Detecting anomalous patterns in time-series data using sparse hierarchically parameterized transition matrices
Anomaly detection in time-series data is a relevant problem in many fields such as stochastic data analysis, quality assurance, and predictive modeling. Markov models are an effective tool for time-series data analysis. Previous approaches utilizing Markov models incorporate transition matrices (TMs...
Saved in:
| Published in | Pattern analysis and applications : PAA Vol. 20; no. 4; pp. 1029 - 1043 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
London
Springer London
01.11.2017
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1433-7541 1433-755X |
| DOI | 10.1007/s10044-016-0544-0 |
Cover
| Abstract | Anomaly detection in time-series data is a relevant problem in many fields such as stochastic data analysis, quality assurance, and predictive modeling. Markov models are an effective tool for time-series data analysis. Previous approaches utilizing Markov models incorporate transition matrices (TMs) at varying dimensionalities and resolutions. Other analysis methods treat TMs as vectors for comparison using search algorithms such as the nearest neighbors comparison algorithm, or use TMs to calculate the probability of discrete subsets of time-series data. We propose an analysis method that treats the elements of a TM as random variables, parameterizing them hierarchically. This approach creates a metric for determining the “normalcy” of a TM generated from a subset of time-series data. The advantages of this novel approach are discussed in terms of computational efficiency, accuracy of anomaly detection, and robustness when analyzing sparse data. Unlike previous approaches, this algorithm is developed with the expectation of sparse TMs. Accounting for this sparseness significantly improves the detection accuracy of the proposed method. Detection rates in a variety of time-series data types range from (97 % TPR, 2.1 % FPR) to (100 % TPR, <0.1 % FPR) with very small sample sizes (20–40 samples) in data with sparse transition probability matrices. |
|---|---|
| AbstractList | Anomaly detection in time-series data is a relevant problem in many fields such as stochastic data analysis, quality assurance, and predictive modeling. Markov models are an effective tool for time-series data analysis. Previous approaches utilizing Markov models incorporate transition matrices (TMs) at varying dimensionalities and resolutions. Other analysis methods treat TMs as vectors for comparison using search algorithms such as the nearest neighbors comparison algorithm, or use TMs to calculate the probability of discrete subsets of time-series data. We propose an analysis method that treats the elements of a TM as random variables, parameterizing them hierarchically. This approach creates a metric for determining the “normalcy” of a TM generated from a subset of time-series data. The advantages of this novel approach are discussed in terms of computational efficiency, accuracy of anomaly detection, and robustness when analyzing sparse data. Unlike previous approaches, this algorithm is developed with the expectation of sparse TMs. Accounting for this sparseness significantly improves the detection accuracy of the proposed method. Detection rates in a variety of time-series data types range from (97 % TPR, 2.1 % FPR) to (100 % TPR, <0.1 % FPR) with very small sample sizes (20–40 samples) in data with sparse transition probability matrices. Anomaly detection in time-series data is a relevant problem in many fields such as stochastic data analysis, quality assurance, and predictive modeling. Markov models are an effective tool for time-series data analysis. Previous approaches utilizing Markov models incorporate transition matrices (TMs) at varying dimensionalities and resolutions. Other analysis methods treat TMs as vectors for comparison using search algorithms such as the nearest neighbors comparison algorithm, or use TMs to calculate the probability of discrete subsets of time-series data. We propose an analysis method that treats the elements of a TM as random variables, parameterizing them hierarchically. This approach creates a metric for determining the “normalcy” of a TM generated from a subset of time-series data. The advantages of this novel approach are discussed in terms of computational efficiency, accuracy of anomaly detection, and robustness when analyzing sparse data. Unlike previous approaches, this algorithm is developed with the expectation of sparse TMs. Accounting for this sparseness significantly improves the detection accuracy of the proposed method. Detection rates in a variety of time-series data types range from (97 % TPR, 2.1 % FPR) to (100 % TPR, <0.1 % FPR) with very small sample sizes (20–40 samples) in data with sparse transition probability matrices. |
| Author | Roan, Michael J. Milo, Michael W. |
| Author_xml | – sequence: 1 givenname: Michael W. surname: Milo fullname: Milo, Michael W. organization: Mechanical Engineering, Virginia Tech – sequence: 2 givenname: Michael J. surname: Roan fullname: Roan, Michael J. email: mroan@vt.edu organization: Mechanical Engineering, Virginia Tech |
| BookMark | eNp9kE9LxDAQxYOs4K76AbwFPFeTTdu0R1n_guBFwVsY0-luljZdM9nD-ulNWRER9DIzDO8383gzNvGDR8bOpLiQQuhLSjXPMyHLTBTjcMCmMlcq00XxOvmec3nEZkRrIZRS82rK_DVGtNH5JQc_9NANW-IbiBGDJ-48j67HjDA4JN5ABL6lUUwbCIR85TBAsCtnoet2CQzQp4PBfWDDYwBPLrrB8x5icBbphB220BGefvVj9nJ787y4zx6f7h4WV4-ZVbKMmdVVXui6rm2tWrDzRrRatKWQOVZVgTU0VSPepLaQt6VumvKtUarO006VGrVVx-x8f3cThvctUjTrYRt8emlkXai6nGspkkrvVTYMRAFbY12E0XCy7jojhRnDNftwTQrXjOGakZS_yE1wPYTdv8x8z1DS-iWGH57-hD4BZuqQuQ |
| CitedBy_id | crossref_primary_10_1007_s10044_019_00782_7 crossref_primary_10_1007_s10044_024_01275_y |
| Cites_doi | 10.1023/A:1009653916552 10.1016/j.comnet.2007.02.001 10.1016/j.sigpro.2004.03.011 10.1287/opre.27.3.616 10.1016/j.jsv.2007.09.046 10.1201/9780203910894 10.1017/CBO9780511810633 10.1007/978-94-015-3994-4 10.1016/j.ins.2013.06.045 10.1109/ICDM.2005.79 10.1177/0954406215592439 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag London 2016 Copyright Springer Science & Business Media 2017 |
| Copyright_xml | – notice: Springer-Verlag London 2016 – notice: Copyright Springer Science & Business Media 2017 |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s10044-016-0544-0 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1433-755X |
| EndPage | 1043 |
| ExternalDocumentID | 10_1007_s10044_016_0544_0 |
| GrantInformation_xml | – fundername: Self funded |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 203 29O 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9O PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JQ2 |
| ID | FETCH-LOGICAL-c316t-c78457999c93fac2d0f70f6014e885e9ad8d0b17ca4f67dd6bd3394d0b367e7c3 |
| IEDL.DBID | AGYKE |
| ISSN | 1433-7541 |
| IngestDate | Thu Sep 25 00:46:26 EDT 2025 Wed Oct 01 01:59:45 EDT 2025 Thu Apr 24 23:05:50 EDT 2025 Fri Feb 21 02:29:20 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Statistical models Monte Carlo Stochastic processes Machine learning Markov processes Signal processing Real-time systems Pattern recognition |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-c78457999c93fac2d0f70f6014e885e9ad8d0b17ca4f67dd6bd3394d0b367e7c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1953962710 |
| PQPubID | 2043691 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_1953962710 crossref_citationtrail_10_1007_s10044_016_0544_0 crossref_primary_10_1007_s10044_016_0544_0 springer_journals_10_1007_s10044_016_0544_0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-11-01 |
| PublicationDateYYYYMMDD | 2017-11-01 |
| PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Pattern analysis and applications : PAA |
| PublicationTitleAbbrev | Pattern Anal Applic |
| PublicationYear | 2017 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | KhatKhateAGuptaSRayAPatankarRaviAnomaly detection in flexible mechanical couplings via time series analysisJ Sound Vib200831160862210.1016/j.jsv.2007.09.046 NorrisJRMarkov Chains1997CambridgeCambridge University Press10.1017/CBO97805118106330873.60043 BillingsleyPProbability and Measure19953New YorkWiley Inc0822.60002 PatilGPTaillieCA multiscale hierarchial markov transition matrix model for generating and analyzing thematic raster mapsEnviron Ecol Stat200181718410.1023/A:10096539165521844502 HarrisBRoanMMiloMA general anomaly detection approach applied to rolling element bearings via reduced-dimensionality transition matrix analysisProc Inst Mech Eng Part C J Mech Eng Sci2015 GillJMethodsBA social and behavioral sciences approach20092Boca RatonTaylor and Fancis Group RayASymbolic dynamic analysis of complex systems for anomaly detectionSig Process2004841115113010.1016/j.sigpro.2004.03.0111152.94353 LughoferFPichlerEBucheggerKHarjrudinTSerdioEResidual-based faut detection using soft computing techniques for condition monitoring at rolling millsInf Sci201425930432010.1016/j.ins.2013.06.045 PatchaAParkJ-MAn overview of anomaly detection techniques: existing solutions and latest technological trendsComput Netw2007513448347010.1016/j.comnet.2007.02.001 StewartWJIntroduction to the numerical solution of Markov chains1994PrincetonPrinceton University Press0821.65099 Keogh E, Lin J, Fu A (2005) Efficiently finding the most unusual time series subsequence. In: Proc. of the 5th IEEE International Conference on Data Mining (ICDM 2005), Houston, Texas, 27–30 Nov, pp 226–233 Ye N (2000) A Markov chain model of temporal behavior for anomaly detection. In: SMCIAC, vol 166, Oakland, pp 171–174 Weber R, Schek HJ, Blott S (1998) A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces. In: VLDB, vol 24, New York Kriegel H-P, Kroger P, Zimek A (2009) Outlier detection techniques. In: The Thirteenth Pacific-Asia Conference on Knowledge Discovery and Data Mining, Bangkok, Thailand SerfozoRFTechnical note: an equivalence between continuous and discrete time MArkov decision processesOper Res197927361662010.1287/opre.27.3.6160413.90079533923 Hawkins DM (1980) Identification of Outliers. Chapman & Hall WinstonWLOperations research: applications and algorithms1994BelmontDuxbury Press0867.90079 ThodeHCTesting for normality2002New YorkMarcel Dekker Inc.10.1201/97802039108941032.62040 544_CR10 J Gill (544_CR4) 2009 JR Norris (544_CR8) 1997 WJ Stewart (544_CR9) 1994 544_CR16 544_CR17 RF Serfozo (544_CR7) 1979; 27 GP Patil (544_CR13) 2001; 8 WL Winston (544_CR6) 1994 B Harris (544_CR18) 2015 A KhatKhate (544_CR11) 2008; 311 A Ray (544_CR12) 2004; 84 P Billingsley (544_CR14) 1995 544_CR2 544_CR1 F Lughofer (544_CR3) 2014; 259 A Patcha (544_CR5) 2007; 51 HC Thode (544_CR15) 2002 |
| References_xml | – reference: GillJMethodsBA social and behavioral sciences approach20092Boca RatonTaylor and Fancis Group – reference: PatchaAParkJ-MAn overview of anomaly detection techniques: existing solutions and latest technological trendsComput Netw2007513448347010.1016/j.comnet.2007.02.001 – reference: StewartWJIntroduction to the numerical solution of Markov chains1994PrincetonPrinceton University Press0821.65099 – reference: NorrisJRMarkov Chains1997CambridgeCambridge University Press10.1017/CBO97805118106330873.60043 – reference: SerfozoRFTechnical note: an equivalence between continuous and discrete time MArkov decision processesOper Res197927361662010.1287/opre.27.3.6160413.90079533923 – reference: Hawkins DM (1980) Identification of Outliers. Chapman & Hall – reference: Keogh E, Lin J, Fu A (2005) Efficiently finding the most unusual time series subsequence. In: Proc. of the 5th IEEE International Conference on Data Mining (ICDM 2005), Houston, Texas, 27–30 Nov, pp 226–233 – reference: KhatKhateAGuptaSRayAPatankarRaviAnomaly detection in flexible mechanical couplings via time series analysisJ Sound Vib200831160862210.1016/j.jsv.2007.09.046 – reference: BillingsleyPProbability and Measure19953New YorkWiley Inc0822.60002 – reference: RayASymbolic dynamic analysis of complex systems for anomaly detectionSig Process2004841115113010.1016/j.sigpro.2004.03.0111152.94353 – reference: HarrisBRoanMMiloMA general anomaly detection approach applied to rolling element bearings via reduced-dimensionality transition matrix analysisProc Inst Mech Eng Part C J Mech Eng Sci2015 – reference: Kriegel H-P, Kroger P, Zimek A (2009) Outlier detection techniques. In: The Thirteenth Pacific-Asia Conference on Knowledge Discovery and Data Mining, Bangkok, Thailand – reference: ThodeHCTesting for normality2002New YorkMarcel Dekker Inc.10.1201/97802039108941032.62040 – reference: WinstonWLOperations research: applications and algorithms1994BelmontDuxbury Press0867.90079 – reference: Ye N (2000) A Markov chain model of temporal behavior for anomaly detection. In: SMCIAC, vol 166, Oakland, pp 171–174 – reference: Weber R, Schek HJ, Blott S (1998) A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces. In: VLDB, vol 24, New York – reference: LughoferFPichlerEBucheggerKHarjrudinTSerdioEResidual-based faut detection using soft computing techniques for condition monitoring at rolling millsInf Sci201425930432010.1016/j.ins.2013.06.045 – reference: PatilGPTaillieCA multiscale hierarchial markov transition matrix model for generating and analyzing thematic raster mapsEnviron Ecol Stat200181718410.1023/A:10096539165521844502 – volume: 8 start-page: 71 issue: 1 year: 2001 ident: 544_CR13 publication-title: Environ Ecol Stat doi: 10.1023/A:1009653916552 – ident: 544_CR2 – volume: 51 start-page: 3448 year: 2007 ident: 544_CR5 publication-title: Comput Netw doi: 10.1016/j.comnet.2007.02.001 – volume: 84 start-page: 1115 year: 2004 ident: 544_CR12 publication-title: Sig Process doi: 10.1016/j.sigpro.2004.03.011 – volume: 27 start-page: 616 issue: 3 year: 1979 ident: 544_CR7 publication-title: Oper Res doi: 10.1287/opre.27.3.616 – volume: 311 start-page: 608 year: 2008 ident: 544_CR11 publication-title: J Sound Vib doi: 10.1016/j.jsv.2007.09.046 – volume-title: Testing for normality year: 2002 ident: 544_CR15 doi: 10.1201/9780203910894 – ident: 544_CR10 – volume-title: Probability and Measure year: 1995 ident: 544_CR14 – volume-title: Markov Chains year: 1997 ident: 544_CR8 doi: 10.1017/CBO9780511810633 – volume-title: Operations research: applications and algorithms year: 1994 ident: 544_CR6 – ident: 544_CR17 – volume-title: A social and behavioral sciences approach year: 2009 ident: 544_CR4 – ident: 544_CR1 doi: 10.1007/978-94-015-3994-4 – volume: 259 start-page: 304 year: 2014 ident: 544_CR3 publication-title: Inf Sci doi: 10.1016/j.ins.2013.06.045 – volume-title: Introduction to the numerical solution of Markov chains year: 1994 ident: 544_CR9 – ident: 544_CR16 doi: 10.1109/ICDM.2005.79 – year: 2015 ident: 544_CR18 publication-title: Proc Inst Mech Eng Part C J Mech Eng Sci doi: 10.1177/0954406215592439 |
| SSID | ssj0033328 |
| Score | 2.1276205 |
| Snippet | Anomaly detection in time-series data is a relevant problem in many fields such as stochastic data analysis, quality assurance, and predictive modeling. Markov... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1029 |
| SubjectTerms | Accuracy Computer Science Computing time Data analysis Economic models Markov chains Pattern Recognition Quality assurance Random variables Robustness (mathematics) Search algorithms Theoretical Advances Time series |
| Title | Detecting anomalous patterns in time-series data using sparse hierarchically parameterized transition matrices |
| URI | https://link.springer.com/article/10.1007/s10044-016-0544-0 https://www.proquest.com/docview/1953962710 |
| Volume | 20 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-755X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033328 issn: 1433-7541 databaseCode: AFBBN dateStart: 19980301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-755X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033328 issn: 1433-7541 databaseCode: AGYKE dateStart: 19980101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-755X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033328 issn: 1433-7541 databaseCode: U2A dateStart: 19980329 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7BcumlUEpVnvKBEygoWTt2fFzxKAKVEyvRU-RnhbqbXZHsofz6erxxeYhW4hbZjp14xvZY8818AIea6bwwXGYynPbhguJlprj0QSCFpcpWvnIYKPz9hl-O2dVdedfHcbcJ7Z5cknGnfhbsljNETIQbcIkPq7AW020NYG307cf1edqAKaWRUjVYAjQTJSuSM_OtTl4eR0825iu3aDxtLtbhNn3nEmTy62TR6RPz-CqF4zt_ZAM-9tYnGS3V5ROsuGYT1ntLlPTrvA1FiewhlX2G5syhvyEMRFQzm6rJbNGSeczO2bTkviHIUp-hQruWIO6UIKT-Jwk71kPrCFJuR6dF0InJb4IZx6eIxLl_DAN3eGBG7BiZRsoA127B-OL89vQy68kaMkML3mVGVKwUwdw0knplhjb3IvfhusdcVZVOBrnbXBfCKOa5sJZrS6lkoYxy4YShX2DQzBr3FYh1pRKeOS4ry5SwkhfKV0NNha6spXob8iSz2vSZzJFQY1I_5WDGKa4RvYZTXOfbcPT3lfkyjcf_Gu8lRaj7Fd3W6G5EoqIiVB8nuT6r_ldnO-9qvQsfhmg3xGDHPRh0Dwu3H6yeTh_0Wn4Aq-Ph6A-6avrp |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI54HODCGzGeOXACVWqXNGmOEzCN54lJu1Vpk6BJW4foOMCvxw4NDARI3ConTaV-SWzL9mdCjgtexEkpVKRA24OD4lSkhXIASGKYNpnLLBYK396JXp9fDdJBU8ddh2z3EJL0N_VMsVvMMWMCPOAUH-bJIvJXIWF-v90J1y9jzDdUBTuARTLlSQhl_rTEV2X0aWF-C4p6XdNdIyuNkUg776iukzlbbZDVxmCkzXGsQRR6MgTZJqnOLYYFYFmqq8lYj8Czp4-eRLOq6bCi2Ew-wn1na4rpoRQz3x8oXCxPtaXYGdvHFgC60QtFYvAxJswMX-HDU9RrPsWLjj2zv623SL97cX_Wi5qeClHJEjGNSpnxVIJVWCrmdNk2sZOxA6-M2yxLrQJ4TFwkstTcCWmMKAxjioOMCWllybbJQjWp7A6hxqZaOm6FygzX0iiRaJe1CyaLzBhWtEgcfm5eNoTj2PdilH9SJSMeOSaZIR553CInH688vrNt_DV5PyCWNwevzjEqiP2EEhg-DSjODP-22O6_Zh-Rpd797U1-c3l3vUeW26jqfX3iPlmYPj3bAzBUpsWh35hvhtTgKw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-QLz4Ft_m4Ekptps0aY6iLr7x4IK3kjaJLOx2l2096K93ptu4q6jgrSRpCv2SzISZ-T5CjjKehVEuVKDA2sMFxalAC-UAkMgwbRKXWCwUvn8QVx1-8xw_Nzqnpc929yHJcU0DsjQV1enQuNOpwreQY_YE3IZjfJgl8xx5EmBBd1pn_ihmjNXiquATsEDGPPJhzZ-m-GqYJt7mtwBpbXfaK2SpcRjp2RjhVTJjizWy3DiPtNmaJTR5fQbftk6KC4shApiW6mLQ1z245dNhTahZlLRbUBSWD3AN2pJiqijFLPgXCofMqLQUVbLrOAPA2HujSBLex-SZ7jt8uEIbV6d70X7N8m_LDdJpXz6dXwWNvkKQs0hUQS4THkvwEHPFnM5bJnQydHBD4zZJYqsAKhNmkcw1d0IaIzLDmOLQxoS0MmebZK4YFHaLUGNjLR23QiWGa2mUiLRLWhmTWWIMy7ZJ6H9umjfk46iB0UsntMmIR4oJZ4hHGm6T489XhmPmjb8G73nE0mYTlilGCFFbKILuE4_iVPdvk-38a_QhWXi8aKd31w-3u2SxhVa_LlXcI3PV6NXug89SZQf1uvwAbdHkZw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+anomalous+patterns+in+time-series+data+using+sparse+hierarchically+parameterized+transition+matrices&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Milo%2C+Michael+W.&rft.au=Roan%2C+Michael+J.&rft.date=2017-11-01&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=20&rft.issue=4&rft.spage=1029&rft.epage=1043&rft_id=info:doi/10.1007%2Fs10044-016-0544-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10044_016_0544_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon |