Load frequency controller design of a two-area system composing of PV grid and thermal generator via firefly algorithm

In this paper, firefly algorithm (FA) for optimal tuning of PI controllers for load frequency control of hybrid system composing of photovoltaic (PV) system and thermal generator is introduced. Also, maximum power point tracking of PV is considered in the design process. The block diagram of the hyb...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 30; no. 2; pp. 607 - 616
Main Authors Abd-Elazim, S. M., Ali, E. S.
Format Journal Article
LanguageEnglish
Published London Springer London 01.07.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
DOI10.1007/s00521-016-2668-y

Cover

Abstract In this paper, firefly algorithm (FA) for optimal tuning of PI controllers for load frequency control of hybrid system composing of photovoltaic (PV) system and thermal generator is introduced. Also, maximum power point tracking of PV is considered in the design process. The block diagram of the hybrid system is performed. To robustly tune the parameters of controllers, a time-domain-based objective function is established which is solved by the FA. Simulation results are presented to show the improved performance of the suggested FA-based controllers compared with genetic algorithm (GA). These results show that the proposed controllers present better performance over GA in terms of settling times and different indices.
AbstractList In this paper, firefly algorithm (FA) for optimal tuning of PI controllers for load frequency control of hybrid system composing of photovoltaic (PV) system and thermal generator is introduced. Also, maximum power point tracking of PV is considered in the design process. The block diagram of the hybrid system is performed. To robustly tune the parameters of controllers, a time-domain-based objective function is established which is solved by the FA. Simulation results are presented to show the improved performance of the suggested FA-based controllers compared with genetic algorithm (GA). These results show that the proposed controllers present better performance over GA in terms of settling times and different indices.
Author Abd-Elazim, S. M.
Ali, E. S.
Author_xml – sequence: 1
  givenname: S. M.
  surname: Abd-Elazim
  fullname: Abd-Elazim, S. M.
  organization: Electric Power and Machine Department, Faculty of Engineering, Zagazig University
– sequence: 2
  givenname: E. S.
  surname: Ali
  fullname: Ali, E. S.
  email: ehabsalimalisalama@yahoo.com
  organization: Electric Power and Machine Department, Faculty of Engineering, Zagazig University
BookMark eNp9kE1r3DAQhkVJoJukP6A3Qc5uRv6QrWNZ2iawkBzaXsWsPfJqsaWNpE3xv6-WLQQC6WkE8z4zo-eKXTjviLHPAr4IgPYuAjSlKEDIopSyK5YPbCXqqioqaLoLtgJV566sq4_sKsY9ANSya1bsZeNx4CbQ85Fcv_DeuxT8NFHgA0U7Ou4NR57--AIDIY9LTDTn2Hzw0brx1H76zcdgB45u4GlHYcaJj-QoYPKBv1jkxgYy08JxGn2waTffsEuDU6RP_-o1-_X928_1fbF5_PGw_rop-krIVAyl2pZ1axSioq1qjaS2x9bUmF9y24AkpZTsBjlIBNm2hmSnatgClUBYVtfs9jz3EHz-YUx674_B5ZW6hKYWlWoakVPinOqDjzGfqg_BzhgWLUCf9OqzXp316pNevWSmfcP0NmGyJ39op_-S5ZmMeYsbKbze9D70Fz1xk3U
CitedBy_id crossref_primary_10_1007_s00500_023_08077_0
crossref_primary_10_1016_j_prime_2024_100488
crossref_primary_10_1007_s00500_021_06558_8
crossref_primary_10_1007_s41660_022_00257_z
crossref_primary_10_1049_rpg2_12885
crossref_primary_10_1080_15325008_2019_1659452
crossref_primary_10_1038_s41598_024_81382_2
crossref_primary_10_26634_jic_5_4_13844
crossref_primary_10_1109_JESTPE_2020_3012659
crossref_primary_10_1016_j_compeleceng_2024_109876
crossref_primary_10_1007_s00521_019_04301_x
crossref_primary_10_1016_j_est_2024_113364
crossref_primary_10_1038_s41598_024_77247_3
crossref_primary_10_1007_s00521_020_05599_8
crossref_primary_10_1007_s00521_021_06168_3
crossref_primary_10_1016_j_isatra_2018_07_028
crossref_primary_10_1063_5_0206835
crossref_primary_10_1109_TSTE_2022_3190084
crossref_primary_10_1177_0020720919829710
crossref_primary_10_1007_s00521_019_04236_3
crossref_primary_10_1016_j_seta_2022_102671
crossref_primary_10_3390_en14248522
crossref_primary_10_17341_gazimmfd_984019
crossref_primary_10_1016_j_isatra_2023_01_029
crossref_primary_10_1007_s00521_019_04561_7
crossref_primary_10_3390_math10030508
crossref_primary_10_1016_j_ijepes_2021_107330
crossref_primary_10_1016_j_renene_2019_02_038
crossref_primary_10_1002_int_22715
crossref_primary_10_1016_j_renene_2018_11_071
crossref_primary_10_1155_2019_4961045
crossref_primary_10_1007_s42835_021_00986_0
crossref_primary_10_1016_j_prime_2024_100787
crossref_primary_10_1007_s11277_024_11588_0
crossref_primary_10_1016_j_rico_2025_100539
crossref_primary_10_1007_s42452_021_04327_8
crossref_primary_10_1080_03772063_2019_1694452
crossref_primary_10_1007_s00521_020_05199_6
crossref_primary_10_1007_s13042_024_02366_2
crossref_primary_10_1109_ACCESS_2024_3358425
crossref_primary_10_1016_j_energy_2024_131809
crossref_primary_10_29109_gujsc_1488286
crossref_primary_10_1007_s12046_022_02071_2
crossref_primary_10_3389_fenrg_2022_902776
crossref_primary_10_1007_s40815_019_00761_4
crossref_primary_10_35940_ijeat_D3410_0411422
crossref_primary_10_1016_j_conengprac_2021_105058
crossref_primary_10_1007_s00521_019_04254_1
crossref_primary_10_1080_15325008_2018_1509913
crossref_primary_10_1016_j_compeleceng_2021_107606
crossref_primary_10_1016_j_solener_2019_03_038
crossref_primary_10_1109_ACCESS_2020_3040620
crossref_primary_10_1007_s41939_023_00287_1
crossref_primary_10_1016_j_seta_2023_103283
crossref_primary_10_1016_j_asoc_2021_107417
crossref_primary_10_1049_gtd2_13185
crossref_primary_10_1177_0142331219892728
crossref_primary_10_1007_s00521_018_3772_y
crossref_primary_10_1007_s42835_021_00913_3
crossref_primary_10_1080_15567036_2019_1646354
crossref_primary_10_1155_er_6874402
crossref_primary_10_1007_s00202_023_02143_4
crossref_primary_10_3390_en10111840
crossref_primary_10_1007_s40313_020_00684_8
crossref_primary_10_1007_s40998_021_00460_7
crossref_primary_10_1016_j_segan_2020_100352
crossref_primary_10_1007_s12652_022_03751_x
crossref_primary_10_3390_en16020693
crossref_primary_10_1108_COMPEL_07_2021_0231
crossref_primary_10_1080_23080477_2022_2054197
crossref_primary_10_1038_s41598_023_41024_5
crossref_primary_10_1007_s00202_024_02868_w
crossref_primary_10_1016_j_heliyon_2024_e31840
crossref_primary_10_1007_s00521_017_3114_5
crossref_primary_10_1007_s10668_019_00349_w
crossref_primary_10_1016_j_egyr_2022_02_019
crossref_primary_10_1111_exsy_12488
crossref_primary_10_1007_s12652_020_02313_3
crossref_primary_10_1016_j_energy_2023_128695
crossref_primary_10_1080_23311916_2024_2391958
crossref_primary_10_3390_electronics10040448
crossref_primary_10_3390_math12193076
crossref_primary_10_1007_s12667_023_00653_5
crossref_primary_10_1109_ACCESS_2020_2966261
crossref_primary_10_1109_ACCESS_2022_3155201
crossref_primary_10_1016_j_prime_2024_100605
crossref_primary_10_1109_ACCESS_2020_2998127
crossref_primary_10_1002_2050_7038_12702
crossref_primary_10_1007_s11082_023_04583_5
crossref_primary_10_1007_s00521_022_07558_x
crossref_primary_10_1007_s00521_019_04273_y
crossref_primary_10_1109_ACCESS_2021_3049782
crossref_primary_10_1109_ACCESS_2022_3202907
crossref_primary_10_1109_ACCESS_2020_3004299
crossref_primary_10_1109_ACCESS_2024_3367011
crossref_primary_10_1007_s00521_023_09273_7
crossref_primary_10_1016_j_seta_2020_100844
crossref_primary_10_1080_00051144_2019_1694743
crossref_primary_10_1016_j_asoc_2024_111682
crossref_primary_10_1007_s00521_019_04260_3
crossref_primary_10_1016_j_matpr_2022_03_414
crossref_primary_10_1080_15567036_2021_1953636
crossref_primary_10_32604_iasc_2023_041059
crossref_primary_10_1155_2023_5999997
crossref_primary_10_1016_j_est_2023_108248
crossref_primary_10_1007_s12652_019_01348_5
crossref_primary_10_1007_s00521_022_07470_4
crossref_primary_10_1109_TIA_2023_3257141
crossref_primary_10_21923_jesd_1511442
crossref_primary_10_3390_solar3020018
crossref_primary_10_1109_ACCESS_2022_3169749
crossref_primary_10_1109_JSYST_2023_3277002
crossref_primary_10_1016_j_asoc_2019_105728
crossref_primary_10_1016_j_iswa_2023_200261
crossref_primary_10_1016_j_compeleceng_2021_107510
crossref_primary_10_1080_02286203_2023_2205989
crossref_primary_10_1002_jnm_2989
crossref_primary_10_1016_j_asej_2020_08_016
crossref_primary_10_1016_j_ijepes_2021_106879
crossref_primary_10_1109_MSMC_2021_3066149
crossref_primary_10_1007_s10700_022_09402_2
crossref_primary_10_1002_jnm_2991
crossref_primary_10_1080_03772063_2020_1782777
crossref_primary_10_1007_s00521_019_04512_2
crossref_primary_10_1016_j_ijepes_2021_106909
crossref_primary_10_1049_tje2_70054
crossref_primary_10_1109_ACCESS_2021_3066281
crossref_primary_10_1016_j_solener_2019_03_073
crossref_primary_10_1016_j_jestch_2021_09_004
crossref_primary_10_1016_j_ijepes_2020_106440
crossref_primary_10_3390_en15010361
crossref_primary_10_1007_s00521_019_04422_3
crossref_primary_10_1002_2050_7038_12883
crossref_primary_10_1049_rpg2_13169
crossref_primary_10_46387_bjesr_1456068
crossref_primary_10_1002_2050_7038_12643
crossref_primary_10_1016_j_compeleceng_2025_110240
crossref_primary_10_1109_TPWRS_2022_3218080
crossref_primary_10_1007_s00202_023_01943_y
crossref_primary_10_1007_s00202_023_01923_2
crossref_primary_10_1080_01430750_2018_1531258
crossref_primary_10_1007_s00521_019_04488_z
crossref_primary_10_2166_h2oj_2020_005
crossref_primary_10_1016_j_rineng_2024_102958
crossref_primary_10_1109_TIA_2023_3297985
crossref_primary_10_1080_15325008_2022_2050450
crossref_primary_10_1007_s13369_022_07004_z
crossref_primary_10_3390_appliedmath4020024
crossref_primary_10_3390_en13226103
crossref_primary_10_25046_aj070510
crossref_primary_10_1007_s00521_022_07813_1
crossref_primary_10_1038_s41598_025_86597_5
crossref_primary_10_1007_s42835_022_01202_3
crossref_primary_10_3389_fenrg_2022_1019464
crossref_primary_10_1007_s00521_019_04127_7
Cites_doi 10.1016/j.epsr.2004.04.004
10.1007/978-1-84882-983-1_15
10.1109/INDCON.2012.6420630
10.1504/IJBIC.2010.032124
10.1109/JSYST.2011.2163028
10.1016/j.asoc.2015.01.020
10.1016/j.ijepes.2013.02.030
10.1016/j.epsr.2008.11.005
10.1016/j.egypro.2011.12.1178
10.1109/TPWRS.2013.2297432
10.1016/j.ijepes.2013.08.019
10.1007/s00521-015-2067-9
10.1007/978-3-319-07278-4
10.1016/j.asoc.2011.09.017
10.1007/978-3-642-37291-9_40
10.1016/j.ijepes.2012.05.063
10.1007/s00521-015-2091-9
10.1016/j.ins.2006.01.003
10.1007/s40031-014-0126-8
10.1002/etep.609
10.1007/978-3-319-03756-1_39
10.1002/oca.4660120307
10.1016/j.ijepes.2010.12.022
10.7551/mitpress/1090.001.0001
10.1016/j.ins.2013.06.022
10.1007/s00521-015-2068-8
10.1109/TPAS.1982.317117
10.1080/15325008.2014.933372
10.1016/j.ijepes.2015.11.029
10.1049/ip-c.1993.0003
10.1016/S0196-8904(99)00040-0
10.1016/j.ijepes.2013.04.007
10.1016/j.asej.2014.07.002
10.1016/j.ijepes.2015.05.050
10.1007/s00521-014-1796-5
10.9790/0661-1117578
10.4314/ijest.v4i1.4S
10.1007/978-3-642-27172-4_60
10.11648/j.ijepe.20130205.12
ContentType Journal Article
Copyright The Natural Computing Applications Forum 2016
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: The Natural Computing Applications Forum 2016
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
DOI 10.1007/s00521-016-2668-y
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 616
ExternalDocumentID 10_1007_s00521_016_2668_y
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
ID FETCH-LOGICAL-c316t-d29b247f9aa9eb97f6e7ca7f4af6e6b506e99968d6d6a0677fe68940b0e20ea23
IEDL.DBID U2A
ISSN 0941-0643
IngestDate Fri Jul 25 07:42:58 EDT 2025
Thu Apr 24 22:56:57 EDT 2025
Wed Oct 01 05:58:50 EDT 2025
Fri Feb 21 02:35:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords LFC
Two-area system
MPPT
PI controller
Firefly algorithm
PV grid
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-d29b247f9aa9eb97f6e7ca7f4af6e6b506e99968d6d6a0677fe68940b0e20ea23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2054139551
PQPubID 2043988
PageCount 10
ParticipantIDs proquest_journals_2054139551
crossref_primary_10_1007_s00521_016_2668_y
crossref_citationtrail_10_1007_s00521_016_2668_y
springer_journals_10_1007_s00521_016_2668_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-07-01
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2018
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References TanWZhouHRobust analysis of decentralized load frequency control for multi-area power systemsInt J Electr Power Energy Syst2012431996100510.1016/j.ijepes.2012.05.063
AliESAbd-ElazimSMBFOA based design of PID controller for two area load frequency control with nonlinearitiesInt J Electr Power Energy Syst20135122423110.1016/j.ijepes.2013.02.030
MahapatraSPandaSSwainSCA hybrid firefly algorithm and pattern search technique for SSSC based power oscillation damping controller designAin Shams Eng J2014
AliESSpeed control of DC series motor supplied by photovoltaic system via firefly algorithmNeural Comput Appl20152661321133210.1007/s00521-014-1796-5
ZameeMAMitraDTahhanSYLoad frequency control of interconnected hydro-thermal power system using conventional PI and fuzzy logic controllerInt J Energy Power Eng20132519119610.11648/j.ijepe.20130205.12
RameshSKrishnanAModified genetic algorithm based load frequency controller for interconnected power systemsInt J Electr Power Eng2009312630
Yang XS (2010) Firefly algorithm, levy flights and global optimization. In: Research and development in intelligent systems XXVI, Springer, London, pp 209–218
FrancisRChidambaramIAApplication of modified dynamic neural network for the load frequency control of a two area thermal reheat power systemInt Rev Autom Control2013614753
OshabaASAliESAbd-ElazimSMSpeed control of SRM supplied by photovoltaic system via ant colony optimization algorithmNeural Comput Appl2015
PrakashSSinhaSLoad frequency control of three area interconnected hydro-thermal reheat power system using artificial intelligence and PI controllersInt J Eng Sci Technol2011412337
Abd-ElazizAYAliESCuckoo search algorithm based load frequency controller design for nonlinear interconnected power systemInt J Electr Power Energy Syst201573C63264310.1016/j.ijepes.2015.05.050
RajalakshmiNSubramanianDPThamizhavelKPerformance enhancement of radial distributed system with distributed reconfiguration using binary firefly algorithmJ Inst Eng Ser B2015961919910.1007/s40031-014-0126-8
OshabaASAliESAbd-ElazimSMPI controller design for MPPT of photovoltaic system supplied SRM via BAT search algorithmNeural Comput Appl2015
OshabaASAliESAbd-ElazimSMPI controller design using ABC algorithm for MPPT of PV system supplying DC motor pump loadNeural Comput Appl2015
ElgerdOIElectric energy systems theory2006New DelhiTata McGraw-Hill
HashmiAGoelNGoelSGuptaDFirefly algorithm for unconstrained optimizationIOSR J Comput Eng2013111757810.9790/0661-1117578
Singla H, Kumar A (2012) LQR based load frequency control with SMES in deregulated environment. In: Annual IEEE India conference (INDICON), 7–9 Dec 2012, Kochi, pp 286–292
YousefHAAL-KharusiKAlbadiMHHosseinzadehNLoad frequency control of a multi-area power system: an adaptive fuzzy logic approachIEEE Trans Power Syst20142941822183010.1109/TPWRS.2013.2297432
UmraoRChaturvediDKMalikOPLoad frequency control: a polar fuzzy approachSwarm Evolut Memet Comput Lect Notes Comput Sci2011707649450410.1007/978-3-642-27172-4_60
Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. A Bradford Book; Reprint edition
BevraniHDaneshmandPRFuzzy logic-based load-frequency control concerning high penetration of wind turbinesIEEE Syst J20126117318010.1109/JSYST.2011.2163028
AliESAbd-ElazimSMBacteria foraging optimization algorithm based load frequency controller for interconnected power systemInt J Electr Power Energy Syst201133363363810.1016/j.ijepes.2010.12.022
HasanNDesign and analysis of pole-placement controller for interconnected power systemsInt J Emerg Technol Adv Eng201228212217
MilaniAEMozafariBGenetic algorithm based optimal load frequency control in two area interconnected power systemGlob J Technol Optim20112610
SaikiaLCSahuSKAutomatic generation control of a combined cycle gas turbine plant with classical controllers using firefly algorithmInt J Electr Power Energy Syst201353273310.1016/j.ijepes.2013.04.007
SelvakumaranSParthasarathySKarthigaivelRRajasekaranVOptimal decentralized load frequency control in a parallel AC–DC interconnected power system through HVDC link using PSO algorithmEnergy Proc2012141849185410.1016/j.egypro.2011.12.1178
BevraniHRobust power system frequency control, Switzerland20142New YorkSpringer1163.93002
SantyTNatesanRLoad frequency control of a two area system consisting of a grid connected PV system and diesel generatorInt J Emerg Technol Comput Electron2015131456461
LiawCMA modified optimal load-frequency controller for interconnected power systemsOptim Control Appl Methods199112319720410.1002/oca.46601203070850.93654
AzzamMRobust automatic generation controlEnergy Convers Manag1999401413142110.1016/S0196-8904(99)00040-0
ChidambaramIAParamasivamBGenetic algorithm based decentralized controller for load-frequency control of interconnected power systems with RFB considering TCPS in the tie-lineInt J Electron Eng Res200914299312
NagSPhilipNApplication of neural networks to automatic load frequency controlSwarm Evolut Memet Comput Lect Notes Comput Sci2013829843144110.1007/978-3-319-03756-1_39
WangYZhouRWenCRobust load-frequency controller design for power systemsIEE Proc Gener Transm Distrib19931401111610.1049/ip-c.1993.0003
BengiaminNNChanWCVariable structure control of electric power generationIEEE Trans Power Appar Syst1982PAS-10137638010.1109/TPAS.1982.317117
LeeHJParkJBJooYHRobust load-frequency control for uncertain nonlinear power systems: a fuzzy logic approachInt J Inf Sci2006176233520353722719371125.93038
GhoshalSPOptimizations of PID gains by particle swarm optimizations in fuzzy based automatic generation controlInt J Electr Power Syst Res200472320321210.1016/j.epsr.2004.04.004
UmraoRChaturvediDKA novel fuzzy control approach for load frequency controlRecent Adv Syst Model Appl Lect Notes Electr Eng2013188239247
Abd-ElazimSMAliESLoad frequency controller design via BAT algorithm for nonlinear interconnected power systemInt J Electr Power Energy Syst201677C16617710.1016/j.ijepes.2015.11.029
GiriBabuVHemanthBKumarTSPrasanthBVSingle area load frequency control problem using particle swarm optimizationInt J Eng Sci2014364652
TomyFTPrakashRLoad frequency control of a two area hybrid system consisting of a grid connected PV system and thermal generatorInt J Res Eng Technol201437573580
TanWXuZRobust analysis and design of load frequency controller for power systemsElectr Power Syst Res200979584685310.1016/j.epsr.2008.11.005
ChandrasekaranKSimonSPPadhyNPBinary real coded firefly algorithm for solving unit commitment problemInf Sci2013249678410.1016/j.ins.2013.06.022
YangXSNature-inspired metaheuristic algorithms20102United KingdomLuniver Press
PadhanSSahuRKPandaSApplication of firefly algorithm for load frequency control of multi-area interconnected power systemElectr Power Compon Syst201442131419143010.1080/15325008.2014.933372
JagatheesanKAnandandBEbrahimMAStochastic particle swarm optimization for tuning of PID controller in load frequency control of single area reheat thermal power systemInt J Electr Power Eng2014823340
SakhavatiAGharehpetianGBHosseiniSHDecentralized robust load-frequency control of power system based on quantitative feedback theoryTurk J Electr Eng Comp Sci2011194513530
JeyalakshmiVSubburajPLoad frequency control in two area multi units interconnected power system using multi objective genetic algorithmWSEAS Trans Power Syst2015103545
SahuRKPandaSPadhanSA novel hybrid gravitational search and pattern search algorithm for load frequency control of nonlinear power systemAppl Soft Comput20152931032710.1016/j.asoc.2015.01.020
YangXSHosseiniSSSGandomiAHFirefly algorithm for solving non-convex economic dispatch problems with valve loading effectAppl Soft Comput2012121180118610.1016/j.asoc.2011.09.017
NdongmoJKennéGFochieRCheukemAFotsinHLagarrigueFA simplified nonlinear controller for transient stability enhancement of multimachine power systems using SSSC deviceInt J Electr Power Energy Syst20145465065710.1016/j.ijepes.2013.08.019
PandeySKMohantySRKishorNCatalãoJPSAn advanced LMI-based-LQR design for load frequency control of an autonomous hybrid generation systemTechnol Innov Internet Things IFIP Adv Inf Commun Technol201339437138110.1007/978-3-642-37291-9_40
HooshmandRAtaeiMZargariAA new fuzzy sliding mode controller for load frequency control of large hydropower plant using particle swarm optimization algorithm and Kalman estimatorEur Trans Electr Power201222681283010.1002/etep.609
YangXSFirefly algorithm, stochastic test functions and design optimizationInt J Bio-Inspir Comput201022788410.1504/IJBIC.2010.032124
T Santy (2668_CR47) 2015; 13
NN Bengiamin (2668_CR15) 1982; PAS-101
HA Yousef (2668_CR20) 2014; 29
OI Elgerd (2668_CR1) 2006
AY Abd-Elaziz (2668_CR36) 2015; 73C
IA Chidambaram (2668_CR8) 2009; 1
AS Oshaba (2668_CR50) 2015
H Bevrani (2668_CR17) 2012; 6
Y Wang (2668_CR3) 1993; 140
R Umrao (2668_CR16) 2011; 7076
LC Saikia (2668_CR33) 2013; 53
2668_CR40
S Mahapatra (2668_CR42) 2014
W Tan (2668_CR7) 2012; 43
S Selvakumaran (2668_CR10) 2012; 14
MA Zamee (2668_CR19) 2013; 2
HJ Lee (2668_CR5) 2006; 176
S Nag (2668_CR22) 2013; 8298
N Rajalakshmi (2668_CR44) 2015; 96
S Prakash (2668_CR21) 2011; 4
K Jagatheesan (2668_CR30) 2014; 8
2668_CR53
SK Pandey (2668_CR12) 2013; 394
SP Ghoshal (2668_CR27) 2004; 72
N Hasan (2668_CR14) 2012; 2
XS Yang (2668_CR45) 2012; 12
2668_CR11
XS Yang (2668_CR38) 2010
A Sakhavati (2668_CR9) 2011; 19
XS Yang (2668_CR39) 2010; 2
S Ramesh (2668_CR24) 2009; 3
CM Liaw (2668_CR13) 1991; 12
AE Milani (2668_CR25) 2011; 2
AS Oshaba (2668_CR52) 2015
ES Ali (2668_CR31) 2011; 33
ES Ali (2668_CR32) 2013; 51
W Tan (2668_CR6) 2009; 79
V Jeyalakshmi (2668_CR26) 2015; 10
K Chandrasekaran (2668_CR46) 2013; 249
SM Abd-Elazim (2668_CR37) 2016; 77C
AS Oshaba (2668_CR51) 2015
A Hashmi (2668_CR41) 2013; 11
FT Tomy (2668_CR48) 2014; 3
R Hooshmand (2668_CR28) 2012; 22
V GiriBabu (2668_CR29) 2014; 3
H Bevrani (2668_CR2) 2014
S Padhan (2668_CR34) 2014; 42
J Ndongmo (2668_CR43) 2014; 54
RK Sahu (2668_CR35) 2015; 29
ES Ali (2668_CR49) 2015; 26
R Umrao (2668_CR18) 2013; 188
M Azzam (2668_CR4) 1999; 40
R Francis (2668_CR23) 2013; 6
References_xml – reference: WangYZhouRWenCRobust load-frequency controller design for power systemsIEE Proc Gener Transm Distrib19931401111610.1049/ip-c.1993.0003
– reference: SelvakumaranSParthasarathySKarthigaivelRRajasekaranVOptimal decentralized load frequency control in a parallel AC–DC interconnected power system through HVDC link using PSO algorithmEnergy Proc2012141849185410.1016/j.egypro.2011.12.1178
– reference: Abd-ElazizAYAliESCuckoo search algorithm based load frequency controller design for nonlinear interconnected power systemInt J Electr Power Energy Syst201573C63264310.1016/j.ijepes.2015.05.050
– reference: RameshSKrishnanAModified genetic algorithm based load frequency controller for interconnected power systemsInt J Electr Power Eng2009312630
– reference: ChandrasekaranKSimonSPPadhyNPBinary real coded firefly algorithm for solving unit commitment problemInf Sci2013249678410.1016/j.ins.2013.06.022
– reference: NdongmoJKennéGFochieRCheukemAFotsinHLagarrigueFA simplified nonlinear controller for transient stability enhancement of multimachine power systems using SSSC deviceInt J Electr Power Energy Syst20145465065710.1016/j.ijepes.2013.08.019
– reference: BevraniHRobust power system frequency control, Switzerland20142New YorkSpringer1163.93002
– reference: YousefHAAL-KharusiKAlbadiMHHosseinzadehNLoad frequency control of a multi-area power system: an adaptive fuzzy logic approachIEEE Trans Power Syst20142941822183010.1109/TPWRS.2013.2297432
– reference: SaikiaLCSahuSKAutomatic generation control of a combined cycle gas turbine plant with classical controllers using firefly algorithmInt J Electr Power Energy Syst201353273310.1016/j.ijepes.2013.04.007
– reference: Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. A Bradford Book; Reprint edition
– reference: FrancisRChidambaramIAApplication of modified dynamic neural network for the load frequency control of a two area thermal reheat power systemInt Rev Autom Control2013614753
– reference: OshabaASAliESAbd-ElazimSMPI controller design using ABC algorithm for MPPT of PV system supplying DC motor pump loadNeural Comput Appl2015
– reference: OshabaASAliESAbd-ElazimSMPI controller design for MPPT of photovoltaic system supplied SRM via BAT search algorithmNeural Comput Appl2015
– reference: GiriBabuVHemanthBKumarTSPrasanthBVSingle area load frequency control problem using particle swarm optimizationInt J Eng Sci2014364652
– reference: AliESAbd-ElazimSMBFOA based design of PID controller for two area load frequency control with nonlinearitiesInt J Electr Power Energy Syst20135122423110.1016/j.ijepes.2013.02.030
– reference: Singla H, Kumar A (2012) LQR based load frequency control with SMES in deregulated environment. In: Annual IEEE India conference (INDICON), 7–9 Dec 2012, Kochi, pp 286–292
– reference: BevraniHDaneshmandPRFuzzy logic-based load-frequency control concerning high penetration of wind turbinesIEEE Syst J20126117318010.1109/JSYST.2011.2163028
– reference: MahapatraSPandaSSwainSCA hybrid firefly algorithm and pattern search technique for SSSC based power oscillation damping controller designAin Shams Eng J2014
– reference: YangXSNature-inspired metaheuristic algorithms20102United KingdomLuniver Press
– reference: JeyalakshmiVSubburajPLoad frequency control in two area multi units interconnected power system using multi objective genetic algorithmWSEAS Trans Power Syst2015103545
– reference: LiawCMA modified optimal load-frequency controller for interconnected power systemsOptim Control Appl Methods199112319720410.1002/oca.46601203070850.93654
– reference: SakhavatiAGharehpetianGBHosseiniSHDecentralized robust load-frequency control of power system based on quantitative feedback theoryTurk J Electr Eng Comp Sci2011194513530
– reference: PadhanSSahuRKPandaSApplication of firefly algorithm for load frequency control of multi-area interconnected power systemElectr Power Compon Syst201442131419143010.1080/15325008.2014.933372
– reference: PandeySKMohantySRKishorNCatalãoJPSAn advanced LMI-based-LQR design for load frequency control of an autonomous hybrid generation systemTechnol Innov Internet Things IFIP Adv Inf Commun Technol201339437138110.1007/978-3-642-37291-9_40
– reference: HasanNDesign and analysis of pole-placement controller for interconnected power systemsInt J Emerg Technol Adv Eng201228212217
– reference: UmraoRChaturvediDKA novel fuzzy control approach for load frequency controlRecent Adv Syst Model Appl Lect Notes Electr Eng2013188239247
– reference: UmraoRChaturvediDKMalikOPLoad frequency control: a polar fuzzy approachSwarm Evolut Memet Comput Lect Notes Comput Sci2011707649450410.1007/978-3-642-27172-4_60
– reference: GhoshalSPOptimizations of PID gains by particle swarm optimizations in fuzzy based automatic generation controlInt J Electr Power Syst Res200472320321210.1016/j.epsr.2004.04.004
– reference: YangXSFirefly algorithm, stochastic test functions and design optimizationInt J Bio-Inspir Comput201022788410.1504/IJBIC.2010.032124
– reference: LeeHJParkJBJooYHRobust load-frequency control for uncertain nonlinear power systems: a fuzzy logic approachInt J Inf Sci2006176233520353722719371125.93038
– reference: NagSPhilipNApplication of neural networks to automatic load frequency controlSwarm Evolut Memet Comput Lect Notes Comput Sci2013829843144110.1007/978-3-319-03756-1_39
– reference: JagatheesanKAnandandBEbrahimMAStochastic particle swarm optimization for tuning of PID controller in load frequency control of single area reheat thermal power systemInt J Electr Power Eng2014823340
– reference: ChidambaramIAParamasivamBGenetic algorithm based decentralized controller for load-frequency control of interconnected power systems with RFB considering TCPS in the tie-lineInt J Electron Eng Res200914299312
– reference: ZameeMAMitraDTahhanSYLoad frequency control of interconnected hydro-thermal power system using conventional PI and fuzzy logic controllerInt J Energy Power Eng20132519119610.11648/j.ijepe.20130205.12
– reference: TanWXuZRobust analysis and design of load frequency controller for power systemsElectr Power Syst Res200979584685310.1016/j.epsr.2008.11.005
– reference: RajalakshmiNSubramanianDPThamizhavelKPerformance enhancement of radial distributed system with distributed reconfiguration using binary firefly algorithmJ Inst Eng Ser B2015961919910.1007/s40031-014-0126-8
– reference: ElgerdOIElectric energy systems theory2006New DelhiTata McGraw-Hill
– reference: AzzamMRobust automatic generation controlEnergy Convers Manag1999401413142110.1016/S0196-8904(99)00040-0
– reference: BengiaminNNChanWCVariable structure control of electric power generationIEEE Trans Power Appar Syst1982PAS-10137638010.1109/TPAS.1982.317117
– reference: TanWZhouHRobust analysis of decentralized load frequency control for multi-area power systemsInt J Electr Power Energy Syst2012431996100510.1016/j.ijepes.2012.05.063
– reference: AliESSpeed control of DC series motor supplied by photovoltaic system via firefly algorithmNeural Comput Appl20152661321133210.1007/s00521-014-1796-5
– reference: YangXSHosseiniSSSGandomiAHFirefly algorithm for solving non-convex economic dispatch problems with valve loading effectAppl Soft Comput2012121180118610.1016/j.asoc.2011.09.017
– reference: SantyTNatesanRLoad frequency control of a two area system consisting of a grid connected PV system and diesel generatorInt J Emerg Technol Comput Electron2015131456461
– reference: Abd-ElazimSMAliESLoad frequency controller design via BAT algorithm for nonlinear interconnected power systemInt J Electr Power Energy Syst201677C16617710.1016/j.ijepes.2015.11.029
– reference: TomyFTPrakashRLoad frequency control of a two area hybrid system consisting of a grid connected PV system and thermal generatorInt J Res Eng Technol201437573580
– reference: PrakashSSinhaSLoad frequency control of three area interconnected hydro-thermal reheat power system using artificial intelligence and PI controllersInt J Eng Sci Technol2011412337
– reference: OshabaASAliESAbd-ElazimSMSpeed control of SRM supplied by photovoltaic system via ant colony optimization algorithmNeural Comput Appl2015
– reference: AliESAbd-ElazimSMBacteria foraging optimization algorithm based load frequency controller for interconnected power systemInt J Electr Power Energy Syst201133363363810.1016/j.ijepes.2010.12.022
– reference: SahuRKPandaSPadhanSA novel hybrid gravitational search and pattern search algorithm for load frequency control of nonlinear power systemAppl Soft Comput20152931032710.1016/j.asoc.2015.01.020
– reference: Yang XS (2010) Firefly algorithm, levy flights and global optimization. In: Research and development in intelligent systems XXVI, Springer, London, pp 209–218
– reference: MilaniAEMozafariBGenetic algorithm based optimal load frequency control in two area interconnected power systemGlob J Technol Optim20112610
– reference: HashmiAGoelNGoelSGuptaDFirefly algorithm for unconstrained optimizationIOSR J Comput Eng2013111757810.9790/0661-1117578
– reference: HooshmandRAtaeiMZargariAA new fuzzy sliding mode controller for load frequency control of large hydropower plant using particle swarm optimization algorithm and Kalman estimatorEur Trans Electr Power201222681283010.1002/etep.609
– volume: 72
  start-page: 203
  issue: 3
  year: 2004
  ident: 2668_CR27
  publication-title: Int J Electr Power Syst Res
  doi: 10.1016/j.epsr.2004.04.004
– ident: 2668_CR40
  doi: 10.1007/978-1-84882-983-1_15
– ident: 2668_CR11
  doi: 10.1109/INDCON.2012.6420630
– volume: 2
  start-page: 78
  issue: 2
  year: 2010
  ident: 2668_CR39
  publication-title: Int J Bio-Inspir Comput
  doi: 10.1504/IJBIC.2010.032124
– volume: 6
  start-page: 173
  issue: 1
  year: 2012
  ident: 2668_CR17
  publication-title: IEEE Syst J
  doi: 10.1109/JSYST.2011.2163028
– volume: 29
  start-page: 310
  year: 2015
  ident: 2668_CR35
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.01.020
– volume: 51
  start-page: 224
  year: 2013
  ident: 2668_CR32
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2013.02.030
– volume: 188
  start-page: 239
  year: 2013
  ident: 2668_CR18
  publication-title: Recent Adv Syst Model Appl Lect Notes Electr Eng
– volume: 79
  start-page: 846
  issue: 5
  year: 2009
  ident: 2668_CR6
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2008.11.005
– volume: 14
  start-page: 1849
  year: 2012
  ident: 2668_CR10
  publication-title: Energy Proc
  doi: 10.1016/j.egypro.2011.12.1178
– volume: 3
  start-page: 573
  issue: 7
  year: 2014
  ident: 2668_CR48
  publication-title: Int J Res Eng Technol
– volume-title: Electric energy systems theory
  year: 2006
  ident: 2668_CR1
– volume: 29
  start-page: 1822
  issue: 4
  year: 2014
  ident: 2668_CR20
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2013.2297432
– volume: 54
  start-page: 650
  year: 2014
  ident: 2668_CR43
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2013.08.019
– year: 2015
  ident: 2668_CR51
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-2067-9
– volume: 19
  start-page: 513
  issue: 4
  year: 2011
  ident: 2668_CR9
  publication-title: Turk J Electr Eng Comp Sci
– volume: 6
  start-page: 47
  issue: 1
  year: 2013
  ident: 2668_CR23
  publication-title: Int Rev Autom Control
– volume-title: Robust power system frequency control, Switzerland
  year: 2014
  ident: 2668_CR2
  doi: 10.1007/978-3-319-07278-4
– volume: 12
  start-page: 1180
  year: 2012
  ident: 2668_CR45
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2011.09.017
– volume: 394
  start-page: 371
  year: 2013
  ident: 2668_CR12
  publication-title: Technol Innov Internet Things IFIP Adv Inf Commun Technol
  doi: 10.1007/978-3-642-37291-9_40
– volume: 43
  start-page: 996
  issue: 1
  year: 2012
  ident: 2668_CR7
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2012.05.063
– volume: 10
  start-page: 35
  year: 2015
  ident: 2668_CR26
  publication-title: WSEAS Trans Power Syst
– year: 2015
  ident: 2668_CR50
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-2091-9
– volume: 176
  start-page: 3520
  issue: 23
  year: 2006
  ident: 2668_CR5
  publication-title: Int J Inf Sci
  doi: 10.1016/j.ins.2006.01.003
– volume: 1
  start-page: 299
  issue: 4
  year: 2009
  ident: 2668_CR8
  publication-title: Int J Electron Eng Res
– volume: 96
  start-page: 91
  issue: 1
  year: 2015
  ident: 2668_CR44
  publication-title: J Inst Eng Ser B
  doi: 10.1007/s40031-014-0126-8
– volume: 22
  start-page: 812
  issue: 6
  year: 2012
  ident: 2668_CR28
  publication-title: Eur Trans Electr Power
  doi: 10.1002/etep.609
– volume: 8298
  start-page: 431
  year: 2013
  ident: 2668_CR22
  publication-title: Swarm Evolut Memet Comput Lect Notes Comput Sci
  doi: 10.1007/978-3-319-03756-1_39
– volume-title: Nature-inspired metaheuristic algorithms
  year: 2010
  ident: 2668_CR38
– volume: 12
  start-page: 197
  issue: 3
  year: 1991
  ident: 2668_CR13
  publication-title: Optim Control Appl Methods
  doi: 10.1002/oca.4660120307
– volume: 8
  start-page: 33
  issue: 2
  year: 2014
  ident: 2668_CR30
  publication-title: Int J Electr Power Eng
– volume: 33
  start-page: 633
  issue: 3
  year: 2011
  ident: 2668_CR31
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2010.12.022
– ident: 2668_CR53
  doi: 10.7551/mitpress/1090.001.0001
– volume: 3
  start-page: 46
  issue: 6
  year: 2014
  ident: 2668_CR29
  publication-title: Int J Eng Sci
– volume: 249
  start-page: 67
  year: 2013
  ident: 2668_CR46
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2013.06.022
– year: 2015
  ident: 2668_CR52
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-2068-8
– volume: PAS-101
  start-page: 376
  year: 1982
  ident: 2668_CR15
  publication-title: IEEE Trans Power Appar Syst
  doi: 10.1109/TPAS.1982.317117
– volume: 42
  start-page: 1419
  issue: 13
  year: 2014
  ident: 2668_CR34
  publication-title: Electr Power Compon Syst
  doi: 10.1080/15325008.2014.933372
– volume: 13
  start-page: 456
  issue: 1
  year: 2015
  ident: 2668_CR47
  publication-title: Int J Emerg Technol Comput Electron
– volume: 77C
  start-page: 166
  year: 2016
  ident: 2668_CR37
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2015.11.029
– volume: 140
  start-page: 11
  issue: 1
  year: 1993
  ident: 2668_CR3
  publication-title: IEE Proc Gener Transm Distrib
  doi: 10.1049/ip-c.1993.0003
– volume: 2
  start-page: 212
  issue: 8
  year: 2012
  ident: 2668_CR14
  publication-title: Int J Emerg Technol Adv Eng
– volume: 40
  start-page: 1413
  year: 1999
  ident: 2668_CR4
  publication-title: Energy Convers Manag
  doi: 10.1016/S0196-8904(99)00040-0
– volume: 53
  start-page: 27
  year: 2013
  ident: 2668_CR33
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2013.04.007
– year: 2014
  ident: 2668_CR42
  publication-title: Ain Shams Eng J
  doi: 10.1016/j.asej.2014.07.002
– volume: 73C
  start-page: 632
  year: 2015
  ident: 2668_CR36
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2015.05.050
– volume: 26
  start-page: 1321
  issue: 6
  year: 2015
  ident: 2668_CR49
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-014-1796-5
– volume: 2
  start-page: 6
  year: 2011
  ident: 2668_CR25
  publication-title: Glob J Technol Optim
– volume: 11
  start-page: 75
  issue: 1
  year: 2013
  ident: 2668_CR41
  publication-title: IOSR J Comput Eng
  doi: 10.9790/0661-1117578
– volume: 4
  start-page: 23
  issue: 1
  year: 2011
  ident: 2668_CR21
  publication-title: Int J Eng Sci Technol
  doi: 10.4314/ijest.v4i1.4S
– volume: 3
  start-page: 26
  issue: 1
  year: 2009
  ident: 2668_CR24
  publication-title: Int J Electr Power Eng
– volume: 7076
  start-page: 494
  year: 2011
  ident: 2668_CR16
  publication-title: Swarm Evolut Memet Comput Lect Notes Comput Sci
  doi: 10.1007/978-3-642-27172-4_60
– volume: 2
  start-page: 191
  issue: 5
  year: 2013
  ident: 2668_CR19
  publication-title: Int J Energy Power Eng
  doi: 10.11648/j.ijepe.20130205.12
SSID ssj0004685
Score 2.549594
Snippet In this paper, firefly algorithm (FA) for optimal tuning of PI controllers for load frequency control of hybrid system composing of photovoltaic (PV) system...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 607
SubjectTerms Algorithms
Artificial Intelligence
Block diagrams
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Computer simulation
Control systems design
Controllers
Data Mining and Knowledge Discovery
Frequency control
Genetic algorithms
Heuristic methods
Hybrid systems
Image Processing and Computer Vision
Original Article
Photovoltaic cells
Probability and Statistics in Computer Science
Solar cells
Title Load frequency controller design of a two-area system composing of PV grid and thermal generator via firefly algorithm
URI https://link.springer.com/article/10.1007/s00521-016-2668-y
https://www.proquest.com/docview/2054139551
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1433-3058
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241103
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ADMLS
  dateStart: 19930301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-3058
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: 8FG
  dateStart: 20180401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7o9uKLd3E6Rx58Ugptl6bt45Rd8IaIE30qSZPMwVyl1sn-vSe9zAsq-NRC0hRycvm-5DvnABwKj4UCiYclYokERSLdEZ6jLRFIoZTDYpp7yF1escGQnt1796Uf90uldq-uJPOVeuHsZk4wDfVlFm4qgTVfhrpnonnhIB66nU_OkHkeTqQtRtJD29VV5k9NfN2MPhDmt0vRfK_prcNqCRJJp7DqBiyp6SasVQkYSDkft2B2kXBJdFrIoeek1J1PsI7MlRkk0YST7C2xOIJDUoRtJkZGnpgzAlN8fUdG6VgSPpXEgMEn_PEoj0WNbJzMxpxoXBX1ZE74ZJSk4-zxaRuGve7t6cAqEylYcdthmSVdtAf1dch5qEToa6b8mPuacnxjwrOZMrwnkEwybkLKacWCkNrCVq6tuNvegdo0mapdIIhGQh4oh1PFqKBC-K5AzKkkLuBSh2ED7KpHo7iMMm6SXUyiRXzk3AiRUZYZI0TzBhwtPnkuQmz8VblZmSkqZ9tL5CLuRCSL4K8Bx5XpPop_bWzvX7X3YQXRUlBodZtQy9JXdYCIJBMtWA56_RbUO_2H8y4-T7pX1zetfFy-A8Zz3vs
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT4MwGG10HvTib-N0ag-eNCTASoHjYlymbouHzXgjLW3nEgaG4Qz_vV_5salRE28kLSXho-179H3vQ-iSO9TnQDwMHgogKALoDncsZXBPcCktGpIiQ24wpL0xuX92nqs87nmtdq-PJIuVepnspv9gaupLDdhUPCNfRxvav0ob5o_tzqdkyKIOJ9AWLekh7foo86chvm5GK4T57VC02Gu6u2i7Aom4U0Z1D63JeB_t1AUYcDUfD9CinzCBVVrKoXNc6c4j6CMKZQZOFGY4e08MBuAQl7bNWMvIE_2PQDc_PuFJOhWYxQJrMDiDB08KL2pg43gxZVjBqqiiHLNokqTT7GV2iMbd29FNz6gKKRhh26KZIWyIB3GVz5gvue8qKt2QuYowuKLcManUvMcTVFCmLeWUpJ5PTG5K25TMbh-hRpzE8hhhQCM-86TFiKSEE85dmwPmlAIWcKF8v4nM-o0GYeUyrotdRMHSH7kIQqCVZToIQd5EV8tbXkuLjb86t-owBdVsmwc24E5AsgD-mui6Dt2q-dfBTv7V-wJt9kaDftC_Gz6coi1ATl6p222hRpa-yTNAJxk_L77GDzNq3dM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46QXzxLk6n5sEnpazrsrR9HOqYOscenOytJE0yB107ujrpv_ekl01FBd8KSVPoyeU7Od_5DkKXvEVdDo6HwX0BDooAd4e3GsrgjuBSNqhPsgy5pz7tDsnDqDUq6pzOS7Z7GZLMcxq0SlOY1GdC1ZeJb_o2U7vB1IADxjHSdbRBtE4CTOih1f6UGJnV5AQXRtN7SLMMa_40xNeDaYU2vwVIs3Ons4u2C8CI27mF99CaDPfRTlmMARdr8wAtehETWMU5NTrFBQc9gD4iY2ngSGGGk_fIYAAUcS7hjDWlPNL3Bbp58ILH8URgFgqsgeEUPjzOdKnBM8eLCcMKdkgVpJgF4yieJK_TQzTs3D3fdI2iqILhNxs0MYQFtiG2chlzJXdtRaXtM1sRBk-Ut0wqtQ_kCCoo0_JySlLHJSY3pWVKZjWPUCWMQnmMMCATlzmywYikhBPObYsD_pQCNnOhXLeKzPKPen6hOK4LXwTeUis5M4KnWWbaCF5aRVfLV2a53MZfnWulmbxi5c09CzAooFoAglV0XZpu1fzrYCf_6n2BNge3Ha933388RVsAopycwltDlSR-k2cAVBJ-nk3GD-5m4g8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Load+frequency+controller+design+of+a+two-area+system+composing+of+PV+grid+and+thermal+generator+via+firefly+algorithm&rft.jtitle=Neural+computing+%26+applications&rft.au=Abd-Elazim%2C+S+M&rft.au=Ali%2C+E+S&rft.date=2018-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=30&rft.issue=2&rft.spage=607&rft.epage=616&rft_id=info:doi/10.1007%2Fs00521-016-2668-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon