Superconducting Neural Networks: from an Idea to Fundamentals and, Further, to Application
The popularity and diversity of artificial neural networks for various applications are ever increasing. The development of neural networks in the form of software models and hardware systems emphasizes their relevance and range of applicability, from a ten-minute Python code, an AlphaZero neural ne...
Saved in:
| Published in | Nanobiotechnology Reports (Online) Vol. 16; no. 6; pp. 811 - 820 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Moscow
Pleiades Publishing
01.11.2021
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2635-1676 1995-0780 2635-1684 1995-0799 |
| DOI | 10.1134/S2635167621060227 |
Cover
| Abstract | The popularity and diversity of artificial neural networks for various applications are ever increasing. The development of neural networks in the form of software models and hardware systems emphasizes their relevance and range of applicability, from a ten-minute Python code, an AlphaZero neural network, and intelligent image and speech recognition algorithms to IBM and Qualcomm neuromorphic chips and D-Wave quantum computing systems. The superconductor implementation of neural networks, along with the obvious advantages of superconductor technology in terms of energy efficiency and operating speed, makes it possible to combine a neural network and a superconducting quantum processor in one computing unit. In this case, the quantum core of a complex system can be used to learn a neural network by a global optimization method. It is noteworthy that the world’s leading IT companies clearly demonstrate the market’s focus on superconducting elements. The relevance of this direction is analyzed against a historical retrospective. |
|---|---|
| AbstractList | The popularity and diversity of artificial neural networks for various applications are ever increasing. The development of neural networks in the form of software models and hardware systems emphasizes their relevance and range of applicability, from a ten-minute Python code, an AlphaZero neural network, and intelligent image and speech recognition algorithms to IBM and Qualcomm neuromorphic chips and D-Wave quantum computing systems. The superconductor implementation of neural networks, along with the obvious advantages of superconductor technology in terms of energy efficiency and operating speed, makes it possible to combine a neural network and a superconducting quantum processor in one computing unit. In this case, the quantum core of a complex system can be used to learn a neural network by a global optimization method. It is noteworthy that the world’s leading IT companies clearly demonstrate the market’s focus on superconducting elements. The relevance of this direction is analyzed against a historical retrospective. |
| Author | Schegolev, A. E. Klenov, N. V. Gudkov, A. L. Tereshonok, M. V. Soloviev, I. I. |
| Author_xml | – sequence: 1 givenname: A. E. surname: Schegolev fullname: Schegolev, A. E. email: tanuior@gmail.com organization: Moscow Technical University of Communications and Informatics, Moscow State University, Skobeltsyn Institute of Nuclear Physics – sequence: 2 givenname: N. V. surname: Klenov fullname: Klenov, N. V. organization: Moscow Technical University of Communications and Informatics, Moscow State University – sequence: 3 givenname: I. I. surname: Soloviev fullname: Soloviev, I. I. organization: Moscow State University, Skobeltsyn Institute of Nuclear Physics – sequence: 4 givenname: A. L. surname: Gudkov fullname: Gudkov, A. L. organization: Lukin Research Institute for Physical Problems, National Research Centre “Kurchatov Institute” – sequence: 5 givenname: M. V. surname: Tereshonok fullname: Tereshonok, M. V. organization: Moscow Technical University of Communications and Informatics |
| BookMark | eNp9kMtKAzEUhoMoWGsfwN2A247mNsnUXSlWC0UX1Y2bIZNLHZ0mY5JBfHtTKwqKrs7hP_93bkdg3zqrAThB8AwhQs9XmJECMc4wggxizPfAYCvliJV0_yvn7BCMQmhqWFACGSNsAB5Wfae9dFb1MjZ2nd3o3os2hfjq_HO4yIx3m0zYbKG0yKLL5r1VYqNtFG1IuhonxcdH7cfb6rTr2kaK2Dh7DA5M8ujRZxyC-_nl3ew6X95eLWbTZS4JYjGvJ7UhUtZGTyDkkhVGqbrkHFFpsCIUcwRrXVKjOFG4kJKVTEgmhYS6oIyQITjd9e28e-l1iNWT671NIyvMMKEEQz5JLrRzSe9C8NpUnW82wr9VCFbbL1a_vpgY_oORTfy4LXrRtP-SeEeGNMWutf_e6W_oHRiMhs4 |
| CitedBy_id | crossref_primary_10_31857_S0044451023120143 crossref_primary_10_1134_S002136402360324X crossref_primary_10_1134_S1063776123120191 crossref_primary_10_31857_S123456782322010X crossref_primary_10_1103_PhysRevLett_129_267702 |
| Cites_doi | 10.1016/j.neunet.2020.11.005 10.1016/j.jnca.2014.09.002 10.1088/1361-6668/abc569 10.1134/S1063776112030144 10.1016/j.neucom.2005.12.126 10.1109/ICNN.1997.614194 10.1109/TPAMI.2019.2963386 10.3389/fnins.2019.00933 10.3762/bxiv.2020.69.v1 10.1038/nature06932 10.1038/nature21056 10.1016/j.sse.2021.108077 10.1063/1.5038031 10.1109/MM.2021.3066377 10.1109/CVPR.2016.91 10.1063/1.5042147 10.1088/0305-4470/39/36/R01 10.1063/1.5037835 10.1109/TCAD.2015.2474396 10.1103/PhysRevE.82.011914 10.1109/72.80296 10.1088/2632-2153/aba220 10.1063/5.0040567 10.1109/ROBOT.2004.1302449 10.1016/j.neunet.2005.06.012 10.1038/nmat3415 10.1109/4.102684 10.3389/fnins.2011.00118 10.1063/1.5042425 10.5220/0009100101350139 10.1109/TCT.1971.1083337 10.1109/MALWARE.2015.7413680 10.1063/1.5042421 10.1109/20.133806 10.1109/ICRC.2017.8123634 10.1109/TCSI.2009.2025803 10.1109/TASC.2018.2836903 10.1109/TASC.2012.2232691 10.1117/12.2590747 10.1063/1.4994692 10.1109/77.273058 10.1126/science.1254642 10.1093/mnras/staa713 10.1109/JRPROC.1959.287195 10.1109/MM.2010.41 10.1016/j.eswa.2007.12.029 10.1109/72.846744 10.1109/MM.2021.3070488 10.1088/0957-4484/22/25/254023 10.1016/j.phpro.2012.06.126 10.1063/1.5111305 10.1016/j.neunet.2010.05.001 10.1103/PhysRevApplied.7.034013 10.3762/bjnano.7.130 10.3762/bjnano.8.269 10.1088/0957-4484/24/38/384002 10.1103/RevModPhys.51.101 10.1088/1361-6528/ab4a6d 10.1021/nl904092h 10.1109/LGRS.2017.2657778 10.1016/j.procs.2015.01.028 10.1364/OE.25.010322 10.1038/nature14441 10.3389/fncom.2013.00137 10.1109/TWC.2014.2339218 10.1038/nature14539 10.1162/neco.1997.9.8.1735 10.1063/1.3220061 10.1109/TASC.2016.2519388 10.1109/JSSC.2020.3041338 10.1088/1742-6596/507/4/042029 10.1088/1361-6633/ab85b8 10.1126/sciadv.1701329 10.1016/j.chaos.2021.110890 10.1038/nmat3054 |
| ContentType | Journal Article |
| Copyright | Pleiades Publishing, Ltd. 2021. ISSN 2635-1676, Nanobiotechnology Reports, 2021, Vol. 16, No. 6, pp. 811–820. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2021, published in Rossiiskie Nanotekhnologii, 2021, Vol. 16, No. 6, pp. 846–856. |
| Copyright_xml | – notice: Pleiades Publishing, Ltd. 2021. ISSN 2635-1676, Nanobiotechnology Reports, 2021, Vol. 16, No. 6, pp. 811–820. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2021, published in Rossiiskie Nanotekhnologii, 2021, Vol. 16, No. 6, pp. 846–856. |
| DBID | AAYXX CITATION |
| DOI | 10.1134/S2635167621060227 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2635-1684 1995-0799 |
| EndPage | 820 |
| ExternalDocumentID | 10_1134_S2635167621060227 |
| GroupedDBID | 0R~ 2JN 2JY AACDK AAJBT AASML AATNV AAUYE AAYZH ABAKF ABJNI ABTEG ABTKH ABWNU ACAOD ACHSB ACMDZ ACZOJ ADTPH AEFQL AEMSY AFBBN AFLOW AGMZJ AGRTI AIGIU ALMA_UNASSIGNED_HOLDINGS AMXSW BGNMA DDRTE DPUIP EBLON EBS EIOEI FIGPU GGCAI IKXTQ IWAJR JZLTJ LLZTM M4Y NPVJJ NQJWS NU0 PT4 ROL RSV SJYHP SNE SOJ AAPKM AAYXX ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR CITATION |
| ID | FETCH-LOGICAL-c316t-b9bf3ccbfe9007c65fddb87714cf2d342710be84fd73d25cc686ac6cac0e54633 |
| ISSN | 2635-1676 1995-0780 |
| IngestDate | Thu Sep 25 00:44:02 EDT 2025 Thu Apr 24 23:08:21 EDT 2025 Wed Oct 01 04:50:58 EDT 2025 Fri Feb 21 02:46:25 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c316t-b9bf3ccbfe9007c65fddb87714cf2d342710be84fd73d25cc686ac6cac0e54633 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2623432079 |
| PQPubID | 2043989 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2623432079 crossref_primary_10_1134_S2635167621060227 crossref_citationtrail_10_1134_S2635167621060227 springer_journals_10_1134_S2635167621060227 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-11-01 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Moscow |
| PublicationPlace_xml | – name: Moscow – name: Heidelberg |
| PublicationTitle | Nanobiotechnology Reports (Online) |
| PublicationTitleAbbrev | Nanotechnol Russia |
| PublicationYear | 2021 |
| Publisher | Pleiades Publishing Springer Nature B.V |
| Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
| References | M. B. Berkinblit, Neuron Networks (MIROS VZMSh RAO, Moscow, 1993) [in Russian]. PreziosoM.Merrikh-BayatF.HoskinsB. D.Nature (London, U.K.)2015521611:CAS:528:DC%2BC2MXnvFWjtb4%3D10.1038/nature14441 NickollsJ.DallyW. J.IEEE Micro.2010305610.1109/MM.2010.41 K.-A. Aliev, D. Ulyanov, and V. Lempitsky, arXiv: 1906.08240 (2019). OnomiT.NakajimaK.J. Phys.: Conf. Ser.20145074202910.1088/1742-6596/507/4/042029 AyalaC. L.TanakaT.SaitoR.IEEE J. Solid-State Circuits202056115210.1109/JSSC.2020.3041338 BakurskiyS.KupriyanovM.KlenovN.Beilstein J. Nanotechnol.20201113361:CAS:528:DC%2BB3MXhsVGmtL7N10.3762/bxiv.2020.69.v1 HaukeP.KatzgraberH. G.LechnerW.NishimoriH.Rep. Prog. Phys.202083544011:CAS:528:DC%2BB3cXitFOltLjN10.1088/1361-6633/ab85b8 SzuH. H.Superconducting neural network computer and sensor array1990 H. Rebecq, R. Ranftl, V. Koltun, and D. Scaramuzza, IEEE Trans. Pattern Anal. Mach. Intell., 1964 (2019). https://doi.org/10.1109/TPAMI.2019.2963386 http://data-mining.philippe-fournier-viger.com/too-many-machine-learning-papers/. ForsythD. A.PonceJ.Computer Vision: A Modern Approach2011Englewood CliffsPrentice Hall KlenovN. V.KuznetsovA. V.SchegolevA. E.Low Temp. Phys.20194576910.1063/1.5111305 F. D. Foresee and M. T. Hagan, in Proceedings of International Conference on Neural Networks (ICNN’97) on Gauss-Newton Approximation to Bayesian Learning, Houston, TX, USA, June 12,1997, Vol. 3, p. 1930. https://doi.org/10.1109/ICNN.1997.614194 S. Ginosar, A. Bar, G. Kohavi, et al., in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2019, p. 3497. E. Goto, Proc. IRE 47, 1304 (1959). https://doi.org/10.1109/JRPROC.1959.287195 MeherP. K.VallsJ.JuangT.-B.IEEE Trans. Circuits Syst. I: Regul. Pap.200956189310.1109/TCSI.2009.2025803 SantoroG. E.TosattiE.J. Phys. A: Math. Gen.200639R3931:CAS:528:DC%2BD28XhtVKrtbvJ10.1088/0305-4470/39/36/R01 StrukovD. B.SniderG. S.StewartD. R.WilliamsR. S.Nature (London, U.K.)2008453801:CAS:528:DC%2BD1cXltlans7g%3D10.1038/nature06932 SpietzL.IrwinK.AumentadoJ.Appl. Phys. Lett.200995925051:CAS:528:DC%2BD1MXhtV2qt7jO10.1063/1.3220061 LeCunY.BengioY.HintonG.Nature (London, U.K.)20155214361:CAS:528:DC%2BC2MXht1WlurzP10.1038/nature14539 MunjuluriS.GarimellaR. M.Proc. Comput. Sci.201546115610.1016/j.procs.2015.01.028 CallanR.The Essence of Neural Networks1998Englewood CliffsPrentice Hall CaimiD.SchmidH.MorfT.Solid State Electron.20211851080771:CAS:528:DC%2BB3MXht1ejtrzP10.1016/j.sse.2021.108077 S. S. Kim and S. Jung, “Hardware implementation of a real time neural network controller with a DSP and an FPGA,” in Proceedings of the IEEE International Conference on Robotics and Automation, New Orleans, LA, USA (2004), Vol. 5, p. 4639. https://doi.org/10.1109/ROBOT.2004.1302449 HikawaH.Neural Netw.20051851410.1016/j.neunet.2005.06.012 TolpygoS. K.BolkhovskyV.WeirT. J.IEEE Trans. Appl. Supercond.201626110.1109/TASC.2016.2519388 WinciW.BuffoniL.SadeghiH.Mach. Learn. Sci. Technol.202014502810.1088/2632-2153/aba220 HuangG.-B.ZhuQ.-Y.SiewC.-K.Neurocomputing20067048910.1016/j.neucom.2005.12.126 SolovievI. I.KlenovN. V.BakurskiyS. V.Beilstein J. Nanotechnol.20178268910.3762/bjnano.8.269 SurazhevskyI. A.DeminV. A.IlyasovA. I.Chaos Solitons Fractals202114611089010.1016/j.chaos.2021.110890 MerollaP. A.ArthurJ. V.Alvarez-IcazaR.Science (Washington, DC, U. S.)20143456681:CAS:528:DC%2BC2cXht12gtLbN10.1126/science.1254642 HaykinS.Neural Networks: A Comprehensive Foundation1998Englewood CliffsPrentice Hall D. Silver, T. Hubert, J. Schrittwieser, et al., arXiv: 1712.01815 (2017). Perez-TomasA.RogersD. J.ChikoidzeE.GarridoJ. A.A walk on the frontier of energy electronics with power ultra-wide bandgap oxides and ultra-thin neuromorphic 2D materialsProc. SPIE202111687116871Y10.1117/12.2590747 ChuaL.IEEE Trans. Circuit Theory19711850710.1109/TCT.1971.1083337 EstevaA.KuprelB.NovoaR. A.Nature (London, U.K.)20175421151:CAS:528:DC%2BC2sXhsFGltrY%3D10.1038/nature21056 ForssellM.Inform. Flow Networks2014181 HoppensteadtF. C.IzhikevichE. M.IEEE Trans. Neural Networks2000117341:STN:280:DC%2BD1c%2FptFGnuw%3D%3D10.1109/72.846744 IshidaK.ByunI.NagaokaI.IEEE Micro2021411910.1109/MM.2021.3070488 ShainlineJ. M.Appl. Phys. Lett.20211181605011:CAS:528:DC%2BB3MXpsVKls74%3D10.1063/5.0040567 V. Aparin and J. A. Levin, “Methods and systems for CMOS implementation of neuron synapse,” Google Patent No. US8694452B2 (2014). PershinY. V.di VentraM.Neural Netw.20102388110.1016/j.neunet.2010.05.001 CrottyP.SchultD.SegallK.Phys. Rev. E201082119141:CAS:528:DC%2BC3cXpsFyktL8%3D10.1103/PhysRevE.82.011914 HochreiterS.SchmidhuberJ.Neural Comput.1997917351:STN:280:DyaK1c%2FhvVahsQ%3D%3D10.1162/neco.1997.9.8.1735 SchegolevA.KlenovN.SolovievI.TereshonokM.Supercond. Sci. Technol.2020341500610.1088/1361-6668/abc569 GudkovA. L.KupriyanovM. Yu.Samus’A. N.J. Exp. Theor. Phys.20121148181:CAS:528:DC%2BC38XosVagtLs%3D10.1134/S1063776112030144 SchegolevA. E.KlenovN. V.SolovievI. I.TereshonokM. V.Beilstein J. Nanotechnol.2016713971:CAS:528:DC%2BC2sXhsVOmtr8%3D10.3762/bjnano.7.130 J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, LV, USA, June 26–July 1,2016, p. 779. ShainlineJ. M.BuckleyS. M.MirinR. P.NamS. W.Phys. Rev. Appl.201773401310.1103/PhysRevApplied.7.034013 https://ru.wikipedia.org/wiki/Stockfish. SchneiderM. L.DonnellyC. A.RussekS. E.J. Appl. Phys.20181241611021:CAS:528:DC%2BC1cXitVWqsb3K10.1063/1.5042425 McCullochW. S.PittsW.Automata Studies1956PrincetonPrinceton Univ. Press MaguireY. G.ShapiroM. G.CybulskiT. R.Front. Comput. Neurosci.2013713710.3389/fncom.2013.00137 SungC.HwangH.YooI. K.J. Appl. Phys.20181241519031:CAS:528:DC%2BC1cXhvVOrurvE10.1063/1.5037835 SchneiderM. L.DonnellyC. A.RussekS. E.Sci. Adv.20184e170132910.1126/sciadv.1701329 SolovievI. I.SchegolevA. E.KlenovN. V.J. Appl. Phys.20181241521131:CAS:528:DC%2BC1cXhvVSitLbP10.1063/1.5042147 KornevV. K.SolovievI. I.SharafievA. V.IEEE Trans. Appl. Supercond.201223180040510.1109/TASC.2012.2232691 RyazanovV. V.Bol’ginovV. V.SobaninD. S.Phys. Proc.201236351:CAS:528:DC%2BC38Xhtl2msrjN10.1016/j.phpro.2012.06.126 MukhanovO. A.History of Superconductor Analog-to-Digital Converters. 100 Years of Superconductivity2011London, UKTaylor Francis ChengR.GotetiU. S.HamiltonM. C.J. Appl. Phys.20181241521261:CAS:528:DC%2BC1cXhvV2rtbbL10.1063/1.5042421 SeoK.KimI.JungS.Nanotechnology2011222540231:CAS:528:DC%2BC3MXos1Kqtrw%3D10.1088/0957-4484/22/25/254023 LikharevK. K.Rev. Mod. Phys.19795110110.1103/RevModPhys.51.101 JoS. H.ChangT.EbongI.Nano Lett.20101012971:CAS:528:DC%2BC3cXisFGnu7k%3D10.1021/nl904092h DeminV. A.NekhaevD. V.SurazhevskyI. A.Neural Netw.2021134641:STN:280:DC%2BB3szkvValsw%3D%3D10.1016/j.neunet.2020.11.005 DzheinA. K.MaoZh.MoiuddinK. M.Otkryt. Sist.1997416 EmelyanovA. V.NikiruyK. E.SerenkoA. V.Nanotechnology201931452011:CAS:528:DC%2BB3cXhvVOiurjM10.1088/1361-6528/ab4a6d BreenP. G.FoleyC. N.BoekholtT.ZwartS. P.Mon. Not. R. Astron. Soc.2020494246510.1093/mnras/staa713 TzimpragosG.VolkJ.VasudevanD.IEEE Micro2021417110.1109/MM.2021.3066377 AkopyanF.SawadaJ.CassidyA.IEEE Trans. Comput. Des. Integr. Circuits Syst.201534153710.1109/TCAD.2015.2474396 https://deepmind.com/blog/alphazero-shedding-new-light-grand-games-chess-shogi-and-go/. BuckleyS.ChilesJ.McCaughanA. N.Appl. Phys. Lett.20171111411011:CAS:528:DC%2BC2sXhs1Whs7fF10.1063/1.4994692 A. E. Schegolev, N. V. Klenov, M. V. Tereshonok, and S. S. Adjemov, “Elements of hybrid opto-superconducting convolutional neural networks,” in Proceedings of the 8th International Conference on Photonics, Optics and Laser Technology,2020, p. 135. HollisP. W.PaulosJ. J.IEEE J. Solid-State Circuits19922584910.1109/4.102684 M. L. Schneider, C. A. Donnelly, S. E. Russek, et al., in Proceedings of the 2017 IEEE International Conference on Rebooting Computing (ICRC),2017, p. 1. https://doi.org/10.1109/ICRC.2017.8123634 J. Saxe and K. Berlin, “Deep neural network based malware detection using two dimensional binary program features,” in Proceedings of the 2015 10th International Conference on Malicious and Unwanted Software (MALWARE), Fajardo, PR, USA, Oct. 20–22,2015, p. 11. https://doi.org/10.1109/MALWARE.2015.7413680 ZhengJ.Expert Syst. Appl.200936211610.1016/j.eswa.2007.12.029 PickettM. D.WilliamsR. S.Nanotechnology20132438400210.1088/0957-4484/24/38/384002 FryeR. C.RietmanE. A.WongC. C.IEEE Trans. Neural Networks199121101:STN:280:DC%2BD1c7hslOmtQ%3D%3D10.1109/72.80296 OhnoT.HasegawaT.TsuruokaT.Nat. Mater.2011105911:CAS:528:DC%2BC3MXotV2ju7w%3D10.1038/nmat3054 ScottG. J.EnglM. R.StarmsW. A.IEEE Geosci. Remote Sens. Lett.20171454910.1109/LGRS.2017.2657778 HaradaY.GotoE.IEEE Trans. Magn.199127286310.1109/20.133806 P. Moerland and E. Fiesler, “Neural network adaptations to hardware implementations,” in IDIAP, Handbook of Neural Computation E1.2:1-13 (Inst. Phys. Publ., Oxford Univ. Publ., New York, 1997). IndiveriG.HoriuchiT. K.Front. Neurosci.2011511810.3389/fnins.2011.00118 MizugakiY.NakajimaK.SawadaY.YamashitaT.IEEE Trans. Appl. Supercond.19944110.1109/77.273058 FarooqiM. Z.TabassumS. M.RehmaniM. H.SaleemY.J. Netw. Comput. Appl.20144616610.1016/j.jnca.2014.09.002 ChanthboualaA.GarciaV.CherifiR. O.Nat. Mater.2012118601:CAS:528:DC%2BC38XhtlGjsrfI10.1038/nmat3415 ShainlineJ. M.BuckleyS. M.NaderN.Opt. Express201725103221:CAS:528:DC%2BC1cXkvVCltbg%3D10.1364/OE.25.010322 A. Gudkov, Elektron.: Nauka, Tekhnol. Biznes, S65 (2014). ToomeyE.SegallK.BerggrenK.Front. Neurosci.20191393310.3389/fnins.2019.00933 ShainlineJ. M.BuckleyS. M.McCaughanA. N.J. Appl. Phys.20181241521301:CAS:528:DC%2BC1cXhvFSqsb%2FE10.1063/1.5038031 P. Dostál and P. Pokorný, Cluster Analysis and Neural Network (Dep. Inform., Brno Univ. Technol. Inst. Math., 2009). YanQ.LiM.ChenF.IEEE Trans. Wireless Commun.201413589310.1109/TWC.2014.2339218 J. H. T. Yip, X. Zhang, Y. Wang, et al., arXiv: 1910.07813 (2019). Y. E. Wang, G.-Y. Wei, and D. Brooks, arXiv: 1907.10701 (2019). KlenovN. V.SchegolevA. E.SolovievI. I.IEEE Trans. Appl. Supercond.201828130100610.1109/ J. M. Shainline (10299_CR79) 2018; 124 C. Sung (10299_CR38) 2018; 124 P. A. Merolla (10299_CR25) 2014; 345 N. V. Klenov (10299_CR86) 2018; 28 A. L. Gudkov (10299_CR93) 2012; 114 S. K. Tolpygo (10299_CR94) 2016; 26 W. Winci (10299_CR73) 2020; 1 D. A. Forsyth (10299_CR10) 2011 10299_CR69 M. L. Schneider (10299_CR76) 2018; 124 S. Bakurskiy (10299_CR88) 2020; 11 S. Haykin (10299_CR20) 1998 K. Ishida (10299_CR95) 2021; 41 K. Seo (10299_CR36) 2011; 22 J. Nickolls (10299_CR52) 2010; 30 C. L. Ayala (10299_CR97) 2020; 56 S. Buckley (10299_CR81) 2017; 111 V. K. Kornev (10299_CR62) 2012; 23 T. Onomi (10299_CR61) 2014; 507 A. Chanthbouala (10299_CR35) 2012; 11 R. Cheng (10299_CR74) 2018; 124 V. V. Ryazanov (10299_CR54) 2012; 36 S. Munjuluri (10299_CR66) 2015; 46 10299_CR75 H. H. Szu (10299_CR6) 1990 J. M. Shainline (10299_CR80) 2021; 118 S. Hochreiter (10299_CR49) 1997; 9 A. Perez-Tomas (10299_CR58) 2021; 11687 F. C. Hoppensteadt (10299_CR30) 2000; 11 Q. Yan (10299_CR65) 2014; 13 J. M. Shainline (10299_CR83) 2017; 7 M. Forssell (10299_CR17) 2014; 18 D. B. Strukov (10299_CR32) 2008; 453 10299_CR41 10299_CR42 10299_CR43 10299_CR46 10299_CR47 10299_CR8 10299_CR3 10299_CR4 J. M. Shainline (10299_CR82) 2017; 25 10299_CR1 10299_CR2 F. Akopyan (10299_CR40) 2015; 34 W. S. McCulloch (10299_CR9) 1956 P. W. Hollis (10299_CR28) 1992; 25 G. E. Santoro (10299_CR71) 2006; 39 A. Schegolev (10299_CR90) 2020; 34 N. V. Klenov (10299_CR87) 2019; 45 10299_CR18 A. Esteva (10299_CR51) 2017; 542 M. Prezioso (10299_CR39) 2015; 521 A. K. Dzhein (10299_CR11) 1997; 4 K. K. Likharev (10299_CR91) 1979; 51 G. J. Scott (10299_CR48) 2017; 14 T. Ohno (10299_CR37) 2011; 10 P. G. Breen (10299_CR5) 2020; 494 S. H. Jo (10299_CR34) 2010; 10 10299_CR22 10299_CR26 10299_CR27 A. V. Emelyanov (10299_CR55) 2019; 31 P. Hauke (10299_CR72) 2020; 83 Y. LeCun (10299_CR50) 2015; 521 Y. Harada (10299_CR68) 1991; 27 L. Chua (10299_CR31) 1971; 18 D. Caimi (10299_CR59) 2021; 185 G. Indiveri (10299_CR29) 2011; 5 I. I. Soloviev (10299_CR84) 2018; 124 P. Crotty (10299_CR53) 2010; 82 Y. G. Maguire (10299_CR16) 2013; 7 R. Callan (10299_CR7) 1998 H. H. Szu (10299_CR45) 1990 G. Tzimpragos (10299_CR96) 2021; 41 I. A. Surazhevsky (10299_CR57) 2021; 146 E. Toomey (10299_CR77) 2019; 13 O. A. Mukhanov (10299_CR64) 2011 A. E. Schegolev (10299_CR85) 2016; 7 J. Zheng (10299_CR15) 2009; 36 M. Z. Farooqi (10299_CR67) 2014; 46 R. C. Frye (10299_CR21) 1991; 2 I. I. Soloviev (10299_CR44) 2017; 8 M. L. Schneider (10299_CR78) 2018; 4 P. K. Meher (10299_CR24) 2009; 56 Y. V. Pershin (10299_CR33) 2010; 23 10299_CR89 G.-B. Huang (10299_CR70) 2006; 70 L. Spietz (10299_CR63) 2009; 95 Y. Mizugaki (10299_CR60) 1994; 4 V. A. Demin (10299_CR56) 2021; 134 10299_CR92 10299_CR12 H. Hikawa (10299_CR23) 2005; 18 10299_CR13 10299_CR14 M. D. Pickett (10299_CR19) 2013; 24 |
| References_xml | – reference: M. L. Schneider, C. A. Donnelly, S. E. Russek, et al., in Proceedings of the 2017 IEEE International Conference on Rebooting Computing (ICRC),2017, p. 1. https://doi.org/10.1109/ICRC.2017.8123634 – reference: BreenP. G.FoleyC. N.BoekholtT.ZwartS. P.Mon. Not. R. Astron. Soc.2020494246510.1093/mnras/staa713 – reference: P. Moerland and E. Fiesler, “Neural network adaptations to hardware implementations,” in IDIAP, Handbook of Neural Computation E1.2:1-13 (Inst. Phys. Publ., Oxford Univ. Publ., New York, 1997). – reference: McCullochW. S.PittsW.Automata Studies1956PrincetonPrinceton Univ. Press – reference: Y. E. Wang, G.-Y. Wei, and D. Brooks, arXiv: 1907.10701 (2019). – reference: HoppensteadtF. C.IzhikevichE. M.IEEE Trans. Neural Networks2000117341:STN:280:DC%2BD1c%2FptFGnuw%3D%3D10.1109/72.846744 – reference: SchneiderM. L.DonnellyC. A.RussekS. E.Sci. Adv.20184e170132910.1126/sciadv.1701329 – reference: HaykinS.Neural Networks: A Comprehensive Foundation1998Englewood CliffsPrentice Hall – reference: V. Aparin and J. A. Levin, “Methods and systems for CMOS implementation of neuron synapse,” Google Patent No. US8694452B2 (2014). – reference: IndiveriG.HoriuchiT. K.Front. Neurosci.2011511810.3389/fnins.2011.00118 – reference: SpietzL.IrwinK.AumentadoJ.Appl. Phys. Lett.200995925051:CAS:528:DC%2BD1MXhtV2qt7jO10.1063/1.3220061 – reference: MaguireY. G.ShapiroM. G.CybulskiT. R.Front. Comput. Neurosci.2013713710.3389/fncom.2013.00137 – reference: ShainlineJ. M.BuckleyS. M.MirinR. P.NamS. W.Phys. Rev. Appl.201773401310.1103/PhysRevApplied.7.034013 – reference: ChuaL.IEEE Trans. Circuit Theory19711850710.1109/TCT.1971.1083337 – reference: HaradaY.GotoE.IEEE Trans. Magn.199127286310.1109/20.133806 – reference: ShainlineJ. M.BuckleyS. M.McCaughanA. N.J. Appl. Phys.20181241521301:CAS:528:DC%2BC1cXhvFSqsb%2FE10.1063/1.5038031 – reference: LeCunY.BengioY.HintonG.Nature (London, U.K.)20155214361:CAS:528:DC%2BC2MXht1WlurzP10.1038/nature14539 – reference: M. B. Berkinblit, Neuron Networks (MIROS VZMSh RAO, Moscow, 1993) [in Russian]. – reference: MeherP. K.VallsJ.JuangT.-B.IEEE Trans. Circuits Syst. I: Regul. Pap.200956189310.1109/TCSI.2009.2025803 – reference: http://data-mining.philippe-fournier-viger.com/too-many-machine-learning-papers/. – reference: PickettM. D.WilliamsR. S.Nanotechnology20132438400210.1088/0957-4484/24/38/384002 – reference: EmelyanovA. V.NikiruyK. E.SerenkoA. V.Nanotechnology201931452011:CAS:528:DC%2BB3cXhvVOiurjM10.1088/1361-6528/ab4a6d – reference: CaimiD.SchmidH.MorfT.Solid State Electron.20211851080771:CAS:528:DC%2BB3MXht1ejtrzP10.1016/j.sse.2021.108077 – reference: CallanR.The Essence of Neural Networks1998Englewood CliffsPrentice Hall – reference: ChanthboualaA.GarciaV.CherifiR. O.Nat. Mater.2012118601:CAS:528:DC%2BC38XhtlGjsrfI10.1038/nmat3415 – reference: EstevaA.KuprelB.NovoaR. A.Nature (London, U.K.)20175421151:CAS:528:DC%2BC2sXhsFGltrY%3D10.1038/nature21056 – reference: DzheinA. K.MaoZh.MoiuddinK. M.Otkryt. Sist.1997416 – reference: PreziosoM.Merrikh-BayatF.HoskinsB. D.Nature (London, U.K.)2015521611:CAS:528:DC%2BC2MXnvFWjtb4%3D10.1038/nature14441 – reference: P. Dostál and P. Pokorný, Cluster Analysis and Neural Network (Dep. Inform., Brno Univ. Technol. Inst. Math., 2009). – reference: https://deepmind.com/blog/alphazero-shedding-new-light-grand-games-chess-shogi-and-go/. – reference: J. H. T. Yip, X. Zhang, Y. Wang, et al., arXiv: 1910.07813 (2019). – reference: JoS. H.ChangT.EbongI.Nano Lett.20101012971:CAS:528:DC%2BC3cXisFGnu7k%3D10.1021/nl904092h – reference: FarooqiM. Z.TabassumS. M.RehmaniM. H.SaleemY.J. Netw. Comput. Appl.20144616610.1016/j.jnca.2014.09.002 – reference: ChengR.GotetiU. S.HamiltonM. C.J. Appl. Phys.20181241521261:CAS:528:DC%2BC1cXhvV2rtbbL10.1063/1.5042421 – reference: SeoK.KimI.JungS.Nanotechnology2011222540231:CAS:528:DC%2BC3MXos1Kqtrw%3D10.1088/0957-4484/22/25/254023 – reference: PershinY. V.di VentraM.Neural Netw.20102388110.1016/j.neunet.2010.05.001 – reference: K.-A. Aliev, D. Ulyanov, and V. Lempitsky, arXiv: 1906.08240 (2019). – reference: StrukovD. B.SniderG. S.StewartD. R.WilliamsR. S.Nature (London, U.K.)2008453801:CAS:528:DC%2BD1cXltlans7g%3D10.1038/nature06932 – reference: AyalaC. L.TanakaT.SaitoR.IEEE J. Solid-State Circuits202056115210.1109/JSSC.2020.3041338 – reference: NickollsJ.DallyW. J.IEEE Micro.2010305610.1109/MM.2010.41 – reference: ToomeyE.SegallK.BerggrenK.Front. Neurosci.20191393310.3389/fnins.2019.00933 – reference: ShainlineJ. M.BuckleyS. M.NaderN.Opt. Express201725103221:CAS:528:DC%2BC1cXkvVCltbg%3D10.1364/OE.25.010322 – reference: MerollaP. A.ArthurJ. V.Alvarez-IcazaR.Science (Washington, DC, U. S.)20143456681:CAS:528:DC%2BC2cXht12gtLbN10.1126/science.1254642 – reference: E. Goto, Proc. IRE 47, 1304 (1959). https://doi.org/10.1109/JRPROC.1959.287195 – reference: SchegolevA.KlenovN.SolovievI.TereshonokM.Supercond. Sci. Technol.2020341500610.1088/1361-6668/abc569 – reference: ForssellM.Inform. Flow Networks2014181 – reference: FryeR. C.RietmanE. A.WongC. C.IEEE Trans. Neural Networks199121101:STN:280:DC%2BD1c7hslOmtQ%3D%3D10.1109/72.80296 – reference: https://ru.wikipedia.org/wiki/Stockfish. – reference: SurazhevskyI. A.DeminV. A.IlyasovA. I.Chaos Solitons Fractals202114611089010.1016/j.chaos.2021.110890 – reference: IshidaK.ByunI.NagaokaI.IEEE Micro2021411910.1109/MM.2021.3070488 – reference: Perez-TomasA.RogersD. J.ChikoidzeE.GarridoJ. A.A walk on the frontier of energy electronics with power ultra-wide bandgap oxides and ultra-thin neuromorphic 2D materialsProc. SPIE202111687116871Y10.1117/12.2590747 – reference: H. Rebecq, R. Ranftl, V. Koltun, and D. Scaramuzza, IEEE Trans. Pattern Anal. Mach. Intell., 1964 (2019). https://doi.org/10.1109/TPAMI.2019.2963386 – reference: MunjuluriS.GarimellaR. M.Proc. Comput. Sci.201546115610.1016/j.procs.2015.01.028 – reference: J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, LV, USA, June 26–July 1,2016, p. 779. – reference: BakurskiyS.KupriyanovM.KlenovN.Beilstein J. Nanotechnol.20201113361:CAS:528:DC%2BB3MXhsVGmtL7N10.3762/bxiv.2020.69.v1 – reference: WinciW.BuffoniL.SadeghiH.Mach. Learn. Sci. Technol.202014502810.1088/2632-2153/aba220 – reference: HikawaH.Neural Netw.20051851410.1016/j.neunet.2005.06.012 – reference: ForsythD. A.PonceJ.Computer Vision: A Modern Approach2011Englewood CliffsPrentice Hall – reference: D. Silver, T. Hubert, J. Schrittwieser, et al., arXiv: 1712.01815 (2017). – reference: S. Ginosar, A. Bar, G. Kohavi, et al., in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2019, p. 3497. – reference: CrottyP.SchultD.SegallK.Phys. Rev. E201082119141:CAS:528:DC%2BC3cXpsFyktL8%3D10.1103/PhysRevE.82.011914 – reference: SolovievI. I.SchegolevA. E.KlenovN. V.J. Appl. Phys.20181241521131:CAS:528:DC%2BC1cXhvVSitLbP10.1063/1.5042147 – reference: AkopyanF.SawadaJ.CassidyA.IEEE Trans. Comput. Des. Integr. Circuits Syst.201534153710.1109/TCAD.2015.2474396 – reference: SantoroG. E.TosattiE.J. Phys. A: Math. Gen.200639R3931:CAS:528:DC%2BD28XhtVKrtbvJ10.1088/0305-4470/39/36/R01 – reference: HaukeP.KatzgraberH. G.LechnerW.NishimoriH.Rep. Prog. Phys.202083544011:CAS:528:DC%2BB3cXitFOltLjN10.1088/1361-6633/ab85b8 – reference: SzuH. H.Superconducting neural network computer and sensor array1990 – reference: HollisP. W.PaulosJ. J.IEEE J. Solid-State Circuits19922584910.1109/4.102684 – reference: MukhanovO. A.History of Superconductor Analog-to-Digital Converters. 100 Years of Superconductivity2011London, UKTaylor Francis – reference: YanQ.LiM.ChenF.IEEE Trans. Wireless Commun.201413589310.1109/TWC.2014.2339218 – reference: KlenovN. V.SchegolevA. E.SolovievI. I.IEEE Trans. Appl. Supercond.201828130100610.1109/TASC.2018.2836903 – reference: RyazanovV. V.Bol’ginovV. V.SobaninD. S.Phys. Proc.201236351:CAS:528:DC%2BC38Xhtl2msrjN10.1016/j.phpro.2012.06.126 – reference: ScottG. J.EnglM. R.StarmsW. A.IEEE Geosci. Remote Sens. Lett.20171454910.1109/LGRS.2017.2657778 – reference: OhnoT.HasegawaT.TsuruokaT.Nat. Mater.2011105911:CAS:528:DC%2BC3MXotV2ju7w%3D10.1038/nmat3054 – reference: OnomiT.NakajimaK.J. Phys.: Conf. Ser.20145074202910.1088/1742-6596/507/4/042029 – reference: ZhengJ.Expert Syst. Appl.200936211610.1016/j.eswa.2007.12.029 – reference: SchegolevA. E.KlenovN. V.SolovievI. I.TereshonokM. V.Beilstein J. Nanotechnol.2016713971:CAS:528:DC%2BC2sXhsVOmtr8%3D10.3762/bjnano.7.130 – reference: SolovievI. I.KlenovN. V.BakurskiyS. V.Beilstein J. Nanotechnol.20178268910.3762/bjnano.8.269 – reference: HuangG.-B.ZhuQ.-Y.SiewC.-K.Neurocomputing20067048910.1016/j.neucom.2005.12.126 – reference: A. Gudkov, Elektron.: Nauka, Tekhnol. Biznes, S65 (2014). – reference: BuckleyS.ChilesJ.McCaughanA. N.Appl. Phys. Lett.20171111411011:CAS:528:DC%2BC2sXhs1Whs7fF10.1063/1.4994692 – reference: HochreiterS.SchmidhuberJ.Neural Comput.1997917351:STN:280:DyaK1c%2FhvVahsQ%3D%3D10.1162/neco.1997.9.8.1735 – reference: A. E. Schegolev, N. V. Klenov, M. V. Tereshonok, and S. S. Adjemov, “Elements of hybrid opto-superconducting convolutional neural networks,” in Proceedings of the 8th International Conference on Photonics, Optics and Laser Technology,2020, p. 135. – reference: SungC.HwangH.YooI. K.J. Appl. Phys.20181241519031:CAS:528:DC%2BC1cXhvVOrurvE10.1063/1.5037835 – reference: KlenovN. V.KuznetsovA. V.SchegolevA. E.Low Temp. Phys.20194576910.1063/1.5111305 – reference: MizugakiY.NakajimaK.SawadaY.YamashitaT.IEEE Trans. Appl. Supercond.19944110.1109/77.273058 – reference: F. D. Foresee and M. T. Hagan, in Proceedings of International Conference on Neural Networks (ICNN’97) on Gauss-Newton Approximation to Bayesian Learning, Houston, TX, USA, June 12,1997, Vol. 3, p. 1930. https://doi.org/10.1109/ICNN.1997.614194 – reference: KornevV. K.SolovievI. I.SharafievA. V.IEEE Trans. Appl. Supercond.201223180040510.1109/TASC.2012.2232691 – reference: TzimpragosG.VolkJ.VasudevanD.IEEE Micro2021417110.1109/MM.2021.3066377 – reference: S. S. Kim and S. Jung, “Hardware implementation of a real time neural network controller with a DSP and an FPGA,” in Proceedings of the IEEE International Conference on Robotics and Automation, New Orleans, LA, USA (2004), Vol. 5, p. 4639. https://doi.org/10.1109/ROBOT.2004.1302449 – reference: SchneiderM. L.DonnellyC. A.RussekS. E.J. Appl. Phys.20181241611021:CAS:528:DC%2BC1cXitVWqsb3K10.1063/1.5042425 – reference: DeminV. A.NekhaevD. V.SurazhevskyI. A.Neural Netw.2021134641:STN:280:DC%2BB3szkvValsw%3D%3D10.1016/j.neunet.2020.11.005 – reference: LikharevK. K.Rev. Mod. Phys.19795110110.1103/RevModPhys.51.101 – reference: TolpygoS. K.BolkhovskyV.WeirT. J.IEEE Trans. Appl. Supercond.201626110.1109/TASC.2016.2519388 – reference: J. Saxe and K. Berlin, “Deep neural network based malware detection using two dimensional binary program features,” in Proceedings of the 2015 10th International Conference on Malicious and Unwanted Software (MALWARE), Fajardo, PR, USA, Oct. 20–22,2015, p. 11. https://doi.org/10.1109/MALWARE.2015.7413680 – reference: ShainlineJ. M.Appl. Phys. Lett.20211181605011:CAS:528:DC%2BB3MXpsVKls74%3D10.1063/5.0040567 – reference: GudkovA. L.KupriyanovM. Yu.Samus’A. N.J. Exp. Theor. Phys.20121148181:CAS:528:DC%2BC38XosVagtLs%3D10.1134/S1063776112030144 – ident: 10299_CR46 – volume-title: History of Superconductor Analog-to-Digital Converters. 100 Years of Superconductivity year: 2011 ident: 10299_CR64 – volume: 134 start-page: 64 year: 2021 ident: 10299_CR56 publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.11.005 – volume: 46 start-page: 166 year: 2014 ident: 10299_CR67 publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2014.09.002 – volume: 34 start-page: 15006 year: 2020 ident: 10299_CR90 publication-title: Supercond. Sci. Technol. doi: 10.1088/1361-6668/abc569 – volume: 114 start-page: 818 year: 2012 ident: 10299_CR93 publication-title: J. Exp. Theor. Phys. doi: 10.1134/S1063776112030144 – ident: 10299_CR8 – volume-title: Neural Networks: A Comprehensive Foundation year: 1998 ident: 10299_CR20 – volume-title: Automata Studies year: 1956 ident: 10299_CR9 – ident: 10299_CR2 – volume: 70 start-page: 489 year: 2006 ident: 10299_CR70 publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – ident: 10299_CR13 doi: 10.1109/ICNN.1997.614194 – ident: 10299_CR43 – ident: 10299_CR3 doi: 10.1109/TPAMI.2019.2963386 – volume: 13 start-page: 933 year: 2019 ident: 10299_CR77 publication-title: Front. Neurosci. doi: 10.3389/fnins.2019.00933 – volume: 11 start-page: 1336 year: 2020 ident: 10299_CR88 publication-title: Beilstein J. Nanotechnol. doi: 10.3762/bxiv.2020.69.v1 – volume: 453 start-page: 80 year: 2008 ident: 10299_CR32 publication-title: Nature (London, U.K.) doi: 10.1038/nature06932 – ident: 10299_CR26 – ident: 10299_CR12 – volume: 542 start-page: 115 year: 2017 ident: 10299_CR51 publication-title: Nature (London, U.K.) doi: 10.1038/nature21056 – volume: 185 start-page: 108077 year: 2021 ident: 10299_CR59 publication-title: Solid State Electron. doi: 10.1016/j.sse.2021.108077 – volume: 124 start-page: 152130 year: 2018 ident: 10299_CR79 publication-title: J. Appl. Phys. doi: 10.1063/1.5038031 – volume: 41 start-page: 71 year: 2021 ident: 10299_CR96 publication-title: IEEE Micro doi: 10.1109/MM.2021.3066377 – volume-title: The Essence of Neural Networks year: 1998 ident: 10299_CR7 – ident: 10299_CR47 doi: 10.1109/CVPR.2016.91 – volume: 124 start-page: 152113 year: 2018 ident: 10299_CR84 publication-title: J. Appl. Phys. doi: 10.1063/1.5042147 – volume: 39 start-page: R393 year: 2006 ident: 10299_CR71 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/39/36/R01 – volume: 124 start-page: 151903 year: 2018 ident: 10299_CR38 publication-title: J. Appl. Phys. doi: 10.1063/1.5037835 – volume: 34 start-page: 1537 year: 2015 ident: 10299_CR40 publication-title: IEEE Trans. Comput. Des. Integr. Circuits Syst. doi: 10.1109/TCAD.2015.2474396 – volume: 82 start-page: 11914 year: 2010 ident: 10299_CR53 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.82.011914 – volume-title: Superconducting neural network computer and sensor array year: 1990 ident: 10299_CR6 – volume: 2 start-page: 110 year: 1991 ident: 10299_CR21 publication-title: IEEE Trans. Neural Networks doi: 10.1109/72.80296 – volume: 1 start-page: 45028 year: 2020 ident: 10299_CR73 publication-title: Mach. Learn. Sci. Technol. doi: 10.1088/2632-2153/aba220 – volume: 118 start-page: 160501 year: 2021 ident: 10299_CR80 publication-title: Appl. Phys. Lett. doi: 10.1063/5.0040567 – ident: 10299_CR22 doi: 10.1109/ROBOT.2004.1302449 – volume: 18 start-page: 514 year: 2005 ident: 10299_CR23 publication-title: Neural Netw. doi: 10.1016/j.neunet.2005.06.012 – volume: 11 start-page: 860 year: 2012 ident: 10299_CR35 publication-title: Nat. Mater. doi: 10.1038/nmat3415 – volume: 25 start-page: 849 year: 1992 ident: 10299_CR28 publication-title: IEEE J. Solid-State Circuits doi: 10.1109/4.102684 – volume: 5 start-page: 118 year: 2011 ident: 10299_CR29 publication-title: Front. Neurosci. doi: 10.3389/fnins.2011.00118 – ident: 10299_CR4 – volume: 124 start-page: 161102 year: 2018 ident: 10299_CR76 publication-title: J. Appl. Phys. doi: 10.1063/1.5042425 – ident: 10299_CR89 doi: 10.5220/0009100101350139 – volume: 18 start-page: 507 year: 1971 ident: 10299_CR31 publication-title: IEEE Trans. Circuit Theory doi: 10.1109/TCT.1971.1083337 – ident: 10299_CR14 doi: 10.1109/MALWARE.2015.7413680 – volume: 124 start-page: 152126 year: 2018 ident: 10299_CR74 publication-title: J. Appl. Phys. doi: 10.1063/1.5042421 – volume: 27 start-page: 2863 year: 1991 ident: 10299_CR68 publication-title: IEEE Trans. Magn. doi: 10.1109/20.133806 – ident: 10299_CR75 doi: 10.1109/ICRC.2017.8123634 – volume: 56 start-page: 1893 year: 2009 ident: 10299_CR24 publication-title: IEEE Trans. Circuits Syst. I: Regul. Pap. doi: 10.1109/TCSI.2009.2025803 – volume: 28 start-page: 1301006 year: 2018 ident: 10299_CR86 publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/TASC.2018.2836903 – volume: 23 start-page: 1800405 year: 2012 ident: 10299_CR62 publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/TASC.2012.2232691 – volume: 11687 start-page: 116871Y year: 2021 ident: 10299_CR58 publication-title: Proc. SPIE doi: 10.1117/12.2590747 – volume: 111 start-page: 141101 year: 2017 ident: 10299_CR81 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4994692 – volume: 4 start-page: 1 year: 1994 ident: 10299_CR60 publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/77.273058 – ident: 10299_CR1 – ident: 10299_CR42 – volume: 345 start-page: 668 year: 2014 ident: 10299_CR25 publication-title: Science (Washington, DC, U. S.) doi: 10.1126/science.1254642 – volume: 494 start-page: 2465 year: 2020 ident: 10299_CR5 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/staa713 – ident: 10299_CR69 doi: 10.1109/JRPROC.1959.287195 – volume: 30 start-page: 56 year: 2010 ident: 10299_CR52 publication-title: IEEE Micro. doi: 10.1109/MM.2010.41 – volume: 36 start-page: 2116 year: 2009 ident: 10299_CR15 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.12.029 – volume: 11 start-page: 734 year: 2000 ident: 10299_CR30 publication-title: IEEE Trans. Neural Networks doi: 10.1109/72.846744 – volume: 41 start-page: 19 year: 2021 ident: 10299_CR95 publication-title: IEEE Micro doi: 10.1109/MM.2021.3070488 – ident: 10299_CR27 – volume: 22 start-page: 254023 year: 2011 ident: 10299_CR36 publication-title: Nanotechnology doi: 10.1088/0957-4484/22/25/254023 – volume: 36 start-page: 35 year: 2012 ident: 10299_CR54 publication-title: Phys. Proc. doi: 10.1016/j.phpro.2012.06.126 – volume: 45 start-page: 769 year: 2019 ident: 10299_CR87 publication-title: Low Temp. Phys. doi: 10.1063/1.5111305 – volume: 23 start-page: 881 year: 2010 ident: 10299_CR33 publication-title: Neural Netw. doi: 10.1016/j.neunet.2010.05.001 – volume: 7 start-page: 34013 year: 2017 ident: 10299_CR83 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.7.034013 – volume: 7 start-page: 1397 year: 2016 ident: 10299_CR85 publication-title: Beilstein J. Nanotechnol. doi: 10.3762/bjnano.7.130 – volume: 8 start-page: 2689 year: 2017 ident: 10299_CR44 publication-title: Beilstein J. Nanotechnol. doi: 10.3762/bjnano.8.269 – volume: 24 start-page: 384002 year: 2013 ident: 10299_CR19 publication-title: Nanotechnology doi: 10.1088/0957-4484/24/38/384002 – volume: 51 start-page: 101 year: 1979 ident: 10299_CR91 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.51.101 – volume: 31 start-page: 45201 year: 2019 ident: 10299_CR55 publication-title: Nanotechnology doi: 10.1088/1361-6528/ab4a6d – volume: 10 start-page: 1297 year: 2010 ident: 10299_CR34 publication-title: Nano Lett. doi: 10.1021/nl904092h – volume: 14 start-page: 549 year: 2017 ident: 10299_CR48 publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2657778 – volume: 46 start-page: 1156 year: 2015 ident: 10299_CR66 publication-title: Proc. Comput. Sci. doi: 10.1016/j.procs.2015.01.028 – volume: 25 start-page: 10322 year: 2017 ident: 10299_CR82 publication-title: Opt. Express doi: 10.1364/OE.25.010322 – volume: 521 start-page: 61 year: 2015 ident: 10299_CR39 publication-title: Nature (London, U.K.) doi: 10.1038/nature14441 – volume: 7 start-page: 137 year: 2013 ident: 10299_CR16 publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2013.00137 – ident: 10299_CR92 – volume: 13 start-page: 5893 year: 2014 ident: 10299_CR65 publication-title: IEEE Trans. Wireless Commun. doi: 10.1109/TWC.2014.2339218 – volume: 521 start-page: 436 year: 2015 ident: 10299_CR50 publication-title: Nature (London, U.K.) doi: 10.1038/nature14539 – volume: 9 start-page: 1735 year: 1997 ident: 10299_CR49 publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 95 start-page: 92505 year: 2009 ident: 10299_CR63 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3220061 – ident: 10299_CR41 – volume: 26 start-page: 1 year: 2016 ident: 10299_CR94 publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/TASC.2016.2519388 – volume: 56 start-page: 1152 year: 2020 ident: 10299_CR97 publication-title: IEEE J. Solid-State Circuits doi: 10.1109/JSSC.2020.3041338 – ident: 10299_CR18 – volume: 507 start-page: 42029 year: 2014 ident: 10299_CR61 publication-title: J. Phys.: Conf. Ser. doi: 10.1088/1742-6596/507/4/042029 – volume: 83 start-page: 54401 year: 2020 ident: 10299_CR72 publication-title: Rep. Prog. Phys. doi: 10.1088/1361-6633/ab85b8 – volume: 4 start-page: e1701329 year: 2018 ident: 10299_CR78 publication-title: Sci. Adv. doi: 10.1126/sciadv.1701329 – volume: 146 start-page: 110890 year: 2021 ident: 10299_CR57 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2021.110890 – volume-title: Computer Vision: A Modern Approach year: 2011 ident: 10299_CR10 – volume: 10 start-page: 591 year: 2011 ident: 10299_CR37 publication-title: Nat. Mater. doi: 10.1038/nmat3054 – volume: 4 start-page: 16 year: 1997 ident: 10299_CR11 publication-title: Otkryt. Sist. – volume: 18 start-page: 1 year: 2014 ident: 10299_CR17 publication-title: Inform. Flow Networks – volume-title: Superconducting neural network computer and sensor array year: 1990 ident: 10299_CR45 |
| SSID | ssib054306636 ssj0002710206 ssj0000327844 |
| Score | 2.2427006 |
| Snippet | The popularity and diversity of artificial neural networks for various applications are ever increasing. The development of neural networks in the form of... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 811 |
| SubjectTerms | Algorithms Artificial neural networks Chemistry and Materials Science Complex systems Global optimization Industrial and Production Engineering Machines Manufacturing Materials Science Microprocessors Nanoelectronics and Neuromorphic Computer Systems Nanotechnology Neural networks Object recognition Processes Quantum computing Speech recognition Superconductivity |
| Title | Superconducting Neural Networks: from an Idea to Fundamentals and, Further, to Application |
| URI | https://link.springer.com/article/10.1134/S2635167621060227 https://www.proquest.com/docview/2623432079 |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2635-1684 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002710206 issn: 2635-1676 databaseCode: AFBBN dateStart: 20080401 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 2635-1684 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327844 issn: 2635-1676 databaseCode: AGYKE dateStart: 20080101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZK9wIPiKsoDJQHnuhS2tixE9461LJxqZC2ocFL5FsGomqmNuGBP8Tf5JzEudBtiCFVaeu4p4rP5-NzbJ_PhDyPpabgZSs_oML4LDbCVzG1vmChoDBiRaHCbOQPC35wwt6ehqe93q_OrqUiVyP989K8kv_RKpSBXjFL9hqabYRCAXwG_cIVNAzXf9LxUXFu1xDQImcrhvzItAFNvqi2dpeb3cr0EejDh8ZK9DPnmPlREfqX7Myl81qsc6c6qDFtl7S7niuYYWRsypupeOe7b7YJS926zld7li3hgdD2jIazUWPZYZjLflRJXsNPTfERyIQhurxxOIJXszGoMN-zWsz7UXeWIpi4dL0aVx-X9ps0dtOZXGsNHfLh-BMuHCV2t6w6Pq6x1LyDyK7ZjZzBdiN4mV53yeBAGS5Po2j8Nwh2ORIotiNhsz-xjIwoSy7UvUF2Avg27pOd6Xx_f1GbrpBR9N14M70XoOdWnuzaPJ1bUwe5Ly_I_dMrakOdrdX50uk5vkNuu2jFm1bQu0t6dnWP3OpwWN4nX7ZA6FUg9GoQvvIQgp5ceQhBL8-8LgSh3Ox5DoB7eLcDvwfkZD47fn3guwM7fOjwPIderlKqtUptDK6n5mFqjIqEmDCdBoYybBRlI5YaQU0Qas0jLjXXUo8tHstAH5L-KlvZR8SjnAtppYyoNCyCsDoSYEcmilMpUk7ZgIzrBku0Y7PHQ1WWyZW6G5AXzU_OKyqXv1XerbWQuB6_SQKIFRgNxiIekGGtmfb2lcIeX6v2E3Kz7UG7pJ-vC_sUPN9cPXOow_c3n9_NfgP9NKI3 |
| linkProvider | Library Specific Holdings |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Superconducting+Neural+Networks%3A+from+an+Idea+to+Fundamentals+and%2C+Further%2C+to+Application&rft.jtitle=Nanobiotechnology+Reports+%28Online%29&rft.au=Schegolev%2C+A.+E.&rft.au=Klenov%2C+N.+V.&rft.au=Soloviev%2C+I.+I.&rft.au=Gudkov%2C+A.+L.&rft.date=2021-11-01&rft.pub=Pleiades+Publishing&rft.issn=2635-1676&rft.eissn=2635-1684&rft.volume=16&rft.issue=6&rft.spage=811&rft.epage=820&rft_id=info:doi/10.1134%2FS2635167621060227&rft.externalDocID=10_1134_S2635167621060227 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2635-1676&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2635-1676&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2635-1676&client=summon |