Two-Staged Method for Ice Channel Identification Based on Image Segmentation and Corner Point Regression

Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters, which is important to ensure the safety and economy of navigation. In the Arctic, merchant ships with low ice class often navigate in channels opened up by icebreakers. Navigation in the...

Full description

Saved in:
Bibliographic Details
Published inChina ocean engineering Vol. 38; no. 2; pp. 313 - 325
Main Authors Dong, Wen-bo, Zhou, Li, Ding, Shi-feng, Wang, Ai-ming, Cai, Jin-yan
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0890-5487
2191-8945
DOI10.1007/s13344-024-0026-x

Cover

Abstract Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters, which is important to ensure the safety and economy of navigation. In the Arctic, merchant ships with low ice class often navigate in channels opened up by icebreakers. Navigation in the ice channel often depends on good maneuverability skills and abundant experience from the captain to a large extent. The ship may get stuck if steered into ice fields off the channel. Under this circumstance, it is very important to study how to identify the boundary lines of ice channels with a reliable method. In this paper, a two-staged ice channel identification method is developed based on image segmentation and corner point regression. The first stage employs the image segmentation method to extract channel regions. In the second stage, an intelligent corner regression network is proposed to extract the channel boundary lines from the channel region. A non-intelligent angle-based filtering and clustering method is proposed and compared with corner point regression network. The training and evaluation of the segmentation method and corner regression network are carried out on the synthetic and real ice channel dataset. The evaluation results show that the accuracy of the method using the corner point regression network in the second stage is achieved as high as 73.33% on the synthetic ice channel dataset and 70.66% on the real ice channel dataset, and the processing speed can reach up to 14.58 frames per second.
AbstractList Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters, which is important to ensure the safety and economy of navigation. In the Arctic, merchant ships with low ice class often navigate in channels opened up by icebreakers. Navigation in the ice channel often depends on good maneuverability skills and abundant experience from the captain to a large extent. The ship may get stuck if steered into ice fields off the channel. Under this circumstance, it is very important to study how to identify the boundary lines of ice channels with a reliable method. In this paper, a two-staged ice channel identification method is developed based on image segmentation and corner point regression. The first stage employs the image segmentation method to extract channel regions. In the second stage, an intelligent corner regression network is proposed to extract the channel boundary lines from the channel region. A non-intelligent angle-based filtering and clustering method is proposed and compared with corner point regression network. The training and evaluation of the segmentation method and corner regression network are carried out on the synthetic and real ice channel dataset. The evaluation results show that the accuracy of the method using the corner point regression network in the second stage is achieved as high as 73.33% on the synthetic ice channel dataset and 70.66% on the real ice channel dataset, and the processing speed can reach up to 14.58 frames per second.
Author Dong, Wen-bo
Wang, Ai-ming
Zhou, Li
Cai, Jin-yan
Ding, Shi-feng
Author_xml – sequence: 1
  givenname: Wen-bo
  surname: Dong
  fullname: Dong, Wen-bo
  organization: School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology
– sequence: 2
  givenname: Li
  surname: Zhou
  fullname: Zhou, Li
  email: zhouli209@sjtu.edu.cn
  organization: School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University
– sequence: 3
  givenname: Shi-feng
  surname: Ding
  fullname: Ding, Shi-feng
  organization: School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology
– sequence: 4
  givenname: Ai-ming
  surname: Wang
  fullname: Wang, Ai-ming
  organization: School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology
– sequence: 5
  givenname: Jin-yan
  surname: Cai
  fullname: Cai, Jin-yan
  organization: School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology
BookMark eNp9kEtLAzEUhYMoWKs_wF3A9ejNYx5ZavFRqCi2rkM6udNOaZOajFj_vSkjCIIuwg2c893HOSGHzjsk5JzBJQMoryITQsoMeHrAi2x3QAacKZZVSuaHZACVgiyXVXlMTmJcAeQsl2xAlrMPn007s0BLH7FbeksbH-i4RjpaGudwTccWXdc2bW261jt6Y2Lyps94kyg6xcUm6b1mnKUjHxwG-uxb19EXXASMMWmn5Kgx64hn33VIXu9uZ6OHbPJ0Px5dT7JasKLLrBQMVIm5UWiVlKpCrkShRFnzZg4lVFxaNW_QWFWrgnOAuURpjCmMsFUlhuSi77sN_u0dY6dX_j24NFILyIGLfYfkYr2rDj7GgI3ehnZjwqdmoPeB6j5QnQLV-0D1LjHlL6Zu-7u7YNr1vyTvyZimuAWGn53-hr4AyoWMew
CitedBy_id crossref_primary_10_1016_j_cma_2024_117247
crossref_primary_10_3390_electronics13101930
crossref_primary_10_1109_JIOT_2024_3412925
crossref_primary_10_3390_w16050689
crossref_primary_10_3390_w16060854
crossref_primary_10_1007_s13344_024_0015_0
crossref_primary_10_1016_j_neucom_2024_128823
crossref_primary_10_3390_jmse12040611
crossref_primary_10_1016_j_oceaneng_2024_119103
crossref_primary_10_1016_j_ins_2024_120787
crossref_primary_10_1007_s13344_025_0003_z
crossref_primary_10_3390_s24154994
crossref_primary_10_1016_j_engappai_2024_108172
crossref_primary_10_3390_s24134268
Cites_doi 10.1080/1088937X.2014.965769
10.1109/IVS.2018.8500547
10.1109/JSEN.2021.3084556
10.1109/TCSVT.2020.2978194
10.1016/j.oceaneng.2022.111735
10.1080/17445302.2020.1729595
10.1007/s11042-018-7138-3
10.1016/j.oceaneng.2020.107853
10.1016/j.marstruc.2022.103181
10.1016/j.oceaneng.2022.113424
10.1007/s00138-011-0404-2
10.1109/ACCESS.2021.3053956
10.1080/17445302.2022.2164420
10.1109/ICCV.2015.314
10.4043/27344-MS
10.1109/ICCV.2019.00925
ContentType Journal Article
Copyright Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2024
Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2024.
Copyright_xml – notice: Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2024
– notice: Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2024.
DBID AAYXX
CITATION
7TN
F1W
H96
L.G
DOI 10.1007/s13344-024-0026-x
DatabaseName CrossRef
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
EISSN 2191-8945
EndPage 325
ExternalDocumentID 10_1007_s13344_024_0026_x
GroupedDBID -01
-0A
-EM
-SA
-S~
06D
0R~
0VY
188
29B
29~
2B.
2C.
2KG
2KM
30V
4.4
406
408
5GY
5VR
5XA
5XB
8RM
92E
92I
92M
92Q
93N
96X
9D9
9DA
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
BGNMA
CAJEA
CCEZO
CCVFK
CHBEP
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HF~
HG6
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
J-C
JBSCW
JUIAU
JZLTJ
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O9J
P2P
P9P
PT4
Q--
Q-0
R-A
R9I
RLLFE
ROL
RSV
RT1
S..
S1Z
S27
S3B
SCL
SEG
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
T8Q
TCJ
TGP
TSG
U1F
U1G
U2A
U5A
U5K
UG4
UOJIU
UTJUX
UZ4
UZXMN
VC2
VFIZW
W48
WK8
Z7R
ZMTXR
~A9
~LH
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7TN
F1W
H96
L.G
ID FETCH-LOGICAL-c316t-d431097e5a9ed94498e2936937c2fb070824d9bfead9c962200b4e4aaa6a3d883
IEDL.DBID U2A
ISSN 0890-5487
IngestDate Wed Sep 17 23:58:39 EDT 2025
Thu Apr 24 22:56:55 EDT 2025
Wed Oct 01 02:15:21 EDT 2025
Fri Feb 21 02:38:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords ice channel
identification
ship navigation
image segmentation
corner point regression
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-d431097e5a9ed94498e2936937c2fb070824d9bfead9c962200b4e4aaa6a3d883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3050230824
PQPubID 2043672
PageCount 13
ParticipantIDs proquest_journals_3050230824
crossref_primary_10_1007_s13344_024_0026_x
crossref_citationtrail_10_1007_s13344_024_0026_x
springer_journals_10_1007_s13344_024_0026_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle China ocean engineering
PublicationTitleAbbrev China Ocean Eng
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Bar Hillel, Lerner, Levi, Raz (CR1) 2014; 25
CR2
Cao, Gao, Chen, Wang (CR5) 2020; 79
Ward, Harguess, Hilton (CR19) 2018
Pan, Shi, Luo, Wang, Tang (CR13) 2018
Buixadé Farré, Stephenson, Chen, Czub, Dai, Demchev, Efimov, Graczyk, Grythe, Keil, Kivekäs, Kumar, Liu, Matelenok, Myksvoll, O’Leary, Olsen, Pavithran, Petersen, Raspotnik, Ryzhov, Solski, Suo, Troein, Valeeva, Van Rijckevorsel, Wighting (CR3) 2014; 37
Sun, Zhang, Zhou, Garme, Burman (CR18) 2022; 83
CR6
Yu, Wang, Wang, Li (CR23) 2020; 22
Qin, Wang, Li (CR15) 2020
CR8
He, Zhang, Ren, Sun (CR7) 2016
Huang, Li, Romu, Dolatshah, Thomas (CR9) 2021; 16
CR17
Xue, Liu, Li, Han (CR21) 2020; 215
CR11
Li, Deng, Yang, Liu, Gu (CR10) 2021; 9
Panchi, Kim, Bhattacharyya (CR14) 2021; 21
Yoo, Lee, Myeong, Yun, Park, Cho, Kim (CR22) 2020
Cai, Ding, Zhang, Liu, Zeng, Zhou (CR4) 2022; 259
Xie, Zhou, Ding, Liu, Zheng (CR20) 2023; 269
Shan, Zhou, Liu, Zhang, Huang (CR16) 2021; 31
Neven, De Brabandere, Georgoulis, Proesmans, Van Gool (CR12) 2018
XG Pan (26_CR13) 2018
C Xie (26_CR20) 2023; 269
A Buixadé Farré (26_CR3) 2014; 37
LF Huang (26_CR9) 2021; 16
S Yoo (26_CR22) 2020
JY Cai (26_CR4) 2022; 259
H Li (26_CR10) 2021; 9
26_CR17
ZQ Qin (26_CR15) 2020
YX Shan (26_CR16) 2021; 31
CM Ward (26_CR19) 2018
QY Sun (26_CR18) 2022; 83
XF Cao (26_CR5) 2020; 79
D Neven (26_CR12) 2018
YZ Xue (26_CR21) 2020; 215
A Bar Hillel (26_CR1) 2014; 25
KM He (26_CR7) 2016
26_CR8
N Panchi (26_CR14) 2021; 21
26_CR6
LW Yu (26_CR23) 2020; 22
26_CR11
26_CR2
References_xml – volume: 37
  start-page: 298
  issue: 4
  year: 2014
  end-page: 324
  ident: CR3
  article-title: Commercial Arctic shipping through the Northeast Passage: routes, resources, governance, technology, and infrastructure
  publication-title: Polar Geography
  doi: 10.1080/1088937X.2014.965769
– start-page: 770
  year: 2016
  end-page: 778
  ident: CR7
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 286
  year: 2018
  end-page: 291
  ident: CR12
  article-title: Towards end-to-end lane detection: an instance segmentation approach
  publication-title: 2018 IEEE Intelligent Vehicles Symposium (IV)
  doi: 10.1109/IVS.2018.8500547
– volume: 22
  start-page: 84
  issue: 6
  year: 2020
  end-page: 93
  ident: CR23
  article-title: Development strategy for polar equipment in China
  publication-title: Strategic Study of Chinese Academy of Engineering
– volume: 21
  start-page: 18004
  issue: 16
  year: 2021
  end-page: 18019
  ident: CR14
  article-title: Supplementing remote sensing of ice: Deep learning-based image segmentation system for automatic detection and localization of sea-ice formations from close-range optical images
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2021.3084556
– ident: CR2
– volume: 31
  start-page: 315
  issue: 1
  year: 2021
  end-page: 325
  ident: CR16
  article-title: SiamFPN: A deep learning method for accurate and real-time maritime ship tracking
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/TCSVT.2020.2978194
– volume: 259
  start-page: 111735
  year: 2022
  ident: CR4
  article-title: Broken ice circumferential crack estimation via image techniques
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2022.111735
– ident: CR17
– volume: 16
  start-page: 353
  issue: 4
  year: 2021
  end-page: 362
  ident: CR9
  article-title: Simulation of a ship operating in an open-water ice channel
  publication-title: Ships and Offshore Structures
  doi: 10.1080/17445302.2020.1729595
– ident: CR11
– start-page: 276
  year: 2020
  end-page: 291
  ident: CR15
  article-title: Ultra fast structure-aware deep lane detection
  publication-title: 16th European Conference on Computer Vision
– volume: 79
  start-page: 9177
  issue: 13
  year: 2020
  end-page: 9192
  ident: CR5
  article-title: Ship recognition method combined with image segmentation and deep learning feature extraction in video surveillance
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-018-7138-3
– volume: 215
  start-page: 107853
  year: 2020
  ident: CR21
  article-title: A review for numerical simulation methods of ship–ice interaction
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2020.107853
– ident: CR6
– ident: CR8
– volume: 83
  start-page: 103181
  year: 2022
  ident: CR18
  article-title: A machine learning-based method for prediction of ship performance in ice: Part I. ice resistance
  publication-title: Marine Structures
  doi: 10.1016/j.marstruc.2022.103181
– volume: 269
  start-page: 113424
  year: 2023
  ident: CR20
  article-title: Experimental and numerical investigation on self-propulsion performance of polar merchant ship in brash ice channel
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2022.113424
– start-page: 7276
  year: 2018
  end-page: 7283
  ident: CR13
  article-title: Spatial as deep: Spatial cnn for traffic scene understanding
  publication-title: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence
– start-page: 4335
  year: 2020
  end-page: 4343
  ident: CR22
  article-title: End-to-end lane marker detection via row-wise classification
  publication-title: Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
– volume: 25
  start-page: 727
  issue: 3
  year: 2014
  end-page: 745
  ident: CR1
  article-title: Recent progress in road and lane detection: a survey
  publication-title: Machine Vision and Applications
  doi: 10.1007/s00138-011-0404-2
– volume: 9
  start-page: 16692
  year: 2021
  end-page: 16706
  ident: CR10
  article-title: Enhanced YOLO v3 tiny network for real-time ship detection from visual image
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3053956
– start-page: 1
  year: 2018
  end-page: 5
  ident: CR19
  article-title: Ship classification from overhead imagery using synthetic data and domain adaptation
  publication-title: OCEANS 2018 MTS/IEEE Charleston
– volume: 22
  start-page: 84
  issue: 6
  year: 2020
  ident: 26_CR23
  publication-title: Strategic Study of Chinese Academy of Engineering
– volume: 79
  start-page: 9177
  issue: 13
  year: 2020
  ident: 26_CR5
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-018-7138-3
– ident: 26_CR8
– start-page: 286
  volume-title: 2018 IEEE Intelligent Vehicles Symposium (IV)
  year: 2018
  ident: 26_CR12
  doi: 10.1109/IVS.2018.8500547
– volume: 269
  start-page: 113424
  year: 2023
  ident: 26_CR20
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2022.113424
– volume: 21
  start-page: 18004
  issue: 16
  year: 2021
  ident: 26_CR14
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2021.3084556
– volume: 16
  start-page: 353
  issue: 4
  year: 2021
  ident: 26_CR9
  publication-title: Ships and Offshore Structures
  doi: 10.1080/17445302.2020.1729595
– start-page: 7276
  volume-title: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence
  year: 2018
  ident: 26_CR13
– volume: 83
  start-page: 103181
  year: 2022
  ident: 26_CR18
  publication-title: Marine Structures
  doi: 10.1016/j.marstruc.2022.103181
– volume: 215
  start-page: 107853
  year: 2020
  ident: 26_CR21
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2020.107853
– volume: 25
  start-page: 727
  issue: 3
  year: 2014
  ident: 26_CR1
  publication-title: Machine Vision and Applications
  doi: 10.1007/s00138-011-0404-2
– start-page: 276
  volume-title: 16th European Conference on Computer Vision
  year: 2020
  ident: 26_CR15
– volume: 31
  start-page: 315
  issue: 1
  year: 2021
  ident: 26_CR16
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/TCSVT.2020.2978194
– ident: 26_CR6
  doi: 10.1080/17445302.2022.2164420
– ident: 26_CR17
  doi: 10.1109/ICCV.2015.314
– volume: 259
  start-page: 111735
  year: 2022
  ident: 26_CR4
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2022.111735
– ident: 26_CR11
  doi: 10.4043/27344-MS
– volume: 9
  start-page: 16692
  year: 2021
  ident: 26_CR10
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3053956
– start-page: 770
  volume-title: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition
  year: 2016
  ident: 26_CR7
– volume: 37
  start-page: 298
  issue: 4
  year: 2014
  ident: 26_CR3
  publication-title: Polar Geography
  doi: 10.1080/1088937X.2014.965769
– start-page: 4335
  volume-title: Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
  year: 2020
  ident: 26_CR22
– ident: 26_CR2
  doi: 10.1109/ICCV.2019.00925
– start-page: 1
  volume-title: OCEANS 2018 MTS/IEEE Charleston
  year: 2018
  ident: 26_CR19
SSID ssj0051541
Score 2.4225829
Snippet Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters, which is important to ensure the safety and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 313
SubjectTerms Channels
Clustering
Coastal Sciences
Datasets
Engineering
Fluid- and Aerodynamics
Frames per second
Ice
Ice cover
Ice fields
Icebreakers
Identification methods
Image segmentation
Manoeuvrability
Marine & Freshwater Sciences
Merchant ships
Navigation
Numerical and Computational Physics
Oceanography
Offshore Engineering
Regression
Simulation
Title Two-Staged Method for Ice Channel Identification Based on Image Segmentation and Corner Point Regression
URI https://link.springer.com/article/10.1007/s13344-024-0026-x
https://www.proquest.com/docview/3050230824
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2191-8945
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0051541
  issn: 0890-5487
  databaseCode: AFBBN
  dateStart: 20110301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 2191-8945
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0051541
  issn: 0890-5487
  databaseCode: AGYKE
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 2191-8945
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0051541
  issn: 0890-5487
  databaseCode: U2A
  dateStart: 20110301
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA2yvaggOhWnc-TBJyXQNWmbPM6xuSlT0Q3mU2nTdApbKltFf743_XAqKvhWyAe05yb3pDf3XIROOKWuIwGBEM7KhLnUI4LFHnGYtHjIaMwck-88vHb7Y3Y5cSZFHveyvO1ehiSznXqV7EYpYwR8CjEHBwLEseoYNS8w4rHdLrdf8M9ZuUqLC4sYOl6GMn-a4qszWjHMb0HRzNf0ttFWQRJxO0d1B60pXUMbn6QDa2jzRqpAF3rTu-hx9JoQII5TFeFhVhQaAxvFA6mwyR_QaobzlNy4-EeHz8F9RRgeBnMYhe_VdF6kIWkc6Ah3koVWC3ybPOkU36lpfl9W76Fxrzvq9ElRRIFI2nJTEjGj_ekpJxAqEowJrmxTxI960o5DWPDcZpEIY7AoIYVrw6oJmWJBELgBjTin-6iiE60OEBZcCmYz6AMsioZeQHkU215LcsuRQDXqyCq_pi8LhXFT6GLmr7SRDQA-AOAbAPy3Ojr9GPKcy2v81blRQuQXK23pw35ljlHwFnV0VsK2av51ssN_9T5C63ZmNubKTgNV0sWLOgY2koZNVG1fPFx1m5kVvgOKZ9Xi
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6h5UBbqQ9a1C20-NATyCjEk8Q-AoLuAguoLBI9RYnjLKjgrZYgEL-eceKwFNFK3CLFtuKZ8cw38TwAvksh4kgTB3LylTnGIuEKy4RHqAOZoygxcvnOg4O4d4K7p9Gpz-O-aqPd2yvJWlNPk92EQORkU7hzHDgBx1kk_yTswOzGj197260CJgtdN6wMpAq4A-TtZeZzi_xtjqYY88m1aG1tdt7BsP3OJsjk99p1la_puyclHF-4kffw1qNPttGIyweYMXYeXj-qSTgPbw61yawvZP0RzoY3Y06IdGQKNqi7TTOCuayvDXOJCdZcsCbXt_Q__9gm2cWC0UP_kmaxYzO69PlNlmW2YFvjiTUTdjQ-txX7aUZNIK79BCc728OtHvfdGbgW63HFC3RFRRMTZcoUClFJE7rugCLRYZmTJpEhFiovSVSVVnFIxzFHg1mWxZkopBQL0LFjaz4DU1IrDJHGEDwTeZIJWZRhsq5lEGnCMF0IWial2pcudx00LtJp0WVH05RomjqaprddWHmY8qep2_G_wUst51N_hK9SUoTOP6NddGG1ZeT09T8X-_Ki0csw1xsO9tP9_sHeIrwKa6lwcUFL0Kkm1-YrQZ4q_-ZF_B7TL_Q2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEA6iICqIJ65nHnxSgrWZtsnjeiyuN-qCb6VN0lVYs7Jb0Z_vpIerooJvhRzQfpPMl07mG0K2BedhoBCBFM_KDEIeMQlZxAJQnkiBZxC4fOeLy_CkA6f3wX1V53RY33avQ5JlToNTabL53rPO9kaJb5wDMPQvzB0iGJLICXA6CWjQHb9Zb8Xoq4vSlZ6QHnPUvA5r_jTFV8c0YpvfAqSF32nNkdmKMNJmifA8GTN2gUx_khFcIDNXyiS20p5eJA93r32GJLJrNL0oCkRTZKa0rQx1uQTW9GiZnptV_-voAboyTfGh_YSj6K3pPlUpSZYmVtPD_sCaAb3uP9qc3phueXfWLpFO6_ju8IRVBRWY4vthzjQ4HdDIBIk0WgJIYXxX0I9Hys9SXPzCBy3TDK1LKhn6uIJSMJAkSZhwLQRfJuO2b80KoVIoCT5gH2RUPI0SLnTmR_tKeIFC2tEgXv01Y1WpjbuiF714pJPsAIgRgNgBEL81yM7HkOdSauOvzus1RHG16oYx7l3uSIVv0SC7NWyj5l8nW_1X7y0yeX3Uis_bl2drZMovLMjd5Fkn4_ngxWwgScnTzcIQ3wGbnNt2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-Staged+Method+for+Ice+Channel+Identification+Based+on+Image+Segmentation+and+Corner+Point+Regression&rft.jtitle=China+ocean+engineering&rft.au=Dong%2C+Wen-bo&rft.au=Zhou%2C+Li&rft.au=Ding%2C+Shi-feng&rft.au=Wang%2C+Ai-ming&rft.date=2024-04-01&rft.issn=0890-5487&rft.eissn=2191-8945&rft.volume=38&rft.issue=2&rft.spage=313&rft.epage=325&rft_id=info:doi/10.1007%2Fs13344-024-0026-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13344_024_0026_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-5487&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-5487&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-5487&client=summon