Two-Staged Method for Ice Channel Identification Based on Image Segmentation and Corner Point Regression
Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters, which is important to ensure the safety and economy of navigation. In the Arctic, merchant ships with low ice class often navigate in channels opened up by icebreakers. Navigation in the...
Saved in:
| Published in | China ocean engineering Vol. 38; no. 2; pp. 313 - 325 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0890-5487 2191-8945 |
| DOI | 10.1007/s13344-024-0026-x |
Cover
| Abstract | Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters, which is important to ensure the safety and economy of navigation. In the Arctic, merchant ships with low ice class often navigate in channels opened up by icebreakers. Navigation in the ice channel often depends on good maneuverability skills and abundant experience from the captain to a large extent. The ship may get stuck if steered into ice fields off the channel. Under this circumstance, it is very important to study how to identify the boundary lines of ice channels with a reliable method. In this paper, a two-staged ice channel identification method is developed based on image segmentation and corner point regression. The first stage employs the image segmentation method to extract channel regions. In the second stage, an intelligent corner regression network is proposed to extract the channel boundary lines from the channel region. A non-intelligent angle-based filtering and clustering method is proposed and compared with corner point regression network. The training and evaluation of the segmentation method and corner regression network are carried out on the synthetic and real ice channel dataset. The evaluation results show that the accuracy of the method using the corner point regression network in the second stage is achieved as high as 73.33% on the synthetic ice channel dataset and 70.66% on the real ice channel dataset, and the processing speed can reach up to 14.58 frames per second. |
|---|---|
| AbstractList | Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters, which is important to ensure the safety and economy of navigation. In the Arctic, merchant ships with low ice class often navigate in channels opened up by icebreakers. Navigation in the ice channel often depends on good maneuverability skills and abundant experience from the captain to a large extent. The ship may get stuck if steered into ice fields off the channel. Under this circumstance, it is very important to study how to identify the boundary lines of ice channels with a reliable method. In this paper, a two-staged ice channel identification method is developed based on image segmentation and corner point regression. The first stage employs the image segmentation method to extract channel regions. In the second stage, an intelligent corner regression network is proposed to extract the channel boundary lines from the channel region. A non-intelligent angle-based filtering and clustering method is proposed and compared with corner point regression network. The training and evaluation of the segmentation method and corner regression network are carried out on the synthetic and real ice channel dataset. The evaluation results show that the accuracy of the method using the corner point regression network in the second stage is achieved as high as 73.33% on the synthetic ice channel dataset and 70.66% on the real ice channel dataset, and the processing speed can reach up to 14.58 frames per second. |
| Author | Dong, Wen-bo Wang, Ai-ming Zhou, Li Cai, Jin-yan Ding, Shi-feng |
| Author_xml | – sequence: 1 givenname: Wen-bo surname: Dong fullname: Dong, Wen-bo organization: School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology – sequence: 2 givenname: Li surname: Zhou fullname: Zhou, Li email: zhouli209@sjtu.edu.cn organization: School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University – sequence: 3 givenname: Shi-feng surname: Ding fullname: Ding, Shi-feng organization: School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology – sequence: 4 givenname: Ai-ming surname: Wang fullname: Wang, Ai-ming organization: School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology – sequence: 5 givenname: Jin-yan surname: Cai fullname: Cai, Jin-yan organization: School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology |
| BookMark | eNp9kEtLAzEUhYMoWKs_wF3A9ejNYx5ZavFRqCi2rkM6udNOaZOajFj_vSkjCIIuwg2c893HOSGHzjsk5JzBJQMoryITQsoMeHrAi2x3QAacKZZVSuaHZACVgiyXVXlMTmJcAeQsl2xAlrMPn007s0BLH7FbeksbH-i4RjpaGudwTccWXdc2bW261jt6Y2Lyps94kyg6xcUm6b1mnKUjHxwG-uxb19EXXASMMWmn5Kgx64hn33VIXu9uZ6OHbPJ0Px5dT7JasKLLrBQMVIm5UWiVlKpCrkShRFnzZg4lVFxaNW_QWFWrgnOAuURpjCmMsFUlhuSi77sN_u0dY6dX_j24NFILyIGLfYfkYr2rDj7GgI3ehnZjwqdmoPeB6j5QnQLV-0D1LjHlL6Zu-7u7YNr1vyTvyZimuAWGn53-hr4AyoWMew |
| CitedBy_id | crossref_primary_10_1016_j_cma_2024_117247 crossref_primary_10_3390_electronics13101930 crossref_primary_10_1109_JIOT_2024_3412925 crossref_primary_10_3390_w16050689 crossref_primary_10_3390_w16060854 crossref_primary_10_1007_s13344_024_0015_0 crossref_primary_10_1016_j_neucom_2024_128823 crossref_primary_10_3390_jmse12040611 crossref_primary_10_1016_j_oceaneng_2024_119103 crossref_primary_10_1016_j_ins_2024_120787 crossref_primary_10_1007_s13344_025_0003_z crossref_primary_10_3390_s24154994 crossref_primary_10_1016_j_engappai_2024_108172 crossref_primary_10_3390_s24134268 |
| Cites_doi | 10.1080/1088937X.2014.965769 10.1109/IVS.2018.8500547 10.1109/JSEN.2021.3084556 10.1109/TCSVT.2020.2978194 10.1016/j.oceaneng.2022.111735 10.1080/17445302.2020.1729595 10.1007/s11042-018-7138-3 10.1016/j.oceaneng.2020.107853 10.1016/j.marstruc.2022.103181 10.1016/j.oceaneng.2022.113424 10.1007/s00138-011-0404-2 10.1109/ACCESS.2021.3053956 10.1080/17445302.2022.2164420 10.1109/ICCV.2015.314 10.4043/27344-MS 10.1109/ICCV.2019.00925 |
| ContentType | Journal Article |
| Copyright | Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2024 Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2024. |
| Copyright_xml | – notice: Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2024 – notice: Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2024. |
| DBID | AAYXX CITATION 7TN F1W H96 L.G |
| DOI | 10.1007/s13344-024-0026-x |
| DatabaseName | CrossRef Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Oceanography |
| EISSN | 2191-8945 |
| EndPage | 325 |
| ExternalDocumentID | 10_1007_s13344_024_0026_x |
| GroupedDBID | -01 -0A -EM -SA -S~ 06D 0R~ 0VY 188 29B 29~ 2B. 2C. 2KG 2KM 30V 4.4 406 408 5GY 5VR 5XA 5XB 8RM 92E 92I 92M 92Q 93N 96X 9D9 9DA AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADRFC ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AXYYD BGNMA CAJEA CCEZO CCVFK CHBEP CW9 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FA0 FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 H13 HF~ HG6 HMJXF HRMNR HZ~ I0C IKXTQ IWAJR J-C JBSCW JUIAU JZLTJ LLZTM M4Y NPVJJ NQJWS NU0 O9- O9J P2P P9P PT4 Q-- Q-0 R-A R9I RLLFE ROL RSV RT1 S.. S1Z S27 S3B SCL SEG SHX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 T8Q TCJ TGP TSG U1F U1G U2A U5A U5K UG4 UOJIU UTJUX UZ4 UZXMN VC2 VFIZW W48 WK8 Z7R ZMTXR ~A9 ~LH AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 7TN F1W H96 L.G |
| ID | FETCH-LOGICAL-c316t-d431097e5a9ed94498e2936937c2fb070824d9bfead9c962200b4e4aaa6a3d883 |
| IEDL.DBID | U2A |
| ISSN | 0890-5487 |
| IngestDate | Wed Sep 17 23:58:39 EDT 2025 Thu Apr 24 22:56:55 EDT 2025 Wed Oct 01 02:15:21 EDT 2025 Fri Feb 21 02:38:55 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | ice channel identification ship navigation image segmentation corner point regression |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-d431097e5a9ed94498e2936937c2fb070824d9bfead9c962200b4e4aaa6a3d883 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3050230824 |
| PQPubID | 2043672 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_3050230824 crossref_primary_10_1007_s13344_024_0026_x crossref_citationtrail_10_1007_s13344_024_0026_x springer_journals_10_1007_s13344_024_0026_x |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-01 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | China ocean engineering |
| PublicationTitleAbbrev | China Ocean Eng |
| PublicationYear | 2024 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Bar Hillel, Lerner, Levi, Raz (CR1) 2014; 25 CR2 Cao, Gao, Chen, Wang (CR5) 2020; 79 Ward, Harguess, Hilton (CR19) 2018 Pan, Shi, Luo, Wang, Tang (CR13) 2018 Buixadé Farré, Stephenson, Chen, Czub, Dai, Demchev, Efimov, Graczyk, Grythe, Keil, Kivekäs, Kumar, Liu, Matelenok, Myksvoll, O’Leary, Olsen, Pavithran, Petersen, Raspotnik, Ryzhov, Solski, Suo, Troein, Valeeva, Van Rijckevorsel, Wighting (CR3) 2014; 37 Sun, Zhang, Zhou, Garme, Burman (CR18) 2022; 83 CR6 Yu, Wang, Wang, Li (CR23) 2020; 22 Qin, Wang, Li (CR15) 2020 CR8 He, Zhang, Ren, Sun (CR7) 2016 Huang, Li, Romu, Dolatshah, Thomas (CR9) 2021; 16 CR17 Xue, Liu, Li, Han (CR21) 2020; 215 CR11 Li, Deng, Yang, Liu, Gu (CR10) 2021; 9 Panchi, Kim, Bhattacharyya (CR14) 2021; 21 Yoo, Lee, Myeong, Yun, Park, Cho, Kim (CR22) 2020 Cai, Ding, Zhang, Liu, Zeng, Zhou (CR4) 2022; 259 Xie, Zhou, Ding, Liu, Zheng (CR20) 2023; 269 Shan, Zhou, Liu, Zhang, Huang (CR16) 2021; 31 Neven, De Brabandere, Georgoulis, Proesmans, Van Gool (CR12) 2018 XG Pan (26_CR13) 2018 C Xie (26_CR20) 2023; 269 A Buixadé Farré (26_CR3) 2014; 37 LF Huang (26_CR9) 2021; 16 S Yoo (26_CR22) 2020 JY Cai (26_CR4) 2022; 259 H Li (26_CR10) 2021; 9 26_CR17 ZQ Qin (26_CR15) 2020 YX Shan (26_CR16) 2021; 31 CM Ward (26_CR19) 2018 QY Sun (26_CR18) 2022; 83 XF Cao (26_CR5) 2020; 79 D Neven (26_CR12) 2018 YZ Xue (26_CR21) 2020; 215 A Bar Hillel (26_CR1) 2014; 25 KM He (26_CR7) 2016 26_CR8 N Panchi (26_CR14) 2021; 21 26_CR6 LW Yu (26_CR23) 2020; 22 26_CR11 26_CR2 |
| References_xml | – volume: 37 start-page: 298 issue: 4 year: 2014 end-page: 324 ident: CR3 article-title: Commercial Arctic shipping through the Northeast Passage: routes, resources, governance, technology, and infrastructure publication-title: Polar Geography doi: 10.1080/1088937X.2014.965769 – start-page: 770 year: 2016 end-page: 778 ident: CR7 article-title: Deep residual learning for image recognition publication-title: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition – start-page: 286 year: 2018 end-page: 291 ident: CR12 article-title: Towards end-to-end lane detection: an instance segmentation approach publication-title: 2018 IEEE Intelligent Vehicles Symposium (IV) doi: 10.1109/IVS.2018.8500547 – volume: 22 start-page: 84 issue: 6 year: 2020 end-page: 93 ident: CR23 article-title: Development strategy for polar equipment in China publication-title: Strategic Study of Chinese Academy of Engineering – volume: 21 start-page: 18004 issue: 16 year: 2021 end-page: 18019 ident: CR14 article-title: Supplementing remote sensing of ice: Deep learning-based image segmentation system for automatic detection and localization of sea-ice formations from close-range optical images publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2021.3084556 – ident: CR2 – volume: 31 start-page: 315 issue: 1 year: 2021 end-page: 325 ident: CR16 article-title: SiamFPN: A deep learning method for accurate and real-time maritime ship tracking publication-title: IEEE Transactions on Circuits and Systems for Video Technology doi: 10.1109/TCSVT.2020.2978194 – volume: 259 start-page: 111735 year: 2022 ident: CR4 article-title: Broken ice circumferential crack estimation via image techniques publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2022.111735 – ident: CR17 – volume: 16 start-page: 353 issue: 4 year: 2021 end-page: 362 ident: CR9 article-title: Simulation of a ship operating in an open-water ice channel publication-title: Ships and Offshore Structures doi: 10.1080/17445302.2020.1729595 – ident: CR11 – start-page: 276 year: 2020 end-page: 291 ident: CR15 article-title: Ultra fast structure-aware deep lane detection publication-title: 16th European Conference on Computer Vision – volume: 79 start-page: 9177 issue: 13 year: 2020 end-page: 9192 ident: CR5 article-title: Ship recognition method combined with image segmentation and deep learning feature extraction in video surveillance publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-018-7138-3 – volume: 215 start-page: 107853 year: 2020 ident: CR21 article-title: A review for numerical simulation methods of ship–ice interaction publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2020.107853 – ident: CR6 – ident: CR8 – volume: 83 start-page: 103181 year: 2022 ident: CR18 article-title: A machine learning-based method for prediction of ship performance in ice: Part I. ice resistance publication-title: Marine Structures doi: 10.1016/j.marstruc.2022.103181 – volume: 269 start-page: 113424 year: 2023 ident: CR20 article-title: Experimental and numerical investigation on self-propulsion performance of polar merchant ship in brash ice channel publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2022.113424 – start-page: 7276 year: 2018 end-page: 7283 ident: CR13 article-title: Spatial as deep: Spatial cnn for traffic scene understanding publication-title: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence – start-page: 4335 year: 2020 end-page: 4343 ident: CR22 article-title: End-to-end lane marker detection via row-wise classification publication-title: Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops – volume: 25 start-page: 727 issue: 3 year: 2014 end-page: 745 ident: CR1 article-title: Recent progress in road and lane detection: a survey publication-title: Machine Vision and Applications doi: 10.1007/s00138-011-0404-2 – volume: 9 start-page: 16692 year: 2021 end-page: 16706 ident: CR10 article-title: Enhanced YOLO v3 tiny network for real-time ship detection from visual image publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3053956 – start-page: 1 year: 2018 end-page: 5 ident: CR19 article-title: Ship classification from overhead imagery using synthetic data and domain adaptation publication-title: OCEANS 2018 MTS/IEEE Charleston – volume: 22 start-page: 84 issue: 6 year: 2020 ident: 26_CR23 publication-title: Strategic Study of Chinese Academy of Engineering – volume: 79 start-page: 9177 issue: 13 year: 2020 ident: 26_CR5 publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-018-7138-3 – ident: 26_CR8 – start-page: 286 volume-title: 2018 IEEE Intelligent Vehicles Symposium (IV) year: 2018 ident: 26_CR12 doi: 10.1109/IVS.2018.8500547 – volume: 269 start-page: 113424 year: 2023 ident: 26_CR20 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2022.113424 – volume: 21 start-page: 18004 issue: 16 year: 2021 ident: 26_CR14 publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2021.3084556 – volume: 16 start-page: 353 issue: 4 year: 2021 ident: 26_CR9 publication-title: Ships and Offshore Structures doi: 10.1080/17445302.2020.1729595 – start-page: 7276 volume-title: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence year: 2018 ident: 26_CR13 – volume: 83 start-page: 103181 year: 2022 ident: 26_CR18 publication-title: Marine Structures doi: 10.1016/j.marstruc.2022.103181 – volume: 215 start-page: 107853 year: 2020 ident: 26_CR21 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2020.107853 – volume: 25 start-page: 727 issue: 3 year: 2014 ident: 26_CR1 publication-title: Machine Vision and Applications doi: 10.1007/s00138-011-0404-2 – start-page: 276 volume-title: 16th European Conference on Computer Vision year: 2020 ident: 26_CR15 – volume: 31 start-page: 315 issue: 1 year: 2021 ident: 26_CR16 publication-title: IEEE Transactions on Circuits and Systems for Video Technology doi: 10.1109/TCSVT.2020.2978194 – ident: 26_CR6 doi: 10.1080/17445302.2022.2164420 – ident: 26_CR17 doi: 10.1109/ICCV.2015.314 – volume: 259 start-page: 111735 year: 2022 ident: 26_CR4 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2022.111735 – ident: 26_CR11 doi: 10.4043/27344-MS – volume: 9 start-page: 16692 year: 2021 ident: 26_CR10 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3053956 – start-page: 770 volume-title: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition year: 2016 ident: 26_CR7 – volume: 37 start-page: 298 issue: 4 year: 2014 ident: 26_CR3 publication-title: Polar Geography doi: 10.1080/1088937X.2014.965769 – start-page: 4335 volume-title: Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops year: 2020 ident: 26_CR22 – ident: 26_CR2 doi: 10.1109/ICCV.2019.00925 – start-page: 1 volume-title: OCEANS 2018 MTS/IEEE Charleston year: 2018 ident: 26_CR19 |
| SSID | ssj0051541 |
| Score | 2.4225829 |
| Snippet | Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters, which is important to ensure the safety and... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 313 |
| SubjectTerms | Channels Clustering Coastal Sciences Datasets Engineering Fluid- and Aerodynamics Frames per second Ice Ice cover Ice fields Icebreakers Identification methods Image segmentation Manoeuvrability Marine & Freshwater Sciences Merchant ships Navigation Numerical and Computational Physics Oceanography Offshore Engineering Regression Simulation |
| Title | Two-Staged Method for Ice Channel Identification Based on Image Segmentation and Corner Point Regression |
| URI | https://link.springer.com/article/10.1007/s13344-024-0026-x https://www.proquest.com/docview/3050230824 |
| Volume | 38 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2191-8945 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0051541 issn: 0890-5487 databaseCode: AFBBN dateStart: 20110301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 2191-8945 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0051541 issn: 0890-5487 databaseCode: AGYKE dateStart: 20110101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 2191-8945 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0051541 issn: 0890-5487 databaseCode: U2A dateStart: 20110301 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA2yvaggOhWnc-TBJyXQNWmbPM6xuSlT0Q3mU2nTdApbKltFf743_XAqKvhWyAe05yb3pDf3XIROOKWuIwGBEM7KhLnUI4LFHnGYtHjIaMwck-88vHb7Y3Y5cSZFHveyvO1ehiSznXqV7EYpYwR8CjEHBwLEseoYNS8w4rHdLrdf8M9ZuUqLC4sYOl6GMn-a4qszWjHMb0HRzNf0ttFWQRJxO0d1B60pXUMbn6QDa2jzRqpAF3rTu-hx9JoQII5TFeFhVhQaAxvFA6mwyR_QaobzlNy4-EeHz8F9RRgeBnMYhe_VdF6kIWkc6Ah3koVWC3ybPOkU36lpfl9W76Fxrzvq9ElRRIFI2nJTEjGj_ekpJxAqEowJrmxTxI960o5DWPDcZpEIY7AoIYVrw6oJmWJBELgBjTin-6iiE60OEBZcCmYz6AMsioZeQHkU215LcsuRQDXqyCq_pi8LhXFT6GLmr7SRDQA-AOAbAPy3Ojr9GPKcy2v81blRQuQXK23pw35ljlHwFnV0VsK2av51ssN_9T5C63ZmNubKTgNV0sWLOgY2koZNVG1fPFx1m5kVvgOKZ9Xi |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6h5UBbqQ9a1C20-NATyCjEk8Q-AoLuAguoLBI9RYnjLKjgrZYgEL-eceKwFNFK3CLFtuKZ8cw38TwAvksh4kgTB3LylTnGIuEKy4RHqAOZoygxcvnOg4O4d4K7p9Gpz-O-aqPd2yvJWlNPk92EQORkU7hzHDgBx1kk_yTswOzGj197260CJgtdN6wMpAq4A-TtZeZzi_xtjqYY88m1aG1tdt7BsP3OJsjk99p1la_puyclHF-4kffw1qNPttGIyweYMXYeXj-qSTgPbw61yawvZP0RzoY3Y06IdGQKNqi7TTOCuayvDXOJCdZcsCbXt_Q__9gm2cWC0UP_kmaxYzO69PlNlmW2YFvjiTUTdjQ-txX7aUZNIK79BCc728OtHvfdGbgW63HFC3RFRRMTZcoUClFJE7rugCLRYZmTJpEhFiovSVSVVnFIxzFHg1mWxZkopBQL0LFjaz4DU1IrDJHGEDwTeZIJWZRhsq5lEGnCMF0IWial2pcudx00LtJp0WVH05RomjqaprddWHmY8qep2_G_wUst51N_hK9SUoTOP6NddGG1ZeT09T8X-_Ki0csw1xsO9tP9_sHeIrwKa6lwcUFL0Kkm1-YrQZ4q_-ZF_B7TL_Q2 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEA6iICqIJ65nHnxSgrWZtsnjeiyuN-qCb6VN0lVYs7Jb0Z_vpIerooJvhRzQfpPMl07mG0K2BedhoBCBFM_KDEIeMQlZxAJQnkiBZxC4fOeLy_CkA6f3wX1V53RY33avQ5JlToNTabL53rPO9kaJb5wDMPQvzB0iGJLICXA6CWjQHb9Zb8Xoq4vSlZ6QHnPUvA5r_jTFV8c0YpvfAqSF32nNkdmKMNJmifA8GTN2gUx_khFcIDNXyiS20p5eJA93r32GJLJrNL0oCkRTZKa0rQx1uQTW9GiZnptV_-voAboyTfGh_YSj6K3pPlUpSZYmVtPD_sCaAb3uP9qc3phueXfWLpFO6_ju8IRVBRWY4vthzjQ4HdDIBIk0WgJIYXxX0I9Hys9SXPzCBy3TDK1LKhn6uIJSMJAkSZhwLQRfJuO2b80KoVIoCT5gH2RUPI0SLnTmR_tKeIFC2tEgXv01Y1WpjbuiF714pJPsAIgRgNgBEL81yM7HkOdSauOvzus1RHG16oYx7l3uSIVv0SC7NWyj5l8nW_1X7y0yeX3Uis_bl2drZMovLMjd5Fkn4_ngxWwgScnTzcIQ3wGbnNt2 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-Staged+Method+for+Ice+Channel+Identification+Based+on+Image+Segmentation+and+Corner+Point+Regression&rft.jtitle=China+ocean+engineering&rft.au=Dong%2C+Wen-bo&rft.au=Zhou%2C+Li&rft.au=Ding%2C+Shi-feng&rft.au=Wang%2C+Ai-ming&rft.date=2024-04-01&rft.issn=0890-5487&rft.eissn=2191-8945&rft.volume=38&rft.issue=2&rft.spage=313&rft.epage=325&rft_id=info:doi/10.1007%2Fs13344-024-0026-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13344_024_0026_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-5487&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-5487&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-5487&client=summon |