Almost sure stability with general decay rate of exact and numerical solutions for stochastic pantograph differential equations

The exponential stability and the polynomial stability have been well studied for the exact and numerical solutions of the stochastic pantograph differential equations (SPDEs), while the result on the general decay stabilities is insufficient for SPDEs. In this paper, the sufficient conditions of th...

Full description

Saved in:
Bibliographic Details
Published inNumerical algorithms Vol. 80; no. 4; pp. 1391 - 1411
Main Authors Guo, Ping, Li, Chong–Jun
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1017-1398
1572-9265
DOI10.1007/s11075-018-0531-1

Cover

Abstract The exponential stability and the polynomial stability have been well studied for the exact and numerical solutions of the stochastic pantograph differential equations (SPDEs), while the result on the general decay stabilities is insufficient for SPDEs. In this paper, the sufficient conditions of the almost sure stability with general decay rate of the exact and numerical solutions for SPDEs have been considered. The stability of two different theta numerical methods, namely the split–step theta method and the stochastic linear theta method, have been discussed respectively. From the conditions, we established for the two theta approximations to reproduce the stability of the exact solution, and we see that the conditions for 𝜃 ∈ 0 , 1 2 are stronger than those for 𝜃 ∈ 1 2 , 1 . The bound of the Lyapunov exponent of the split-step theta method is little bigger than that of the stochastic linear theta method for sufficiently small step size. To illustrate the theoretical results, we give two examples to examine the almost sure exponential stability.
AbstractList The exponential stability and the polynomial stability have been well studied for the exact and numerical solutions of the stochastic pantograph differential equations (SPDEs), while the result on the general decay stabilities is insufficient for SPDEs. In this paper, the sufficient conditions of the almost sure stability with general decay rate of the exact and numerical solutions for SPDEs have been considered. The stability of two different theta numerical methods, namely the split–step theta method and the stochastic linear theta method, have been discussed respectively. From the conditions, we established for the two theta approximations to reproduce the stability of the exact solution, and we see that the conditions for ðoef∈0,12 are stronger than those for ðoef∈12,1. The bound of the Lyapunov exponent of the split-step theta method is little bigger than that of the stochastic linear theta method for sufficiently small step size. To illustrate the theoretical results, we give two examples to examine the almost sure exponential stability.
The exponential stability and the polynomial stability have been well studied for the exact and numerical solutions of the stochastic pantograph differential equations (SPDEs), while the result on the general decay stabilities is insufficient for SPDEs. In this paper, the sufficient conditions of the almost sure stability with general decay rate of the exact and numerical solutions for SPDEs have been considered. The stability of two different theta numerical methods, namely the split–step theta method and the stochastic linear theta method, have been discussed respectively. From the conditions, we established for the two theta approximations to reproduce the stability of the exact solution, and we see that the conditions for 𝜃 ∈ 0 , 1 2 are stronger than those for 𝜃 ∈ 1 2 , 1 . The bound of the Lyapunov exponent of the split-step theta method is little bigger than that of the stochastic linear theta method for sufficiently small step size. To illustrate the theoretical results, we give two examples to examine the almost sure exponential stability.
Author Guo, Ping
Li, Chong–Jun
Author_xml – sequence: 1
  givenname: Ping
  surname: Guo
  fullname: Guo, Ping
  organization: School of Mathematical Sciences, Dalian University of Technology
– sequence: 2
  givenname: Chong–Jun
  orcidid: 0000-0001-9501-4314
  surname: Li
  fullname: Li, Chong–Jun
  email: chongjun@dlut.edu.cn
  organization: School of Mathematical Sciences, Dalian University of Technology
BookMark eNp9kLFqHDEQhkVwILaTB0gnSL2ORjqddktjEidgcOPUYlaavZPZk86SFueqvLplnyEQiKuZ4v_-Gb4zdhJTJMY-g7gAIczXAiCM7gT0ndAKOnjHTkEb2Q1yrU_aLsB0oIb-Azsr5V6IRklzyv5czrtUKi9LJl4qjmEO9cAfQ93yDUXKOHNPDg88YyWeJk6_0VWO0fO47CgH1xIlzUsNKRY-pdxqkttiqcHxPcaaNhn3W-7DNFGmWEMD6GHBF-Ajez_hXOjT6zxnv75_u7v60d3cXv-8urzpnIJ17RwaL0ZF0oCXCpU0TjuPWgu3HpWBXuph9AROeO2R1is5atXjqJwkYUCqc_bl2LvP6WGhUu19WnJsJ60coF8NK1ipljLHlMuplEyTdaG-PFozhtmCsM-27dG2bbbts20LjYR_yH0OO8yHNxl5ZErLxg3lvz_9H3oCLn2WmQ
CitedBy_id crossref_primary_10_1137_22M1496876
crossref_primary_10_1088_1742_6596_2025_1_012094
crossref_primary_10_1007_s10543_018_0723_z
crossref_primary_10_1016_j_cam_2020_113303
crossref_primary_10_3934_dcdsb_2021204
crossref_primary_10_1007_s12652_023_04744_0
crossref_primary_10_1140_epjp_s13360_023_04735_2
crossref_primary_10_3233_JIFS_191148
crossref_primary_10_1142_S021797922350217X
crossref_primary_10_1142_S0219493723500429
crossref_primary_10_1155_2020_8862484
Cites_doi 10.1016/j.cam.2013.03.038
10.1080/07362990500118637
10.1016/j.cam.2011.09.045
10.1016/j.amc.2015.04.022
10.1016/j.cam.2012.03.005
10.1007/s11075-016-0162-3
10.1166/jama.2016.1099
10.1515/ROSE.2011.007
10.1080/10236198.2014.892934
10.1016/j.jmaa.2009.02.011
10.1016/j.cam.2015.03.016
10.1016/j.jmaa.2006.02.063
10.1007/s11075-012-9534-5
10.1016/j.jmaa.2005.03.056
10.1002/rnc.1726
10.1016/j.jfranklin.2014.02.004
10.1016/j.amc.2014.03.132
10.14232/ejqtde.2016.8.2
10.1007/s00211-010-0294-7
10.1137/060658138
10.1137/S0036142901389530
10.1016/j.amc.2010.12.023
10.1080/00207160.2017.1299862
10.1016/j.jmaa.2017.10.002
10.1016/j.sysconle.2012.11.009
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Springer Science+Business Media, LLC, part of Springer Nature 2018.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2018.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11075-018-0531-1
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection (LUT)
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (Proquest)
ProQuest Engineering Collection
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Computer Science
EISSN 1572-9265
EndPage 1411
ExternalDocumentID 10_1007_s11075_018_0531_1
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11471066
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 11572081
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -4Z
-59
-5G
-BR
-EM
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
203
29N
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
M7S
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCJ
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
~EX
-Y2
1SB
2.D
2P1
2VQ
5QI
AAOBN
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ARAPS
ATHPR
AYFIA
BBWZM
BENPR
BGLVJ
CAG
CCPQU
CITATION
COF
H13
HCIFZ
K7-
KOW
N2Q
NDZJH
O9-
OVD
PHGZM
PHGZT
PQGLB
PTHSS
PUEGO
R4E
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCLPG
T16
TEORI
VOH
ZY4
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c316t-ca7d0b3e271d23a327c5cda550c6b3718259bde1c0d5dae642b538ab3c2e07123
IEDL.DBID U2A
ISSN 1017-1398
IngestDate Fri Jul 25 11:09:30 EDT 2025
Wed Oct 01 00:38:47 EDT 2025
Thu Apr 24 23:04:26 EDT 2025
Fri Feb 21 02:32:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Stochastic linear theta method
60H10
General decay rate
65C30
65L20
Stochastic pantograph differential equation
Almost sure stability
Split-step theta method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-ca7d0b3e271d23a327c5cda550c6b3718259bde1c0d5dae642b538ab3c2e07123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9501-4314
PQID 2918494143
PQPubID 2043837
PageCount 21
ParticipantIDs proquest_journals_2918494143
crossref_citationtrail_10_1007_s11075_018_0531_1
crossref_primary_10_1007_s11075_018_0531_1
springer_journals_10_1007_s11075_018_0531_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Numerical algorithms
PublicationTitleAbbrev Numer Algor
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References MahmoudAXiaoYTianBConvergence and stability of two classes of theta methods with variable step size for a stochastic pantograph differential equationsJ. Adv. Math. Appl.2016529510610.1166/jama.2016.1099
GardTCIntroduction to Stochastic Differential Equations1988New YorkDekker0628.60064
HuangCMean square stability and dissipativity of two classes of theta methods for systems of stochastic delay differential equationsJ. Comput. Appl. Math.20142597786312347210.1016/j.cam.2013.03.0381291.65020
YouSMaoWMaoXAnalysis on exponential stability of hybrid pantograph stochastic differential equations with highly nonlinear coefficientsAppl. Math. Comput.20152637383334852606921648
KhasminskiiRStochastic stability of differential equations2011BerlinSpringer Science & Business Media
JankovićSRandjelovićJJovanovićMRazumikhin-type exponential stability criteria of neutral stochastic functional differential equationsJ. Math. Anal. Appl.20093552811820252175510.1016/j.jmaa.2009.02.0111166.60040
WuFHuSRazumikhin-type theorems on general decay stability and robustness for stochastic functional differential equationsInt. J. Robust Nonlinear Control2012227763777290891510.1002/rnc.17261276.93081
HighamDJMaoXYuanCAlmost sure and moment exponential stability in the numerical simulation of stochastic differential equationsSIAM J. Numer. Anal.2007452592609230028910.1137/0606581381144.65005
MiloševićMExistence, uniqueness, almost sure polynomial stability of solution to a class of highly nonlinear pantograph stochastic differential equations and the Euler-Maruyama approximationAppl. Math. Comput.201423767268532011641334.60117
Song, M., Lu, Y., Liu, M.: Stability of analytical solutions and convergence of numerical methods for non-linear stochastic pantograph differential equations. arXiv:1502.00061 (2015)
MaoXNumerical solutions of stochastic differential delay equations under the generalized Khasminskii-type conditionsAppl. Math. Comput.2011217125512552427701691215.65015
HighamDJMaoXStuartAMStrong convergence of Euler-type methods for nonlinear stochastic differential equationsSIAM J. Numer. Anal.200240310411063194940410.1137/S00361429013895301026.65003
MaoXRassiasMJKhasminskii-type theorems for stochastic differential delay equationsStoch. Anal. Appl.200523510451069215889110.1080/073629905001186371082.60055
HuLMaoXShenYStability and boundedness of nonlinear hybrid stochastic differential delay equationsSyst. Control Lett.2013622178187300859410.1016/j.sysconle.2012.11.0091259.93127
ZongXWuFHuangCExponential mean square stability of the theta approximations for neutral stochastic differential delay equationsJ. Comput. Appl. Math.2015286172185333623510.1016/j.cam.2015.03.0161320.34111
WuFMaoXSzpruchLAlmost sure exponential stability of numerical solutions for stochastic delay differential equationsNumer. Math.20101154681697265815910.1007/s00211-010-0294-71193.65009
GuoPLiCAlmost sure exponential stability of numerical solutions for the stochastic pantograph differential equationsJ. Math. Anal. Appl.2018460411424373991310.1016/j.jmaa.2017.10.0021382.65018
HaghighiAHosseiniSMA class of split-step balanced methods for stiff stochastic differential equationsNumerical Algorithms2012611141162295940910.1007/s11075-012-9534-506085765
MaoXStochastic differential equations and applications2007ChichesterHorvood1138.60005
PavlovićGJankovićSRazumikhin-type theorems on general decay stability of stochastic functional differential equations with infinite delayJ. Comput. Appl. Math.2012236716791690286350510.1016/j.cam.2011.09.0451247.34128
XiaoYMahmoudATianBConvergence and stability of split-step theta methods with variable step-size for stochastic pantograph differential equationsInt. J. Comput. Math.2017955939960377214510.1080/00207160.2017.1299862
Appleby, J.A.D., Buckwar, E.: Sufficient conditions for polynomial asymptotic behaviour of the stochastic pantograph equation. Electronic Journal of Qualitative Theory of Differential Equations. (2), 1–32 (2016)
ZhangHXiaoYGuoFConvergence and stability of a numerical method for nonlinear stochastic pantograph equationsJ. Frankl. Inst.2014351630893103320102110.1016/j.jfranklin.2014.02.0041290.93202
XiaoYSongMLiuMConvergence and stability of the semi-implicit euler method with variable stepsize for a linear stochastic pantograph differential equationInt. J. Numer. Anal. Model2011821422527404891214.65003
SchurzHAlmost sure asymptotic stability and convergence of stochastic theta methods applied to systems of linear SDEs in $R^{d}$ RdRandom Operators and Stochastic Equations2011192111129280588110.1515/ROSE.2011.0071268.65009
HuangCExponential mean square stability of numerical methods for systems of stochastic differential equationsJ. Comput. Appl. Math.20122361640164026292625910.1016/j.cam.2012.03.0051251.65003
FanZLiuMCaoWExistence and uniqueness of the solutions and convergence of semi-implicit Euler methods for stochastic pantograph equationsJ. Math. Anal. Appl.2007325211421159227007510.1016/j.jmaa.2006.02.0631107.60030
MaoXLamJXuSRazumikhin method and exponential stability of hybrid stochastic delay interval systemsJ. Math. Anal. Appl.200631414566218353610.1016/j.jmaa.2005.03.0561127.60072
ZongXWuFHuangCPreserving exponential mean square stability and decay rates in two classes of theta approximations of stochastic differential equationsJ. Differ. Equ. Appl.201420710911111321033210.1080/10236198.2014.8929341291.60143
LiuWMaoXAlmost sure stability of the Euler-Maruyama method with random variable stepsize for stochastic differential equationsNumerical Algorithms2017742573592359966510.1007/s11075-016-0162-31371.65010
H Zhang (531_CR28) 2014; 351
X Zong (531_CR29) 2014; 20
DJ Higham (531_CR6) 2002; 40
X Mao (531_CR16) 2011; 217
F Wu (531_CR24) 2010; 115
X Mao (531_CR15) 2007
H Schurz (531_CR21) 2011; 19
L Hu (531_CR8) 2013; 62
W Liu (531_CR13) 2017; 74
A Mahmoud (531_CR14) 2016; 5
Y Xiao (531_CR25) 2017; 95
Y Xiao (531_CR26) 2011; 8
F Wu (531_CR23) 2012; 22
X Zong (531_CR30) 2015; 286
Z Fan (531_CR2) 2007; 325
M Milošević (531_CR19) 2014; 237
X Mao (531_CR17) 2006; 314
531_CR1
R Khasminskii (531_CR12) 2011
531_CR22
P Guo (531_CR4) 2018; 460
C Huang (531_CR9) 2012; 236
S You (531_CR27) 2015; 263
G Pavlović (531_CR20) 2012; 236
TC Gard (531_CR3) 1988
A Haghighi (531_CR5) 2012; 61
C Huang (531_CR10) 2014; 259
S Janković (531_CR11) 2009; 355
DJ Higham (531_CR7) 2007; 45
X Mao (531_CR18) 2005; 23
References_xml – reference: GuoPLiCAlmost sure exponential stability of numerical solutions for the stochastic pantograph differential equationsJ. Math. Anal. Appl.2018460411424373991310.1016/j.jmaa.2017.10.0021382.65018
– reference: ZongXWuFHuangCExponential mean square stability of the theta approximations for neutral stochastic differential delay equationsJ. Comput. Appl. Math.2015286172185333623510.1016/j.cam.2015.03.0161320.34111
– reference: KhasminskiiRStochastic stability of differential equations2011BerlinSpringer Science & Business Media
– reference: FanZLiuMCaoWExistence and uniqueness of the solutions and convergence of semi-implicit Euler methods for stochastic pantograph equationsJ. Math. Anal. Appl.2007325211421159227007510.1016/j.jmaa.2006.02.0631107.60030
– reference: MaoXRassiasMJKhasminskii-type theorems for stochastic differential delay equationsStoch. Anal. Appl.200523510451069215889110.1080/073629905001186371082.60055
– reference: MaoXLamJXuSRazumikhin method and exponential stability of hybrid stochastic delay interval systemsJ. Math. Anal. Appl.200631414566218353610.1016/j.jmaa.2005.03.0561127.60072
– reference: LiuWMaoXAlmost sure stability of the Euler-Maruyama method with random variable stepsize for stochastic differential equationsNumerical Algorithms2017742573592359966510.1007/s11075-016-0162-31371.65010
– reference: HuLMaoXShenYStability and boundedness of nonlinear hybrid stochastic differential delay equationsSyst. Control Lett.2013622178187300859410.1016/j.sysconle.2012.11.0091259.93127
– reference: XiaoYMahmoudATianBConvergence and stability of split-step theta methods with variable step-size for stochastic pantograph differential equationsInt. J. Comput. Math.2017955939960377214510.1080/00207160.2017.1299862
– reference: HaghighiAHosseiniSMA class of split-step balanced methods for stiff stochastic differential equationsNumerical Algorithms2012611141162295940910.1007/s11075-012-9534-506085765
– reference: YouSMaoWMaoXAnalysis on exponential stability of hybrid pantograph stochastic differential equations with highly nonlinear coefficientsAppl. Math. Comput.20152637383334852606921648
– reference: Appleby, J.A.D., Buckwar, E.: Sufficient conditions for polynomial asymptotic behaviour of the stochastic pantograph equation. Electronic Journal of Qualitative Theory of Differential Equations. (2), 1–32 (2016)
– reference: PavlovićGJankovićSRazumikhin-type theorems on general decay stability of stochastic functional differential equations with infinite delayJ. Comput. Appl. Math.2012236716791690286350510.1016/j.cam.2011.09.0451247.34128
– reference: MaoXStochastic differential equations and applications2007ChichesterHorvood1138.60005
– reference: MaoXNumerical solutions of stochastic differential delay equations under the generalized Khasminskii-type conditionsAppl. Math. Comput.2011217125512552427701691215.65015
– reference: ZongXWuFHuangCPreserving exponential mean square stability and decay rates in two classes of theta approximations of stochastic differential equationsJ. Differ. Equ. Appl.201420710911111321033210.1080/10236198.2014.8929341291.60143
– reference: JankovićSRandjelovićJJovanovićMRazumikhin-type exponential stability criteria of neutral stochastic functional differential equationsJ. Math. Anal. Appl.20093552811820252175510.1016/j.jmaa.2009.02.0111166.60040
– reference: WuFHuSRazumikhin-type theorems on general decay stability and robustness for stochastic functional differential equationsInt. J. Robust Nonlinear Control2012227763777290891510.1002/rnc.17261276.93081
– reference: MahmoudAXiaoYTianBConvergence and stability of two classes of theta methods with variable step size for a stochastic pantograph differential equationsJ. Adv. Math. Appl.2016529510610.1166/jama.2016.1099
– reference: ZhangHXiaoYGuoFConvergence and stability of a numerical method for nonlinear stochastic pantograph equationsJ. Frankl. Inst.2014351630893103320102110.1016/j.jfranklin.2014.02.0041290.93202
– reference: HighamDJMaoXYuanCAlmost sure and moment exponential stability in the numerical simulation of stochastic differential equationsSIAM J. Numer. Anal.2007452592609230028910.1137/0606581381144.65005
– reference: HuangCMean square stability and dissipativity of two classes of theta methods for systems of stochastic delay differential equationsJ. Comput. Appl. Math.20142597786312347210.1016/j.cam.2013.03.0381291.65020
– reference: XiaoYSongMLiuMConvergence and stability of the semi-implicit euler method with variable stepsize for a linear stochastic pantograph differential equationInt. J. Numer. Anal. Model2011821422527404891214.65003
– reference: HuangCExponential mean square stability of numerical methods for systems of stochastic differential equationsJ. Comput. Appl. Math.20122361640164026292625910.1016/j.cam.2012.03.0051251.65003
– reference: SchurzHAlmost sure asymptotic stability and convergence of stochastic theta methods applied to systems of linear SDEs in $R^{d}$ RdRandom Operators and Stochastic Equations2011192111129280588110.1515/ROSE.2011.0071268.65009
– reference: Song, M., Lu, Y., Liu, M.: Stability of analytical solutions and convergence of numerical methods for non-linear stochastic pantograph differential equations. arXiv:1502.00061 (2015)
– reference: WuFMaoXSzpruchLAlmost sure exponential stability of numerical solutions for stochastic delay differential equationsNumer. Math.20101154681697265815910.1007/s00211-010-0294-71193.65009
– reference: MiloševićMExistence, uniqueness, almost sure polynomial stability of solution to a class of highly nonlinear pantograph stochastic differential equations and the Euler-Maruyama approximationAppl. Math. Comput.201423767268532011641334.60117
– reference: GardTCIntroduction to Stochastic Differential Equations1988New YorkDekker0628.60064
– reference: HighamDJMaoXStuartAMStrong convergence of Euler-type methods for nonlinear stochastic differential equationsSIAM J. Numer. Anal.200240310411063194940410.1137/S00361429013895301026.65003
– volume: 259
  start-page: 77
  year: 2014
  ident: 531_CR10
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2013.03.038
– volume: 23
  start-page: 1045
  issue: 5
  year: 2005
  ident: 531_CR18
  publication-title: Stoch. Anal. Appl.
  doi: 10.1080/07362990500118637
– ident: 531_CR22
– volume: 236
  start-page: 1679
  issue: 7
  year: 2012
  ident: 531_CR20
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2011.09.045
– volume: 263
  start-page: 73
  year: 2015
  ident: 531_CR27
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2015.04.022
– volume: 236
  start-page: 4016
  issue: 16
  year: 2012
  ident: 531_CR9
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2012.03.005
– volume: 8
  start-page: 214
  year: 2011
  ident: 531_CR26
  publication-title: Int. J. Numer. Anal. Model
– volume: 74
  start-page: 573
  issue: 2
  year: 2017
  ident: 531_CR13
  publication-title: Numerical Algorithms
  doi: 10.1007/s11075-016-0162-3
– volume: 5
  start-page: 95
  issue: 2
  year: 2016
  ident: 531_CR14
  publication-title: J. Adv. Math. Appl.
  doi: 10.1166/jama.2016.1099
– volume: 19
  start-page: 111
  issue: 2
  year: 2011
  ident: 531_CR21
  publication-title: Random Operators and Stochastic Equations
  doi: 10.1515/ROSE.2011.007
– volume: 20
  start-page: 1091
  issue: 7
  year: 2014
  ident: 531_CR29
  publication-title: J. Differ. Equ. Appl.
  doi: 10.1080/10236198.2014.892934
– volume: 355
  start-page: 811
  issue: 2
  year: 2009
  ident: 531_CR11
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2009.02.011
– volume: 286
  start-page: 172
  year: 2015
  ident: 531_CR30
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2015.03.016
– volume: 325
  start-page: 1142
  issue: 2
  year: 2007
  ident: 531_CR2
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2006.02.063
– volume-title: Stochastic stability of differential equations
  year: 2011
  ident: 531_CR12
– volume-title: Stochastic differential equations and applications
  year: 2007
  ident: 531_CR15
– volume: 61
  start-page: 141
  issue: 1
  year: 2012
  ident: 531_CR5
  publication-title: Numerical Algorithms
  doi: 10.1007/s11075-012-9534-5
– volume: 314
  start-page: 45
  issue: 1
  year: 2006
  ident: 531_CR17
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2005.03.056
– volume: 22
  start-page: 763
  issue: 7
  year: 2012
  ident: 531_CR23
  publication-title: Int. J. Robust Nonlinear Control
  doi: 10.1002/rnc.1726
– volume: 351
  start-page: 3089
  issue: 6
  year: 2014
  ident: 531_CR28
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2014.02.004
– volume: 237
  start-page: 672
  year: 2014
  ident: 531_CR19
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2014.03.132
– ident: 531_CR1
  doi: 10.14232/ejqtde.2016.8.2
– volume: 115
  start-page: 681
  issue: 4
  year: 2010
  ident: 531_CR24
  publication-title: Numer. Math.
  doi: 10.1007/s00211-010-0294-7
– volume-title: Introduction to Stochastic Differential Equations
  year: 1988
  ident: 531_CR3
– volume: 45
  start-page: 592
  issue: 2
  year: 2007
  ident: 531_CR7
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/060658138
– volume: 40
  start-page: 1041
  issue: 3
  year: 2002
  ident: 531_CR6
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142901389530
– volume: 217
  start-page: 5512
  issue: 12
  year: 2011
  ident: 531_CR16
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2010.12.023
– volume: 95
  start-page: 939
  issue: 5
  year: 2017
  ident: 531_CR25
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160.2017.1299862
– volume: 460
  start-page: 411
  year: 2018
  ident: 531_CR4
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2017.10.002
– volume: 62
  start-page: 178
  issue: 2
  year: 2013
  ident: 531_CR8
  publication-title: Syst. Control Lett.
  doi: 10.1016/j.sysconle.2012.11.009
SSID ssj0010027
Score 2.267171
Snippet The exponential stability and the polynomial stability have been well studied for the exact and numerical solutions of the stochastic pantograph differential...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1391
SubjectTerms Algebra
Algorithms
Approximation
Computer Science
Decay rate
Differential equations
Exact solutions
Liapunov exponents
Numeric Computing
Numerical Analysis
Numerical methods
Original Paper
Pantographs
Polynomials
Stability
Theory of Computation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60XvTgW6wv5uBJWUx2m6Y9iKgoIlhEFLyFfamHmrQmgp78687k0aKg5yR7yMzOfN_O7DcA-454LLGuWEgTKkEBTwm-2iNcpDs9ylexNqXa56B79dC5foweZ2DQ3IXhtsomJpaB2mWWz8iPZJ-4SL9D6f1kNBY8NYqrq80IDV2PVnDHpcTYLMxJVsZqwdzZxeD2blJXYBZW1j8pNhP26TV1zvIyHTEhbmTrCXZMEf7MVFP4-atiWiaiy2VYrBEknlYmX4EZn67CUo0msd6r-Sos3EwUWfM1-DodvmZ5gXwgiIQIy57YT-RjWHyupKfReas_kbUjMHtC_6FtgTp1mL5XZZ0hThwVCevSMpl90Sz0jCOeRVyKX2MzcoVCxxD9uJISz9fh4fLi_vxK1MMXhFVhtxBWxy4wyss4dFJpJWMbWaeJ0NiuUZTRiDcZ50MbuMhpTzTGUOzURlnpCbZItQGtNEv9JqB0sddGB86QCZ2UJmANeU_QqO9tL4jaEDQ_OrG1MjkPyBgmU01ltk1CtknYNknYhoPJJ6NKluO_l3ca6yX1Ds2TqT-14bCx6PTxn4tt_b_YNswTpOpXvT070Cre3v0uwZbC7NW--A1Xpunq
  priority: 102
  providerName: ProQuest
Title Almost sure stability with general decay rate of exact and numerical solutions for stochastic pantograph differential equations
URI https://link.springer.com/article/10.1007/s11075-018-0531-1
https://www.proquest.com/docview/2918494143
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1572-9265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010027
  issn: 1017-1398
  databaseCode: AFBBN
  dateStart: 19910201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1572-9265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010027
  issn: 1017-1398
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1572-9265
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0010027
  issn: 1017-1398
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na9swFH9szWU79CPdWPoR3mGnFYEtxbFzTErc0tIwxgLtyehr2yF1utqB5tR_vU-25dCyDnoSyLIwftLT76cn_R7AV0M8llhXzLgKBSOHJ5i72sNMJAcJrVexVJXa52x4Ph9cXEfXzT3uwp929yHJylNvLrsRU3EHzRLmBg4jytOJnJoXDeI5H7ehA0e0qhAnuV-CN4kPZf6ri-eL0QZhvgiKVmtNugvbDUjEcW3VPXhn8y7sNIARm-lYUJXPyeDruvDxqtVhLfbhcby4XRYlum1AJBxYnYRdo9t8xd-14DQaq-UanWIELn-hfZC6RJkbzFd1MGeB7fBEQrjUzVL_kU7eGe9cBuJK8hp9ohVyGAu0f2sB8eITzNPpz9Nz1qRcYFqEw5JpGZtACcvj0HAhBY91pI0kGqOHStA6RmxJGRvqwERGWiIvijymVEJzS2CFi8-wlS9z-wWQm9hKJQOjiEQazlXglOMtAaKR1UkQ9SDw_z7TjR65S4uxyDZKys5cGZkrc-bKwh58a1-5q8U4_tf4yBs0a-ZlkfERfcxoQCCxByfeyJvHr3Z28KbWh_CBcNWoPuBzBFvl_coeE3YpVR_eJ-lZHzrjdDKZufLs5nJK5WQ6-_6jX43kJ-dT66o
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV09b9RAEB1FSQEUCQQQRwJMAQ1ohb1rn89FhAIkupDkhFAipTP7RVJc7At2BFfxz_htzNjrO4FEutS2t_DsvnmzM_MG4KWjOJairkxIEytBgKcEt_YIl-pkRP4q06ZV-5wMx6fJp7P0bAV-970wXFbZY2IL1K6yfEf-VuYUi-QJufd3syvBU6M4u9qP0NBhtILbaSXGQmPHoZ__oBCu3jn4SPZ-JeX-3smHsQhTBoRV8bARVmcuMsrLLHZSaSUzm1qnibnboVEE3RQgGOdjG7nUaU983RBIaKOs9OSfWfiAXMBaopKcgr-193uTz18WeQyO-tp8K_kC4lqjPq_aNu9R5MWFcyPBB0HEf3vGJd39J0PbOr79-7AeGCvudlvsAaz4chM2AnvFgA31Jtw7XijA1g_h1-70sqob5AtIJAba1uDOka998byTukbnrZ4ja1Vg9Q39T20b1KXD8rpLI01xcTCQuDUtU9kLzcLSOOPZx63YNvYjXgiqpuivOuny-hGc3ooZHsNqWZX-CaB0mddGR87QlnFSmog16z1RsdzbUZQOIOp_dGGDEjoP5JgWSw1ntk1BtinYNkU8gNeLT2adDMhNL2_31isCItTFcv8O4E1v0eXj_y729ObFXsCd8cnxUXF0MDncgrtE5_KurmgbVpvv1_4ZUabGPA_7EuHrbR-FP-VTJx8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQkRAMPAqIQoEbmEBWE7tp2rECKp4VA5W6RX4VhpAWkkp04q9zTuJWIEBidRwryp193-ezvyPkRCOPRdYVUiZ9TnHB49Re7aE6EM02xqtQyFzts9-6GjRvhsGwrHOautPuLiVZ3GmwKk1J1pjoUWNx8Q1Ziz101qbWiSjSn-Wm1UlAhx6w7jyNYElXnu7EpRihTtulNX8a4mtgWqDNbwnSPO70Nsl6CRihW1h4iyyZpEo2SvAI5dRMscnVZ3BtVbJ2P9dkTbfJRzd-GacZ2C1BQEyYn4qdgd2IhadCfBq0UWIGVj0CxiMw70JlIBINybRI7MQwd1VAtIvDjNWzsFLPMLHViHP5a3BFV3DxiMG8FmLi6Q4Z9C4fz69oWX6BKu63MqpEqD3JDQt9zbjgLFSB0gIpjWpJjjENmZPUxleeDrQwSGQkrp5CcsUMAhfGd0klGSdmjwDToRFSeFoiodSMSc-qyBsERx2j2l5QI57795EqtcltiYw4WqgqW3NFaK7Imivya-R0_sqkEOb4q3PdGTQq52gasQ5-TKeJgLFGzpyRF49_HWz_X72PycrDRS-6u-7fHpBVhFud4txPnVSyt6k5REiTyaPcbT8B7YftQg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Almost+sure+stability+with+general+decay+rate+of+exact+and+numerical+solutions+for+stochastic+pantograph+differential+equations&rft.jtitle=Numerical+algorithms&rft.au=Guo%2C+Ping&rft.au=Li%2C+Chong%E2%80%93Jun&rft.date=2019-04-01&rft.pub=Springer+US&rft.issn=1017-1398&rft.eissn=1572-9265&rft.volume=80&rft.issue=4&rft.spage=1391&rft.epage=1411&rft_id=info:doi/10.1007%2Fs11075-018-0531-1&rft.externalDocID=10_1007_s11075_018_0531_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-1398&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-1398&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-1398&client=summon