L
– reference: TallaJAPhys. B201240796610.1016/j.physb.2011.12.1201:CAS:528:DC%2BC38XhslyrurY%3D
– reference: GowthamSRalphHSRavindraPNanotechnology20081912570110.1088/0957-4484/19/12/1257011:CAS:528:DC%2BD1cXmvVSgs7Y%3D21817742
– reference: KimH-SLeeHHanK-SJ. Phys. Chem. B2005109898310.1021/jp044727b1:CAS:528:DC%2BD2MXjtl2gtbo%3D16852070
– reference: HamadanianMTavangarZNooriBJ. Mol. Struct.201410764910.1016/j.molstruc.2014.07.0171:CAS:528:DC%2BC2cXht1GktbzN
– reference: WachsIESurf. Sci.2003544110.1016/j.susc.2003.08.0061:CAS:528:DC%2BD3sXnsVaiurk%3D
– reference: BaghemiyaniTAKalantari FotoohFJ. Inorg. Organomet. Polym Mater.201727127410.1007/s10904-017-0578-91:CAS:528:DC%2BC2sXotlWhtbk%3D
– reference: ZhouQWangCFuZComput. Mater. Sci.20148233710.1016/j.commatsci.2013.09.0461:CAS:528:DC%2BC3sXhvFeitr7K
– reference: NguyenTTHLeVKLe MinhCComput. Theor. Chem.201711004610.1016/j.comptc.2016.12.0061:CAS:528:DC%2BC28XitFamtbrK
– reference: HamadanianMFotoohFKComput. Mater. Sci.20148249710.1016/j.commatsci.2013.10.0211:CAS:528:DC%2BC3sXhvFeitr7E
– reference: VasuKSPramanikDKunduSJ. Mater. Chem. C20186648310.1039/C8TC01269E1:CAS:528:DC%2BC1cXhtVOlu7%2FE
– reference: DhallSJaggiNNathawatRSens. Actuators, A201320132110.1016/j.sna.2013.07.0181:CAS:528:DC%2BC3sXhsFKjtrbI
– reference: KuangAWangGLiYAppl. Surf. Sci.20153462410.1016/j.apsusc.2015.03.1811:CAS:528:DC%2BC2MXmt1yrtbk%3D
– reference: GanjiMDGoodarziMNashtahosseiniMCommun. Theor. Phys.20115536510.1088/0253-6102/55/2/301:CAS:528:DC%2BC3MXjsFOgtr4%3D
– reference: WangQLiuYJZhaoJXJ. Mol. Model.201319114310.1007/s00894-012-1662-21:CAS:528:DC%2BC3sXjtlWgu7k%3D23149764
– reference: LiuYJiangHZhuYJ. Mater. Chem. A20164169410.1039/C5TA10551J1:CAS:528:DC%2BC28XktleitQ%3D%3D
– reference: SeanBSteveCRobertGNanotechnology20092023550210.1088/0957-4484/20/23/2355021:CAS:528:DC%2BD1MXptVygs70%3D
– reference: AjikiHAndoTJ. Phys. Soc. Jpn.199564438210.1143/JPSJ.64.43821:CAS:528:DyaK2MXps1Oqu7k%3D
– reference: PerdewJPWangYPhys. Rev. B1992451324410.1103/PhysRevB.45.132441:STN:280:DC%2BC2sflvVWktw%3D%3D
– reference: A. Soltani, A. Sousaraei, M. Mirarab, H. Balakheyli, J. Saudi Chem. Soc. (2015)
– reference: PankewitzTKlopperWChem. Phys. Lett.201049834510.1016/j.cplett.2010.09.0081:CAS:528:DC%2BC3cXht1els7zL
– reference: EllisonMDMorrisSTSenderMRJ. Phys. Chem. C20071111812710.1021/jp07634321:CAS:528:DC%2BD2sXht1OqtLvL
– reference: ZhuangHLZhengGPSohAKComput. Mater. Sci.20084382310.1016/j.commatsci.2008.01.0711:CAS:528:DC%2BD1cXhtFOksrrK
– reference: SinghAKKumarVBriereTMNano Lett.20022124310.1021/nl025789l1:CAS:528:DC%2BD38XnvFWnsb8%3D
– reference: XinHHongYHuitengTAdv. Funct. Mater.201424651610.1002/adfm.2014009211:CAS:528:DC%2BC2cXhsVSnurbO
– reference: WangX-HOrikasaHInokumaNJ. Mater. Chem.20071798610.1039/B614300H1:CAS:528:DC%2BD2sXitFCiu78%3D
– reference: RossettiIRamisGGalloAInt. J. Hydrogen Energy201540760910.1016/j.ijhydene.2015.04.0641:CAS:528:DC%2BC2MXns1Oksbg%3D
– reference: AhmadiABeheshtianJHadipourNLPhysica E201143171710.1016/j.physe.2011.05.0291:CAS:528:DC%2BC3MXotl2kt7w%3D
– reference: TangZ-RPhys. B201040577010.1016/j.physb.2009.09.1031:CAS:528:DC%2BD1MXhsVyqtL3J
– volume: 258
  start-page: 6391
  year: 2012
  ident: 1018_CR51
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2012.03.048
– volume: 316
  start-page: 349
  year: 2000
  ident: 1018_CR22
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(99)01334-2
– volume: 442
  start-page: 344
  year: 2007
  ident: 1018_CR41
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2007.05.094
– volume: 56
  start-page: 1047
  year: 2013
  ident: 1018_CR49
  publication-title: Phys. Usp.
  doi: 10.3367/UFNe.0183.201311a.1145
– volume: 24
  start-page: 6516
  year: 2014
  ident: 1018_CR29
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201400921
– volume: 21
  start-page: 395502
  year: 2009
  ident: 1018_CR45
  publication-title: J. Phys.
– volume: 111
  start-page: 18127
  year: 2007
  ident: 1018_CR40
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp0763432
– volume: 82
  start-page: 337
  year: 2014
  ident: 1018_CR2
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2013.09.046
– volume: 54
  start-page: 907
  year: 2007
  ident: 1018_CR58
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2007.894376
– volume: 391
  start-page: 62
  year: 1998
  ident: 1018_CR57
  publication-title: Nature
  doi: 10.1038/34145
– volume: 64
  start-page: 4382
  year: 1995
  ident: 1018_CR55
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.64.4382
– volume: 82
  start-page: 497
  year: 2014
  ident: 1018_CR5
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2013.10.021
– volume: 109
  start-page: 8983
  year: 2005
  ident: 1018_CR35
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp044727b
– volume: 498
  start-page: 345
  year: 2010
  ident: 1018_CR38
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2010.09.008
– volume: 20
  start-page: 1
  year: 2014
  ident: 1018_CR15
  publication-title: J. Mol. Model.
  doi: 10.1007/s00894-014-2094-y
– volume: 34
  start-page: 295
  year: 2005
  ident: 1018_CR31
  publication-title: Eur. Phys. J.
– volume: 126
  start-page: 732
  year: 2014
  ident: 1018_CR17
  publication-title: Acta Phys. Pol.
  doi: 10.12693/APhysPolA.126.732
– volume: 395
  start-page: 248
  year: 1998
  ident: 1018_CR44
  publication-title: Surf. Sci.
  doi: 10.1016/S0039-6028(97)00629-8
– volume: 19
  start-page: 1143
  year: 2013
  ident: 1018_CR33
  publication-title: J. Mol. Model.
  doi: 10.1007/s00894-012-1662-2
– volume: 19
  start-page: 125701
  year: 2008
  ident: 1018_CR52
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/19/12/125701
– volume: 43
  start-page: 1717
  year: 2011
  ident: 1018_CR48
  publication-title: Physica E
  doi: 10.1016/j.physe.2011.05.029
– volume: 19
  start-page: 553
  year: 1970
  ident: 1018_CR50
  publication-title: Mol. Phys.
  doi: 10.1080/00268977000101561
– volume: 27
  start-page: 1274
  year: 2017
  ident: 1018_CR4
  publication-title: J. Inorg. Organomet. Polym Mater.
  doi: 10.1007/s10904-017-0578-9
– volume: 544
  start-page: 1
  year: 2003
  ident: 1018_CR43
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2003.08.006
– volume: 65
  start-page: 153405
  year: 2002
  ident: 1018_CR54
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.65.153405
– volume: 407
  start-page: 966
  year: 2012
  ident: 1018_CR10
  publication-title: Phys. B
  doi: 10.1016/j.physb.2011.12.120
– volume: 156
  start-page: 128
  year: 2006
  ident: 1018_CR37
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.02.054
– volume: 405
  start-page: 770
  year: 2010
  ident: 1018_CR42
  publication-title: Phys. B
  doi: 10.1016/j.physb.2009.09.103
– volume: 56
  start-page: 12240
  year: 2017
  ident: 1018_CR7
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201705258
– volume: 55
  start-page: 365
  year: 2011
  ident: 1018_CR39
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/55/2/30
– volume: 15
  start-page: 1271
  year: 2006
  ident: 1018_CR23
  publication-title: Diamond Relat. Mater.
  doi: 10.1016/j.diamond.2005.09.043
– volume: 201
  start-page: 321
  year: 2013
  ident: 1018_CR11
  publication-title: Sens. Actuators, A
  doi: 10.1016/j.sna.2013.07.018
– volume: 74
  start-page: 1123
  year: 1995
  ident: 1018_CR56
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.74.1123
– volume: 2
  start-page: 1243
  year: 2002
  ident: 1018_CR32
  publication-title: Nano Lett.
  doi: 10.1021/nl025789l
– volume: 18
  start-page: 554
  year: 2015
  ident: 1018_CR27
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2015.05.017
– volume: 43
  start-page: 823
  year: 2008
  ident: 1018_CR12
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2008.01.071
– volume: 72
  start-page: 119
  year: 2009
  ident: 1018_CR13
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2009-00328-7
– volume: 65
  start-page: 155411
  year: 2002
  ident: 1018_CR53
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.65.155411
– volume: 40
  start-page: 7609
  year: 2015
  ident: 1018_CR18
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.04.064
– volume: 315
  start-page: 196
  year: 2014
  ident: 1018_CR21
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2014.07.056
– volume: 17
  start-page: 986
  year: 2007
  ident: 1018_CR26
  publication-title: J. Mater. Chem.
  doi: 10.1039/B614300H
– volume: 1100
  start-page: 46
  year: 2017
  ident: 1018_CR16
  publication-title: Comput. Theor. Chem.
  doi: 10.1016/j.comptc.2016.12.006
– volume: 45
  start-page: 13244
  year: 1992
  ident: 1018_CR46
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.45.13244
– volume: 151
  start-page: 56
  year: 2010
  ident: 1018_CR20
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2010.09.054
– volume: 1076
  start-page: 49
  year: 2014
  ident: 1018_CR14
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2014.07.017
– volume: 19
  start-page: 1937
  year: 2007
  ident: 1018_CR24
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200700126
– volume: 63
  start-page: 77302
  year: 2014
  ident: 1018_CR30
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps.63.077302
– volume: 170
  start-page: 163
  year: 2012
  ident: 1018_CR9
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2011.05.031
– volume: 346
  start-page: 24
  year: 2015
  ident: 1018_CR6
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.03.181
– ident: 1018_CR3
– volume: 509
  start-page: 245
  year: 2017
  ident: 1018_CR34
  publication-title: J Coll. Interface Sci,
  doi: 10.1016/j.jcis.2017.09.002
– volume: 4
  start-page: 1694
  year: 2016
  ident: 1018_CR28
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA10551J
– volume: 415
  start-page: 599
  year: 2002
  ident: 1018_CR25
  publication-title: Nature
  doi: 10.1038/415599a
– volume: 20
  start-page: 235502
  year: 2009
  ident: 1018_CR36
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/20/23/235502
– volume: 6
  start-page: 6483
  year: 2018
  ident: 1018_CR8
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC01269E
– volume: 67
  start-page: 110
  year: 2014
  ident: 1018_CR19
  publication-title: Superlatt. Microstruct.
  doi: 10.1016/j.spmi.2013.12.025
– volume: 61
  start-page: 1138
  year: 2006
  ident: 1018_CR1
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2005.08.007
– volume: 43
  start-page: 1494
  year: 1979
  ident: 1018_CR47
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.43.1494
SSID ssj0038051
Score 2.1594608
Snippet Interaction of methanol (MeOH) with the outer (exohedral) and inner (endohedral) sides of (10, 0) single walled carbon nanotube (SWCNT) and transition metal...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 465
SubjectTerms Adsorption
Chemistry
Chemistry and Materials Science
Comparative studies
Density functional theory
Encapsulation
Inorganic Chemistry
Magnetic properties
Methanol
Nickel
Organic Chemistry
Palladium
Polymer Sciences
Single wall carbon nanotubes
Transition metals
Title Theoretical Study of Interaction Between Methanol and Metal Encapsulated Single Walled Carbon Nanotubes
URI https://link.springer.com/article/10.1007/s10904-018-1018-1
https://www.proquest.com/docview/2190162769
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagHWBBPEWhVB6YQJGc2HmNbdVSgehCK5Up8issUYLadODf40tiAgiQWBxZsS3rzvad7e8-I3TtKx8Mt-twN5AOU0w4QjDtgHlgbqoiIiu0xTyYLdn9yl81cdwbi3a3V5LVSv0p2C2uEBNARwrJLur6QCdlBvHSG9rll0bEr0lSQ-aY3QK1V5k_NfHVGLUe5rdL0crWTA_RQeMk4mGt1SO0o_NjtDe2b7OdoJdFG3-IAQr4hosUV6d7daACHtX4K_yo4Wy8yDDPFWRM-UkuudkbZ8bLVPjJdCDTGM7TTW7M18JUNktuUW6F3pyixXSyGM-c5skER1I3KB0Vq5j4IhZUCkECT6c6TgMecB5xon3lhoq7QB-qqZAqlIJyGlPJGBcspB49Q528yPU5wikJpeKUaBFKxiWJ0lRwoLIWZsozGvUQsaJLZEMnDq9aZElLhAzSToygAUdmkh66-ajyWnNp_FW4b_WRNNNqk3jgvgReGMQ9dGt11P7-tbGLf5W-RPvGLYoBaeb6fdQp11t9ZVyPUgxQdzgdjebwvXt-mAyqofcOTNzTJw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLagDGVBnKJQwAMTyJITO9dYqqICbRdSqVvkKyxVgtp04N_jl4MAAiQWS1ZsK_L1ru99Ruja0x4IbocIx1eEay6JlNwQEA_cSXVIVYm2mPnjOX9ceIs6j3vdoN2bkGR5U39KdotKxATQkUKxjXYgyggW19wdNNcvC6lXkaQGnFhrgTWhzJ-G-CqMWg3zW1C0lDX3-2ivVhLxoFrVA7RlskPUHTZvsx2hl7jNP8QABXzDeYpL716VqIDvKvwVnhrwjedLLDINFdt-lClhbeOl1TI1frY_sDQY_Om2NhQraTvbKzcvNtKsj1F8P4qHY1I_mUAUc_yC6EhH1JORZEpK6rsmNVHqC1-IUFDjaSfQwgH6UMOk0oGSTLCIKc6F5AFz2QnqZHlmThFOaaC0YNTIQHGhaJimUgCVtbRHnrOwh2gzdYmq6cThVYtl0hIhw2wndqIBR2aLHrr56PJacWn81bjfrEdSH6t14oL64ruBH_XQbbNG7edfBzv7V-sr1B3H00kyeZg9naNdqyJFgDpzvD7qFKuNubBqSCEvy233DgJO0vo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB7RIFEu5dEiUh71oSeqBW_sfR0hJNBCERKpRE-Lx_ZyINogsjm0vx5Pdk0AAVLViyVrbcuv9YzH33wD8DUyEQnuMFBhrANpJAaI0gYkHmRYmJTrKdriLD7-JX9cRpdNnNOxR7v7J8nap4FYmspq79YUe48c37IpeoKoSSl5B_OSQki0YH7_6PdJzx_GIuVRTZmayMDdHYR_2HypkaeiaaZvPnsinUqe_hJc-T7XgJOb3UmFu_rvMzrH_xjUMnxotFK2X2-jFZiz5Sq87_pgcB_hejBzeGSEPfzDRgWbmhNrzwh2UAO-2E9LxvjRkKnSUMaV75Vaucv40Km1hl247g0tIwO-y3XVHbrK7owfVRO0408w6PcG3eOgidEQaBHGVWAyk_EIMxQakccdW9isiFWsVKq4jUyYGBUSX6kVqE2iUSiRCS2lQpmIjliDVjkq7TqwgifaKMEtJloqzdOiQEXc2ejOGCnSNnC_Orlu-MspjMYwnzEv0wTmbu4IuOaSNuw8VLmtyTveKrzplzxv_uNx3iF9Ke4kcdaGb34FZ59fbezzP5X-Agvnh_389PvZyQYsOpUsI5RbGG1Cq7qb2C2n9lS43WztewE1-Jc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+Study+of+Interaction+Between+Methanol+and+Metal+Encapsulated+Single+Walled+Carbon+Nanotubes&rft.jtitle=Journal+of+inorganic+and+organometallic+polymers+and+materials&rft.au=ough+Kalantari+Fotooh&rft.au=Tayebeh+Askari+Baghemiyani&rft.date=2019-03-15&rft.pub=Springer+Nature+B.V&rft.issn=1574-1443&rft.eissn=1574-1451&rft.volume=29&rft.issue=2&rft.spage=465&rft.epage=476&rft_id=info:doi/10.1007%2Fs10904-018-1018-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1574-1443&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1574-1443&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1574-1443&client=summon