Phaseless Inverse Problems for Schrödinger, Helmholtz, and Maxwell Equations
A survey of recent research concerning phaseless inverse problems for several differential equations is given. Mainly, the surveyed studies were performed over the last five years, although their importance of this subject for quantum scattering theory was noted more than 40 years ago. Problem formu...
        Saved in:
      
    
          | Published in | Computational mathematics and mathematical physics Vol. 60; no. 6; pp. 1045 - 1062 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
        Moscow
          Pleiades Publishing
    
        01.06.2020
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0965-5425 1555-6662  | 
| DOI | 10.1134/S0965542520060093 | 
Cover
| Abstract | A survey of recent research concerning phaseless inverse problems for several differential equations is given. Mainly, the surveyed studies were performed over the last five years, although their importance of this subject for quantum scattering theory was noted more than 40 years ago. Problem formulations and results are presented, and the basic ideas underlying the research are described. | 
    
|---|---|
| AbstractList | A survey of recent research concerning phaseless inverse problems for several differential equations is given. Mainly, the surveyed studies were performed over the last five years, although their importance of this subject for quantum scattering theory was noted more than 40 years ago. Problem formulations and results are presented, and the basic ideas underlying the research are described. | 
    
| Author | Romanov, V. G. | 
    
| Author_xml | – sequence: 1 givenname: V. G. surname: Romanov fullname: Romanov, V. G. email: romanov@math.nsc.ru organization: Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences  | 
    
| BookMark | eNp9kE1OwzAUhC0EEm3hAOwssW3AP7FTL1FVaKVWVCqsI8d5oancuLVT_g7GBbgYCUVCAsHqLWa-eaPposPKVYDQGSUXlPL4ckGUFCJmghEiCVH8AHWoECKSUrJD1GnlqNWPUTeEFSFUqgHvoNl8qQNYCAFPqkfwAfDcu8zCOuDCebwwS__-lpfVA_g-HoNdL52tX_tYVzme6ecnsBaPtjtdl64KJ-io0DbA6dftofvr0d1wHE1vbybDq2lkOJV1lMtsoJsGLE4KmQiRQMzyQaZUEgPlGdPAGM2KgudGqCLJqOEmToQyPJdUDzTvofN97sa77Q5Cna7czlfNy5TFTAlBleCNK9m7jHcheChSU9afRWuvS5tSkrbbpb-2a0j6g9z4cq39y78M2zOh8bZzfXf6G_oAS4iBZQ | 
    
| CitedBy_id | crossref_primary_10_1515_jiip_2023_0001 crossref_primary_10_1137_24M1642627 crossref_primary_10_1134_S1064562421010099 crossref_primary_10_1134_S1064562421060156 crossref_primary_10_3934_era_2020110  | 
    
| Cites_doi | 10.1016/j.jcp.2011.01.038 10.1137/130926250 10.1007/978-1-4899-6765-7 10.1190/1.1437915 10.1137/1.9780898719284 10.1016/j.apnum.2016.08.014 10.1137/15M1043959 10.1007/BF01660580 10.1070/RM1966v021n03ABEH004157 10.1007/978-3-642-83671-8 10.1088/0266-5611/14/2/001 10.1023/B:SIMJ.0000048926.66814.81 10.1063/1.529990 10.1007/978-3-662-12125-2 10.1088/1361-6420/aa7a18 10.1088/0266-5611/32/1/015005 10.1515/9783110943849 10.1016/j.physleta.2011.01.052 10.1137/15M1022367 10.3934/ipi.2019005 10.1134/S1064562419010137 10.1007/5.12220-014-9553-7 10.1134/S1064562417030164 10.1007/978-1-4419-7805-9 10.1016/j.wavemoti.2012.04.008 10.1134/S1064562419050168 10.1016/j.aml.2014.06.005 10.1515/jiip-2018-0037 10.1134/S1990478919030050 10.1021/la802779r 10.1515/jiip-2015-0025 10.1134/S1990478918030079 10.1515/9783110926019 10.1080/00036811.2013.818136 10.1016/0041-5553(65)90157-6 10.3934/ipi.2017013 10.1364/JOSAA.30.000293 10.1134/S1064562411040247 10.1134/S0037446618030126 10.1134/S0037446611040124 10.1016/j.bulsci.2015.04.005 10.1134/S0037446617040176 10.1016/0040-1951(73)90095-4 10.1134/S0037446619040116  | 
    
| ContentType | Journal Article | 
    
| Copyright | Pleiades Publishing, Ltd. 2020 Pleiades Publishing, Ltd. 2020.  | 
    
| Copyright_xml | – notice: Pleiades Publishing, Ltd. 2020 – notice: Pleiades Publishing, Ltd. 2020.  | 
    
| DBID | AAYXX CITATION 7SC 7TB 7U5 8FD FR3 JQ2 KR7 L7M L~C L~D  | 
    
| DOI | 10.1134/S0965542520060093 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Civil Engineering Abstracts | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences Mathematics  | 
    
| EISSN | 1555-6662 | 
    
| EndPage | 1062 | 
    
| ExternalDocumentID | 10_1134_S0965542520060093 | 
    
| GroupedDBID | --K -5D -5G -BR -EM -Y2 -~C -~X .VR 06D 0R~ 0VY 1B1 1N0 29F 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 408 40D 40E 5GY 5VS 6J9 6NX 7WY 88I 8FE 8FG 8FH 8FL 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABEFU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AFBBN AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BAPOH BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HF~ HG6 HLICF HMJXF HRMNR HVGLF HZ~ H~9 I-F IHE IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ K60 K6V K6~ K7- KOV L6V LK5 LLZTM M0C M0N M2P M41 M4Y M7R M7S MA- MK~ N2Q NB0 NPVJJ NQ- NQJWS NU0 O9- O93 O9J P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PTHSS Q2X QOS R89 R9I RIG RNS ROL RPZ RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TUC TUS UG4 UOJIU UTJUX UZXMN VC2 VFIZW VOH W23 W48 WK8 XPP XU3 YLTOR ZMTXR ~A9 AAPKM AAYXX ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7TB 7U5 8FD FR3 JQ2 KR7 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c316t-d6b8a016247f67557e42d8b9974e13b2ae221bff3dc59f7b1c3c4759c3d61a8a3 | 
    
| IEDL.DBID | AGYKE | 
    
| ISSN | 0965-5425 | 
    
| IngestDate | Tue Oct 07 13:11:43 EDT 2025 Thu Apr 24 23:06:09 EDT 2025 Wed Oct 01 03:59:53 EDT 2025 Fri Feb 21 02:29:38 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 6 | 
    
| Keywords | Helmholtz equation inverse kinematic problem tomography Schrödinger equation phaseless inverse problems Maxwell’s equations  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c316t-d6b8a016247f67557e42d8b9974e13b2ae221bff3dc59f7b1c3c4759c3d61a8a3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 2429551953 | 
    
| PQPubID | 60276 | 
    
| PageCount | 18 | 
    
| ParticipantIDs | proquest_journals_2429551953 crossref_citationtrail_10_1134_S0965542520060093 crossref_primary_10_1134_S0965542520060093 springer_journals_10_1134_S0965542520060093  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2020-06-01 | 
    
| PublicationDateYYYYMMDD | 2020-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Moscow | 
    
| PublicationPlace_xml | – name: Moscow | 
    
| PublicationTitle | Computational mathematics and mathematical physics | 
    
| PublicationTitleAbbrev | Comput. Math. and Math. Phys | 
    
| PublicationYear | 2020 | 
    
| Publisher | Pleiades Publishing Springer Nature B.V  | 
    
| Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V  | 
    
| References | NewtonR. G.Inverse Schrodinger Scattering in Three Dimensions1989New YorkSpringer0697.35005 CagniardL.Basic theory of the magnito-tellurik methodGeophysics1953187605635 MukhometovR. G.RomanovV. G.Problem of finding an isotropic Riemannian metric in n-dimensional spaceDokl. Akad. Nauk SSSR19782434144511273 NovikovR. G.Formulas for phase recovering from phaseless scattering data at fixed frequencyBull. Sci. Math.201513992393634294991330.35277 TikhonovA. N.Determination of the electrical characteristics of the deep strata of the Earth’s crustDokl. Akad. Nauk SSSR195073295297 Beil’kinG. Ya.Stability and uniqueness of the solution of the inverse kinematic problem of seismology in higher dimensionsJ. Sov. Math.198321251254 VainbergB. R.Asymptotic Methods in Equations of Mathematical Physics1989New YorkGordon and Breach Science0743.35001 HerglotzG.Über die Elastizität der Erde bei Borücksichtigung ithrer variablen DichteZ. Math. Phys.19055227529936.1008.02 BernshteinI. N.GerverM. L.Problem of integral geometry for a family of geodesics and an inverse kinematic problem of seismologyDokl. Akad. Nauk SSSR1978243302305516051 NattererF.The Mathematics of Computerized Tomography2001Philadelphia, PASIAM0973.92020 RomanovV. G.Reconstruction of a function via integrals over a family of curvesSib. Mat. Zh.1967812061208 KlibanovM. V.RomanovV. G.Explicit solution of 3-D phaseless inverse scattering problems for the Schrödinger equation: The plane wave caseJ. Eurasian, Appl.201534863 RomanovV. G.The structure of the fundamental solution of the Cauchy problem for the system of Maxwell’s equationsDiffer. Uravn.19862215771587865396 KlibanovM. V.RomanovV. G.Two reconstruction procedures for a 3D phaseless inverse scattering problem for the generalized Helmholtz equationInverse Probl.20163201500534652971332.35394 KlibanovM. V.A phaseless inverse scattering problem for the 3-D Helmholtz equationInverse Probl. Imaging20171126327636255821359.35227 RomanovV. G.Inverse phaseless problem for the electrodynamic equations in an anisotropic mediumDokl. Math.2019100495500 IvanyshynO.KressR.Inverse scattering for surface impedance from phase-less far field dataJ. Comput. Phys.20112303443345227804721218.65123 RomanovV. G.SavinM. G.“Determination of the conductivity tensor in an anisotropic three-dimensional inhomogeneous medium: Linear approximation,” Izv. Akad. Nauk SSSR, Ser. FizZemli, No.198456372 AktosunT.SacksP. E.Inverse problem on the line without phase informationInverse Probl.19881421122416194330902.34011 TikhonovA. N.“On the transient electric current in a homogeneous conducting half-space,” Izv. Akad. Nauk SSSRSer. Geogr. Geofiz.194610213231 NazarchukZ. T.HrynivR. O.SynyavskyA. T.Reconstruction of the impedance Schrödinger equation from the modulus of the reflection coefficientsWave Motion20124971973629675301360.35324 BeilinaL.KlibanovM. V.Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems2012New YorkSpringer1255.65168 ChadanK.SabatierP. C.Inverse Problems in Quantum Scattering Theory1977New YorkSpringer-Verlag0363.47006 TikhonovA. N.Mathematical basis of the theory of electromagnetic soundingsUSSR Comput. Math. Math. Phys.19655207211 AmmariH.ChowY. T.ZouJ.Phased, phaseless domain reconstruction in inverse scattering problem via scattering coefficientsSIAM J. Appl. Math.2016761000103035053141338.35490 KlibanovM. V.RomanovV. G.The first solution of a long standing problem: Reconstruction formula for a 3-d phaseless inverse scattering problem for the Schrödinger equationJ. Inverse Ill-Posed Probl.20152341542833774181322.35175 LiuH.WangY.Recovering an electromagnetic obstacle by a few phaseless backscattering measurementsInverse Probl.2017320350136268161432.78008 M. M. Lavrent’ev, V. G. Romanov, and S. P. Shishatskii, Ill-Posed Problems of Mathematical Physics and Analysis (Nauka, Moscow, 1980; Am. Math. Soc., Providence, R.I., 1986). AlekseevA. S.BelonosovaA. V.Seismic studies of low-velocity layers and horizontal inhomogeneities within the crust and upper mantle on the territory of the USSRTectonophysics1973204756 RomanovV. G.KabanikhinS. I.Inverse Problems in Geoelectrics1991MoscowNauka V. G. Romanov, Inverse Problems of Mathematical Physics (Nauka, Moscow, 1984; VNU Science, Utrecht, 1987). RadonJ.Über die Bestimmung von Funktionen durch ihre integralwerte längs gewisser MannigfaltigkeitenBer. Sachsische Akad. Wiss. Leipzig19172926227746.0436.02 RomanovV. G.An inverse problem of electrodynamicsDokl. Math.2002662002051146.35421 RomanovV. G.A stability estimate for a solution to a three-dimensional inverse problem for the Maxwell equationsSib. Math. J.20044510981112 VainbergB. R.Principles of radiation, limit absorption, and limit amplitude in the general theory of partial differential equationsRuss. Math. Surv.196621115193 AlekseevA. S.Lavrent’evM. M.RomanovV. G.Mathematical Modeling in Geophysics1988NovosibirskNauka RomanovV. G.YamamotoM.Recovering two coefficients in an elliptic equation via phaseless informationInverse Probl. Imaging201913819139178521407.35229 KarchevskyA. L.DedokV. A.Reconstruction of permittivity from the modulus of a scattered electric fieldJ. Appl. Ind. Math.2018124704783871536 AlekseevA. S.Lavrent’evM. M.MukhometovR. G.Mathematical Problems in Geophysics1969NovosibirskVychisl. Tsentr Sib. Otd. Akad. Nauk SSSR KlibanovM. V.NguyenL. H.PanK.Nanostructures imaging via numerical solution of a 3-D inverse scattering problem without the phase informationAppl. Numer. Math.201611019020335503471352.78008 NovikovR. G.Phaseless inverse scattering in the one-dimensional caseEurasian J. Math. Comput. Appl.201536470 KlibanovM. V.Phaseless inverse scattering problems in three dimensionsSIAM J. Appl. Math.20147439241031808731293.35188 BerkN. F.MajkrzakC. F.Statistical analysis of phase-inversion neutron specular reflectivityLangmuir20092541324144 DedokV. A.KarchevskyA. L.RomanovV. G.A numerical method of determining permittivity from the modulus of the electric intensity vector of an electromagnetic fieldJ. Appl. Ind. Math.2019134364464036784 RomanovV. G.Some geometric aspects in inverse problemsEurasian J. Math. Comput. Appl.201536884 RomanovV. G.Stability of the determination of the electrical conductivity in electrodynamic equationsDokl. Math.2003671671711247.35204 KlibanovM. V.On the first solution of a long standing problem: Uniqueness of the phaseless quantum inverse scattering problem in 3-dAppl. Math. Lett.201437828532317311316.81088 MukhometovR. G.Problem of reconstructing the two-dimensional Riemannian metric and integral geometryDokl. Akad. Nauk SSSR19772323235431074 KlibanovM. V.Uniqueness of two phaseless non-overdetermined inverse acoustics problems in 3-dAppl. Anal.2014931135114931958781301.35214 RomanovV. G.A stability estimate of the solution to the problem of determining dielectric permittivity and electric conductivityDokl. Math.200571154159 KlibanovM. V.RomanovV. G.Uniqueness of a 3-D coefficient inverse scattering problem without the phase informationInverse Probl.201733095007369184506789386 BaoG.LiP.LvJ.Numerical solution of an inverse diffraction grating problem from phaseless dataJ. Opt. Soc. Am. A201330293299 HelgasonS.The Radon Transform1980BostonBirkhäuser0453.43011 RomanovV. G.YamamotoM.Phaseless inverse problems with interference wavesJ. Inverse Ill-Posed Probl.20182668168838592961401.35350 R. G. Novikov, “Explicit formulas and global uniqueness for phaseless inverse scattering in multidimensions,” J. Geom. Anal. (2015). https://doi.org/10.1007/5.12220-014-9553-7 RomanovV. G.The problem of recovering the permittivity coefficient from the modulus of the scattered electromagnetic fieldSib. Math. J.20175871171737623651379.35304 RomanovV. G.Phaseless inverse problems that use wave interferenceSib. Math. J.20185949450438796351400.35233 RomanovV. G.Inverse Problems for Hyperbolic Equations1972NovosibirskNauka KlibanovM. V.RomanovV. G.Reconstruction procedures for two inverse scattering problem without the phase informationSIAM J. Appl. Math.20167617819634522641331.35388 NovikovR. G.Absence of exponentially localized solutions for the Novikov–Veselov equation at positive energyPhys. Lett. A20113751233123527704071242.35196 RomanovV. G.Determination of permittivity from the modulus of the electric strength of a high-frequency electromagnetic fieldDokl. Math.20199944471427.35263 RomanovV. G.Stability estimate of a solution to the problem of kernel determination in integrodifferential equations of electrodynamicsDokl. Math.20118451852128935671243.35169 RomanovV. G.SavinM. G.“The problem of determining the conductivity tensor in a depth-inhomogeneous anisotropic medium,” Izv. Akad. Nauk SSSR, Ser. FizZemli, No.198428492 RomanovV. G.Investigation Methods for Inverse Problems2002UtrechtVSP1038.35001 RomanovV. G.Problem of determining the permittivity in the stationary system of Maxwell equationsDokl. Math.20179523023437535341375.35532 RomanovV. G.A stability estimate for a solution to an inverse problem of electrodynamicsSib. Math. J.20115268269528832201230.78007 RomanovV. G.Plane wave solutions to the equations of electrodynamics in an anisotropic mediumSib. Math. J.2019606616721425.35187 KlibanovM. V.SacksP. E.Phaseless inverse scattering and the phase problem in opticsJ. Math. Phys.1992333813382111858580761.35111 TikhonovA. N.On the uniqueness of the solutions of the problems of electro-prospectingDokl. Akad. Nauk SSSR194960797800 A. S. Alekseev (1361_CR37) 1988 B. R. Vainberg (1361_CR23) 1989 V. G. Romanov (1361_CR42) 2002 A. N. Tikhonov (1361_CR54) 1950; 73 V. G. Romanov (1361_CR60) 2004; 45 V. G. Romanov (1361_CR67) 2019; 60 1361_CR13 A. S. Alekseev (1361_CR36) 1973; 20 M. V. Klibanov (1361_CR10) 2014; 93 V. G. Romanov (1361_CR43) 2019; 13 V. G. Romanov (1361_CR64) 1984; 2 M. V. Klibanov (1361_CR9) 2014; 37 V. G. Romanov (1361_CR65) 1984; 5 M. V. Klibanov (1361_CR44) 2017; 33 S. Helgason (1361_CR17) 1980 M. V. Klibanov (1361_CR30) 2016; 76 V. A. Dedok (1361_CR69) 2019; 13 K. Chadan (1361_CR1) 1977 V. G. Romanov (1361_CR62) 2011; 52 V. G. Romanov (1361_CR51) 2019; 100 L. Beilina (1361_CR29) 2012 R. G. Newton (1361_CR2) 1989 M. V. Klibanov (1361_CR12) 2015; 3 I. N. Bernshtein (1361_CR40) 1978; 243 cr-split#-1361_CR20.2 cr-split#-1361_CR20.1 A. N. Tikhonov (1361_CR55) 1965; 5 A. N. Tikhonov (1361_CR52) 1946; 10 V. G. Romanov (1361_CR58) 2002; 66 R. G. Mukhometov (1361_CR39) 1978; 243 R. G. Novikov (1361_CR14) 2015; 139 M. V. Klibanov (1361_CR31) 2016; 32 V. G. Romanov (1361_CR48) 2017; 95 B. R. Vainberg (1361_CR22) 1966; 21 H. Liu (1361_CR25) 2017; 32 M. V. Klibanov (1361_CR45) 2017; 11 R. G. Mukhometov (1361_CR38) 1977; 232 J. Radon (1361_CR16) 1917; 29 V. G. Romanov (1361_CR50) 2019; 99 F. Natterer (1361_CR18) 2001 R. G. Novikov (1361_CR24) 2011; 375 A. L. Karchevsky (1361_CR68) 2018; 12 N. F. Berk (1361_CR4) 2009; 25 G. Bao (1361_CR28) 2013; 30 T. Aktosun (1361_CR3) 1988; 14 V. G. Romanov (1361_CR57) 1991 V. G. Romanov (1361_CR19) 1972 V. G. Romanov (1361_CR63) 2011; 84 V. G. Romanov (1361_CR32) 2015; 3 V. G. Romanov (1361_CR46) 2018; 26 L. Cagniard (1361_CR56) 1953; 187 Z. T. Nazarchuk (1361_CR5) 2012; 49 A. N. Tikhonov (1361_CR53) 1949; 60 M. V. Klibanov (1361_CR26) 2016; 110 V. G. Romanov (1361_CR61) 2005; 71 V. G. Romanov (1361_CR66) 1986; 22 V. G. Romanov (1361_CR47) 2017; 58 O. Ivanyshyn (1361_CR6) 2011; 230 G. Herglotz (1361_CR33) 1905; 52 1361_CR21 G. Ya. Beil’kin (1361_CR41) 1983; 21 M. V. Klibanov (1361_CR7) 1992; 33 V. G. Romanov (1361_CR59) 2003; 67 V. G. Romanov (1361_CR49) 2018; 59 V. G. Romanov (1361_CR34) 1967; 8 M. V. Klibanov (1361_CR8) 2014; 74 M. V. Klibanov (1361_CR11) 2015; 23 A. S. Alekseev (1361_CR35) 1969 R. G. Novikov (1361_CR15) 2015; 3 H. Ammari (1361_CR27) 2016; 76  | 
    
| References_xml | – reference: KlibanovM. V.Uniqueness of two phaseless non-overdetermined inverse acoustics problems in 3-dAppl. Anal.2014931135114931958781301.35214 – reference: NovikovR. G.Phaseless inverse scattering in the one-dimensional caseEurasian J. Math. Comput. Appl.201536470 – reference: RomanovV. G.Inverse Problems for Hyperbolic Equations1972NovosibirskNauka – reference: RomanovV. G.Problem of determining the permittivity in the stationary system of Maxwell equationsDokl. Math.20179523023437535341375.35532 – reference: LiuH.WangY.Recovering an electromagnetic obstacle by a few phaseless backscattering measurementsInverse Probl.2017320350136268161432.78008 – reference: NewtonR. G.Inverse Schrodinger Scattering in Three Dimensions1989New YorkSpringer0697.35005 – reference: RomanovV. G.Stability estimate of a solution to the problem of kernel determination in integrodifferential equations of electrodynamicsDokl. Math.20118451852128935671243.35169 – reference: BeilinaL.KlibanovM. V.Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems2012New YorkSpringer1255.65168 – reference: BerkN. F.MajkrzakC. F.Statistical analysis of phase-inversion neutron specular reflectivityLangmuir20092541324144 – reference: KlibanovM. V.A phaseless inverse scattering problem for the 3-D Helmholtz equationInverse Probl. Imaging20171126327636255821359.35227 – reference: CagniardL.Basic theory of the magnito-tellurik methodGeophysics1953187605635 – reference: NazarchukZ. T.HrynivR. O.SynyavskyA. T.Reconstruction of the impedance Schrödinger equation from the modulus of the reflection coefficientsWave Motion20124971973629675301360.35324 – reference: VainbergB. R.Principles of radiation, limit absorption, and limit amplitude in the general theory of partial differential equationsRuss. Math. Surv.196621115193 – reference: RomanovV. G.Reconstruction of a function via integrals over a family of curvesSib. Mat. Zh.1967812061208 – reference: RomanovV. G.Determination of permittivity from the modulus of the electric strength of a high-frequency electromagnetic fieldDokl. Math.20199944471427.35263 – reference: IvanyshynO.KressR.Inverse scattering for surface impedance from phase-less far field dataJ. Comput. Phys.20112303443345227804721218.65123 – reference: ChadanK.SabatierP. C.Inverse Problems in Quantum Scattering Theory1977New YorkSpringer-Verlag0363.47006 – reference: HerglotzG.Über die Elastizität der Erde bei Borücksichtigung ithrer variablen DichteZ. Math. Phys.19055227529936.1008.02 – reference: RomanovV. G.The structure of the fundamental solution of the Cauchy problem for the system of Maxwell’s equationsDiffer. Uravn.19862215771587865396 – reference: NovikovR. G.Absence of exponentially localized solutions for the Novikov–Veselov equation at positive energyPhys. Lett. A20113751233123527704071242.35196 – reference: RomanovV. G.A stability estimate of the solution to the problem of determining dielectric permittivity and electric conductivityDokl. Math.200571154159 – reference: RomanovV. G.Plane wave solutions to the equations of electrodynamics in an anisotropic mediumSib. Math. J.2019606616721425.35187 – reference: TikhonovA. N.Determination of the electrical characteristics of the deep strata of the Earth’s crustDokl. Akad. Nauk SSSR195073295297 – reference: RomanovV. G.Stability of the determination of the electrical conductivity in electrodynamic equationsDokl. Math.2003671671711247.35204 – reference: RomanovV. G.SavinM. G.“Determination of the conductivity tensor in an anisotropic three-dimensional inhomogeneous medium: Linear approximation,” Izv. Akad. Nauk SSSR, Ser. FizZemli, No.198456372 – reference: KarchevskyA. L.DedokV. A.Reconstruction of permittivity from the modulus of a scattered electric fieldJ. Appl. Ind. Math.2018124704783871536 – reference: NattererF.The Mathematics of Computerized Tomography2001Philadelphia, PASIAM0973.92020 – reference: R. G. Novikov, “Explicit formulas and global uniqueness for phaseless inverse scattering in multidimensions,” J. Geom. Anal. (2015). https://doi.org/10.1007/5.12220-014-9553-7 – reference: KlibanovM. V.RomanovV. G.Explicit solution of 3-D phaseless inverse scattering problems for the Schrödinger equation: The plane wave caseJ. Eurasian, Appl.201534863 – reference: NovikovR. G.Formulas for phase recovering from phaseless scattering data at fixed frequencyBull. Sci. Math.201513992393634294991330.35277 – reference: DedokV. A.KarchevskyA. L.RomanovV. G.A numerical method of determining permittivity from the modulus of the electric intensity vector of an electromagnetic fieldJ. Appl. Ind. Math.2019134364464036784 – reference: TikhonovA. N.“On the transient electric current in a homogeneous conducting half-space,” Izv. Akad. Nauk SSSRSer. Geogr. Geofiz.194610213231 – reference: VainbergB. R.Asymptotic Methods in Equations of Mathematical Physics1989New YorkGordon and Breach Science0743.35001 – reference: AlekseevA. S.BelonosovaA. V.Seismic studies of low-velocity layers and horizontal inhomogeneities within the crust and upper mantle on the territory of the USSRTectonophysics1973204756 – reference: RadonJ.Über die Bestimmung von Funktionen durch ihre integralwerte längs gewisser MannigfaltigkeitenBer. Sachsische Akad. Wiss. Leipzig19172926227746.0436.02 – reference: KlibanovM. V.RomanovV. G.Two reconstruction procedures for a 3D phaseless inverse scattering problem for the generalized Helmholtz equationInverse Probl.20163201500534652971332.35394 – reference: TikhonovA. N.Mathematical basis of the theory of electromagnetic soundingsUSSR Comput. Math. Math. Phys.19655207211 – reference: AktosunT.SacksP. E.Inverse problem on the line without phase informationInverse Probl.19881421122416194330902.34011 – reference: M. M. Lavrent’ev, V. G. Romanov, and S. P. Shishatskii, Ill-Posed Problems of Mathematical Physics and Analysis (Nauka, Moscow, 1980; Am. Math. Soc., Providence, R.I., 1986). – reference: RomanovV. G.Some geometric aspects in inverse problemsEurasian J. Math. Comput. Appl.201536884 – reference: MukhometovR. G.RomanovV. G.Problem of finding an isotropic Riemannian metric in n-dimensional spaceDokl. Akad. Nauk SSSR19782434144511273 – reference: Beil’kinG. Ya.Stability and uniqueness of the solution of the inverse kinematic problem of seismology in higher dimensionsJ. Sov. Math.198321251254 – reference: TikhonovA. N.On the uniqueness of the solutions of the problems of electro-prospectingDokl. Akad. Nauk SSSR194960797800 – reference: AmmariH.ChowY. T.ZouJ.Phased, phaseless domain reconstruction in inverse scattering problem via scattering coefficientsSIAM J. Appl. Math.2016761000103035053141338.35490 – reference: RomanovV. G.The problem of recovering the permittivity coefficient from the modulus of the scattered electromagnetic fieldSib. Math. J.20175871171737623651379.35304 – reference: V. G. Romanov, Inverse Problems of Mathematical Physics (Nauka, Moscow, 1984; VNU Science, Utrecht, 1987). – reference: RomanovV. G.KabanikhinS. I.Inverse Problems in Geoelectrics1991MoscowNauka – reference: RomanovV. G.A stability estimate for a solution to a three-dimensional inverse problem for the Maxwell equationsSib. Math. J.20044510981112 – reference: BernshteinI. N.GerverM. L.Problem of integral geometry for a family of geodesics and an inverse kinematic problem of seismologyDokl. Akad. Nauk SSSR1978243302305516051 – reference: AlekseevA. S.Lavrent’evM. M.MukhometovR. G.Mathematical Problems in Geophysics1969NovosibirskVychisl. Tsentr Sib. Otd. Akad. Nauk SSSR – reference: RomanovV. G.Investigation Methods for Inverse Problems2002UtrechtVSP1038.35001 – reference: MukhometovR. G.Problem of reconstructing the two-dimensional Riemannian metric and integral geometryDokl. Akad. Nauk SSSR19772323235431074 – reference: RomanovV. G.YamamotoM.Recovering two coefficients in an elliptic equation via phaseless informationInverse Probl. Imaging201913819139178521407.35229 – reference: KlibanovM. V.Phaseless inverse scattering problems in three dimensionsSIAM J. Appl. Math.20147439241031808731293.35188 – reference: RomanovV. G.SavinM. G.“The problem of determining the conductivity tensor in a depth-inhomogeneous anisotropic medium,” Izv. Akad. Nauk SSSR, Ser. FizZemli, No.198428492 – reference: BaoG.LiP.LvJ.Numerical solution of an inverse diffraction grating problem from phaseless dataJ. Opt. Soc. Am. A201330293299 – reference: KlibanovM. V.NguyenL. H.PanK.Nanostructures imaging via numerical solution of a 3-D inverse scattering problem without the phase informationAppl. Numer. Math.201611019020335503471352.78008 – reference: KlibanovM. V.On the first solution of a long standing problem: Uniqueness of the phaseless quantum inverse scattering problem in 3-dAppl. Math. Lett.201437828532317311316.81088 – reference: KlibanovM. V.RomanovV. G.Reconstruction procedures for two inverse scattering problem without the phase informationSIAM J. Appl. Math.20167617819634522641331.35388 – reference: KlibanovM. V.RomanovV. G.Uniqueness of a 3-D coefficient inverse scattering problem without the phase informationInverse Probl.201733095007369184506789386 – reference: HelgasonS.The Radon Transform1980BostonBirkhäuser0453.43011 – reference: RomanovV. G.YamamotoM.Phaseless inverse problems with interference wavesJ. Inverse Ill-Posed Probl.20182668168838592961401.35350 – reference: AlekseevA. S.Lavrent’evM. M.RomanovV. G.Mathematical Modeling in Geophysics1988NovosibirskNauka – reference: RomanovV. G.An inverse problem of electrodynamicsDokl. Math.2002662002051146.35421 – reference: KlibanovM. V.SacksP. E.Phaseless inverse scattering and the phase problem in opticsJ. Math. Phys.1992333813382111858580761.35111 – reference: RomanovV. G.Inverse phaseless problem for the electrodynamic equations in an anisotropic mediumDokl. Math.2019100495500 – reference: RomanovV. G.A stability estimate for a solution to an inverse problem of electrodynamicsSib. Math. J.20115268269528832201230.78007 – reference: KlibanovM. V.RomanovV. G.The first solution of a long standing problem: Reconstruction formula for a 3-d phaseless inverse scattering problem for the Schrödinger equationJ. Inverse Ill-Posed Probl.20152341542833774181322.35175 – reference: RomanovV. G.Phaseless inverse problems that use wave interferenceSib. Math. J.20185949450438796351400.35233 – volume: 230 start-page: 3443 year: 2011 ident: 1361_CR6 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2011.01.038 – volume-title: Asymptotic Methods in Equations of Mathematical Physics year: 1989 ident: 1361_CR23 – volume-title: Inverse Problems for Hyperbolic Equations year: 1972 ident: 1361_CR19 – volume: 60 start-page: 797 year: 1949 ident: 1361_CR53 publication-title: Dokl. Akad. Nauk SSSR – volume: 74 start-page: 392 year: 2014 ident: 1361_CR8 publication-title: SIAM J. Appl. Math. doi: 10.1137/130926250 – volume-title: The Radon Transform year: 1980 ident: 1361_CR17 doi: 10.1007/978-1-4899-6765-7 – volume: 187 start-page: 605 year: 1953 ident: 1361_CR56 publication-title: Geophysics doi: 10.1190/1.1437915 – volume: 32 start-page: 03501 year: 2017 ident: 1361_CR25 publication-title: Inverse Probl. – volume-title: The Mathematics of Computerized Tomography year: 2001 ident: 1361_CR18 doi: 10.1137/1.9780898719284 – volume: 110 start-page: 190 year: 2016 ident: 1361_CR26 publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2016.08.014 – volume: 76 start-page: 1000 year: 2016 ident: 1361_CR27 publication-title: SIAM J. Appl. Math. doi: 10.1137/15M1043959 – volume: 21 start-page: 251 year: 1983 ident: 1361_CR41 publication-title: J. Sov. Math. doi: 10.1007/BF01660580 – volume: 21 start-page: 115 year: 1966 ident: 1361_CR22 publication-title: Russ. Math. Surv. doi: 10.1070/RM1966v021n03ABEH004157 – volume-title: Inverse Schrodinger Scattering in Three Dimensions year: 1989 ident: 1361_CR2 doi: 10.1007/978-3-642-83671-8 – volume: 14 start-page: 211 year: 1988 ident: 1361_CR3 publication-title: Inverse Probl. doi: 10.1088/0266-5611/14/2/001 – ident: #cr-split#-1361_CR20.2 – volume: 67 start-page: 167 year: 2003 ident: 1361_CR59 publication-title: Dokl. Math. – volume: 71 start-page: 154 year: 2005 ident: 1361_CR61 publication-title: Dokl. Math. – volume: 5 start-page: 63 year: 1984 ident: 1361_CR65 publication-title: Zemli, No. – volume: 45 start-page: 1098 year: 2004 ident: 1361_CR60 publication-title: Sib. Math. J. doi: 10.1023/B:SIMJ.0000048926.66814.81 – volume: 33 start-page: 3813 year: 1992 ident: 1361_CR7 publication-title: J. Math. Phys. doi: 10.1063/1.529990 – volume-title: Inverse Problems in Quantum Scattering Theory year: 1977 ident: 1361_CR1 doi: 10.1007/978-3-662-12125-2 – volume: 33 start-page: 095007 year: 2017 ident: 1361_CR44 publication-title: Inverse Probl. doi: 10.1088/1361-6420/aa7a18 – volume: 32 start-page: 015005 year: 2016 ident: 1361_CR31 publication-title: Inverse Probl. doi: 10.1088/0266-5611/32/1/015005 – volume-title: Investigation Methods for Inverse Problems year: 2002 ident: 1361_CR42 doi: 10.1515/9783110943849 – volume: 52 start-page: 275 year: 1905 ident: 1361_CR33 publication-title: Z. Math. Phys. – volume: 375 start-page: 1233 year: 2011 ident: 1361_CR24 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2011.01.052 – volume: 76 start-page: 178 year: 2016 ident: 1361_CR30 publication-title: SIAM J. Appl. Math. doi: 10.1137/15M1022367 – volume: 13 start-page: 81 year: 2019 ident: 1361_CR43 publication-title: Inverse Probl. Imaging doi: 10.3934/ipi.2019005 – volume: 99 start-page: 44 year: 2019 ident: 1361_CR50 publication-title: Dokl. Math. doi: 10.1134/S1064562419010137 – ident: 1361_CR13 doi: 10.1007/5.12220-014-9553-7 – volume: 22 start-page: 1577 year: 1986 ident: 1361_CR66 publication-title: Differ. Uravn. – volume: 95 start-page: 230 year: 2017 ident: 1361_CR48 publication-title: Dokl. Math. doi: 10.1134/S1064562417030164 – volume: 232 start-page: 32 year: 1977 ident: 1361_CR38 publication-title: Dokl. Akad. Nauk SSSR – volume-title: Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems year: 2012 ident: 1361_CR29 doi: 10.1007/978-1-4419-7805-9 – volume: 49 start-page: 719 year: 2012 ident: 1361_CR5 publication-title: Wave Motion doi: 10.1016/j.wavemoti.2012.04.008 – volume: 29 start-page: 262 year: 1917 ident: 1361_CR16 publication-title: Ber. Sachsische Akad. Wiss. Leipzig – volume: 100 start-page: 495 year: 2019 ident: 1361_CR51 publication-title: Dokl. Math. doi: 10.1134/S1064562419050168 – volume: 37 start-page: 82 year: 2014 ident: 1361_CR9 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2014.06.005 – ident: #cr-split#-1361_CR20.1 – volume: 26 start-page: 681 year: 2018 ident: 1361_CR46 publication-title: J. Inverse Ill-Posed Probl. doi: 10.1515/jiip-2018-0037 – volume: 13 start-page: 436 year: 2019 ident: 1361_CR69 publication-title: J. Appl. Ind. Math. doi: 10.1134/S1990478919030050 – volume: 25 start-page: 4132 year: 2009 ident: 1361_CR4 publication-title: Langmuir doi: 10.1021/la802779r – volume: 23 start-page: 415 year: 2015 ident: 1361_CR11 publication-title: J. Inverse Ill-Posed Probl. doi: 10.1515/jiip-2015-0025 – volume: 3 start-page: 48 year: 2015 ident: 1361_CR12 publication-title: J. Eurasian, Appl. – volume: 243 start-page: 302 year: 1978 ident: 1361_CR40 publication-title: Dokl. Akad. Nauk SSSR – volume: 8 start-page: 1206 year: 1967 ident: 1361_CR34 publication-title: Sib. Mat. Zh. – volume: 12 start-page: 470 year: 2018 ident: 1361_CR68 publication-title: J. Appl. Ind. Math. doi: 10.1134/S1990478918030079 – ident: 1361_CR21 doi: 10.1515/9783110926019 – volume: 93 start-page: 1135 year: 2014 ident: 1361_CR10 publication-title: Appl. Anal. doi: 10.1080/00036811.2013.818136 – volume-title: Inverse Problems in Geoelectrics year: 1991 ident: 1361_CR57 – volume: 3 start-page: 68 year: 2015 ident: 1361_CR32 publication-title: Eurasian J. Math. Comput. Appl. – volume-title: Mathematical Modeling in Geophysics year: 1988 ident: 1361_CR37 – volume: 10 start-page: 213 year: 1946 ident: 1361_CR52 publication-title: Ser. Geogr. Geofiz. – volume: 243 start-page: 41 year: 1978 ident: 1361_CR39 publication-title: Dokl. Akad. Nauk SSSR – volume: 5 start-page: 207 year: 1965 ident: 1361_CR55 publication-title: USSR Comput. Math. Math. Phys. doi: 10.1016/0041-5553(65)90157-6 – volume: 73 start-page: 295 year: 1950 ident: 1361_CR54 publication-title: Dokl. Akad. Nauk SSSR – volume-title: Mathematical Problems in Geophysics year: 1969 ident: 1361_CR35 – volume: 11 start-page: 263 year: 2017 ident: 1361_CR45 publication-title: Inverse Probl. Imaging doi: 10.3934/ipi.2017013 – volume: 30 start-page: 293 year: 2013 ident: 1361_CR28 publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.30.000293 – volume: 66 start-page: 200 year: 2002 ident: 1361_CR58 publication-title: Dokl. Math. – volume: 84 start-page: 518 year: 2011 ident: 1361_CR63 publication-title: Dokl. Math. doi: 10.1134/S1064562411040247 – volume: 59 start-page: 494 year: 2018 ident: 1361_CR49 publication-title: Sib. Math. J. doi: 10.1134/S0037446618030126 – volume: 52 start-page: 682 year: 2011 ident: 1361_CR62 publication-title: Sib. Math. J. doi: 10.1134/S0037446611040124 – volume: 3 start-page: 64 year: 2015 ident: 1361_CR15 publication-title: Eurasian J. Math. Comput. Appl. – volume: 139 start-page: 923 year: 2015 ident: 1361_CR14 publication-title: Bull. Sci. Math. doi: 10.1016/j.bulsci.2015.04.005 – volume: 58 start-page: 711 year: 2017 ident: 1361_CR47 publication-title: Sib. Math. J. doi: 10.1134/S0037446617040176 – volume: 20 start-page: 47 year: 1973 ident: 1361_CR36 publication-title: Tectonophysics doi: 10.1016/0040-1951(73)90095-4 – volume: 2 start-page: 84 year: 1984 ident: 1361_CR64 publication-title: Zemli, No. – volume: 60 start-page: 661 year: 2019 ident: 1361_CR67 publication-title: Sib. Math. J. doi: 10.1134/S0037446619040116  | 
    
| SSID | ssj0016983 | 
    
| Score | 2.22342 | 
    
| Snippet | A survey of recent research concerning phaseless inverse problems for several differential equations is given. Mainly, the surveyed studies were performed over... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1045 | 
    
| SubjectTerms | Computational Mathematics and Numerical Analysis Differential equations Inverse problems Mathematical analysis Mathematics Mathematics and Statistics Maxwell's equations  | 
    
| Title | Phaseless Inverse Problems for Schrödinger, Helmholtz, and Maxwell Equations | 
    
| URI | https://link.springer.com/article/10.1134/S0965542520060093 https://www.proquest.com/docview/2429551953  | 
    
| Volume | 60 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1555-6662 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0016983 issn: 0965-5425 databaseCode: AMVHM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1555-6662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016983 issn: 0965-5425 databaseCode: AFBBN dateStart: 20060101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1555-6662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016983 issn: 0965-5425 databaseCode: AGYKE dateStart: 20060101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTsMwDLZgXODA-BWDgXLgBBTWtM3a40AbCLQJCZDgVCVNqknAgKWT0B6MF-DFcNp0iPEjcW4cpbETf46TzwC7KWMIIkLmhJQrx29S4UQ0SJ0kUuh-qcTAxZx3dHvs7MY_vw1u7TtuXd52L1OS-U5d1B3xj64MT0mAJmaCYBOIz8JcTrdVgbnW6d1Fe5I8YFHBvontHSNgk5k_dvLVHX1izKm0aO5tOlW4LsdZXDK5Pxxl4jAZT1E4_vNHlmDRok_SKsxlGWbUYAWqFokSu871Cix0J2yuehW6l31uijJpTQwtx1ArclnUodEEMS_K9YfvbzIfwwFBR_aIW2o2PiB8IEmXv5rzQdJ-KUjF9RrcdNrXJ2eOLcPgJJ7LMkcyEXKcVeo3UwwvgqZCHYYiwkhEuZ5AHVPqijT1ZBJEaVO4iZcYFsHEk8zlIffWoTJ4GqgNIAiWUCgSaAgNX0oaMo8xbh7_NqRqcFaDRqmNOLEc5aZUxkOcxyqeH3-bvBrsTUSeC4KOvxrXSxXHdq3qGEFKFBiSHfy8X2rs8_OvnW3-q_UWzFMTqucHOHWoZMOR2kY8k4kdtN_O8XFvx9rxB1N_6DA | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BOQAHdsRSwAdOQKBxEjc5IlQoSxASRYJTZMeOKgEF6iChfhg_wI8xTpwiVolzPJbjGXveeOw3AJsZYwgiQuaElCvHb1LhRDTInDRS6H6pxMDFnHfE56x95Z9cB9f2HbeubrtXKclipy7rjvh7l4anJEATM0GwCcRHYczH-ITWYGz_6Oa0NUwesKhk38T2jhGwycwfO_nsjj4w5pe0aOFtDqehU42zvGRyu_uci9108IXC8Z8_MgNTFn2S_dJcZmFE9eZg2iJRYte5noPJeMjmquchvuhyU5RJa2JoOfpakYuyDo0miHlRrtt_e5XFGHYIOrJ73FLzwQ7hPUli_mLOB0nrqSQV1wtwddjqHLQdW4bBST2X5Y5kIuQ4q9RvZhheBE2FOgxFhJGIcj2BOqbUFVnmyTSIsqZwUy81LIKpJ5nLQ-4tQq330FNLQBAsoVAk0BAavpQ0ZB5j3Dz-bUjV4GwZGpU2ktRylJtSGXdJEat4fvJt8pZhayjyWBJ0_NW4Xqk4sWtVJwhSosCQ7ODn7UpjH59_7WzlX603YLzdic-Ss-Pz01WYoCZsLw5z6lDL-89qDbFNLtatLb8D6tnpkw | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58gOjBt_g2B09q3W3apu1RdNfnyoIKeqpJkyKoVTcVxB_mH_CPOdmmKz5BPCcT0sykM18m-QZgNWMMg4iIORHlyvFDKpyYBpmTxgrdL5UIXMx5R-uY7Z35B-fBua1zqqvb7lVKsnzTYFia8qJ2LzNbg8SvnRjOkgDNzQBiA8r7YRCRSYiGPri1e3HY6CUSWFwycWJ_xwjYxOa3g3x0Te_x5qcUadfzNMfgsppzeeHkevOxEJvp8yc6x3981DiM2qiUbJVmNAF9Kp-EMRuhErv_9SSMtHosr3oKWu0rboo1aU0MXUdHK9Iu69NogrEwyl11Xl9kdz4bBB3cLf5qi-cNwnNJWvzJnBuSxkNJNq6n4azZON3ec2x5Bif1XFY4komI4wpTP8wQdgShQt1GIkaEolxPoO4pdUWWeTIN4iwUbuqlhl0w9SRzecS9GRjI73I1CwSDKBSKBRpI3ZeSRsxjjJtHwXWp6pzNQb3STJJa7nJTQuMm6WIYz0--LN4crPVE7kvijt86L1bqTuwe1gkGL3FgyHeweb3S3nvzj4PN_6n3Cgy1d5rJ0f7x4QIMU4Pmu2c8izBQdB7VEoY8hVi2Zv0GmArydw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phaseless+Inverse+Problems+for+Schr%C3%B6dinger%2C+Helmholtz%2C+and+Maxwell+Equations&rft.jtitle=Computational+mathematics+and+mathematical+physics&rft.au=Romanov%2C+V.+G.&rft.date=2020-06-01&rft.issn=0965-5425&rft.eissn=1555-6662&rft.volume=60&rft.issue=6&rft.spage=1045&rft.epage=1062&rft_id=info:doi/10.1134%2FS0965542520060093&rft.externalDBID=n%2Fa&rft.externalDocID=10_1134_S0965542520060093 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0965-5425&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0965-5425&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0965-5425&client=summon |