Load frequency controller design of a two-area system composing of PV grid and thermal generator via firefly algorithm
In this paper, firefly algorithm (FA) for optimal tuning of PI controllers for load frequency control of hybrid system composing of photovoltaic (PV) system and thermal generator is introduced. Also, maximum power point tracking of PV is considered in the design process. The block diagram of the hyb...
Saved in:
| Published in | Neural computing & applications Vol. 30; no. 2; pp. 607 - 616 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
London
Springer London
01.07.2018
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0941-0643 1433-3058 |
| DOI | 10.1007/s00521-016-2668-y |
Cover
| Abstract | In this paper, firefly algorithm (FA) for optimal tuning of PI controllers for load frequency control of hybrid system composing of photovoltaic (PV) system and thermal generator is introduced. Also, maximum power point tracking of PV is considered in the design process. The block diagram of the hybrid system is performed. To robustly tune the parameters of controllers, a time-domain-based objective function is established which is solved by the FA. Simulation results are presented to show the improved performance of the suggested FA-based controllers compared with genetic algorithm (GA). These results show that the proposed controllers present better performance over GA in terms of settling times and different indices. |
|---|---|
| AbstractList | In this paper, firefly algorithm (FA) for optimal tuning of PI controllers for load frequency control of hybrid system composing of photovoltaic (PV) system and thermal generator is introduced. Also, maximum power point tracking of PV is considered in the design process. The block diagram of the hybrid system is performed. To robustly tune the parameters of controllers, a time-domain-based objective function is established which is solved by the FA. Simulation results are presented to show the improved performance of the suggested FA-based controllers compared with genetic algorithm (GA). These results show that the proposed controllers present better performance over GA in terms of settling times and different indices. |
| Author | Abd-Elazim, S. M. Ali, E. S. |
| Author_xml | – sequence: 1 givenname: S. M. surname: Abd-Elazim fullname: Abd-Elazim, S. M. organization: Electric Power and Machine Department, Faculty of Engineering, Zagazig University – sequence: 2 givenname: E. S. surname: Ali fullname: Ali, E. S. email: ehabsalimalisalama@yahoo.com organization: Electric Power and Machine Department, Faculty of Engineering, Zagazig University |
| BookMark | eNp9kE1r3DAQhkVJoJukP6A3Qc5uRv6QrWNZ2iawkBzaXsWsPfJqsaWNpE3xv6-WLQQC6WkE8z4zo-eKXTjviLHPAr4IgPYuAjSlKEDIopSyK5YPbCXqqioqaLoLtgJV566sq4_sKsY9ANSya1bsZeNx4CbQ85Fcv_DeuxT8NFHgA0U7Ou4NR57--AIDIY9LTDTn2Hzw0brx1H76zcdgB45u4GlHYcaJj-QoYPKBv1jkxgYy08JxGn2waTffsEuDU6RP_-o1-_X928_1fbF5_PGw_rop-krIVAyl2pZ1axSioq1qjaS2x9bUmF9y24AkpZTsBjlIBNm2hmSnatgClUBYVtfs9jz3EHz-YUx674_B5ZW6hKYWlWoakVPinOqDjzGfqg_BzhgWLUCf9OqzXp316pNevWSmfcP0NmGyJ39op_-S5ZmMeYsbKbze9D70Fz1xk3U |
| CitedBy_id | crossref_primary_10_1007_s00500_023_08077_0 crossref_primary_10_1016_j_prime_2024_100488 crossref_primary_10_1007_s00500_021_06558_8 crossref_primary_10_1007_s41660_022_00257_z crossref_primary_10_1049_rpg2_12885 crossref_primary_10_1080_15325008_2019_1659452 crossref_primary_10_1038_s41598_024_81382_2 crossref_primary_10_26634_jic_5_4_13844 crossref_primary_10_1109_JESTPE_2020_3012659 crossref_primary_10_1016_j_compeleceng_2024_109876 crossref_primary_10_1007_s00521_019_04301_x crossref_primary_10_1016_j_est_2024_113364 crossref_primary_10_1038_s41598_024_77247_3 crossref_primary_10_1007_s00521_020_05599_8 crossref_primary_10_1007_s00521_021_06168_3 crossref_primary_10_1016_j_isatra_2018_07_028 crossref_primary_10_1063_5_0206835 crossref_primary_10_1109_TSTE_2022_3190084 crossref_primary_10_1177_0020720919829710 crossref_primary_10_1007_s00521_019_04236_3 crossref_primary_10_1016_j_seta_2022_102671 crossref_primary_10_3390_en14248522 crossref_primary_10_17341_gazimmfd_984019 crossref_primary_10_1016_j_isatra_2023_01_029 crossref_primary_10_1007_s00521_019_04561_7 crossref_primary_10_3390_math10030508 crossref_primary_10_1016_j_ijepes_2021_107330 crossref_primary_10_1016_j_renene_2019_02_038 crossref_primary_10_1002_int_22715 crossref_primary_10_1016_j_renene_2018_11_071 crossref_primary_10_1155_2019_4961045 crossref_primary_10_1007_s42835_021_00986_0 crossref_primary_10_1016_j_prime_2024_100787 crossref_primary_10_1007_s11277_024_11588_0 crossref_primary_10_1016_j_rico_2025_100539 crossref_primary_10_1007_s42452_021_04327_8 crossref_primary_10_1080_03772063_2019_1694452 crossref_primary_10_1007_s00521_020_05199_6 crossref_primary_10_1007_s13042_024_02366_2 crossref_primary_10_1109_ACCESS_2024_3358425 crossref_primary_10_1016_j_energy_2024_131809 crossref_primary_10_29109_gujsc_1488286 crossref_primary_10_1007_s12046_022_02071_2 crossref_primary_10_3389_fenrg_2022_902776 crossref_primary_10_1007_s40815_019_00761_4 crossref_primary_10_35940_ijeat_D3410_0411422 crossref_primary_10_1016_j_conengprac_2021_105058 crossref_primary_10_1007_s00521_019_04254_1 crossref_primary_10_1080_15325008_2018_1509913 crossref_primary_10_1016_j_compeleceng_2021_107606 crossref_primary_10_1016_j_solener_2019_03_038 crossref_primary_10_1109_ACCESS_2020_3040620 crossref_primary_10_1007_s41939_023_00287_1 crossref_primary_10_1016_j_seta_2023_103283 crossref_primary_10_1016_j_asoc_2021_107417 crossref_primary_10_1049_gtd2_13185 crossref_primary_10_1177_0142331219892728 crossref_primary_10_1007_s00521_018_3772_y crossref_primary_10_1007_s42835_021_00913_3 crossref_primary_10_1080_15567036_2019_1646354 crossref_primary_10_1155_er_6874402 crossref_primary_10_1007_s00202_023_02143_4 crossref_primary_10_3390_en10111840 crossref_primary_10_1007_s40313_020_00684_8 crossref_primary_10_1007_s40998_021_00460_7 crossref_primary_10_1016_j_segan_2020_100352 crossref_primary_10_1007_s12652_022_03751_x crossref_primary_10_3390_en16020693 crossref_primary_10_1108_COMPEL_07_2021_0231 crossref_primary_10_1080_23080477_2022_2054197 crossref_primary_10_1038_s41598_023_41024_5 crossref_primary_10_1007_s00202_024_02868_w crossref_primary_10_1016_j_heliyon_2024_e31840 crossref_primary_10_1007_s00521_017_3114_5 crossref_primary_10_1007_s10668_019_00349_w crossref_primary_10_1016_j_egyr_2022_02_019 crossref_primary_10_1111_exsy_12488 crossref_primary_10_1007_s12652_020_02313_3 crossref_primary_10_1016_j_energy_2023_128695 crossref_primary_10_1080_23311916_2024_2391958 crossref_primary_10_3390_electronics10040448 crossref_primary_10_3390_math12193076 crossref_primary_10_1007_s12667_023_00653_5 crossref_primary_10_1109_ACCESS_2020_2966261 crossref_primary_10_1109_ACCESS_2022_3155201 crossref_primary_10_1016_j_prime_2024_100605 crossref_primary_10_1109_ACCESS_2020_2998127 crossref_primary_10_1002_2050_7038_12702 crossref_primary_10_1007_s11082_023_04583_5 crossref_primary_10_1007_s00521_022_07558_x crossref_primary_10_1007_s00521_019_04273_y crossref_primary_10_1109_ACCESS_2021_3049782 crossref_primary_10_1109_ACCESS_2022_3202907 crossref_primary_10_1109_ACCESS_2020_3004299 crossref_primary_10_1109_ACCESS_2024_3367011 crossref_primary_10_1007_s00521_023_09273_7 crossref_primary_10_1016_j_seta_2020_100844 crossref_primary_10_1080_00051144_2019_1694743 crossref_primary_10_1016_j_asoc_2024_111682 crossref_primary_10_1007_s00521_019_04260_3 crossref_primary_10_1016_j_matpr_2022_03_414 crossref_primary_10_1080_15567036_2021_1953636 crossref_primary_10_32604_iasc_2023_041059 crossref_primary_10_1155_2023_5999997 crossref_primary_10_1016_j_est_2023_108248 crossref_primary_10_1007_s12652_019_01348_5 crossref_primary_10_1007_s00521_022_07470_4 crossref_primary_10_1109_TIA_2023_3257141 crossref_primary_10_21923_jesd_1511442 crossref_primary_10_3390_solar3020018 crossref_primary_10_1109_ACCESS_2022_3169749 crossref_primary_10_1109_JSYST_2023_3277002 crossref_primary_10_1016_j_asoc_2019_105728 crossref_primary_10_1016_j_iswa_2023_200261 crossref_primary_10_1016_j_compeleceng_2021_107510 crossref_primary_10_1080_02286203_2023_2205989 crossref_primary_10_1002_jnm_2989 crossref_primary_10_1016_j_asej_2020_08_016 crossref_primary_10_1016_j_ijepes_2021_106879 crossref_primary_10_1109_MSMC_2021_3066149 crossref_primary_10_1007_s10700_022_09402_2 crossref_primary_10_1002_jnm_2991 crossref_primary_10_1080_03772063_2020_1782777 crossref_primary_10_1007_s00521_019_04512_2 crossref_primary_10_1016_j_ijepes_2021_106909 crossref_primary_10_1049_tje2_70054 crossref_primary_10_1109_ACCESS_2021_3066281 crossref_primary_10_1016_j_solener_2019_03_073 crossref_primary_10_1016_j_jestch_2021_09_004 crossref_primary_10_1016_j_ijepes_2020_106440 crossref_primary_10_3390_en15010361 crossref_primary_10_1007_s00521_019_04422_3 crossref_primary_10_1002_2050_7038_12883 crossref_primary_10_1049_rpg2_13169 crossref_primary_10_46387_bjesr_1456068 crossref_primary_10_1002_2050_7038_12643 crossref_primary_10_1016_j_compeleceng_2025_110240 crossref_primary_10_1109_TPWRS_2022_3218080 crossref_primary_10_1007_s00202_023_01943_y crossref_primary_10_1007_s00202_023_01923_2 crossref_primary_10_1080_01430750_2018_1531258 crossref_primary_10_1007_s00521_019_04488_z crossref_primary_10_2166_h2oj_2020_005 crossref_primary_10_1016_j_rineng_2024_102958 crossref_primary_10_1109_TIA_2023_3297985 crossref_primary_10_1080_15325008_2022_2050450 crossref_primary_10_1007_s13369_022_07004_z crossref_primary_10_3390_appliedmath4020024 crossref_primary_10_3390_en13226103 crossref_primary_10_25046_aj070510 crossref_primary_10_1007_s00521_022_07813_1 crossref_primary_10_1038_s41598_025_86597_5 crossref_primary_10_1007_s42835_022_01202_3 crossref_primary_10_3389_fenrg_2022_1019464 crossref_primary_10_1007_s00521_019_04127_7 |
| Cites_doi | 10.1016/j.epsr.2004.04.004 10.1007/978-1-84882-983-1_15 10.1109/INDCON.2012.6420630 10.1504/IJBIC.2010.032124 10.1109/JSYST.2011.2163028 10.1016/j.asoc.2015.01.020 10.1016/j.ijepes.2013.02.030 10.1016/j.epsr.2008.11.005 10.1016/j.egypro.2011.12.1178 10.1109/TPWRS.2013.2297432 10.1016/j.ijepes.2013.08.019 10.1007/s00521-015-2067-9 10.1007/978-3-319-07278-4 10.1016/j.asoc.2011.09.017 10.1007/978-3-642-37291-9_40 10.1016/j.ijepes.2012.05.063 10.1007/s00521-015-2091-9 10.1016/j.ins.2006.01.003 10.1007/s40031-014-0126-8 10.1002/etep.609 10.1007/978-3-319-03756-1_39 10.1002/oca.4660120307 10.1016/j.ijepes.2010.12.022 10.7551/mitpress/1090.001.0001 10.1016/j.ins.2013.06.022 10.1007/s00521-015-2068-8 10.1109/TPAS.1982.317117 10.1080/15325008.2014.933372 10.1016/j.ijepes.2015.11.029 10.1049/ip-c.1993.0003 10.1016/S0196-8904(99)00040-0 10.1016/j.ijepes.2013.04.007 10.1016/j.asej.2014.07.002 10.1016/j.ijepes.2015.05.050 10.1007/s00521-014-1796-5 10.9790/0661-1117578 10.4314/ijest.v4i1.4S 10.1007/978-3-642-27172-4_60 10.11648/j.ijepe.20130205.12 |
| ContentType | Journal Article |
| Copyright | The Natural Computing Applications Forum 2016 Copyright Springer Science & Business Media 2018 |
| Copyright_xml | – notice: The Natural Computing Applications Forum 2016 – notice: Copyright Springer Science & Business Media 2018 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s00521-016-2668-y |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 616 |
| ExternalDocumentID | 10_1007_s00521_016_2668_y |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO |
| ID | FETCH-LOGICAL-c316t-d29b247f9aa9eb97f6e7ca7f4af6e6b506e99968d6d6a0677fe68940b0e20ea23 |
| IEDL.DBID | U2A |
| ISSN | 0941-0643 |
| IngestDate | Fri Jul 25 07:42:58 EDT 2025 Thu Apr 24 22:56:57 EDT 2025 Wed Oct 01 05:58:50 EDT 2025 Fri Feb 21 02:35:57 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | LFC Two-area system MPPT PI controller Firefly algorithm PV grid |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-d29b247f9aa9eb97f6e7ca7f4af6e6b506e99968d6d6a0677fe68940b0e20ea23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2054139551 |
| PQPubID | 2043988 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2054139551 crossref_primary_10_1007_s00521_016_2668_y crossref_citationtrail_10_1007_s00521_016_2668_y springer_journals_10_1007_s00521_016_2668_y |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-07-01 |
| PublicationDateYYYYMMDD | 2018-07-01 |
| PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2018 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | TanWZhouHRobust analysis of decentralized load frequency control for multi-area power systemsInt J Electr Power Energy Syst2012431996100510.1016/j.ijepes.2012.05.063 AliESAbd-ElazimSMBFOA based design of PID controller for two area load frequency control with nonlinearitiesInt J Electr Power Energy Syst20135122423110.1016/j.ijepes.2013.02.030 MahapatraSPandaSSwainSCA hybrid firefly algorithm and pattern search technique for SSSC based power oscillation damping controller designAin Shams Eng J2014 AliESSpeed control of DC series motor supplied by photovoltaic system via firefly algorithmNeural Comput Appl20152661321133210.1007/s00521-014-1796-5 ZameeMAMitraDTahhanSYLoad frequency control of interconnected hydro-thermal power system using conventional PI and fuzzy logic controllerInt J Energy Power Eng20132519119610.11648/j.ijepe.20130205.12 RameshSKrishnanAModified genetic algorithm based load frequency controller for interconnected power systemsInt J Electr Power Eng2009312630 Yang XS (2010) Firefly algorithm, levy flights and global optimization. In: Research and development in intelligent systems XXVI, Springer, London, pp 209–218 FrancisRChidambaramIAApplication of modified dynamic neural network for the load frequency control of a two area thermal reheat power systemInt Rev Autom Control2013614753 OshabaASAliESAbd-ElazimSMSpeed control of SRM supplied by photovoltaic system via ant colony optimization algorithmNeural Comput Appl2015 PrakashSSinhaSLoad frequency control of three area interconnected hydro-thermal reheat power system using artificial intelligence and PI controllersInt J Eng Sci Technol2011412337 Abd-ElazizAYAliESCuckoo search algorithm based load frequency controller design for nonlinear interconnected power systemInt J Electr Power Energy Syst201573C63264310.1016/j.ijepes.2015.05.050 RajalakshmiNSubramanianDPThamizhavelKPerformance enhancement of radial distributed system with distributed reconfiguration using binary firefly algorithmJ Inst Eng Ser B2015961919910.1007/s40031-014-0126-8 OshabaASAliESAbd-ElazimSMPI controller design for MPPT of photovoltaic system supplied SRM via BAT search algorithmNeural Comput Appl2015 OshabaASAliESAbd-ElazimSMPI controller design using ABC algorithm for MPPT of PV system supplying DC motor pump loadNeural Comput Appl2015 ElgerdOIElectric energy systems theory2006New DelhiTata McGraw-Hill HashmiAGoelNGoelSGuptaDFirefly algorithm for unconstrained optimizationIOSR J Comput Eng2013111757810.9790/0661-1117578 Singla H, Kumar A (2012) LQR based load frequency control with SMES in deregulated environment. In: Annual IEEE India conference (INDICON), 7–9 Dec 2012, Kochi, pp 286–292 YousefHAAL-KharusiKAlbadiMHHosseinzadehNLoad frequency control of a multi-area power system: an adaptive fuzzy logic approachIEEE Trans Power Syst20142941822183010.1109/TPWRS.2013.2297432 UmraoRChaturvediDKMalikOPLoad frequency control: a polar fuzzy approachSwarm Evolut Memet Comput Lect Notes Comput Sci2011707649450410.1007/978-3-642-27172-4_60 Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. A Bradford Book; Reprint edition BevraniHDaneshmandPRFuzzy logic-based load-frequency control concerning high penetration of wind turbinesIEEE Syst J20126117318010.1109/JSYST.2011.2163028 AliESAbd-ElazimSMBacteria foraging optimization algorithm based load frequency controller for interconnected power systemInt J Electr Power Energy Syst201133363363810.1016/j.ijepes.2010.12.022 HasanNDesign and analysis of pole-placement controller for interconnected power systemsInt J Emerg Technol Adv Eng201228212217 MilaniAEMozafariBGenetic algorithm based optimal load frequency control in two area interconnected power systemGlob J Technol Optim20112610 SaikiaLCSahuSKAutomatic generation control of a combined cycle gas turbine plant with classical controllers using firefly algorithmInt J Electr Power Energy Syst201353273310.1016/j.ijepes.2013.04.007 SelvakumaranSParthasarathySKarthigaivelRRajasekaranVOptimal decentralized load frequency control in a parallel AC–DC interconnected power system through HVDC link using PSO algorithmEnergy Proc2012141849185410.1016/j.egypro.2011.12.1178 BevraniHRobust power system frequency control, Switzerland20142New YorkSpringer1163.93002 SantyTNatesanRLoad frequency control of a two area system consisting of a grid connected PV system and diesel generatorInt J Emerg Technol Comput Electron2015131456461 LiawCMA modified optimal load-frequency controller for interconnected power systemsOptim Control Appl Methods199112319720410.1002/oca.46601203070850.93654 AzzamMRobust automatic generation controlEnergy Convers Manag1999401413142110.1016/S0196-8904(99)00040-0 ChidambaramIAParamasivamBGenetic algorithm based decentralized controller for load-frequency control of interconnected power systems with RFB considering TCPS in the tie-lineInt J Electron Eng Res200914299312 NagSPhilipNApplication of neural networks to automatic load frequency controlSwarm Evolut Memet Comput Lect Notes Comput Sci2013829843144110.1007/978-3-319-03756-1_39 WangYZhouRWenCRobust load-frequency controller design for power systemsIEE Proc Gener Transm Distrib19931401111610.1049/ip-c.1993.0003 BengiaminNNChanWCVariable structure control of electric power generationIEEE Trans Power Appar Syst1982PAS-10137638010.1109/TPAS.1982.317117 LeeHJParkJBJooYHRobust load-frequency control for uncertain nonlinear power systems: a fuzzy logic approachInt J Inf Sci2006176233520353722719371125.93038 GhoshalSPOptimizations of PID gains by particle swarm optimizations in fuzzy based automatic generation controlInt J Electr Power Syst Res200472320321210.1016/j.epsr.2004.04.004 UmraoRChaturvediDKA novel fuzzy control approach for load frequency controlRecent Adv Syst Model Appl Lect Notes Electr Eng2013188239247 Abd-ElazimSMAliESLoad frequency controller design via BAT algorithm for nonlinear interconnected power systemInt J Electr Power Energy Syst201677C16617710.1016/j.ijepes.2015.11.029 GiriBabuVHemanthBKumarTSPrasanthBVSingle area load frequency control problem using particle swarm optimizationInt J Eng Sci2014364652 TomyFTPrakashRLoad frequency control of a two area hybrid system consisting of a grid connected PV system and thermal generatorInt J Res Eng Technol201437573580 TanWXuZRobust analysis and design of load frequency controller for power systemsElectr Power Syst Res200979584685310.1016/j.epsr.2008.11.005 ChandrasekaranKSimonSPPadhyNPBinary real coded firefly algorithm for solving unit commitment problemInf Sci2013249678410.1016/j.ins.2013.06.022 YangXSNature-inspired metaheuristic algorithms20102United KingdomLuniver Press PadhanSSahuRKPandaSApplication of firefly algorithm for load frequency control of multi-area interconnected power systemElectr Power Compon Syst201442131419143010.1080/15325008.2014.933372 JagatheesanKAnandandBEbrahimMAStochastic particle swarm optimization for tuning of PID controller in load frequency control of single area reheat thermal power systemInt J Electr Power Eng2014823340 SakhavatiAGharehpetianGBHosseiniSHDecentralized robust load-frequency control of power system based on quantitative feedback theoryTurk J Electr Eng Comp Sci2011194513530 JeyalakshmiVSubburajPLoad frequency control in two area multi units interconnected power system using multi objective genetic algorithmWSEAS Trans Power Syst2015103545 SahuRKPandaSPadhanSA novel hybrid gravitational search and pattern search algorithm for load frequency control of nonlinear power systemAppl Soft Comput20152931032710.1016/j.asoc.2015.01.020 YangXSHosseiniSSSGandomiAHFirefly algorithm for solving non-convex economic dispatch problems with valve loading effectAppl Soft Comput2012121180118610.1016/j.asoc.2011.09.017 NdongmoJKennéGFochieRCheukemAFotsinHLagarrigueFA simplified nonlinear controller for transient stability enhancement of multimachine power systems using SSSC deviceInt J Electr Power Energy Syst20145465065710.1016/j.ijepes.2013.08.019 PandeySKMohantySRKishorNCatalãoJPSAn advanced LMI-based-LQR design for load frequency control of an autonomous hybrid generation systemTechnol Innov Internet Things IFIP Adv Inf Commun Technol201339437138110.1007/978-3-642-37291-9_40 HooshmandRAtaeiMZargariAA new fuzzy sliding mode controller for load frequency control of large hydropower plant using particle swarm optimization algorithm and Kalman estimatorEur Trans Electr Power201222681283010.1002/etep.609 YangXSFirefly algorithm, stochastic test functions and design optimizationInt J Bio-Inspir Comput201022788410.1504/IJBIC.2010.032124 T Santy (2668_CR47) 2015; 13 NN Bengiamin (2668_CR15) 1982; PAS-101 HA Yousef (2668_CR20) 2014; 29 OI Elgerd (2668_CR1) 2006 AY Abd-Elaziz (2668_CR36) 2015; 73C IA Chidambaram (2668_CR8) 2009; 1 AS Oshaba (2668_CR50) 2015 H Bevrani (2668_CR17) 2012; 6 Y Wang (2668_CR3) 1993; 140 R Umrao (2668_CR16) 2011; 7076 LC Saikia (2668_CR33) 2013; 53 2668_CR40 S Mahapatra (2668_CR42) 2014 W Tan (2668_CR7) 2012; 43 S Selvakumaran (2668_CR10) 2012; 14 MA Zamee (2668_CR19) 2013; 2 HJ Lee (2668_CR5) 2006; 176 S Nag (2668_CR22) 2013; 8298 N Rajalakshmi (2668_CR44) 2015; 96 S Prakash (2668_CR21) 2011; 4 K Jagatheesan (2668_CR30) 2014; 8 2668_CR53 SK Pandey (2668_CR12) 2013; 394 SP Ghoshal (2668_CR27) 2004; 72 N Hasan (2668_CR14) 2012; 2 XS Yang (2668_CR45) 2012; 12 2668_CR11 XS Yang (2668_CR38) 2010 A Sakhavati (2668_CR9) 2011; 19 XS Yang (2668_CR39) 2010; 2 S Ramesh (2668_CR24) 2009; 3 CM Liaw (2668_CR13) 1991; 12 AE Milani (2668_CR25) 2011; 2 AS Oshaba (2668_CR52) 2015 ES Ali (2668_CR31) 2011; 33 ES Ali (2668_CR32) 2013; 51 W Tan (2668_CR6) 2009; 79 V Jeyalakshmi (2668_CR26) 2015; 10 K Chandrasekaran (2668_CR46) 2013; 249 SM Abd-Elazim (2668_CR37) 2016; 77C AS Oshaba (2668_CR51) 2015 A Hashmi (2668_CR41) 2013; 11 FT Tomy (2668_CR48) 2014; 3 R Hooshmand (2668_CR28) 2012; 22 V GiriBabu (2668_CR29) 2014; 3 H Bevrani (2668_CR2) 2014 S Padhan (2668_CR34) 2014; 42 J Ndongmo (2668_CR43) 2014; 54 RK Sahu (2668_CR35) 2015; 29 ES Ali (2668_CR49) 2015; 26 R Umrao (2668_CR18) 2013; 188 M Azzam (2668_CR4) 1999; 40 R Francis (2668_CR23) 2013; 6 |
| References_xml | – reference: WangYZhouRWenCRobust load-frequency controller design for power systemsIEE Proc Gener Transm Distrib19931401111610.1049/ip-c.1993.0003 – reference: SelvakumaranSParthasarathySKarthigaivelRRajasekaranVOptimal decentralized load frequency control in a parallel AC–DC interconnected power system through HVDC link using PSO algorithmEnergy Proc2012141849185410.1016/j.egypro.2011.12.1178 – reference: Abd-ElazizAYAliESCuckoo search algorithm based load frequency controller design for nonlinear interconnected power systemInt J Electr Power Energy Syst201573C63264310.1016/j.ijepes.2015.05.050 – reference: RameshSKrishnanAModified genetic algorithm based load frequency controller for interconnected power systemsInt J Electr Power Eng2009312630 – reference: ChandrasekaranKSimonSPPadhyNPBinary real coded firefly algorithm for solving unit commitment problemInf Sci2013249678410.1016/j.ins.2013.06.022 – reference: NdongmoJKennéGFochieRCheukemAFotsinHLagarrigueFA simplified nonlinear controller for transient stability enhancement of multimachine power systems using SSSC deviceInt J Electr Power Energy Syst20145465065710.1016/j.ijepes.2013.08.019 – reference: BevraniHRobust power system frequency control, Switzerland20142New YorkSpringer1163.93002 – reference: YousefHAAL-KharusiKAlbadiMHHosseinzadehNLoad frequency control of a multi-area power system: an adaptive fuzzy logic approachIEEE Trans Power Syst20142941822183010.1109/TPWRS.2013.2297432 – reference: SaikiaLCSahuSKAutomatic generation control of a combined cycle gas turbine plant with classical controllers using firefly algorithmInt J Electr Power Energy Syst201353273310.1016/j.ijepes.2013.04.007 – reference: Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. A Bradford Book; Reprint edition – reference: FrancisRChidambaramIAApplication of modified dynamic neural network for the load frequency control of a two area thermal reheat power systemInt Rev Autom Control2013614753 – reference: OshabaASAliESAbd-ElazimSMPI controller design using ABC algorithm for MPPT of PV system supplying DC motor pump loadNeural Comput Appl2015 – reference: OshabaASAliESAbd-ElazimSMPI controller design for MPPT of photovoltaic system supplied SRM via BAT search algorithmNeural Comput Appl2015 – reference: GiriBabuVHemanthBKumarTSPrasanthBVSingle area load frequency control problem using particle swarm optimizationInt J Eng Sci2014364652 – reference: AliESAbd-ElazimSMBFOA based design of PID controller for two area load frequency control with nonlinearitiesInt J Electr Power Energy Syst20135122423110.1016/j.ijepes.2013.02.030 – reference: Singla H, Kumar A (2012) LQR based load frequency control with SMES in deregulated environment. In: Annual IEEE India conference (INDICON), 7–9 Dec 2012, Kochi, pp 286–292 – reference: BevraniHDaneshmandPRFuzzy logic-based load-frequency control concerning high penetration of wind turbinesIEEE Syst J20126117318010.1109/JSYST.2011.2163028 – reference: MahapatraSPandaSSwainSCA hybrid firefly algorithm and pattern search technique for SSSC based power oscillation damping controller designAin Shams Eng J2014 – reference: YangXSNature-inspired metaheuristic algorithms20102United KingdomLuniver Press – reference: JeyalakshmiVSubburajPLoad frequency control in two area multi units interconnected power system using multi objective genetic algorithmWSEAS Trans Power Syst2015103545 – reference: LiawCMA modified optimal load-frequency controller for interconnected power systemsOptim Control Appl Methods199112319720410.1002/oca.46601203070850.93654 – reference: SakhavatiAGharehpetianGBHosseiniSHDecentralized robust load-frequency control of power system based on quantitative feedback theoryTurk J Electr Eng Comp Sci2011194513530 – reference: PadhanSSahuRKPandaSApplication of firefly algorithm for load frequency control of multi-area interconnected power systemElectr Power Compon Syst201442131419143010.1080/15325008.2014.933372 – reference: PandeySKMohantySRKishorNCatalãoJPSAn advanced LMI-based-LQR design for load frequency control of an autonomous hybrid generation systemTechnol Innov Internet Things IFIP Adv Inf Commun Technol201339437138110.1007/978-3-642-37291-9_40 – reference: HasanNDesign and analysis of pole-placement controller for interconnected power systemsInt J Emerg Technol Adv Eng201228212217 – reference: UmraoRChaturvediDKA novel fuzzy control approach for load frequency controlRecent Adv Syst Model Appl Lect Notes Electr Eng2013188239247 – reference: UmraoRChaturvediDKMalikOPLoad frequency control: a polar fuzzy approachSwarm Evolut Memet Comput Lect Notes Comput Sci2011707649450410.1007/978-3-642-27172-4_60 – reference: GhoshalSPOptimizations of PID gains by particle swarm optimizations in fuzzy based automatic generation controlInt J Electr Power Syst Res200472320321210.1016/j.epsr.2004.04.004 – reference: YangXSFirefly algorithm, stochastic test functions and design optimizationInt J Bio-Inspir Comput201022788410.1504/IJBIC.2010.032124 – reference: LeeHJParkJBJooYHRobust load-frequency control for uncertain nonlinear power systems: a fuzzy logic approachInt J Inf Sci2006176233520353722719371125.93038 – reference: NagSPhilipNApplication of neural networks to automatic load frequency controlSwarm Evolut Memet Comput Lect Notes Comput Sci2013829843144110.1007/978-3-319-03756-1_39 – reference: JagatheesanKAnandandBEbrahimMAStochastic particle swarm optimization for tuning of PID controller in load frequency control of single area reheat thermal power systemInt J Electr Power Eng2014823340 – reference: ChidambaramIAParamasivamBGenetic algorithm based decentralized controller for load-frequency control of interconnected power systems with RFB considering TCPS in the tie-lineInt J Electron Eng Res200914299312 – reference: ZameeMAMitraDTahhanSYLoad frequency control of interconnected hydro-thermal power system using conventional PI and fuzzy logic controllerInt J Energy Power Eng20132519119610.11648/j.ijepe.20130205.12 – reference: TanWXuZRobust analysis and design of load frequency controller for power systemsElectr Power Syst Res200979584685310.1016/j.epsr.2008.11.005 – reference: RajalakshmiNSubramanianDPThamizhavelKPerformance enhancement of radial distributed system with distributed reconfiguration using binary firefly algorithmJ Inst Eng Ser B2015961919910.1007/s40031-014-0126-8 – reference: ElgerdOIElectric energy systems theory2006New DelhiTata McGraw-Hill – reference: AzzamMRobust automatic generation controlEnergy Convers Manag1999401413142110.1016/S0196-8904(99)00040-0 – reference: BengiaminNNChanWCVariable structure control of electric power generationIEEE Trans Power Appar Syst1982PAS-10137638010.1109/TPAS.1982.317117 – reference: TanWZhouHRobust analysis of decentralized load frequency control for multi-area power systemsInt J Electr Power Energy Syst2012431996100510.1016/j.ijepes.2012.05.063 – reference: AliESSpeed control of DC series motor supplied by photovoltaic system via firefly algorithmNeural Comput Appl20152661321133210.1007/s00521-014-1796-5 – reference: YangXSHosseiniSSSGandomiAHFirefly algorithm for solving non-convex economic dispatch problems with valve loading effectAppl Soft Comput2012121180118610.1016/j.asoc.2011.09.017 – reference: SantyTNatesanRLoad frequency control of a two area system consisting of a grid connected PV system and diesel generatorInt J Emerg Technol Comput Electron2015131456461 – reference: Abd-ElazimSMAliESLoad frequency controller design via BAT algorithm for nonlinear interconnected power systemInt J Electr Power Energy Syst201677C16617710.1016/j.ijepes.2015.11.029 – reference: TomyFTPrakashRLoad frequency control of a two area hybrid system consisting of a grid connected PV system and thermal generatorInt J Res Eng Technol201437573580 – reference: PrakashSSinhaSLoad frequency control of three area interconnected hydro-thermal reheat power system using artificial intelligence and PI controllersInt J Eng Sci Technol2011412337 – reference: OshabaASAliESAbd-ElazimSMSpeed control of SRM supplied by photovoltaic system via ant colony optimization algorithmNeural Comput Appl2015 – reference: AliESAbd-ElazimSMBacteria foraging optimization algorithm based load frequency controller for interconnected power systemInt J Electr Power Energy Syst201133363363810.1016/j.ijepes.2010.12.022 – reference: SahuRKPandaSPadhanSA novel hybrid gravitational search and pattern search algorithm for load frequency control of nonlinear power systemAppl Soft Comput20152931032710.1016/j.asoc.2015.01.020 – reference: Yang XS (2010) Firefly algorithm, levy flights and global optimization. In: Research and development in intelligent systems XXVI, Springer, London, pp 209–218 – reference: MilaniAEMozafariBGenetic algorithm based optimal load frequency control in two area interconnected power systemGlob J Technol Optim20112610 – reference: HashmiAGoelNGoelSGuptaDFirefly algorithm for unconstrained optimizationIOSR J Comput Eng2013111757810.9790/0661-1117578 – reference: HooshmandRAtaeiMZargariAA new fuzzy sliding mode controller for load frequency control of large hydropower plant using particle swarm optimization algorithm and Kalman estimatorEur Trans Electr Power201222681283010.1002/etep.609 – volume: 72 start-page: 203 issue: 3 year: 2004 ident: 2668_CR27 publication-title: Int J Electr Power Syst Res doi: 10.1016/j.epsr.2004.04.004 – ident: 2668_CR40 doi: 10.1007/978-1-84882-983-1_15 – ident: 2668_CR11 doi: 10.1109/INDCON.2012.6420630 – volume: 2 start-page: 78 issue: 2 year: 2010 ident: 2668_CR39 publication-title: Int J Bio-Inspir Comput doi: 10.1504/IJBIC.2010.032124 – volume: 6 start-page: 173 issue: 1 year: 2012 ident: 2668_CR17 publication-title: IEEE Syst J doi: 10.1109/JSYST.2011.2163028 – volume: 29 start-page: 310 year: 2015 ident: 2668_CR35 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.01.020 – volume: 51 start-page: 224 year: 2013 ident: 2668_CR32 publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2013.02.030 – volume: 188 start-page: 239 year: 2013 ident: 2668_CR18 publication-title: Recent Adv Syst Model Appl Lect Notes Electr Eng – volume: 79 start-page: 846 issue: 5 year: 2009 ident: 2668_CR6 publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2008.11.005 – volume: 14 start-page: 1849 year: 2012 ident: 2668_CR10 publication-title: Energy Proc doi: 10.1016/j.egypro.2011.12.1178 – volume: 3 start-page: 573 issue: 7 year: 2014 ident: 2668_CR48 publication-title: Int J Res Eng Technol – volume-title: Electric energy systems theory year: 2006 ident: 2668_CR1 – volume: 29 start-page: 1822 issue: 4 year: 2014 ident: 2668_CR20 publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2013.2297432 – volume: 54 start-page: 650 year: 2014 ident: 2668_CR43 publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2013.08.019 – year: 2015 ident: 2668_CR51 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-2067-9 – volume: 19 start-page: 513 issue: 4 year: 2011 ident: 2668_CR9 publication-title: Turk J Electr Eng Comp Sci – volume: 6 start-page: 47 issue: 1 year: 2013 ident: 2668_CR23 publication-title: Int Rev Autom Control – volume-title: Robust power system frequency control, Switzerland year: 2014 ident: 2668_CR2 doi: 10.1007/978-3-319-07278-4 – volume: 12 start-page: 1180 year: 2012 ident: 2668_CR45 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2011.09.017 – volume: 394 start-page: 371 year: 2013 ident: 2668_CR12 publication-title: Technol Innov Internet Things IFIP Adv Inf Commun Technol doi: 10.1007/978-3-642-37291-9_40 – volume: 43 start-page: 996 issue: 1 year: 2012 ident: 2668_CR7 publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2012.05.063 – volume: 10 start-page: 35 year: 2015 ident: 2668_CR26 publication-title: WSEAS Trans Power Syst – year: 2015 ident: 2668_CR50 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-2091-9 – volume: 176 start-page: 3520 issue: 23 year: 2006 ident: 2668_CR5 publication-title: Int J Inf Sci doi: 10.1016/j.ins.2006.01.003 – volume: 1 start-page: 299 issue: 4 year: 2009 ident: 2668_CR8 publication-title: Int J Electron Eng Res – volume: 96 start-page: 91 issue: 1 year: 2015 ident: 2668_CR44 publication-title: J Inst Eng Ser B doi: 10.1007/s40031-014-0126-8 – volume: 22 start-page: 812 issue: 6 year: 2012 ident: 2668_CR28 publication-title: Eur Trans Electr Power doi: 10.1002/etep.609 – volume: 8298 start-page: 431 year: 2013 ident: 2668_CR22 publication-title: Swarm Evolut Memet Comput Lect Notes Comput Sci doi: 10.1007/978-3-319-03756-1_39 – volume-title: Nature-inspired metaheuristic algorithms year: 2010 ident: 2668_CR38 – volume: 12 start-page: 197 issue: 3 year: 1991 ident: 2668_CR13 publication-title: Optim Control Appl Methods doi: 10.1002/oca.4660120307 – volume: 8 start-page: 33 issue: 2 year: 2014 ident: 2668_CR30 publication-title: Int J Electr Power Eng – volume: 33 start-page: 633 issue: 3 year: 2011 ident: 2668_CR31 publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2010.12.022 – ident: 2668_CR53 doi: 10.7551/mitpress/1090.001.0001 – volume: 3 start-page: 46 issue: 6 year: 2014 ident: 2668_CR29 publication-title: Int J Eng Sci – volume: 249 start-page: 67 year: 2013 ident: 2668_CR46 publication-title: Inf Sci doi: 10.1016/j.ins.2013.06.022 – year: 2015 ident: 2668_CR52 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-2068-8 – volume: PAS-101 start-page: 376 year: 1982 ident: 2668_CR15 publication-title: IEEE Trans Power Appar Syst doi: 10.1109/TPAS.1982.317117 – volume: 42 start-page: 1419 issue: 13 year: 2014 ident: 2668_CR34 publication-title: Electr Power Compon Syst doi: 10.1080/15325008.2014.933372 – volume: 13 start-page: 456 issue: 1 year: 2015 ident: 2668_CR47 publication-title: Int J Emerg Technol Comput Electron – volume: 77C start-page: 166 year: 2016 ident: 2668_CR37 publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2015.11.029 – volume: 140 start-page: 11 issue: 1 year: 1993 ident: 2668_CR3 publication-title: IEE Proc Gener Transm Distrib doi: 10.1049/ip-c.1993.0003 – volume: 2 start-page: 212 issue: 8 year: 2012 ident: 2668_CR14 publication-title: Int J Emerg Technol Adv Eng – volume: 40 start-page: 1413 year: 1999 ident: 2668_CR4 publication-title: Energy Convers Manag doi: 10.1016/S0196-8904(99)00040-0 – volume: 53 start-page: 27 year: 2013 ident: 2668_CR33 publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2013.04.007 – year: 2014 ident: 2668_CR42 publication-title: Ain Shams Eng J doi: 10.1016/j.asej.2014.07.002 – volume: 73C start-page: 632 year: 2015 ident: 2668_CR36 publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2015.05.050 – volume: 26 start-page: 1321 issue: 6 year: 2015 ident: 2668_CR49 publication-title: Neural Comput Appl doi: 10.1007/s00521-014-1796-5 – volume: 2 start-page: 6 year: 2011 ident: 2668_CR25 publication-title: Glob J Technol Optim – volume: 11 start-page: 75 issue: 1 year: 2013 ident: 2668_CR41 publication-title: IOSR J Comput Eng doi: 10.9790/0661-1117578 – volume: 4 start-page: 23 issue: 1 year: 2011 ident: 2668_CR21 publication-title: Int J Eng Sci Technol doi: 10.4314/ijest.v4i1.4S – volume: 3 start-page: 26 issue: 1 year: 2009 ident: 2668_CR24 publication-title: Int J Electr Power Eng – volume: 7076 start-page: 494 year: 2011 ident: 2668_CR16 publication-title: Swarm Evolut Memet Comput Lect Notes Comput Sci doi: 10.1007/978-3-642-27172-4_60 – volume: 2 start-page: 191 issue: 5 year: 2013 ident: 2668_CR19 publication-title: Int J Energy Power Eng doi: 10.11648/j.ijepe.20130205.12 |
| SSID | ssj0004685 |
| Score | 2.549594 |
| Snippet | In this paper, firefly algorithm (FA) for optimal tuning of PI controllers for load frequency control of hybrid system composing of photovoltaic (PV) system... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 607 |
| SubjectTerms | Algorithms Artificial Intelligence Block diagrams Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Computer simulation Control systems design Controllers Data Mining and Knowledge Discovery Frequency control Genetic algorithms Heuristic methods Hybrid systems Image Processing and Computer Vision Original Article Photovoltaic cells Probability and Statistics in Computer Science Solar cells |
| Title | Load frequency controller design of a two-area system composing of PV grid and thermal generator via firefly algorithm |
| URI | https://link.springer.com/article/10.1007/s00521-016-2668-y https://www.proquest.com/docview/2054139551 |
| Volume | 30 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1433-3058 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ABDBF dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1433-3058 dateEnd: 20241103 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ADMLS dateStart: 19930301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-3058 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1433-3058 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: 8FG dateStart: 20180401 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7o9uKLd3E6Rx58Ugptl6bt45Rd8IaIE30qSZPMwVyl1sn-vSe9zAsq-NRC0hRycvm-5DvnABwKj4UCiYclYokERSLdEZ6jLRFIoZTDYpp7yF1escGQnt1796Uf90uldq-uJPOVeuHsZk4wDfVlFm4qgTVfhrpnonnhIB66nU_OkHkeTqQtRtJD29VV5k9NfN2MPhDmt0vRfK_prcNqCRJJp7DqBiyp6SasVQkYSDkft2B2kXBJdFrIoeek1J1PsI7MlRkk0YST7C2xOIJDUoRtJkZGnpgzAlN8fUdG6VgSPpXEgMEn_PEoj0WNbJzMxpxoXBX1ZE74ZJSk4-zxaRuGve7t6cAqEylYcdthmSVdtAf1dch5qEToa6b8mPuacnxjwrOZMrwnkEwybkLKacWCkNrCVq6tuNvegdo0mapdIIhGQh4oh1PFqKBC-K5AzKkkLuBSh2ED7KpHo7iMMm6SXUyiRXzk3AiRUZYZI0TzBhwtPnkuQmz8VblZmSkqZ9tL5CLuRCSL4K8Bx5XpPop_bWzvX7X3YQXRUlBodZtQy9JXdYCIJBMtWA56_RbUO_2H8y4-T7pX1zetfFy-A8Zz3vs |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT4MwGG10HvTib-N0ag-eNCTASoHjYlymbouHzXgjLW3nEgaG4Qz_vV_5salRE28kLSXho-179H3vQ-iSO9TnQDwMHgogKALoDncsZXBPcCktGpIiQ24wpL0xuX92nqs87nmtdq-PJIuVepnspv9gaupLDdhUPCNfRxvav0ob5o_tzqdkyKIOJ9AWLekh7foo86chvm5GK4T57VC02Gu6u2i7Aom4U0Z1D63JeB_t1AUYcDUfD9CinzCBVVrKoXNc6c4j6CMKZQZOFGY4e08MBuAQl7bNWMvIE_2PQDc_PuFJOhWYxQJrMDiDB08KL2pg43gxZVjBqqiiHLNokqTT7GV2iMbd29FNz6gKKRhh26KZIWyIB3GVz5gvue8qKt2QuYowuKLcManUvMcTVFCmLeWUpJ5PTG5K25TMbh-hRpzE8hhhQCM-86TFiKSEE85dmwPmlAIWcKF8v4nM-o0GYeUyrotdRMHSH7kIQqCVZToIQd5EV8tbXkuLjb86t-owBdVsmwc24E5AsgD-mui6Dt2q-dfBTv7V-wJt9kaDftC_Gz6coi1ATl6p222hRpa-yTNAJxk_L77GDzNq3dM |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46QXzxLk6n5sEnpazrsrR9HOqYOscenOytJE0yB107ujrpv_ekl01FBd8KSVPoyeU7Od_5DkKXvEVdDo6HwX0BDooAd4e3GsrgjuBSNqhPsgy5pz7tDsnDqDUq6pzOS7Z7GZLMcxq0SlOY1GdC1ZeJb_o2U7vB1IADxjHSdbRBtE4CTOih1f6UGJnV5AQXRtN7SLMMa_40xNeDaYU2vwVIs3Ons4u2C8CI27mF99CaDPfRTlmMARdr8wAtehETWMU5NTrFBQc9gD4iY2ngSGGGk_fIYAAUcS7hjDWlPNL3Bbp58ILH8URgFgqsgeEUPjzOdKnBM8eLCcMKdkgVpJgF4yieJK_TQzTs3D3fdI2iqILhNxs0MYQFtiG2chlzJXdtRaXtM1sRBk-Ut0wqtQ_kCCoo0_JySlLHJSY3pWVKZjWPUCWMQnmMMCATlzmywYikhBPObYsD_pQCNnOhXLeKzPKPen6hOK4LXwTeUis5M4KnWWbaCF5aRVfLV2a53MZfnWulmbxi5c09CzAooFoAglV0XZpu1fzrYCf_6n2BNge3Ha933388RVsAopycwltDlSR-k2cAVBJ-nk3GD-5m4g8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Load+frequency+controller+design+of+a+two-area+system+composing+of+PV+grid+and+thermal+generator+via+firefly+algorithm&rft.jtitle=Neural+computing+%26+applications&rft.au=Abd-Elazim%2C+S+M&rft.au=Ali%2C+E+S&rft.date=2018-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=30&rft.issue=2&rft.spage=607&rft.epage=616&rft_id=info:doi/10.1007%2Fs00521-016-2668-y&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |