Detecting anomalous patterns in time-series data using sparse hierarchically parameterized transition matrices

Anomaly detection in time-series data is a relevant problem in many fields such as stochastic data analysis, quality assurance, and predictive modeling. Markov models are an effective tool for time-series data analysis. Previous approaches utilizing Markov models incorporate transition matrices (TMs...

Full description

Saved in:
Bibliographic Details
Published inPattern analysis and applications : PAA Vol. 20; no. 4; pp. 1029 - 1043
Main Authors Milo, Michael W., Roan, Michael J.
Format Journal Article
LanguageEnglish
Published London Springer London 01.11.2017
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1433-7541
1433-755X
DOI10.1007/s10044-016-0544-0

Cover

Abstract Anomaly detection in time-series data is a relevant problem in many fields such as stochastic data analysis, quality assurance, and predictive modeling. Markov models are an effective tool for time-series data analysis. Previous approaches utilizing Markov models incorporate transition matrices (TMs) at varying dimensionalities and resolutions. Other analysis methods treat TMs as vectors for comparison using search algorithms such as the nearest neighbors comparison algorithm, or use TMs to calculate the probability of discrete subsets of time-series data. We propose an analysis method that treats the elements of a TM as random variables, parameterizing them hierarchically. This approach creates a metric for determining the “normalcy” of a TM generated from a subset of time-series data. The advantages of this novel approach are discussed in terms of computational efficiency, accuracy of anomaly detection, and robustness when analyzing sparse data. Unlike previous approaches, this algorithm is developed with the expectation of sparse TMs. Accounting for this sparseness significantly improves the detection accuracy of the proposed method. Detection rates in a variety of time-series data types range from (97 % TPR, 2.1 % FPR) to (100 % TPR, <0.1 % FPR) with very small sample sizes (20–40 samples) in data with sparse transition probability matrices.
AbstractList Anomaly detection in time-series data is a relevant problem in many fields such as stochastic data analysis, quality assurance, and predictive modeling. Markov models are an effective tool for time-series data analysis. Previous approaches utilizing Markov models incorporate transition matrices (TMs) at varying dimensionalities and resolutions. Other analysis methods treat TMs as vectors for comparison using search algorithms such as the nearest neighbors comparison algorithm, or use TMs to calculate the probability of discrete subsets of time-series data. We propose an analysis method that treats the elements of a TM as random variables, parameterizing them hierarchically. This approach creates a metric for determining the “normalcy” of a TM generated from a subset of time-series data. The advantages of this novel approach are discussed in terms of computational efficiency, accuracy of anomaly detection, and robustness when analyzing sparse data. Unlike previous approaches, this algorithm is developed with the expectation of sparse TMs. Accounting for this sparseness significantly improves the detection accuracy of the proposed method. Detection rates in a variety of time-series data types range from (97 % TPR, 2.1 % FPR) to (100 % TPR, <0.1 % FPR) with very small sample sizes (20–40 samples) in data with sparse transition probability matrices.
Anomaly detection in time-series data is a relevant problem in many fields such as stochastic data analysis, quality assurance, and predictive modeling. Markov models are an effective tool for time-series data analysis. Previous approaches utilizing Markov models incorporate transition matrices (TMs) at varying dimensionalities and resolutions. Other analysis methods treat TMs as vectors for comparison using search algorithms such as the nearest neighbors comparison algorithm, or use TMs to calculate the probability of discrete subsets of time-series data. We propose an analysis method that treats the elements of a TM as random variables, parameterizing them hierarchically. This approach creates a metric for determining the “normalcy” of a TM generated from a subset of time-series data. The advantages of this novel approach are discussed in terms of computational efficiency, accuracy of anomaly detection, and robustness when analyzing sparse data. Unlike previous approaches, this algorithm is developed with the expectation of sparse TMs. Accounting for this sparseness significantly improves the detection accuracy of the proposed method. Detection rates in a variety of time-series data types range from (97 % TPR, 2.1 % FPR) to (100 % TPR, <0.1 % FPR) with very small sample sizes (20–40 samples) in data with sparse transition probability matrices.
Author Roan, Michael J.
Milo, Michael W.
Author_xml – sequence: 1
  givenname: Michael W.
  surname: Milo
  fullname: Milo, Michael W.
  organization: Mechanical Engineering, Virginia Tech
– sequence: 2
  givenname: Michael J.
  surname: Roan
  fullname: Roan, Michael J.
  email: mroan@vt.edu
  organization: Mechanical Engineering, Virginia Tech
BookMark eNp9kE9LxDAQxYOs4K76AbwFPFeTTdu0R1n_guBFwVsY0-luljZdM9nD-ulNWRER9DIzDO8383gzNvGDR8bOpLiQQuhLSjXPMyHLTBTjcMCmMlcq00XxOvmec3nEZkRrIZRS82rK_DVGtNH5JQc_9NANW-IbiBGDJ-48j67HjDA4JN5ABL6lUUwbCIR85TBAsCtnoet2CQzQp4PBfWDDYwBPLrrB8x5icBbphB220BGefvVj9nJ787y4zx6f7h4WV4-ZVbKMmdVVXui6rm2tWrDzRrRatKWQOVZVgTU0VSPepLaQt6VumvKtUarO006VGrVVx-x8f3cThvctUjTrYRt8emlkXai6nGspkkrvVTYMRAFbY12E0XCy7jojhRnDNftwTQrXjOGakZS_yE1wPYTdv8x8z1DS-iWGH57-hD4BZuqQuQ
CitedBy_id crossref_primary_10_1007_s10044_019_00782_7
crossref_primary_10_1007_s10044_024_01275_y
Cites_doi 10.1023/A:1009653916552
10.1016/j.comnet.2007.02.001
10.1016/j.sigpro.2004.03.011
10.1287/opre.27.3.616
10.1016/j.jsv.2007.09.046
10.1201/9780203910894
10.1017/CBO9780511810633
10.1007/978-94-015-3994-4
10.1016/j.ins.2013.06.045
10.1109/ICDM.2005.79
10.1177/0954406215592439
ContentType Journal Article
Copyright Springer-Verlag London 2016
Copyright Springer Science & Business Media 2017
Copyright_xml – notice: Springer-Verlag London 2016
– notice: Copyright Springer Science & Business Media 2017
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s10044-016-0544-0
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1433-755X
EndPage 1043
ExternalDocumentID 10_1007_s10044_016_0544_0
GrantInformation_xml – fundername: Self funded
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
203
29O
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9O
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c316t-c78457999c93fac2d0f70f6014e885e9ad8d0b17ca4f67dd6bd3394d0b367e7c3
IEDL.DBID AGYKE
ISSN 1433-7541
IngestDate Thu Sep 25 00:46:26 EDT 2025
Wed Oct 01 01:59:45 EDT 2025
Thu Apr 24 23:05:50 EDT 2025
Fri Feb 21 02:29:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Statistical models
Monte Carlo
Stochastic processes
Machine learning
Markov processes
Signal processing
Real-time systems
Pattern recognition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-c78457999c93fac2d0f70f6014e885e9ad8d0b17ca4f67dd6bd3394d0b367e7c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1953962710
PQPubID 2043691
PageCount 15
ParticipantIDs proquest_journals_1953962710
crossref_citationtrail_10_1007_s10044_016_0544_0
crossref_primary_10_1007_s10044_016_0544_0
springer_journals_10_1007_s10044_016_0544_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-01
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Pattern analysis and applications : PAA
PublicationTitleAbbrev Pattern Anal Applic
PublicationYear 2017
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References KhatKhateAGuptaSRayAPatankarRaviAnomaly detection in flexible mechanical couplings via time series analysisJ Sound Vib200831160862210.1016/j.jsv.2007.09.046
NorrisJRMarkov Chains1997CambridgeCambridge University Press10.1017/CBO97805118106330873.60043
BillingsleyPProbability and Measure19953New YorkWiley Inc0822.60002
PatilGPTaillieCA multiscale hierarchial markov transition matrix model for generating and analyzing thematic raster mapsEnviron Ecol Stat200181718410.1023/A:10096539165521844502
HarrisBRoanMMiloMA general anomaly detection approach applied to rolling element bearings via reduced-dimensionality transition matrix analysisProc Inst Mech Eng Part C J Mech Eng Sci2015
GillJMethodsBA social and behavioral sciences approach20092Boca RatonTaylor and Fancis Group
RayASymbolic dynamic analysis of complex systems for anomaly detectionSig Process2004841115113010.1016/j.sigpro.2004.03.0111152.94353
LughoferFPichlerEBucheggerKHarjrudinTSerdioEResidual-based faut detection using soft computing techniques for condition monitoring at rolling millsInf Sci201425930432010.1016/j.ins.2013.06.045
PatchaAParkJ-MAn overview of anomaly detection techniques: existing solutions and latest technological trendsComput Netw2007513448347010.1016/j.comnet.2007.02.001
StewartWJIntroduction to the numerical solution of Markov chains1994PrincetonPrinceton University Press0821.65099
Keogh E, Lin J, Fu A (2005) Efficiently finding the most unusual time series subsequence. In: Proc. of the 5th IEEE International Conference on Data Mining (ICDM 2005), Houston, Texas, 27–30 Nov, pp 226–233
Ye N (2000) A Markov chain model of temporal behavior for anomaly detection. In: SMCIAC, vol 166, Oakland, pp 171–174
Weber R, Schek HJ, Blott S (1998) A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces. In: VLDB, vol 24, New York
Kriegel H-P, Kroger P, Zimek A (2009) Outlier detection techniques. In: The Thirteenth Pacific-Asia Conference on Knowledge Discovery and Data Mining, Bangkok, Thailand
SerfozoRFTechnical note: an equivalence between continuous and discrete time MArkov decision processesOper Res197927361662010.1287/opre.27.3.6160413.90079533923
Hawkins DM (1980) Identification of Outliers. Chapman & Hall
WinstonWLOperations research: applications and algorithms1994BelmontDuxbury Press0867.90079
ThodeHCTesting for normality2002New YorkMarcel Dekker Inc.10.1201/97802039108941032.62040
544_CR10
J Gill (544_CR4) 2009
JR Norris (544_CR8) 1997
WJ Stewart (544_CR9) 1994
544_CR16
544_CR17
RF Serfozo (544_CR7) 1979; 27
GP Patil (544_CR13) 2001; 8
WL Winston (544_CR6) 1994
B Harris (544_CR18) 2015
A KhatKhate (544_CR11) 2008; 311
A Ray (544_CR12) 2004; 84
P Billingsley (544_CR14) 1995
544_CR2
544_CR1
F Lughofer (544_CR3) 2014; 259
A Patcha (544_CR5) 2007; 51
HC Thode (544_CR15) 2002
References_xml – reference: GillJMethodsBA social and behavioral sciences approach20092Boca RatonTaylor and Fancis Group
– reference: PatchaAParkJ-MAn overview of anomaly detection techniques: existing solutions and latest technological trendsComput Netw2007513448347010.1016/j.comnet.2007.02.001
– reference: StewartWJIntroduction to the numerical solution of Markov chains1994PrincetonPrinceton University Press0821.65099
– reference: NorrisJRMarkov Chains1997CambridgeCambridge University Press10.1017/CBO97805118106330873.60043
– reference: SerfozoRFTechnical note: an equivalence between continuous and discrete time MArkov decision processesOper Res197927361662010.1287/opre.27.3.6160413.90079533923
– reference: Hawkins DM (1980) Identification of Outliers. Chapman & Hall
– reference: Keogh E, Lin J, Fu A (2005) Efficiently finding the most unusual time series subsequence. In: Proc. of the 5th IEEE International Conference on Data Mining (ICDM 2005), Houston, Texas, 27–30 Nov, pp 226–233
– reference: KhatKhateAGuptaSRayAPatankarRaviAnomaly detection in flexible mechanical couplings via time series analysisJ Sound Vib200831160862210.1016/j.jsv.2007.09.046
– reference: BillingsleyPProbability and Measure19953New YorkWiley Inc0822.60002
– reference: RayASymbolic dynamic analysis of complex systems for anomaly detectionSig Process2004841115113010.1016/j.sigpro.2004.03.0111152.94353
– reference: HarrisBRoanMMiloMA general anomaly detection approach applied to rolling element bearings via reduced-dimensionality transition matrix analysisProc Inst Mech Eng Part C J Mech Eng Sci2015
– reference: Kriegel H-P, Kroger P, Zimek A (2009) Outlier detection techniques. In: The Thirteenth Pacific-Asia Conference on Knowledge Discovery and Data Mining, Bangkok, Thailand
– reference: ThodeHCTesting for normality2002New YorkMarcel Dekker Inc.10.1201/97802039108941032.62040
– reference: WinstonWLOperations research: applications and algorithms1994BelmontDuxbury Press0867.90079
– reference: Ye N (2000) A Markov chain model of temporal behavior for anomaly detection. In: SMCIAC, vol 166, Oakland, pp 171–174
– reference: Weber R, Schek HJ, Blott S (1998) A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces. In: VLDB, vol 24, New York
– reference: LughoferFPichlerEBucheggerKHarjrudinTSerdioEResidual-based faut detection using soft computing techniques for condition monitoring at rolling millsInf Sci201425930432010.1016/j.ins.2013.06.045
– reference: PatilGPTaillieCA multiscale hierarchial markov transition matrix model for generating and analyzing thematic raster mapsEnviron Ecol Stat200181718410.1023/A:10096539165521844502
– volume: 8
  start-page: 71
  issue: 1
  year: 2001
  ident: 544_CR13
  publication-title: Environ Ecol Stat
  doi: 10.1023/A:1009653916552
– ident: 544_CR2
– volume: 51
  start-page: 3448
  year: 2007
  ident: 544_CR5
  publication-title: Comput Netw
  doi: 10.1016/j.comnet.2007.02.001
– volume: 84
  start-page: 1115
  year: 2004
  ident: 544_CR12
  publication-title: Sig Process
  doi: 10.1016/j.sigpro.2004.03.011
– volume: 27
  start-page: 616
  issue: 3
  year: 1979
  ident: 544_CR7
  publication-title: Oper Res
  doi: 10.1287/opre.27.3.616
– volume: 311
  start-page: 608
  year: 2008
  ident: 544_CR11
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2007.09.046
– volume-title: Testing for normality
  year: 2002
  ident: 544_CR15
  doi: 10.1201/9780203910894
– ident: 544_CR10
– volume-title: Probability and Measure
  year: 1995
  ident: 544_CR14
– volume-title: Markov Chains
  year: 1997
  ident: 544_CR8
  doi: 10.1017/CBO9780511810633
– volume-title: Operations research: applications and algorithms
  year: 1994
  ident: 544_CR6
– ident: 544_CR17
– volume-title: A social and behavioral sciences approach
  year: 2009
  ident: 544_CR4
– ident: 544_CR1
  doi: 10.1007/978-94-015-3994-4
– volume: 259
  start-page: 304
  year: 2014
  ident: 544_CR3
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2013.06.045
– volume-title: Introduction to the numerical solution of Markov chains
  year: 1994
  ident: 544_CR9
– ident: 544_CR16
  doi: 10.1109/ICDM.2005.79
– year: 2015
  ident: 544_CR18
  publication-title: Proc Inst Mech Eng Part C J Mech Eng Sci
  doi: 10.1177/0954406215592439
SSID ssj0033328
Score 2.1276205
Snippet Anomaly detection in time-series data is a relevant problem in many fields such as stochastic data analysis, quality assurance, and predictive modeling. Markov...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1029
SubjectTerms Accuracy
Computer Science
Computing time
Data analysis
Economic models
Markov chains
Pattern Recognition
Quality assurance
Random variables
Robustness (mathematics)
Search algorithms
Theoretical Advances
Time series
Title Detecting anomalous patterns in time-series data using sparse hierarchically parameterized transition matrices
URI https://link.springer.com/article/10.1007/s10044-016-0544-0
https://www.proquest.com/docview/1953962710
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-755X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033328
  issn: 1433-7541
  databaseCode: AFBBN
  dateStart: 19980301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-755X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033328
  issn: 1433-7541
  databaseCode: AGYKE
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-755X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033328
  issn: 1433-7541
  databaseCode: U2A
  dateStart: 19980329
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7BcumlUEpVnvKBEygoWTt2fFzxKAKVEyvRU-RnhbqbXZHsofz6erxxeYhW4hbZjp14xvZY8818AIea6bwwXGYynPbhguJlprj0QSCFpcpWvnIYKPz9hl-O2dVdedfHcbcJ7Z5cknGnfhbsljNETIQbcIkPq7AW020NYG307cf1edqAKaWRUjVYAjQTJSuSM_OtTl4eR0825iu3aDxtLtbhNn3nEmTy62TR6RPz-CqF4zt_ZAM-9tYnGS3V5ROsuGYT1ntLlPTrvA1FiewhlX2G5syhvyEMRFQzm6rJbNGSeczO2bTkviHIUp-hQruWIO6UIKT-Jwk71kPrCFJuR6dF0InJb4IZx6eIxLl_DAN3eGBG7BiZRsoA127B-OL89vQy68kaMkML3mVGVKwUwdw0knplhjb3IvfhusdcVZVOBrnbXBfCKOa5sJZrS6lkoYxy4YShX2DQzBr3FYh1pRKeOS4ry5SwkhfKV0NNha6spXob8iSz2vSZzJFQY1I_5WDGKa4RvYZTXOfbcPT3lfkyjcf_Gu8lRaj7Fd3W6G5EoqIiVB8nuT6r_ldnO-9qvQsfhmg3xGDHPRh0Dwu3H6yeTh_0Wn4Aq-Ph6A-6avrp
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI54HODCGzGeOXACVWqXNGmOEzCN54lJu1Vpk6BJW4foOMCvxw4NDARI3ConTaV-SWzL9mdCjgtexEkpVKRA24OD4lSkhXIASGKYNpnLLBYK396JXp9fDdJBU8ddh2z3EJL0N_VMsVvMMWMCPOAUH-bJIvJXIWF-v90J1y9jzDdUBTuARTLlSQhl_rTEV2X0aWF-C4p6XdNdIyuNkUg776iukzlbbZDVxmCkzXGsQRR6MgTZJqnOLYYFYFmqq8lYj8Czp4-eRLOq6bCi2Ew-wn1na4rpoRQz3x8oXCxPtaXYGdvHFgC60QtFYvAxJswMX-HDU9RrPsWLjj2zv623SL97cX_Wi5qeClHJEjGNSpnxVIJVWCrmdNk2sZOxA6-M2yxLrQJ4TFwkstTcCWmMKAxjioOMCWllybbJQjWp7A6hxqZaOm6FygzX0iiRaJe1CyaLzBhWtEgcfm5eNoTj2PdilH9SJSMeOSaZIR553CInH688vrNt_DV5PyCWNwevzjEqiP2EEhg-DSjODP-22O6_Zh-Rpd797U1-c3l3vUeW26jqfX3iPlmYPj3bAzBUpsWh35hvhtTgKw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-QLz4Ft_m4Ekptps0aY6iLr7x4IK3kjaJLOx2l2096K93ptu4q6jgrSRpCv2SzISZ-T5CjjKehVEuVKDA2sMFxalAC-UAkMgwbRKXWCwUvn8QVx1-8xw_Nzqnpc929yHJcU0DsjQV1enQuNOpwreQY_YE3IZjfJgl8xx5EmBBd1pn_ihmjNXiquATsEDGPPJhzZ-m-GqYJt7mtwBpbXfaK2SpcRjp2RjhVTJjizWy3DiPtNmaJTR5fQbftk6KC4shApiW6mLQ1z245dNhTahZlLRbUBSWD3AN2pJiqijFLPgXCofMqLQUVbLrOAPA2HujSBLex-SZ7jt8uEIbV6d70X7N8m_LDdJpXz6dXwWNvkKQs0hUQS4THkvwEHPFnM5bJnQydHBD4zZJYqsAKhNmkcw1d0IaIzLDmOLQxoS0MmebZK4YFHaLUGNjLR23QiWGa2mUiLRLWhmTWWIMy7ZJ6H9umjfk46iB0UsntMmIR4oJZ4hHGm6T489XhmPmjb8G73nE0mYTlilGCFFbKILuE4_iVPdvk-38a_QhWXi8aKd31w-3u2SxhVa_LlXcI3PV6NXug89SZQf1uvwAbdHkZw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+anomalous+patterns+in+time-series+data+using+sparse+hierarchically+parameterized+transition+matrices&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Milo%2C+Michael+W.&rft.au=Roan%2C+Michael+J.&rft.date=2017-11-01&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=20&rft.issue=4&rft.spage=1029&rft.epage=1043&rft_id=info:doi/10.1007%2Fs10044-016-0544-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10044_016_0544_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon