Superconducting Neural Networks: from an Idea to Fundamentals and, Further, to Application

The popularity and diversity of artificial neural networks for various applications are ever increasing. The development of neural networks in the form of software models and hardware systems emphasizes their relevance and range of applicability, from a ten-minute Python code, an AlphaZero neural ne...

Full description

Saved in:
Bibliographic Details
Published inNanobiotechnology Reports (Online) Vol. 16; no. 6; pp. 811 - 820
Main Authors Schegolev, A. E., Klenov, N. V., Soloviev, I. I., Gudkov, A. L., Tereshonok, M. V.
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.11.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2635-1676
1995-0780
2635-1684
1995-0799
DOI10.1134/S2635167621060227

Cover

Abstract The popularity and diversity of artificial neural networks for various applications are ever increasing. The development of neural networks in the form of software models and hardware systems emphasizes their relevance and range of applicability, from a ten-minute Python code, an AlphaZero neural network, and intelligent image and speech recognition algorithms to IBM and Qualcomm neuromorphic chips and D-Wave quantum computing systems. The superconductor implementation of neural networks, along with the obvious advantages of superconductor technology in terms of energy efficiency and operating speed, makes it possible to combine a neural network and a superconducting quantum processor in one computing unit. In this case, the quantum core of a complex system can be used to learn a neural network by a global optimization method. It is noteworthy that the world’s leading IT companies clearly demonstrate the market’s focus on superconducting elements. The relevance of this direction is analyzed against a historical retrospective.
AbstractList The popularity and diversity of artificial neural networks for various applications are ever increasing. The development of neural networks in the form of software models and hardware systems emphasizes their relevance and range of applicability, from a ten-minute Python code, an AlphaZero neural network, and intelligent image and speech recognition algorithms to IBM and Qualcomm neuromorphic chips and D-Wave quantum computing systems. The superconductor implementation of neural networks, along with the obvious advantages of superconductor technology in terms of energy efficiency and operating speed, makes it possible to combine a neural network and a superconducting quantum processor in one computing unit. In this case, the quantum core of a complex system can be used to learn a neural network by a global optimization method. It is noteworthy that the world’s leading IT companies clearly demonstrate the market’s focus on superconducting elements. The relevance of this direction is analyzed against a historical retrospective.
Author Schegolev, A. E.
Klenov, N. V.
Gudkov, A. L.
Tereshonok, M. V.
Soloviev, I. I.
Author_xml – sequence: 1
  givenname: A. E.
  surname: Schegolev
  fullname: Schegolev, A. E.
  email: tanuior@gmail.com
  organization: Moscow Technical University of Communications and Informatics, Moscow State University, Skobeltsyn Institute of Nuclear Physics
– sequence: 2
  givenname: N. V.
  surname: Klenov
  fullname: Klenov, N. V.
  organization: Moscow Technical University of Communications and Informatics, Moscow State University
– sequence: 3
  givenname: I. I.
  surname: Soloviev
  fullname: Soloviev, I. I.
  organization: Moscow State University, Skobeltsyn Institute of Nuclear Physics
– sequence: 4
  givenname: A. L.
  surname: Gudkov
  fullname: Gudkov, A. L.
  organization: Lukin Research Institute for Physical Problems, National Research Centre “Kurchatov Institute”
– sequence: 5
  givenname: M. V.
  surname: Tereshonok
  fullname: Tereshonok, M. V.
  organization: Moscow Technical University of Communications and Informatics
BookMark eNp9kMtKAzEUhoMoWGsfwN2A247mNsnUXSlWC0UX1Y2bIZNLHZ0mY5JBfHtTKwqKrs7hP_93bkdg3zqrAThB8AwhQs9XmJECMc4wggxizPfAYCvliJV0_yvn7BCMQmhqWFACGSNsAB5Wfae9dFb1MjZ2nd3o3os2hfjq_HO4yIx3m0zYbKG0yKLL5r1VYqNtFG1IuhonxcdH7cfb6rTr2kaK2Dh7DA5M8ujRZxyC-_nl3ew6X95eLWbTZS4JYjGvJ7UhUtZGTyDkkhVGqbrkHFFpsCIUcwRrXVKjOFG4kJKVTEgmhYS6oIyQITjd9e28e-l1iNWT671NIyvMMKEEQz5JLrRzSe9C8NpUnW82wr9VCFbbL1a_vpgY_oORTfy4LXrRtP-SeEeGNMWutf_e6W_oHRiMhs4
CitedBy_id crossref_primary_10_31857_S0044451023120143
crossref_primary_10_1134_S002136402360324X
crossref_primary_10_1134_S1063776123120191
crossref_primary_10_31857_S123456782322010X
crossref_primary_10_1103_PhysRevLett_129_267702
Cites_doi 10.1016/j.neunet.2020.11.005
10.1016/j.jnca.2014.09.002
10.1088/1361-6668/abc569
10.1134/S1063776112030144
10.1016/j.neucom.2005.12.126
10.1109/ICNN.1997.614194
10.1109/TPAMI.2019.2963386
10.3389/fnins.2019.00933
10.3762/bxiv.2020.69.v1
10.1038/nature06932
10.1038/nature21056
10.1016/j.sse.2021.108077
10.1063/1.5038031
10.1109/MM.2021.3066377
10.1109/CVPR.2016.91
10.1063/1.5042147
10.1088/0305-4470/39/36/R01
10.1063/1.5037835
10.1109/TCAD.2015.2474396
10.1103/PhysRevE.82.011914
10.1109/72.80296
10.1088/2632-2153/aba220
10.1063/5.0040567
10.1109/ROBOT.2004.1302449
10.1016/j.neunet.2005.06.012
10.1038/nmat3415
10.1109/4.102684
10.3389/fnins.2011.00118
10.1063/1.5042425
10.5220/0009100101350139
10.1109/TCT.1971.1083337
10.1109/MALWARE.2015.7413680
10.1063/1.5042421
10.1109/20.133806
10.1109/ICRC.2017.8123634
10.1109/TCSI.2009.2025803
10.1109/TASC.2018.2836903
10.1109/TASC.2012.2232691
10.1117/12.2590747
10.1063/1.4994692
10.1109/77.273058
10.1126/science.1254642
10.1093/mnras/staa713
10.1109/JRPROC.1959.287195
10.1109/MM.2010.41
10.1016/j.eswa.2007.12.029
10.1109/72.846744
10.1109/MM.2021.3070488
10.1088/0957-4484/22/25/254023
10.1016/j.phpro.2012.06.126
10.1063/1.5111305
10.1016/j.neunet.2010.05.001
10.1103/PhysRevApplied.7.034013
10.3762/bjnano.7.130
10.3762/bjnano.8.269
10.1088/0957-4484/24/38/384002
10.1103/RevModPhys.51.101
10.1088/1361-6528/ab4a6d
10.1021/nl904092h
10.1109/LGRS.2017.2657778
10.1016/j.procs.2015.01.028
10.1364/OE.25.010322
10.1038/nature14441
10.3389/fncom.2013.00137
10.1109/TWC.2014.2339218
10.1038/nature14539
10.1162/neco.1997.9.8.1735
10.1063/1.3220061
10.1109/TASC.2016.2519388
10.1109/JSSC.2020.3041338
10.1088/1742-6596/507/4/042029
10.1088/1361-6633/ab85b8
10.1126/sciadv.1701329
10.1016/j.chaos.2021.110890
10.1038/nmat3054
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2021. ISSN 2635-1676, Nanobiotechnology Reports, 2021, Vol. 16, No. 6, pp. 811–820. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2021, published in Rossiiskie Nanotekhnologii, 2021, Vol. 16, No. 6, pp. 846–856.
Copyright_xml – notice: Pleiades Publishing, Ltd. 2021. ISSN 2635-1676, Nanobiotechnology Reports, 2021, Vol. 16, No. 6, pp. 811–820. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2021, published in Rossiiskie Nanotekhnologii, 2021, Vol. 16, No. 6, pp. 846–856.
DBID AAYXX
CITATION
DOI 10.1134/S2635167621060227
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2635-1684
1995-0799
EndPage 820
ExternalDocumentID 10_1134_S2635167621060227
GroupedDBID 0R~
2JN
2JY
AACDK
AAJBT
AASML
AATNV
AAUYE
AAYZH
ABAKF
ABJNI
ABTEG
ABTKH
ABWNU
ACAOD
ACHSB
ACMDZ
ACZOJ
ADTPH
AEFQL
AEMSY
AFBBN
AFLOW
AGMZJ
AGRTI
AIGIU
ALMA_UNASSIGNED_HOLDINGS
AMXSW
BGNMA
DDRTE
DPUIP
EBLON
EBS
EIOEI
FIGPU
GGCAI
IKXTQ
IWAJR
JZLTJ
LLZTM
M4Y
NPVJJ
NQJWS
NU0
PT4
ROL
RSV
SJYHP
SNE
SOJ
AAPKM
AAYXX
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
ID FETCH-LOGICAL-c316t-b9bf3ccbfe9007c65fddb87714cf2d342710be84fd73d25cc686ac6cac0e54633
ISSN 2635-1676
1995-0780
IngestDate Thu Sep 25 00:44:02 EDT 2025
Thu Apr 24 23:08:21 EDT 2025
Wed Oct 01 04:50:58 EDT 2025
Fri Feb 21 02:46:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c316t-b9bf3ccbfe9007c65fddb87714cf2d342710be84fd73d25cc686ac6cac0e54633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2623432079
PQPubID 2043989
PageCount 10
ParticipantIDs proquest_journals_2623432079
crossref_primary_10_1134_S2635167621060227
crossref_citationtrail_10_1134_S2635167621060227
springer_journals_10_1134_S2635167621060227
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: Heidelberg
PublicationTitle Nanobiotechnology Reports (Online)
PublicationTitleAbbrev Nanotechnol Russia
PublicationYear 2021
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References M. B. Berkinblit, Neuron Networks (MIROS VZMSh RAO, Moscow, 1993) [in Russian].
PreziosoM.Merrikh-BayatF.HoskinsB. D.Nature (London, U.K.)2015521611:CAS:528:DC%2BC2MXnvFWjtb4%3D10.1038/nature14441
NickollsJ.DallyW. J.IEEE Micro.2010305610.1109/MM.2010.41
K.-A. Aliev, D. Ulyanov, and V. Lempitsky, arXiv: 1906.08240 (2019).
OnomiT.NakajimaK.J. Phys.: Conf. Ser.20145074202910.1088/1742-6596/507/4/042029
AyalaC. L.TanakaT.SaitoR.IEEE J. Solid-State Circuits202056115210.1109/JSSC.2020.3041338
BakurskiyS.KupriyanovM.KlenovN.Beilstein J. Nanotechnol.20201113361:CAS:528:DC%2BB3MXhsVGmtL7N10.3762/bxiv.2020.69.v1
HaukeP.KatzgraberH. G.LechnerW.NishimoriH.Rep. Prog. Phys.202083544011:CAS:528:DC%2BB3cXitFOltLjN10.1088/1361-6633/ab85b8
SzuH. H.Superconducting neural network computer and sensor array1990
H. Rebecq, R. Ranftl, V. Koltun, and D. Scaramuzza, IEEE Trans. Pattern Anal. Mach. Intell., 1964 (2019). https://doi.org/10.1109/TPAMI.2019.2963386
http://data-mining.philippe-fournier-viger.com/too-many-machine-learning-papers/.
ForsythD. A.PonceJ.Computer Vision: A Modern Approach2011Englewood CliffsPrentice Hall
KlenovN. V.KuznetsovA. V.SchegolevA. E.Low Temp. Phys.20194576910.1063/1.5111305
F. D. Foresee and M. T. Hagan, in Proceedings of International Conference on Neural Networks (ICNN’97) on Gauss-Newton Approximation to Bayesian Learning, Houston, TX, USA, June 12,1997, Vol. 3, p. 1930. https://doi.org/10.1109/ICNN.1997.614194
S. Ginosar, A. Bar, G. Kohavi, et al., in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2019, p. 3497.
E. Goto, Proc. IRE 47, 1304 (1959). https://doi.org/10.1109/JRPROC.1959.287195
MeherP. K.VallsJ.JuangT.-B.IEEE Trans. Circuits Syst. I: Regul. Pap.200956189310.1109/TCSI.2009.2025803
SantoroG. E.TosattiE.J. Phys. A: Math. Gen.200639R3931:CAS:528:DC%2BD28XhtVKrtbvJ10.1088/0305-4470/39/36/R01
StrukovD. B.SniderG. S.StewartD. R.WilliamsR. S.Nature (London, U.K.)2008453801:CAS:528:DC%2BD1cXltlans7g%3D10.1038/nature06932
SpietzL.IrwinK.AumentadoJ.Appl. Phys. Lett.200995925051:CAS:528:DC%2BD1MXhtV2qt7jO10.1063/1.3220061
LeCunY.BengioY.HintonG.Nature (London, U.K.)20155214361:CAS:528:DC%2BC2MXht1WlurzP10.1038/nature14539
MunjuluriS.GarimellaR. M.Proc. Comput. Sci.201546115610.1016/j.procs.2015.01.028
CallanR.The Essence of Neural Networks1998Englewood CliffsPrentice Hall
CaimiD.SchmidH.MorfT.Solid State Electron.20211851080771:CAS:528:DC%2BB3MXht1ejtrzP10.1016/j.sse.2021.108077
S. S. Kim and S. Jung, “Hardware implementation of a real time neural network controller with a DSP and an FPGA,” in Proceedings of the IEEE International Conference on Robotics and Automation, New Orleans, LA, USA (2004), Vol. 5, p. 4639. https://doi.org/10.1109/ROBOT.2004.1302449
HikawaH.Neural Netw.20051851410.1016/j.neunet.2005.06.012
TolpygoS. K.BolkhovskyV.WeirT. J.IEEE Trans. Appl. Supercond.201626110.1109/TASC.2016.2519388
WinciW.BuffoniL.SadeghiH.Mach. Learn. Sci. Technol.202014502810.1088/2632-2153/aba220
HuangG.-B.ZhuQ.-Y.SiewC.-K.Neurocomputing20067048910.1016/j.neucom.2005.12.126
SolovievI. I.KlenovN. V.BakurskiyS. V.Beilstein J. Nanotechnol.20178268910.3762/bjnano.8.269
SurazhevskyI. A.DeminV. A.IlyasovA. I.Chaos Solitons Fractals202114611089010.1016/j.chaos.2021.110890
MerollaP. A.ArthurJ. V.Alvarez-IcazaR.Science (Washington, DC, U. S.)20143456681:CAS:528:DC%2BC2cXht12gtLbN10.1126/science.1254642
HaykinS.Neural Networks: A Comprehensive Foundation1998Englewood CliffsPrentice Hall
D. Silver, T. Hubert, J. Schrittwieser, et al., arXiv: 1712.01815 (2017).
Perez-TomasA.RogersD. J.ChikoidzeE.GarridoJ. A.A walk on the frontier of energy electronics with power ultra-wide bandgap oxides and ultra-thin neuromorphic 2D materialsProc. SPIE202111687116871Y10.1117/12.2590747
ChuaL.IEEE Trans. Circuit Theory19711850710.1109/TCT.1971.1083337
EstevaA.KuprelB.NovoaR. A.Nature (London, U.K.)20175421151:CAS:528:DC%2BC2sXhsFGltrY%3D10.1038/nature21056
ForssellM.Inform. Flow Networks2014181
HoppensteadtF. C.IzhikevichE. M.IEEE Trans. Neural Networks2000117341:STN:280:DC%2BD1c%2FptFGnuw%3D%3D10.1109/72.846744
IshidaK.ByunI.NagaokaI.IEEE Micro2021411910.1109/MM.2021.3070488
ShainlineJ. M.Appl. Phys. Lett.20211181605011:CAS:528:DC%2BB3MXpsVKls74%3D10.1063/5.0040567
V. Aparin and J. A. Levin, “Methods and systems for CMOS implementation of neuron synapse,” Google Patent No. US8694452B2 (2014).
PershinY. V.di VentraM.Neural Netw.20102388110.1016/j.neunet.2010.05.001
CrottyP.SchultD.SegallK.Phys. Rev. E201082119141:CAS:528:DC%2BC3cXpsFyktL8%3D10.1103/PhysRevE.82.011914
HochreiterS.SchmidhuberJ.Neural Comput.1997917351:STN:280:DyaK1c%2FhvVahsQ%3D%3D10.1162/neco.1997.9.8.1735
SchegolevA.KlenovN.SolovievI.TereshonokM.Supercond. Sci. Technol.2020341500610.1088/1361-6668/abc569
GudkovA. L.KupriyanovM. Yu.Samus’A. N.J. Exp. Theor. Phys.20121148181:CAS:528:DC%2BC38XosVagtLs%3D10.1134/S1063776112030144
SchegolevA. E.KlenovN. V.SolovievI. I.TereshonokM. V.Beilstein J. Nanotechnol.2016713971:CAS:528:DC%2BC2sXhsVOmtr8%3D10.3762/bjnano.7.130
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, LV, USA, June 26–July 1,2016, p. 779.
ShainlineJ. M.BuckleyS. M.MirinR. P.NamS. W.Phys. Rev. Appl.201773401310.1103/PhysRevApplied.7.034013
https://ru.wikipedia.org/wiki/Stockfish.
SchneiderM. L.DonnellyC. A.RussekS. E.J. Appl. Phys.20181241611021:CAS:528:DC%2BC1cXitVWqsb3K10.1063/1.5042425
McCullochW. S.PittsW.Automata Studies1956PrincetonPrinceton Univ. Press
MaguireY. G.ShapiroM. G.CybulskiT. R.Front. Comput. Neurosci.2013713710.3389/fncom.2013.00137
SungC.HwangH.YooI. K.J. Appl. Phys.20181241519031:CAS:528:DC%2BC1cXhvVOrurvE10.1063/1.5037835
SchneiderM. L.DonnellyC. A.RussekS. E.Sci. Adv.20184e170132910.1126/sciadv.1701329
SolovievI. I.SchegolevA. E.KlenovN. V.J. Appl. Phys.20181241521131:CAS:528:DC%2BC1cXhvVSitLbP10.1063/1.5042147
KornevV. K.SolovievI. I.SharafievA. V.IEEE Trans. Appl. Supercond.201223180040510.1109/TASC.2012.2232691
RyazanovV. V.Bol’ginovV. V.SobaninD. S.Phys. Proc.201236351:CAS:528:DC%2BC38Xhtl2msrjN10.1016/j.phpro.2012.06.126
MukhanovO. A.History of Superconductor Analog-to-Digital Converters. 100 Years of Superconductivity2011London, UKTaylor Francis
ChengR.GotetiU. S.HamiltonM. C.J. Appl. Phys.20181241521261:CAS:528:DC%2BC1cXhvV2rtbbL10.1063/1.5042421
SeoK.KimI.JungS.Nanotechnology2011222540231:CAS:528:DC%2BC3MXos1Kqtrw%3D10.1088/0957-4484/22/25/254023
LikharevK. K.Rev. Mod. Phys.19795110110.1103/RevModPhys.51.101
JoS. H.ChangT.EbongI.Nano Lett.20101012971:CAS:528:DC%2BC3cXisFGnu7k%3D10.1021/nl904092h
DeminV. A.NekhaevD. V.SurazhevskyI. A.Neural Netw.2021134641:STN:280:DC%2BB3szkvValsw%3D%3D10.1016/j.neunet.2020.11.005
DzheinA. K.MaoZh.MoiuddinK. M.Otkryt. Sist.1997416
EmelyanovA. V.NikiruyK. E.SerenkoA. V.Nanotechnology201931452011:CAS:528:DC%2BB3cXhvVOiurjM10.1088/1361-6528/ab4a6d
BreenP. G.FoleyC. N.BoekholtT.ZwartS. P.Mon. Not. R. Astron. Soc.2020494246510.1093/mnras/staa713
TzimpragosG.VolkJ.VasudevanD.IEEE Micro2021417110.1109/MM.2021.3066377
AkopyanF.SawadaJ.CassidyA.IEEE Trans. Comput. Des. Integr. Circuits Syst.201534153710.1109/TCAD.2015.2474396
https://deepmind.com/blog/alphazero-shedding-new-light-grand-games-chess-shogi-and-go/.
BuckleyS.ChilesJ.McCaughanA. N.Appl. Phys. Lett.20171111411011:CAS:528:DC%2BC2sXhs1Whs7fF10.1063/1.4994692
A. E. Schegolev, N. V. Klenov, M. V. Tereshonok, and S. S. Adjemov, “Elements of hybrid opto-superconducting convolutional neural networks,” in Proceedings of the 8th International Conference on Photonics, Optics and Laser Technology,2020, p. 135.
HollisP. W.PaulosJ. J.IEEE J. Solid-State Circuits19922584910.1109/4.102684
M. L. Schneider, C. A. Donnelly, S. E. Russek, et al., in Proceedings of the 2017 IEEE International Conference on Rebooting Computing (ICRC),2017, p. 1. https://doi.org/10.1109/ICRC.2017.8123634
J. Saxe and K. Berlin, “Deep neural network based malware detection using two dimensional binary program features,” in Proceedings of the 2015 10th International Conference on Malicious and Unwanted Software (MALWARE), Fajardo, PR, USA, Oct. 20–22,2015, p. 11. https://doi.org/10.1109/MALWARE.2015.7413680
ZhengJ.Expert Syst. Appl.200936211610.1016/j.eswa.2007.12.029
PickettM. D.WilliamsR. S.Nanotechnology20132438400210.1088/0957-4484/24/38/384002
FryeR. C.RietmanE. A.WongC. C.IEEE Trans. Neural Networks199121101:STN:280:DC%2BD1c7hslOmtQ%3D%3D10.1109/72.80296
OhnoT.HasegawaT.TsuruokaT.Nat. Mater.2011105911:CAS:528:DC%2BC3MXotV2ju7w%3D10.1038/nmat3054
ScottG. J.EnglM. R.StarmsW. A.IEEE Geosci. Remote Sens. Lett.20171454910.1109/LGRS.2017.2657778
HaradaY.GotoE.IEEE Trans. Magn.199127286310.1109/20.133806
P. Moerland and E. Fiesler, “Neural network adaptations to hardware implementations,” in IDIAP, Handbook of Neural Computation E1.2:1-13 (Inst. Phys. Publ., Oxford Univ. Publ., New York, 1997).
IndiveriG.HoriuchiT. K.Front. Neurosci.2011511810.3389/fnins.2011.00118
MizugakiY.NakajimaK.SawadaY.YamashitaT.IEEE Trans. Appl. Supercond.19944110.1109/77.273058
FarooqiM. Z.TabassumS. M.RehmaniM. H.SaleemY.J. Netw. Comput. Appl.20144616610.1016/j.jnca.2014.09.002
ChanthboualaA.GarciaV.CherifiR. O.Nat. Mater.2012118601:CAS:528:DC%2BC38XhtlGjsrfI10.1038/nmat3415
ShainlineJ. M.BuckleyS. M.NaderN.Opt. Express201725103221:CAS:528:DC%2BC1cXkvVCltbg%3D10.1364/OE.25.010322
A. Gudkov, Elektron.: Nauka, Tekhnol. Biznes, S65 (2014).
ToomeyE.SegallK.BerggrenK.Front. Neurosci.20191393310.3389/fnins.2019.00933
ShainlineJ. M.BuckleyS. M.McCaughanA. N.J. Appl. Phys.20181241521301:CAS:528:DC%2BC1cXhvFSqsb%2FE10.1063/1.5038031
P. Dostál and P. Pokorný, Cluster Analysis and Neural Network (Dep. Inform., Brno Univ. Technol. Inst. Math., 2009).
YanQ.LiM.ChenF.IEEE Trans. Wireless Commun.201413589310.1109/TWC.2014.2339218
J. H. T. Yip, X. Zhang, Y. Wang, et al., arXiv: 1910.07813 (2019).
Y. E. Wang, G.-Y. Wei, and D. Brooks, arXiv: 1907.10701 (2019).
KlenovN. V.SchegolevA. E.SolovievI. I.IEEE Trans. Appl. Supercond.201828130100610.1109/
J. M. Shainline (10299_CR79) 2018; 124
C. Sung (10299_CR38) 2018; 124
P. A. Merolla (10299_CR25) 2014; 345
N. V. Klenov (10299_CR86) 2018; 28
A. L. Gudkov (10299_CR93) 2012; 114
S. K. Tolpygo (10299_CR94) 2016; 26
W. Winci (10299_CR73) 2020; 1
D. A. Forsyth (10299_CR10) 2011
10299_CR69
M. L. Schneider (10299_CR76) 2018; 124
S. Bakurskiy (10299_CR88) 2020; 11
S. Haykin (10299_CR20) 1998
K. Ishida (10299_CR95) 2021; 41
K. Seo (10299_CR36) 2011; 22
J. Nickolls (10299_CR52) 2010; 30
C. L. Ayala (10299_CR97) 2020; 56
S. Buckley (10299_CR81) 2017; 111
V. K. Kornev (10299_CR62) 2012; 23
T. Onomi (10299_CR61) 2014; 507
A. Chanthbouala (10299_CR35) 2012; 11
R. Cheng (10299_CR74) 2018; 124
V. V. Ryazanov (10299_CR54) 2012; 36
S. Munjuluri (10299_CR66) 2015; 46
10299_CR75
H. H. Szu (10299_CR6) 1990
J. M. Shainline (10299_CR80) 2021; 118
S. Hochreiter (10299_CR49) 1997; 9
A. Perez-Tomas (10299_CR58) 2021; 11687
F. C. Hoppensteadt (10299_CR30) 2000; 11
Q. Yan (10299_CR65) 2014; 13
J. M. Shainline (10299_CR83) 2017; 7
M. Forssell (10299_CR17) 2014; 18
D. B. Strukov (10299_CR32) 2008; 453
10299_CR41
10299_CR42
10299_CR43
10299_CR46
10299_CR47
10299_CR8
10299_CR3
10299_CR4
J. M. Shainline (10299_CR82) 2017; 25
10299_CR1
10299_CR2
F. Akopyan (10299_CR40) 2015; 34
W. S. McCulloch (10299_CR9) 1956
P. W. Hollis (10299_CR28) 1992; 25
G. E. Santoro (10299_CR71) 2006; 39
A. Schegolev (10299_CR90) 2020; 34
N. V. Klenov (10299_CR87) 2019; 45
10299_CR18
A. Esteva (10299_CR51) 2017; 542
M. Prezioso (10299_CR39) 2015; 521
A. K. Dzhein (10299_CR11) 1997; 4
K. K. Likharev (10299_CR91) 1979; 51
G. J. Scott (10299_CR48) 2017; 14
T. Ohno (10299_CR37) 2011; 10
P. G. Breen (10299_CR5) 2020; 494
S. H. Jo (10299_CR34) 2010; 10
10299_CR22
10299_CR26
10299_CR27
A. V. Emelyanov (10299_CR55) 2019; 31
P. Hauke (10299_CR72) 2020; 83
Y. LeCun (10299_CR50) 2015; 521
Y. Harada (10299_CR68) 1991; 27
L. Chua (10299_CR31) 1971; 18
D. Caimi (10299_CR59) 2021; 185
G. Indiveri (10299_CR29) 2011; 5
I. I. Soloviev (10299_CR84) 2018; 124
P. Crotty (10299_CR53) 2010; 82
Y. G. Maguire (10299_CR16) 2013; 7
R. Callan (10299_CR7) 1998
H. H. Szu (10299_CR45) 1990
G. Tzimpragos (10299_CR96) 2021; 41
I. A. Surazhevsky (10299_CR57) 2021; 146
E. Toomey (10299_CR77) 2019; 13
O. A. Mukhanov (10299_CR64) 2011
A. E. Schegolev (10299_CR85) 2016; 7
J. Zheng (10299_CR15) 2009; 36
M. Z. Farooqi (10299_CR67) 2014; 46
R. C. Frye (10299_CR21) 1991; 2
I. I. Soloviev (10299_CR44) 2017; 8
M. L. Schneider (10299_CR78) 2018; 4
P. K. Meher (10299_CR24) 2009; 56
Y. V. Pershin (10299_CR33) 2010; 23
10299_CR89
G.-B. Huang (10299_CR70) 2006; 70
L. Spietz (10299_CR63) 2009; 95
Y. Mizugaki (10299_CR60) 1994; 4
V. A. Demin (10299_CR56) 2021; 134
10299_CR92
10299_CR12
H. Hikawa (10299_CR23) 2005; 18
10299_CR13
10299_CR14
M. D. Pickett (10299_CR19) 2013; 24
References_xml – reference: M. L. Schneider, C. A. Donnelly, S. E. Russek, et al., in Proceedings of the 2017 IEEE International Conference on Rebooting Computing (ICRC),2017, p. 1. https://doi.org/10.1109/ICRC.2017.8123634
– reference: BreenP. G.FoleyC. N.BoekholtT.ZwartS. P.Mon. Not. R. Astron. Soc.2020494246510.1093/mnras/staa713
– reference: P. Moerland and E. Fiesler, “Neural network adaptations to hardware implementations,” in IDIAP, Handbook of Neural Computation E1.2:1-13 (Inst. Phys. Publ., Oxford Univ. Publ., New York, 1997).
– reference: McCullochW. S.PittsW.Automata Studies1956PrincetonPrinceton Univ. Press
– reference: Y. E. Wang, G.-Y. Wei, and D. Brooks, arXiv: 1907.10701 (2019).
– reference: HoppensteadtF. C.IzhikevichE. M.IEEE Trans. Neural Networks2000117341:STN:280:DC%2BD1c%2FptFGnuw%3D%3D10.1109/72.846744
– reference: SchneiderM. L.DonnellyC. A.RussekS. E.Sci. Adv.20184e170132910.1126/sciadv.1701329
– reference: HaykinS.Neural Networks: A Comprehensive Foundation1998Englewood CliffsPrentice Hall
– reference: V. Aparin and J. A. Levin, “Methods and systems for CMOS implementation of neuron synapse,” Google Patent No. US8694452B2 (2014).
– reference: IndiveriG.HoriuchiT. K.Front. Neurosci.2011511810.3389/fnins.2011.00118
– reference: SpietzL.IrwinK.AumentadoJ.Appl. Phys. Lett.200995925051:CAS:528:DC%2BD1MXhtV2qt7jO10.1063/1.3220061
– reference: MaguireY. G.ShapiroM. G.CybulskiT. R.Front. Comput. Neurosci.2013713710.3389/fncom.2013.00137
– reference: ShainlineJ. M.BuckleyS. M.MirinR. P.NamS. W.Phys. Rev. Appl.201773401310.1103/PhysRevApplied.7.034013
– reference: ChuaL.IEEE Trans. Circuit Theory19711850710.1109/TCT.1971.1083337
– reference: HaradaY.GotoE.IEEE Trans. Magn.199127286310.1109/20.133806
– reference: ShainlineJ. M.BuckleyS. M.McCaughanA. N.J. Appl. Phys.20181241521301:CAS:528:DC%2BC1cXhvFSqsb%2FE10.1063/1.5038031
– reference: LeCunY.BengioY.HintonG.Nature (London, U.K.)20155214361:CAS:528:DC%2BC2MXht1WlurzP10.1038/nature14539
– reference: M. B. Berkinblit, Neuron Networks (MIROS VZMSh RAO, Moscow, 1993) [in Russian].
– reference: MeherP. K.VallsJ.JuangT.-B.IEEE Trans. Circuits Syst. I: Regul. Pap.200956189310.1109/TCSI.2009.2025803
– reference: http://data-mining.philippe-fournier-viger.com/too-many-machine-learning-papers/.
– reference: PickettM. D.WilliamsR. S.Nanotechnology20132438400210.1088/0957-4484/24/38/384002
– reference: EmelyanovA. V.NikiruyK. E.SerenkoA. V.Nanotechnology201931452011:CAS:528:DC%2BB3cXhvVOiurjM10.1088/1361-6528/ab4a6d
– reference: CaimiD.SchmidH.MorfT.Solid State Electron.20211851080771:CAS:528:DC%2BB3MXht1ejtrzP10.1016/j.sse.2021.108077
– reference: CallanR.The Essence of Neural Networks1998Englewood CliffsPrentice Hall
– reference: ChanthboualaA.GarciaV.CherifiR. O.Nat. Mater.2012118601:CAS:528:DC%2BC38XhtlGjsrfI10.1038/nmat3415
– reference: EstevaA.KuprelB.NovoaR. A.Nature (London, U.K.)20175421151:CAS:528:DC%2BC2sXhsFGltrY%3D10.1038/nature21056
– reference: DzheinA. K.MaoZh.MoiuddinK. M.Otkryt. Sist.1997416
– reference: PreziosoM.Merrikh-BayatF.HoskinsB. D.Nature (London, U.K.)2015521611:CAS:528:DC%2BC2MXnvFWjtb4%3D10.1038/nature14441
– reference: P. Dostál and P. Pokorný, Cluster Analysis and Neural Network (Dep. Inform., Brno Univ. Technol. Inst. Math., 2009).
– reference: https://deepmind.com/blog/alphazero-shedding-new-light-grand-games-chess-shogi-and-go/.
– reference: J. H. T. Yip, X. Zhang, Y. Wang, et al., arXiv: 1910.07813 (2019).
– reference: JoS. H.ChangT.EbongI.Nano Lett.20101012971:CAS:528:DC%2BC3cXisFGnu7k%3D10.1021/nl904092h
– reference: FarooqiM. Z.TabassumS. M.RehmaniM. H.SaleemY.J. Netw. Comput. Appl.20144616610.1016/j.jnca.2014.09.002
– reference: ChengR.GotetiU. S.HamiltonM. C.J. Appl. Phys.20181241521261:CAS:528:DC%2BC1cXhvV2rtbbL10.1063/1.5042421
– reference: SeoK.KimI.JungS.Nanotechnology2011222540231:CAS:528:DC%2BC3MXos1Kqtrw%3D10.1088/0957-4484/22/25/254023
– reference: PershinY. V.di VentraM.Neural Netw.20102388110.1016/j.neunet.2010.05.001
– reference: K.-A. Aliev, D. Ulyanov, and V. Lempitsky, arXiv: 1906.08240 (2019).
– reference: StrukovD. B.SniderG. S.StewartD. R.WilliamsR. S.Nature (London, U.K.)2008453801:CAS:528:DC%2BD1cXltlans7g%3D10.1038/nature06932
– reference: AyalaC. L.TanakaT.SaitoR.IEEE J. Solid-State Circuits202056115210.1109/JSSC.2020.3041338
– reference: NickollsJ.DallyW. J.IEEE Micro.2010305610.1109/MM.2010.41
– reference: ToomeyE.SegallK.BerggrenK.Front. Neurosci.20191393310.3389/fnins.2019.00933
– reference: ShainlineJ. M.BuckleyS. M.NaderN.Opt. Express201725103221:CAS:528:DC%2BC1cXkvVCltbg%3D10.1364/OE.25.010322
– reference: MerollaP. A.ArthurJ. V.Alvarez-IcazaR.Science (Washington, DC, U. S.)20143456681:CAS:528:DC%2BC2cXht12gtLbN10.1126/science.1254642
– reference: E. Goto, Proc. IRE 47, 1304 (1959). https://doi.org/10.1109/JRPROC.1959.287195
– reference: SchegolevA.KlenovN.SolovievI.TereshonokM.Supercond. Sci. Technol.2020341500610.1088/1361-6668/abc569
– reference: ForssellM.Inform. Flow Networks2014181
– reference: FryeR. C.RietmanE. A.WongC. C.IEEE Trans. Neural Networks199121101:STN:280:DC%2BD1c7hslOmtQ%3D%3D10.1109/72.80296
– reference: https://ru.wikipedia.org/wiki/Stockfish.
– reference: SurazhevskyI. A.DeminV. A.IlyasovA. I.Chaos Solitons Fractals202114611089010.1016/j.chaos.2021.110890
– reference: IshidaK.ByunI.NagaokaI.IEEE Micro2021411910.1109/MM.2021.3070488
– reference: Perez-TomasA.RogersD. J.ChikoidzeE.GarridoJ. A.A walk on the frontier of energy electronics with power ultra-wide bandgap oxides and ultra-thin neuromorphic 2D materialsProc. SPIE202111687116871Y10.1117/12.2590747
– reference: H. Rebecq, R. Ranftl, V. Koltun, and D. Scaramuzza, IEEE Trans. Pattern Anal. Mach. Intell., 1964 (2019). https://doi.org/10.1109/TPAMI.2019.2963386
– reference: MunjuluriS.GarimellaR. M.Proc. Comput. Sci.201546115610.1016/j.procs.2015.01.028
– reference: J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, LV, USA, June 26–July 1,2016, p. 779.
– reference: BakurskiyS.KupriyanovM.KlenovN.Beilstein J. Nanotechnol.20201113361:CAS:528:DC%2BB3MXhsVGmtL7N10.3762/bxiv.2020.69.v1
– reference: WinciW.BuffoniL.SadeghiH.Mach. Learn. Sci. Technol.202014502810.1088/2632-2153/aba220
– reference: HikawaH.Neural Netw.20051851410.1016/j.neunet.2005.06.012
– reference: ForsythD. A.PonceJ.Computer Vision: A Modern Approach2011Englewood CliffsPrentice Hall
– reference: D. Silver, T. Hubert, J. Schrittwieser, et al., arXiv: 1712.01815 (2017).
– reference: S. Ginosar, A. Bar, G. Kohavi, et al., in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2019, p. 3497.
– reference: CrottyP.SchultD.SegallK.Phys. Rev. E201082119141:CAS:528:DC%2BC3cXpsFyktL8%3D10.1103/PhysRevE.82.011914
– reference: SolovievI. I.SchegolevA. E.KlenovN. V.J. Appl. Phys.20181241521131:CAS:528:DC%2BC1cXhvVSitLbP10.1063/1.5042147
– reference: AkopyanF.SawadaJ.CassidyA.IEEE Trans. Comput. Des. Integr. Circuits Syst.201534153710.1109/TCAD.2015.2474396
– reference: SantoroG. E.TosattiE.J. Phys. A: Math. Gen.200639R3931:CAS:528:DC%2BD28XhtVKrtbvJ10.1088/0305-4470/39/36/R01
– reference: HaukeP.KatzgraberH. G.LechnerW.NishimoriH.Rep. Prog. Phys.202083544011:CAS:528:DC%2BB3cXitFOltLjN10.1088/1361-6633/ab85b8
– reference: SzuH. H.Superconducting neural network computer and sensor array1990
– reference: HollisP. W.PaulosJ. J.IEEE J. Solid-State Circuits19922584910.1109/4.102684
– reference: MukhanovO. A.History of Superconductor Analog-to-Digital Converters. 100 Years of Superconductivity2011London, UKTaylor Francis
– reference: YanQ.LiM.ChenF.IEEE Trans. Wireless Commun.201413589310.1109/TWC.2014.2339218
– reference: KlenovN. V.SchegolevA. E.SolovievI. I.IEEE Trans. Appl. Supercond.201828130100610.1109/TASC.2018.2836903
– reference: RyazanovV. V.Bol’ginovV. V.SobaninD. S.Phys. Proc.201236351:CAS:528:DC%2BC38Xhtl2msrjN10.1016/j.phpro.2012.06.126
– reference: ScottG. J.EnglM. R.StarmsW. A.IEEE Geosci. Remote Sens. Lett.20171454910.1109/LGRS.2017.2657778
– reference: OhnoT.HasegawaT.TsuruokaT.Nat. Mater.2011105911:CAS:528:DC%2BC3MXotV2ju7w%3D10.1038/nmat3054
– reference: OnomiT.NakajimaK.J. Phys.: Conf. Ser.20145074202910.1088/1742-6596/507/4/042029
– reference: ZhengJ.Expert Syst. Appl.200936211610.1016/j.eswa.2007.12.029
– reference: SchegolevA. E.KlenovN. V.SolovievI. I.TereshonokM. V.Beilstein J. Nanotechnol.2016713971:CAS:528:DC%2BC2sXhsVOmtr8%3D10.3762/bjnano.7.130
– reference: SolovievI. I.KlenovN. V.BakurskiyS. V.Beilstein J. Nanotechnol.20178268910.3762/bjnano.8.269
– reference: HuangG.-B.ZhuQ.-Y.SiewC.-K.Neurocomputing20067048910.1016/j.neucom.2005.12.126
– reference: A. Gudkov, Elektron.: Nauka, Tekhnol. Biznes, S65 (2014).
– reference: BuckleyS.ChilesJ.McCaughanA. N.Appl. Phys. Lett.20171111411011:CAS:528:DC%2BC2sXhs1Whs7fF10.1063/1.4994692
– reference: HochreiterS.SchmidhuberJ.Neural Comput.1997917351:STN:280:DyaK1c%2FhvVahsQ%3D%3D10.1162/neco.1997.9.8.1735
– reference: A. E. Schegolev, N. V. Klenov, M. V. Tereshonok, and S. S. Adjemov, “Elements of hybrid opto-superconducting convolutional neural networks,” in Proceedings of the 8th International Conference on Photonics, Optics and Laser Technology,2020, p. 135.
– reference: SungC.HwangH.YooI. K.J. Appl. Phys.20181241519031:CAS:528:DC%2BC1cXhvVOrurvE10.1063/1.5037835
– reference: KlenovN. V.KuznetsovA. V.SchegolevA. E.Low Temp. Phys.20194576910.1063/1.5111305
– reference: MizugakiY.NakajimaK.SawadaY.YamashitaT.IEEE Trans. Appl. Supercond.19944110.1109/77.273058
– reference: F. D. Foresee and M. T. Hagan, in Proceedings of International Conference on Neural Networks (ICNN’97) on Gauss-Newton Approximation to Bayesian Learning, Houston, TX, USA, June 12,1997, Vol. 3, p. 1930. https://doi.org/10.1109/ICNN.1997.614194
– reference: KornevV. K.SolovievI. I.SharafievA. V.IEEE Trans. Appl. Supercond.201223180040510.1109/TASC.2012.2232691
– reference: TzimpragosG.VolkJ.VasudevanD.IEEE Micro2021417110.1109/MM.2021.3066377
– reference: S. S. Kim and S. Jung, “Hardware implementation of a real time neural network controller with a DSP and an FPGA,” in Proceedings of the IEEE International Conference on Robotics and Automation, New Orleans, LA, USA (2004), Vol. 5, p. 4639. https://doi.org/10.1109/ROBOT.2004.1302449
– reference: SchneiderM. L.DonnellyC. A.RussekS. E.J. Appl. Phys.20181241611021:CAS:528:DC%2BC1cXitVWqsb3K10.1063/1.5042425
– reference: DeminV. A.NekhaevD. V.SurazhevskyI. A.Neural Netw.2021134641:STN:280:DC%2BB3szkvValsw%3D%3D10.1016/j.neunet.2020.11.005
– reference: LikharevK. K.Rev. Mod. Phys.19795110110.1103/RevModPhys.51.101
– reference: TolpygoS. K.BolkhovskyV.WeirT. J.IEEE Trans. Appl. Supercond.201626110.1109/TASC.2016.2519388
– reference: J. Saxe and K. Berlin, “Deep neural network based malware detection using two dimensional binary program features,” in Proceedings of the 2015 10th International Conference on Malicious and Unwanted Software (MALWARE), Fajardo, PR, USA, Oct. 20–22,2015, p. 11. https://doi.org/10.1109/MALWARE.2015.7413680
– reference: ShainlineJ. M.Appl. Phys. Lett.20211181605011:CAS:528:DC%2BB3MXpsVKls74%3D10.1063/5.0040567
– reference: GudkovA. L.KupriyanovM. Yu.Samus’A. N.J. Exp. Theor. Phys.20121148181:CAS:528:DC%2BC38XosVagtLs%3D10.1134/S1063776112030144
– ident: 10299_CR46
– volume-title: History of Superconductor Analog-to-Digital Converters. 100 Years of Superconductivity
  year: 2011
  ident: 10299_CR64
– volume: 134
  start-page: 64
  year: 2021
  ident: 10299_CR56
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.11.005
– volume: 46
  start-page: 166
  year: 2014
  ident: 10299_CR67
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2014.09.002
– volume: 34
  start-page: 15006
  year: 2020
  ident: 10299_CR90
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/1361-6668/abc569
– volume: 114
  start-page: 818
  year: 2012
  ident: 10299_CR93
  publication-title: J. Exp. Theor. Phys.
  doi: 10.1134/S1063776112030144
– ident: 10299_CR8
– volume-title: Neural Networks: A Comprehensive Foundation
  year: 1998
  ident: 10299_CR20
– volume-title: Automata Studies
  year: 1956
  ident: 10299_CR9
– ident: 10299_CR2
– volume: 70
  start-page: 489
  year: 2006
  ident: 10299_CR70
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– ident: 10299_CR13
  doi: 10.1109/ICNN.1997.614194
– ident: 10299_CR43
– ident: 10299_CR3
  doi: 10.1109/TPAMI.2019.2963386
– volume: 13
  start-page: 933
  year: 2019
  ident: 10299_CR77
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.00933
– volume: 11
  start-page: 1336
  year: 2020
  ident: 10299_CR88
  publication-title: Beilstein J. Nanotechnol.
  doi: 10.3762/bxiv.2020.69.v1
– volume: 453
  start-page: 80
  year: 2008
  ident: 10299_CR32
  publication-title: Nature (London, U.K.)
  doi: 10.1038/nature06932
– ident: 10299_CR26
– ident: 10299_CR12
– volume: 542
  start-page: 115
  year: 2017
  ident: 10299_CR51
  publication-title: Nature (London, U.K.)
  doi: 10.1038/nature21056
– volume: 185
  start-page: 108077
  year: 2021
  ident: 10299_CR59
  publication-title: Solid State Electron.
  doi: 10.1016/j.sse.2021.108077
– volume: 124
  start-page: 152130
  year: 2018
  ident: 10299_CR79
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5038031
– volume: 41
  start-page: 71
  year: 2021
  ident: 10299_CR96
  publication-title: IEEE Micro
  doi: 10.1109/MM.2021.3066377
– volume-title: The Essence of Neural Networks
  year: 1998
  ident: 10299_CR7
– ident: 10299_CR47
  doi: 10.1109/CVPR.2016.91
– volume: 124
  start-page: 152113
  year: 2018
  ident: 10299_CR84
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5042147
– volume: 39
  start-page: R393
  year: 2006
  ident: 10299_CR71
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/39/36/R01
– volume: 124
  start-page: 151903
  year: 2018
  ident: 10299_CR38
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5037835
– volume: 34
  start-page: 1537
  year: 2015
  ident: 10299_CR40
  publication-title: IEEE Trans. Comput. Des. Integr. Circuits Syst.
  doi: 10.1109/TCAD.2015.2474396
– volume: 82
  start-page: 11914
  year: 2010
  ident: 10299_CR53
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.82.011914
– volume-title: Superconducting neural network computer and sensor array
  year: 1990
  ident: 10299_CR6
– volume: 2
  start-page: 110
  year: 1991
  ident: 10299_CR21
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/72.80296
– volume: 1
  start-page: 45028
  year: 2020
  ident: 10299_CR73
  publication-title: Mach. Learn. Sci. Technol.
  doi: 10.1088/2632-2153/aba220
– volume: 118
  start-page: 160501
  year: 2021
  ident: 10299_CR80
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0040567
– ident: 10299_CR22
  doi: 10.1109/ROBOT.2004.1302449
– volume: 18
  start-page: 514
  year: 2005
  ident: 10299_CR23
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2005.06.012
– volume: 11
  start-page: 860
  year: 2012
  ident: 10299_CR35
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3415
– volume: 25
  start-page: 849
  year: 1992
  ident: 10299_CR28
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/4.102684
– volume: 5
  start-page: 118
  year: 2011
  ident: 10299_CR29
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2011.00118
– ident: 10299_CR4
– volume: 124
  start-page: 161102
  year: 2018
  ident: 10299_CR76
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5042425
– ident: 10299_CR89
  doi: 10.5220/0009100101350139
– volume: 18
  start-page: 507
  year: 1971
  ident: 10299_CR31
  publication-title: IEEE Trans. Circuit Theory
  doi: 10.1109/TCT.1971.1083337
– ident: 10299_CR14
  doi: 10.1109/MALWARE.2015.7413680
– volume: 124
  start-page: 152126
  year: 2018
  ident: 10299_CR74
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5042421
– volume: 27
  start-page: 2863
  year: 1991
  ident: 10299_CR68
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/20.133806
– ident: 10299_CR75
  doi: 10.1109/ICRC.2017.8123634
– volume: 56
  start-page: 1893
  year: 2009
  ident: 10299_CR24
  publication-title: IEEE Trans. Circuits Syst. I: Regul. Pap.
  doi: 10.1109/TCSI.2009.2025803
– volume: 28
  start-page: 1301006
  year: 2018
  ident: 10299_CR86
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/TASC.2018.2836903
– volume: 23
  start-page: 1800405
  year: 2012
  ident: 10299_CR62
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/TASC.2012.2232691
– volume: 11687
  start-page: 116871Y
  year: 2021
  ident: 10299_CR58
  publication-title: Proc. SPIE
  doi: 10.1117/12.2590747
– volume: 111
  start-page: 141101
  year: 2017
  ident: 10299_CR81
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4994692
– volume: 4
  start-page: 1
  year: 1994
  ident: 10299_CR60
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/77.273058
– ident: 10299_CR1
– ident: 10299_CR42
– volume: 345
  start-page: 668
  year: 2014
  ident: 10299_CR25
  publication-title: Science (Washington, DC, U. S.)
  doi: 10.1126/science.1254642
– volume: 494
  start-page: 2465
  year: 2020
  ident: 10299_CR5
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/staa713
– ident: 10299_CR69
  doi: 10.1109/JRPROC.1959.287195
– volume: 30
  start-page: 56
  year: 2010
  ident: 10299_CR52
  publication-title: IEEE Micro.
  doi: 10.1109/MM.2010.41
– volume: 36
  start-page: 2116
  year: 2009
  ident: 10299_CR15
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.12.029
– volume: 11
  start-page: 734
  year: 2000
  ident: 10299_CR30
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/72.846744
– volume: 41
  start-page: 19
  year: 2021
  ident: 10299_CR95
  publication-title: IEEE Micro
  doi: 10.1109/MM.2021.3070488
– ident: 10299_CR27
– volume: 22
  start-page: 254023
  year: 2011
  ident: 10299_CR36
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/22/25/254023
– volume: 36
  start-page: 35
  year: 2012
  ident: 10299_CR54
  publication-title: Phys. Proc.
  doi: 10.1016/j.phpro.2012.06.126
– volume: 45
  start-page: 769
  year: 2019
  ident: 10299_CR87
  publication-title: Low Temp. Phys.
  doi: 10.1063/1.5111305
– volume: 23
  start-page: 881
  year: 2010
  ident: 10299_CR33
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2010.05.001
– volume: 7
  start-page: 34013
  year: 2017
  ident: 10299_CR83
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.7.034013
– volume: 7
  start-page: 1397
  year: 2016
  ident: 10299_CR85
  publication-title: Beilstein J. Nanotechnol.
  doi: 10.3762/bjnano.7.130
– volume: 8
  start-page: 2689
  year: 2017
  ident: 10299_CR44
  publication-title: Beilstein J. Nanotechnol.
  doi: 10.3762/bjnano.8.269
– volume: 24
  start-page: 384002
  year: 2013
  ident: 10299_CR19
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/24/38/384002
– volume: 51
  start-page: 101
  year: 1979
  ident: 10299_CR91
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.51.101
– volume: 31
  start-page: 45201
  year: 2019
  ident: 10299_CR55
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ab4a6d
– volume: 10
  start-page: 1297
  year: 2010
  ident: 10299_CR34
  publication-title: Nano Lett.
  doi: 10.1021/nl904092h
– volume: 14
  start-page: 549
  year: 2017
  ident: 10299_CR48
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2657778
– volume: 46
  start-page: 1156
  year: 2015
  ident: 10299_CR66
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2015.01.028
– volume: 25
  start-page: 10322
  year: 2017
  ident: 10299_CR82
  publication-title: Opt. Express
  doi: 10.1364/OE.25.010322
– volume: 521
  start-page: 61
  year: 2015
  ident: 10299_CR39
  publication-title: Nature (London, U.K.)
  doi: 10.1038/nature14441
– volume: 7
  start-page: 137
  year: 2013
  ident: 10299_CR16
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2013.00137
– ident: 10299_CR92
– volume: 13
  start-page: 5893
  year: 2014
  ident: 10299_CR65
  publication-title: IEEE Trans. Wireless Commun.
  doi: 10.1109/TWC.2014.2339218
– volume: 521
  start-page: 436
  year: 2015
  ident: 10299_CR50
  publication-title: Nature (London, U.K.)
  doi: 10.1038/nature14539
– volume: 9
  start-page: 1735
  year: 1997
  ident: 10299_CR49
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 95
  start-page: 92505
  year: 2009
  ident: 10299_CR63
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3220061
– ident: 10299_CR41
– volume: 26
  start-page: 1
  year: 2016
  ident: 10299_CR94
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/TASC.2016.2519388
– volume: 56
  start-page: 1152
  year: 2020
  ident: 10299_CR97
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/JSSC.2020.3041338
– ident: 10299_CR18
– volume: 507
  start-page: 42029
  year: 2014
  ident: 10299_CR61
  publication-title: J. Phys.: Conf. Ser.
  doi: 10.1088/1742-6596/507/4/042029
– volume: 83
  start-page: 54401
  year: 2020
  ident: 10299_CR72
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/1361-6633/ab85b8
– volume: 4
  start-page: e1701329
  year: 2018
  ident: 10299_CR78
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1701329
– volume: 146
  start-page: 110890
  year: 2021
  ident: 10299_CR57
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2021.110890
– volume-title: Computer Vision: A Modern Approach
  year: 2011
  ident: 10299_CR10
– volume: 10
  start-page: 591
  year: 2011
  ident: 10299_CR37
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3054
– volume: 4
  start-page: 16
  year: 1997
  ident: 10299_CR11
  publication-title: Otkryt. Sist.
– volume: 18
  start-page: 1
  year: 2014
  ident: 10299_CR17
  publication-title: Inform. Flow Networks
– volume-title: Superconducting neural network computer and sensor array
  year: 1990
  ident: 10299_CR45
SSID ssib054306636
ssj0002710206
ssj0000327844
Score 2.2427006
Snippet The popularity and diversity of artificial neural networks for various applications are ever increasing. The development of neural networks in the form of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 811
SubjectTerms Algorithms
Artificial neural networks
Chemistry and Materials Science
Complex systems
Global optimization
Industrial and Production Engineering
Machines
Manufacturing
Materials Science
Microprocessors
Nanoelectronics and Neuromorphic Computer Systems
Nanotechnology
Neural networks
Object recognition
Processes
Quantum computing
Speech recognition
Superconductivity
Title Superconducting Neural Networks: from an Idea to Fundamentals and, Further, to Application
URI https://link.springer.com/article/10.1134/S2635167621060227
https://www.proquest.com/docview/2623432079
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2635-1684
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002710206
  issn: 2635-1676
  databaseCode: AFBBN
  dateStart: 20080401
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 2635-1684
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327844
  issn: 2635-1676
  databaseCode: AGYKE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZK9wIPiKsoDJQHnuhS2tixE9461LJxqZC2ocFL5FsGomqmNuGBP8Tf5JzEudBtiCFVaeu4p4rP5-NzbJ_PhDyPpabgZSs_oML4LDbCVzG1vmChoDBiRaHCbOQPC35wwt6ehqe93q_OrqUiVyP989K8kv_RKpSBXjFL9hqabYRCAXwG_cIVNAzXf9LxUXFu1xDQImcrhvzItAFNvqi2dpeb3cr0EejDh8ZK9DPnmPlREfqX7Myl81qsc6c6qDFtl7S7niuYYWRsypupeOe7b7YJS926zld7li3hgdD2jIazUWPZYZjLflRJXsNPTfERyIQhurxxOIJXszGoMN-zWsz7UXeWIpi4dL0aVx-X9ps0dtOZXGsNHfLh-BMuHCV2t6w6Pq6x1LyDyK7ZjZzBdiN4mV53yeBAGS5Po2j8Nwh2ORIotiNhsz-xjIwoSy7UvUF2Avg27pOd6Xx_f1GbrpBR9N14M70XoOdWnuzaPJ1bUwe5Ly_I_dMrakOdrdX50uk5vkNuu2jFm1bQu0t6dnWP3OpwWN4nX7ZA6FUg9GoQvvIQgp5ceQhBL8-8LgSh3Ox5DoB7eLcDvwfkZD47fn3guwM7fOjwPIderlKqtUptDK6n5mFqjIqEmDCdBoYybBRlI5YaQU0Qas0jLjXXUo8tHstAH5L-KlvZR8SjnAtppYyoNCyCsDoSYEcmilMpUk7ZgIzrBku0Y7PHQ1WWyZW6G5AXzU_OKyqXv1XerbWQuB6_SQKIFRgNxiIekGGtmfb2lcIeX6v2E3Kz7UG7pJ-vC_sUPN9cPXOow_c3n9_NfgP9NKI3
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Superconducting+Neural+Networks%3A+from+an+Idea+to+Fundamentals+and%2C+Further%2C+to+Application&rft.jtitle=Nanobiotechnology+Reports+%28Online%29&rft.au=Schegolev%2C+A.+E.&rft.au=Klenov%2C+N.+V.&rft.au=Soloviev%2C+I.+I.&rft.au=Gudkov%2C+A.+L.&rft.date=2021-11-01&rft.pub=Pleiades+Publishing&rft.issn=2635-1676&rft.eissn=2635-1684&rft.volume=16&rft.issue=6&rft.spage=811&rft.epage=820&rft_id=info:doi/10.1134%2FS2635167621060227&rft.externalDocID=10_1134_S2635167621060227
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2635-1676&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2635-1676&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2635-1676&client=summon