Human Pose and Path Estimation from Aerial Video Using Dynamic Classifier Selection
We consider the problem of estimating human pose and trajectory by an aerial robot with a monocular camera in near real time. We present a preliminary solution whose distinguishing feature is a dynamic classifier selection architecture. In our solution, each video frame is corrected for perspective...
        Saved in:
      
    
          | Published in | Cognitive computation Vol. 10; no. 6; pp. 1019 - 1041 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.12.2018
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1866-9956 1866-9964  | 
| DOI | 10.1007/s12559-018-9577-6 | 
Cover
| Abstract | We consider the problem of estimating human pose and trajectory by an aerial robot with a monocular camera in near real time. We present a preliminary solution whose distinguishing feature is a
dynamic classifier selection
architecture. In our solution, each video frame is corrected for perspective using projective transformation. Then, two alternative feature sets are used: (i) Histogram of Oriented Gradients (HOG) of the silhouette, (ii) Convolutional Neural Network (CNN) features of the RGB image. The features (HOG or CNN) are classified using a
dynamic classifier
. A class is defined as a pose-viewpoint pair, and a total of 64 classes are defined to represent a forward walking and turning gait sequence. Our solution provides three main advantages: (i) Classification is efficient due to dynamic selection (4-class vs. 64-class classification). (ii) Classification errors are confined to neighbors of the true viewpoints. (iii) The robust temporal relationship between poses is used to resolve the left-right ambiguities of human silhouettes. Experiments conducted on both fronto-parallel videos and aerial videos confirm our solution can achieve accurate pose and trajectory estimation for both scenarios. We found using HOG features provides higher accuracy than using CNN features. For example, applying the HOG-based variant of our scheme to the “walking on a figure 8-shaped path” dataset (1652 frames) achieved estimation accuracies of 99.6% for viewpoints and 96.2% for number of poses. | 
    
|---|---|
| AbstractList | We consider the problem of estimating human pose and trajectory by an aerial robot with a monocular camera in near real time. We present a preliminary solution whose distinguishing feature is a dynamic classifier selection architecture. In our solution, each video frame is corrected for perspective using projective transformation. Then, two alternative feature sets are used: (i) Histogram of Oriented Gradients (HOG) of the silhouette, (ii) Convolutional Neural Network (CNN) features of the RGB image. The features (HOG or CNN) are classified using a dynamic classifier. A class is defined as a pose-viewpoint pair, and a total of 64 classes are defined to represent a forward walking and turning gait sequence. Our solution provides three main advantages: (i) Classification is efficient due to dynamic selection (4-class vs. 64-class classification). (ii) Classification errors are confined to neighbors of the true viewpoints. (iii) The robust temporal relationship between poses is used to resolve the left-right ambiguities of human silhouettes. Experiments conducted on both fronto-parallel videos and aerial videos confirm our solution can achieve accurate pose and trajectory estimation for both scenarios. We found using HOG features provides higher accuracy than using CNN features. For example, applying the HOG-based variant of our scheme to the “walking on a figure 8-shaped path” dataset (1652 frames) achieved estimation accuracies of 99.6% for viewpoints and 96.2% for number of poses. We consider the problem of estimating human pose and trajectory by an aerial robot with a monocular camera in near real time. We present a preliminary solution whose distinguishing feature is a dynamic classifier selection architecture. In our solution, each video frame is corrected for perspective using projective transformation. Then, two alternative feature sets are used: (i) Histogram of Oriented Gradients (HOG) of the silhouette, (ii) Convolutional Neural Network (CNN) features of the RGB image. The features (HOG or CNN) are classified using a dynamic classifier . A class is defined as a pose-viewpoint pair, and a total of 64 classes are defined to represent a forward walking and turning gait sequence. Our solution provides three main advantages: (i) Classification is efficient due to dynamic selection (4-class vs. 64-class classification). (ii) Classification errors are confined to neighbors of the true viewpoints. (iii) The robust temporal relationship between poses is used to resolve the left-right ambiguities of human silhouettes. Experiments conducted on both fronto-parallel videos and aerial videos confirm our solution can achieve accurate pose and trajectory estimation for both scenarios. We found using HOG features provides higher accuracy than using CNN features. For example, applying the HOG-based variant of our scheme to the “walking on a figure 8-shaped path” dataset (1652 frames) achieved estimation accuracies of 99.6% for viewpoints and 96.2% for number of poses.  | 
    
| Author | Perera, Asanka G. Chahl, Javaan Law, Yee Wei  | 
    
| Author_xml | – sequence: 1 givenname: Asanka G. orcidid: 0000-0003-4021-3943 surname: Perera fullname: Perera, Asanka G. email: asanka.perera@mymail.unisa.edu.au organization: School of Engineering, University of South Australia – sequence: 2 givenname: Yee Wei surname: Law fullname: Law, Yee Wei organization: School of Engineering, University of South Australia – sequence: 3 givenname: Javaan surname: Chahl fullname: Chahl, Javaan organization: School of Engineering, University of South Australia, Joint and Operations Analysis Division, Defence Science and Technology Group  | 
    
| BookMark | eNp9kMtKAzEUhoNUsK0-gLuA69Ekk8tkWWq1QsFCrduQZjI1ZSapyXTRt3fqiIKgq3MW_3cu3wgMfPAWgGuMbjFC4i5hwpjMEC4yyYTI-BkY4oLzTEpOB9894xdglNIOIc4kI0Owmh8a7eEyJAu1L-FSt29wllrX6NYFD6sYGjix0ekavrrSBrhOzm_h_dHrxhk4rXVKrnI2wpWtrTlBl-C80nWyV191DNYPs5fpPFs8Pz5NJ4vM5Ji32YYaykxFDdGWs5zLgmqT001OiDQIUWqlLY0UrBSUEaGNKaUhVZ5TWxZMF_kY3PRz9zG8H2xq1S4cou9WKiKx5EgQxLqU6FMmhpSirZRx7edzbdSuVhipk0HVG1SdQXUyqHhH4l_kPnZe4vFfhvRM6rJ-a-PPTX9DHyJ0hMc | 
    
| CitedBy_id | crossref_primary_10_1016_j_jvcir_2024_104298 crossref_primary_10_1007_s12559_019_09662_y crossref_primary_10_30764_1819_2785_2022_3_26_39 crossref_primary_10_1631_FITEE_1800587 crossref_primary_10_1002_rob_22219 crossref_primary_10_1109_ACCESS_2025_3545787 crossref_primary_10_1109_TMM_2023_3312931 crossref_primary_10_3390_jimaging8100279 crossref_primary_10_1007_s00521_022_07415_x crossref_primary_10_1007_s12559_018_9591_8 crossref_primary_10_1007_s12559_019_09652_0 crossref_primary_10_3390_app10217630 crossref_primary_10_1007_s10489_020_02170_9 crossref_primary_10_1002_rob_22065 crossref_primary_10_3390_drones3040082 crossref_primary_10_3390_app10196761  | 
    
| Cites_doi | 10.1109/TPAMI.2006.123 10.1016/j.neucom.2016.12.038 10.1186/s12938-017-0395-y 10.1007/978-3-642-17286-1 10.1007/s11263-012-0516-9 10.1016/j.sigpro.2014.09.009 10.1007/s11263-006-5165-4 10.1109/MSP.2005.1550191 10.1007/s00521-016-2325-5 10.1108/IJIUS-10-2017-0012 10.1007/BF02985426 10.1109/5.726791 10.1016/j.patcog.2010.03.011 10.1007/s12559-013-9221-4 10.1007/s11042-015-2921-x 10.1109/TPAMI.2006.21 10.1109/TPAMI.2005.246 10.1109/3477.990871 10.1016/j.neucom.2014.03.092 10.1613/jair.105 10.1007/s11263-012-0564-1 10.1007/s11042-012-1251-5 10.1023/A:1020350100748 10.1109/TPAMI.2017.2691768 10.1016/j.patcog.2008.02.012 10.1016/j.cviu.2003.09.005 10.1109/TSMC.2015.2491878 10.1016/S0031-3203(99)00223-X 10.1016/j.patcog.2007.10.015 10.1007/s10044-003-195-9 10.1214/aos/1028144844 10.1109/TPAMI.2005.39 10.1007/s12559-011-9097-0 10.1016/j.cviu.2013.12.012 10.1109/34.588027 10.1109/TCE.2009.5174427 10.1007/s12559-016-9393-9 10.1007/978-3-540-76280-5_14 10.1016/j.neunet.2018.09.002 10.1007/978-3-319-69035-3_20 10.1007/978-3-319-40244-4_36 10.1109/CVPR.2011.5995741 10.1109/AERO.2008.4526559 10.1109/IJCNN.2007.4371156 10.1007/978-3-642-33718-5_24 10.1109/CVPR.2017.134 10.1007/3-540-45014-9_10 10.1109/ICCV.2005.48 10.1109/ICCV.2005.90 10.5244/C.20.68 10.1007/978-3-319-46448-0_16 10.1109/CVPR.2016.533 10.1109/CVPR.2004.1315103 10.1109/3DV.2017.00055 10.1109/CVPR.2016.511 10.1007/978-3-319-46484-8_29 10.1109/ICRA.2015.7139487 10.1109/IROS.2013.6696416 10.1109/IROS.2010.5649223 10.1109/DICTA.2010.62 10.1007/978-3-319-16808-1_21 10.1109/ICSC.2017.83 10.1007/978-3-319-75928-9_86 10.1109/AFGR.2002.1004181 10.1109/IROS.2015.7353882 10.1109/CVPR.2009.5206848 10.1007/978-3-540-88682-2_13 10.1109/CVPR.2010.5540147 10.1109/CVPR.2011.5995316  | 
    
| ContentType | Journal Article | 
    
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2018 Springer Science+Business Media, LLC, part of Springer Nature 2018.  | 
    
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018.  | 
    
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI  | 
    
| DOI | 10.1007/s12559-018-9577-6 | 
    
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (Proquest) ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition  | 
    
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Advanced Technologies & Aerospace Collection | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Psychology | 
    
| EISSN | 1866-9964 | 
    
| EndPage | 1041 | 
    
| ExternalDocumentID | 10_1007_s12559_018_9577_6 | 
    
| GrantInformation_xml | – fundername: Defence Science and Technology Group grantid: myIP6780 funderid: https://doi.org/10.13039/501100008812  | 
    
| GroupedDBID | -56 -5G -BR -EM -~C 06C 06D 0R~ 0VY 1N0 203 29F 29~ 2JY 2KG 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 67N 67Z 6NX 875 8TC 96X AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABMQK ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARAPS AUKKA AXYYD BA0 BENPR BGLVJ BGNMA CAG CCPQU COF CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD EN4 ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI G-Y G-Z GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG6 HLICF HMJXF HQYDN HRMNR HZ~ I0C IJ- IKXTQ IWAJR IXC IXD IZIGR I~X J-C J0Z JBSCW JCJTX JZLTJ K7- KOV KPH LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM PT4 QOR QOS R89 RLLFE ROL RSV S1Z S27 S3A S3B SBL SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE T13 TSG U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7R Z7X Z83 Z88 ZMTXR ZOVNA ~A9 AAFWJ AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI  | 
    
| ID | FETCH-LOGICAL-c316t-b4c45cf4c2ae6536984ac34b3229c0044e9edc975d74527accd9c2f334ed85a83 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1866-9956 | 
    
| IngestDate | Fri Jul 25 10:06:46 EDT 2025 Thu Apr 24 23:00:09 EDT 2025 Wed Oct 01 05:46:52 EDT 2025 Fri Feb 21 02:31:17 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 6 | 
    
| Keywords | Dynamic classifier selection Trajectory estimation UAV Drone Gait estimation Pose estimation  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c316t-b4c45cf4c2ae6536984ac34b3229c0044e9edc975d74527accd9c2f334ed85a83 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-4021-3943 | 
    
| PQID | 2919607205 | 
    
| PQPubID | 6623279 | 
    
| PageCount | 23 | 
    
| ParticipantIDs | proquest_journals_2919607205 crossref_citationtrail_10_1007_s12559_018_9577_6 crossref_primary_10_1007_s12559_018_9577_6 springer_journals_10_1007_s12559_018_9577_6  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20181200 2018-12-00 20181201  | 
    
| PublicationDateYYYYMMDD | 2018-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2018 text: 20181200  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | Cognitive computation | 
    
| PublicationTitleAbbrev | Cogn Comput | 
    
| PublicationYear | 2018 | 
    
| Publisher | Springer US Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V  | 
    
| References | Rahmani, Mian, Shah (CR46) 2018; 40 Rogez, Orrite, Guerrero, Torr (CR3) 2014; 120 Kandaswamy, Monteiro, Silva, Cardoso (CR80) 2017; 28 Hartley, Zisserman (CR13) 2003 CR38 CR37 Masulli, Valentini (CR71) 2004; 6 CR35 Vondrick, Patterson, Ramanan (CR60) 2013; 101 CR79 CR34 Kuncheva (CR15) 2002; 32 CR33 CR77 CR32 CR31 CR30 CR73 CR72 Smith, Kahanpää, Kekäläinen, Treves, Chardin (CR59) 2004; 26 Ko, Sabourin, Britto (CR7) 2008; 41 Liu, Wang, Liu, Zeng, Liu, Alsaadi (CR26) 2017; 234 Minaeian, Liu, Son (CR58) 2016; 46 Kuncheva, Bezdek, Duin (CR9) 2001; 34 CR4 Rao, Yilmaz, Shah (CR23) 2002; 50 Richter-Gebert (CR2) 2011 Allwein, Schapire, Singer (CR74) 2000; 1 Fürnkranz (CR70) 2002; 2 CR49 Zeng, Wang, Li (CR20) 2014; 6 CR48 Rogez, Orrite-Uruñuela, del Rincón (CR76) 2008; 41 CR47 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR78) 2014; 15 Veeraraghavan, Roy-Chowdhury, Chellappa (CR19) 2005; 27 CR45 CR44 CR43 CR41 CR40 Perera, Law, Al-Naji, Chahl (CR11) 2018; 6 CR83 CR82 CR81 Li, Sun (CR39) 2014; 69 Dietterich, Bakiri (CR68) 1995; 2 Orrite, Herrero (CR1) 2004; 93 Rogez, Rihan, Orrite-Uruñuela, Torr (CR64) 2012; 99 Chen, Xin, Luo (CR25) 2016; 8 Xue, Ming, Song, Wan, Jin (CR16) 2010; 43 CR17 Garcia-Pedrajas, Ortiz-Boyer (CR67) 2006; 28 CR14 CR57 CR12 CR55 CR10 Sigal, Balan, Black (CR65) 2009; 87 CR53 CR51 CR50 Gross, Shi (CR66) 2001 Woods, Kegelmeyer, Bowyer (CR6) 1997; 19 Boulgouris, Hatzinakos, Plataniotis (CR21) 2005; 22 Al-Naji, Perera, Chahl (CR54) 2017; 16 Hastie, Tibshirani (CR75) 1998; 26 Zhao, Chen, Yao, Zhang, Sun (CR36) 2015; 151 Sarkar, Phillips, Liu, Vega, Grother, Bowyer (CR18) 2005; 27 CR29 Rosales, Sclaroff (CR63) 2006; 67 CR28 Yeh, Chiu, Wang (CR56) 2016; 75 CR27 Chaturvedi, Ong, Arumugam (CR42) 2015; 110 CR69 CR22 CR62 Lao, Han, De With (CR52) 2009; 55 CR61 LeCun, Bottou, Bengio, Haffner (CR5) 1998; 86 Agarwal, Triggs (CR8) 2006; 28 Rapantzikos, Avrithis, Kollias (CR24) 2011; 3 S Zhao (9577_CR36) 2015; 151 I Chaturvedi (9577_CR42) 2015; 110 C Kandaswamy (9577_CR80) 2017; 28 NV Boulgouris (9577_CR21) 2005; 22 9577_CR40 9577_CR41 W Zeng (9577_CR20) 2014; 6 9577_CR82 9577_CR83 9577_CR81 G Rogez (9577_CR3) 2014; 120 9577_CR48 9577_CR49 W Liu (9577_CR26) 2017; 234 9577_CR47 9577_CR44 R Hartley (9577_CR13) 2003 9577_CR45 9577_CR43 J Richter-Gebert (9577_CR2) 2011 G Rogez (9577_CR64) 2012; 99 S Minaeian (9577_CR58) 2016; 46 H Rahmani (9577_CR46) 2018; 40 AG Perera (9577_CR11) 2018; 6 J Fürnkranz (9577_CR70) 2002; 2 9577_CR51 R Rosales (9577_CR63) 2006; 67 9577_CR50 L Sigal (9577_CR65) 2009; 87 R Gross (9577_CR66) 2001 EL Allwein (9577_CR74) 2000; 1 9577_CR57 9577_CR14 9577_CR55 9577_CR12 9577_CR53 9577_CR10 9577_CR4 A Al-Naji (9577_CR54) 2017; 16 C Vondrick (9577_CR60) 2013; 101 9577_CR17 C Rao (9577_CR23) 2002; 50 K Rapantzikos (9577_CR24) 2011; 3 9577_CR62 TG Dietterich (9577_CR68) 1995; 2 9577_CR61 Z Xue (9577_CR16) 2010; 43 SB Chen (9577_CR25) 2016; 8 9577_CR27 Y Li (9577_CR39) 2014; 69 9577_CR69 9577_CR22 S Sarkar (9577_CR18) 2005; 27 W Lao (9577_CR52) 2009; 55 LI Kuncheva (9577_CR9) 2001; 34 T Hastie (9577_CR75) 1998; 26 G Rogez (9577_CR76) 2008; 41 9577_CR28 9577_CR29 K Woods (9577_CR6) 1997; 19 A Agarwal (9577_CR8) 2006; 28 AHR Ko (9577_CR7) 2008; 41 KE Smith (9577_CR59) 2004; 26 9577_CR73 9577_CR30 9577_CR72 N Srivastava (9577_CR78) 2014; 15 MC Yeh (9577_CR56) 2016; 75 9577_CR37 9577_CR38 9577_CR35 9577_CR79 9577_CR33 9577_CR77 9577_CR34 9577_CR31 9577_CR32 N Garcia-Pedrajas (9577_CR67) 2006; 28 A Veeraraghavan (9577_CR19) 2005; 27 F Masulli (9577_CR71) 2004; 6 C Orrite (9577_CR1) 2004; 93 LI Kuncheva (9577_CR15) 2002; 32 Y LeCun (9577_CR5) 1998; 86  | 
    
| References_xml | – ident: CR45 – volume: 28 start-page: 1001 issue: 6 year: 2006 end-page: 6 ident: CR67 article-title: Improving multiclass pattern recognition by the combination of two strategies publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2006.123 – ident: CR22 – volume: 234 start-page: 11 year: 2017 end-page: 26 ident: CR26 article-title: A survey of deep neural network architectures and their applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.12.038 – ident: CR49 – volume: 16 start-page: 101 issue: 1 year: 2017 ident: CR54 article-title: Remote monitoring of cardiorespiratory signals from a hovering unmanned aerial vehicle publication-title: BioMedical Engineering OnLine. doi: 10.1186/s12938-017-0395-y – ident: CR4 – volume: 15 start-page: 1929 issue: 1 year: 2014 end-page: 58 ident: CR78 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – year: 2011 ident: CR2 publication-title: Perspectives on projective geometry: a guided tour through real and complex geometry doi: 10.1007/978-3-642-17286-1 – ident: CR51 – ident: CR12 – volume: 99 start-page: 25 issue: 1 year: 2012 end-page: 52 ident: CR64 article-title: Fast human pose detection using randomized hierarchical cascades of rejectors publication-title: Int J Comput Vis doi: 10.1007/s11263-012-0516-9 – volume: 110 start-page: 250 year: 2015 end-page: 62 ident: CR42 article-title: Deep transfer learning for classification of time-delayed Gaussian networks publication-title: Signal Process doi: 10.1016/j.sigpro.2014.09.009 – volume: 67 start-page: 251 issue: 3 year: 2006 end-page: 76 ident: CR63 article-title: Combining generative and discriminative models in a framework for articulated pose estimation publication-title: Int J Comput Vis doi: 10.1007/s11263-006-5165-4 – volume: 22 start-page: 78 issue: 6 year: 2005 end-page: 90 ident: CR21 article-title: Gait recognition: a challenging signal processing technology for biometric identification publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2005.1550191 – volume: 28 start-page: 2461 issue: 9 year: 2017 end-page: 75 ident: CR80 article-title: Multi-source deep transfer learning for cross-sensor biometrics publication-title: Neural Comput Applic doi: 10.1007/s00521-016-2325-5 – ident: CR35 – ident: CR29 – ident: CR61 – ident: CR77 – year: 2003 ident: CR13 publication-title: Multiple view geometry in computer vision – volume: 6 start-page: 69 issue: 2 year: 2018 end-page: 92 ident: CR11 article-title: Human motion analysis from UAV video publication-title: International Journal of Intelligent Unmanned Systems doi: 10.1108/IJIUS-10-2017-0012 – year: 2001 ident: CR66 publication-title: The CMU motion of body (MoBo) database – ident: CR50 – volume: 87 start-page: 4 issue: 1 year: 2009 ident: CR65 article-title: Humaneva: synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion publication-title: Int J Comput Vis – volume: 26 start-page: 71 issue: 4 year: 2004 end-page: 2 ident: CR59 article-title: An invitation to algebraic geometry publication-title: Math Intell doi: 10.1007/BF02985426 – volume: 86 start-page: 2278 issue: 11 year: 1998 end-page: 324 ident: CR5 article-title: Gradient-based learning applied to document recognition publication-title: Proc IEEE doi: 10.1109/5.726791 – volume: 43 start-page: 2904 issue: 8 year: 2010 end-page: 10 ident: CR16 article-title: Infrared gait recognition based on wavelet transform and support vector machine publication-title: Pattern Recogn doi: 10.1016/j.patcog.2010.03.011 – ident: CR57 – ident: CR32 – volume: 6 start-page: 218 issue: 2 year: 2014 end-page: 29 ident: CR20 article-title: Model-Based Human gait recognition via deterministic learning publication-title: Cogn Comput doi: 10.1007/s12559-013-9221-4 – ident: CR81 – volume: 75 start-page: 16117 issue: 23 year: 2016 end-page: 33 ident: CR56 article-title: Fast medium-scale multiperson identification in aerial videos publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-015-2921-x – volume: 28 start-page: 44 issue: 1 year: 2006 end-page: 58 ident: CR8 article-title: Recovering 3D human pose from monocular images publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2006.21 – volume: 27 start-page: 1896 issue: 12 year: 2005 end-page: 909 ident: CR19 article-title: Matching shape sequences in video with applications in human movement analysis publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2005.246 – ident: CR43 – ident: CR47 – ident: CR72 – volume: 32 start-page: 146 issue: 2 year: 2002 end-page: 56 ident: CR15 article-title: Switching between selection and fusion in combining classifiers: an experiment publication-title: IEEE Trans Syst, Man, Cybern B doi: 10.1109/3477.990871 – volume: 2 start-page: 721 issue: Mar year: 2002 end-page: 47 ident: CR70 article-title: Round robin classification publication-title: J Mach Learn Res – ident: CR14 – ident: CR37 – ident: CR53 – volume: 151 start-page: 533 year: 2015 end-page: 43 ident: CR36 article-title: Strategy for dynamic 3D depth data matching towards robust action retrieval publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.03.092 – ident: CR30 – ident: CR10 – ident: CR33 – volume: 2 start-page: 263 year: 1995 end-page: 86 ident: CR68 article-title: Solving multiclass learning problems via error-correcting output codes publication-title: J Artif Intell Res doi: 10.1613/jair.105 – ident: CR82 – volume: 101 start-page: 184 issue: 1 year: 2013 end-page: 204 ident: CR60 article-title: Efficiently scaling up crowdsourced video annotation publication-title: Int J Comput Vis doi: 10.1007/s11263-012-0564-1 – volume: 69 start-page: 79 issue: 1 year: 2014 end-page: 109 ident: CR39 article-title: Generative tracking of 3D human motion in latent space by sequential clonal selection algorithm publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-012-1251-5 – ident: CR79 – ident: CR40 – volume: 50 start-page: 203 issue: 2 year: 2002 end-page: 26 ident: CR23 article-title: View-invariant representation and recognition of actions publication-title: Int J Comput Vis doi: 10.1023/A:1020350100748 – ident: CR27 – volume: 40 start-page: 667 issue: 3 year: 2018 end-page: 81 ident: CR46 article-title: Learning a deep model for human action recognition from novel viewpoints publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2017.2691768 – volume: 41 start-page: 2926 issue: 9 year: 2008 end-page: 44 ident: CR76 article-title: A spatio-temporal 2D-models framework for human pose recovery in monocular sequences publication-title: Pattern Recogn doi: 10.1016/j.patcog.2008.02.012 – volume: 1 start-page: 113 issue: Dec year: 2000 end-page: 41 ident: CR74 article-title: Reducing multiclass to binary: a unifying approach for margin classifiers publication-title: J Mach Learn Res – volume: 93 start-page: 34 issue: 1 year: 2004 end-page: 64 ident: CR1 article-title: Shape matching of partially occluded curves invariant under projective transformation publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2003.09.005 – volume: 46 start-page: 1005 issue: 7 year: 2016 end-page: 16 ident: CR58 article-title: Vision-based Target Detection and Localization via a Team of Cooperative UAV and UGVs publication-title: IEEE Trans Syst Man Cybern Syst doi: 10.1109/TSMC.2015.2491878 – ident: CR69 – ident: CR44 – ident: CR48 – ident: CR73 – volume: 34 start-page: 299 issue: 2 year: 2001 end-page: 314 ident: CR9 article-title: Decision templates for multiple classifier fusion: an experimental comparison publication-title: Pattern Recogn doi: 10.1016/S0031-3203(99)00223-X – volume: 41 start-page: 1718 issue: 5 year: 2008 end-page: 31 ident: CR7 article-title: From dynamic classifier selection to dynamic ensemble selection publication-title: Pattern Recogn doi: 10.1016/j.patcog.2007.10.015 – ident: CR38 – volume: 6 start-page: 285 issue: 4 year: 2004 end-page: 300 ident: CR71 article-title: Effectiveness of error correcting output coding methods in ensemble and monolithic learning machines publication-title: Formal Pattern Analysis & Applications doi: 10.1007/s10044-003-195-9 – volume: 26 start-page: 451 issue: 2 year: 1998 end-page: 71 ident: CR75 article-title: Classification by pairwise coupling publication-title: Ann Stat doi: 10.1214/aos/1028144844 – ident: CR17 – ident: CR31 – volume: 27 start-page: 162 issue: 2 year: 2005 end-page: 77 ident: CR18 article-title: The humanID gait challenge problem: data sets, performance, and analysis publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2005.39 – volume: 3 start-page: 167 issue: 1 year: 2011 end-page: 84 ident: CR24 article-title: Spatiotemporal features for action recognition and salient event detection publication-title: Cogn Comput doi: 10.1007/s12559-011-9097-0 – ident: CR34 – volume: 120 start-page: 126 year: 2014 end-page: 40 ident: CR3 article-title: Exploiting projective geometry for view-invariant monocular human motion analysis in man-made environments publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2013.12.012 – volume: 19 start-page: 405 issue: 4 year: 1997 end-page: 10 ident: CR6 article-title: Combination of multiple classifiers using local accuracy estimates publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.588027 – ident: CR55 – ident: CR83 – ident: CR28 – ident: CR41 – ident: CR62 – volume: 55 start-page: 591 issue: 2 year: 2009 end-page: 8 ident: CR52 article-title: Automatic video-based human motion analyzer for consumer surveillance system publication-title: IEEE Trans Consum Electron doi: 10.1109/TCE.2009.5174427 – volume: 8 start-page: 797 issue: 5 year: 2016 end-page: 805 ident: CR25 article-title: Action-Based Pedestrian identification via hierarchical matching pursuit and order preserving sparse coding publication-title: Cogn Comput doi: 10.1007/s12559-016-9393-9 – volume: 93 start-page: 34 issue: 1 year: 2004 ident: 9577_CR1 publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2003.09.005 – volume: 6 start-page: 285 issue: 4 year: 2004 ident: 9577_CR71 publication-title: Formal Pattern Analysis & Applications doi: 10.1007/s10044-003-195-9 – ident: 9577_CR73 – ident: 9577_CR10 doi: 10.1007/978-3-540-76280-5_14 – volume: 99 start-page: 25 issue: 1 year: 2012 ident: 9577_CR64 publication-title: Int J Comput Vis doi: 10.1007/s11263-012-0516-9 – volume: 26 start-page: 451 issue: 2 year: 1998 ident: 9577_CR75 publication-title: Ann Stat doi: 10.1214/aos/1028144844 – ident: 9577_CR31 – ident: 9577_CR33 doi: 10.1016/j.neunet.2018.09.002 – ident: 9577_CR34 doi: 10.1007/978-3-319-69035-3_20 – volume-title: Multiple view geometry in computer vision year: 2003 ident: 9577_CR13 – volume: 27 start-page: 1896 issue: 12 year: 2005 ident: 9577_CR19 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2005.246 – ident: 9577_CR45 – volume: 6 start-page: 218 issue: 2 year: 2014 ident: 9577_CR20 publication-title: Cogn Comput doi: 10.1007/s12559-013-9221-4 – ident: 9577_CR44 doi: 10.1007/978-3-319-40244-4_36 – ident: 9577_CR41 – volume: 41 start-page: 2926 issue: 9 year: 2008 ident: 9577_CR76 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2008.02.012 – volume: 28 start-page: 2461 issue: 9 year: 2017 ident: 9577_CR80 publication-title: Neural Comput Applic doi: 10.1007/s00521-016-2325-5 – ident: 9577_CR83 doi: 10.1109/CVPR.2011.5995741 – volume: 28 start-page: 1001 issue: 6 year: 2006 ident: 9577_CR67 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2006.123 – volume: 43 start-page: 2904 issue: 8 year: 2010 ident: 9577_CR16 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2010.03.011 – volume: 55 start-page: 591 issue: 2 year: 2009 ident: 9577_CR52 publication-title: IEEE Trans Consum Electron doi: 10.1109/TCE.2009.5174427 – volume: 87 start-page: 4 issue: 1 year: 2009 ident: 9577_CR65 publication-title: Int J Comput Vis – volume: 28 start-page: 44 issue: 1 year: 2006 ident: 9577_CR8 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2006.21 – volume: 22 start-page: 78 issue: 6 year: 2005 ident: 9577_CR21 publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2005.1550191 – ident: 9577_CR53 doi: 10.1109/AERO.2008.4526559 – volume: 26 start-page: 71 issue: 4 year: 2004 ident: 9577_CR59 publication-title: Math Intell doi: 10.1007/BF02985426 – ident: 9577_CR82 doi: 10.1109/IJCNN.2007.4371156 – volume: 16 start-page: 101 issue: 1 year: 2017 ident: 9577_CR54 publication-title: BioMedical Engineering OnLine. doi: 10.1186/s12938-017-0395-y – ident: 9577_CR43 doi: 10.1007/978-3-642-33718-5_24 – ident: 9577_CR29 doi: 10.1109/CVPR.2017.134 – ident: 9577_CR37 – ident: 9577_CR72 doi: 10.1007/3-540-45014-9_10 – ident: 9577_CR40 doi: 10.1109/ICCV.2005.48 – ident: 9577_CR22 doi: 10.1109/ICCV.2005.90 – ident: 9577_CR14 doi: 10.5244/C.20.68 – volume-title: Perspectives on projective geometry: a guided tour through real and complex geometry year: 2011 ident: 9577_CR2 doi: 10.1007/978-3-642-17286-1 – ident: 9577_CR32 doi: 10.1007/978-3-319-46448-0_16 – volume: 2 start-page: 263 year: 1995 ident: 9577_CR68 publication-title: J Artif Intell Res doi: 10.1613/jair.105 – volume: 27 start-page: 162 issue: 2 year: 2005 ident: 9577_CR18 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2005.39 – ident: 9577_CR30 doi: 10.1109/CVPR.2016.533 – ident: 9577_CR69 doi: 10.1109/CVPR.2004.1315103 – ident: 9577_CR79 – volume: 234 start-page: 11 year: 2017 ident: 9577_CR26 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.12.038 – volume: 151 start-page: 533 year: 2015 ident: 9577_CR36 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.03.092 – ident: 9577_CR38 doi: 10.1109/3DV.2017.00055 – volume: 50 start-page: 203 issue: 2 year: 2002 ident: 9577_CR23 publication-title: Int J Comput Vis doi: 10.1023/A:1020350100748 – ident: 9577_CR27 doi: 10.1109/CVPR.2016.511 – ident: 9577_CR28 doi: 10.1007/978-3-319-46484-8_29 – ident: 9577_CR50 doi: 10.1109/ICRA.2015.7139487 – volume: 41 start-page: 1718 issue: 5 year: 2008 ident: 9577_CR7 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2007.10.015 – ident: 9577_CR49 doi: 10.1109/IROS.2013.6696416 – volume: 32 start-page: 146 issue: 2 year: 2002 ident: 9577_CR15 publication-title: IEEE Trans Syst, Man, Cybern B doi: 10.1109/3477.990871 – ident: 9577_CR48 doi: 10.1109/IROS.2010.5649223 – ident: 9577_CR62 – volume: 2 start-page: 721 issue: Mar year: 2002 ident: 9577_CR70 publication-title: J Mach Learn Res – volume: 6 start-page: 69 issue: 2 year: 2018 ident: 9577_CR11 publication-title: International Journal of Intelligent Unmanned Systems doi: 10.1108/IJIUS-10-2017-0012 – ident: 9577_CR12 doi: 10.1109/DICTA.2010.62 – ident: 9577_CR4 – volume: 69 start-page: 79 issue: 1 year: 2014 ident: 9577_CR39 publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-012-1251-5 – ident: 9577_CR81 doi: 10.1007/978-3-319-16808-1_21 – ident: 9577_CR51 doi: 10.1109/ICSC.2017.83 – ident: 9577_CR77 doi: 10.1007/978-3-319-75928-9_86 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 9577_CR78 publication-title: J Mach Learn Res – volume: 3 start-page: 167 issue: 1 year: 2011 ident: 9577_CR24 publication-title: Cogn Comput doi: 10.1007/s12559-011-9097-0 – volume: 120 start-page: 126 year: 2014 ident: 9577_CR3 publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2013.12.012 – volume: 34 start-page: 299 issue: 2 year: 2001 ident: 9577_CR9 publication-title: Pattern Recogn doi: 10.1016/S0031-3203(99)00223-X – volume-title: The CMU motion of body (MoBo) database year: 2001 ident: 9577_CR66 – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 9577_CR5 publication-title: Proc IEEE doi: 10.1109/5.726791 – ident: 9577_CR17 doi: 10.1109/AFGR.2002.1004181 – ident: 9577_CR57 doi: 10.1109/IROS.2015.7353882 – ident: 9577_CR61 doi: 10.1109/CVPR.2009.5206848 – volume: 75 start-page: 16117 issue: 23 year: 2016 ident: 9577_CR56 publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-015-2921-x – volume: 40 start-page: 667 issue: 3 year: 2018 ident: 9577_CR46 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2017.2691768 – ident: 9577_CR47 doi: 10.1007/978-3-540-88682-2_13 – volume: 19 start-page: 405 issue: 4 year: 1997 ident: 9577_CR6 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.588027 – volume: 110 start-page: 250 year: 2015 ident: 9577_CR42 publication-title: Signal Process doi: 10.1016/j.sigpro.2014.09.009 – ident: 9577_CR55 doi: 10.1109/CVPR.2010.5540147 – volume: 67 start-page: 251 issue: 3 year: 2006 ident: 9577_CR63 publication-title: Int J Comput Vis doi: 10.1007/s11263-006-5165-4 – volume: 101 start-page: 184 issue: 1 year: 2013 ident: 9577_CR60 publication-title: Int J Comput Vis doi: 10.1007/s11263-012-0564-1 – volume: 1 start-page: 113 issue: Dec year: 2000 ident: 9577_CR74 publication-title: J Mach Learn Res – volume: 8 start-page: 797 issue: 5 year: 2016 ident: 9577_CR25 publication-title: Cogn Comput doi: 10.1007/s12559-016-9393-9 – volume: 46 start-page: 1005 issue: 7 year: 2016 ident: 9577_CR58 publication-title: IEEE Trans Syst Man Cybern Syst doi: 10.1109/TSMC.2015.2491878 – ident: 9577_CR35 doi: 10.1109/CVPR.2011.5995316  | 
    
| SSID | ssj0065952 | 
    
| Score | 2.2250836 | 
    
| Snippet | We consider the problem of estimating human pose and trajectory by an aerial robot with a monocular camera in near real time. We present a preliminary solution... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1019 | 
    
| SubjectTerms | Artificial Intelligence Artificial neural networks Biomedical and Life Sciences Biomedicine Cameras Classification Classifiers Computation by Abstract Devices Computational Biology/Bioinformatics Datasets Deep learning Estimation Gait Human subjects Neural networks Neurosciences Trajectory analysis Turning gait Unmanned aerial vehicles Video Walking  | 
    
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGP_QedlFfOJ0Sg6elMCaV5Pj0A0RlMGc7FbSJIWBdOLmwf_eJG1XFBU890sOv3zPfi-AS2ols1xJLEjuAxTDGJZWKlwwK41Tic7jMJ2HR3E3Y_dzPq_7uFdNtXuTkoyaum12C96vD329gPI0xWIbdniY5uWZeEaGjfoN8_FiilMKgUPbZpPK_OmKr8ao9TC_JUWjrRnvwW7tJKJh9ar7sOXKA-hudNXHIUzjz3c0Wa4c0qVFE-_IoZEX16oTEYWuETSM3IWeF9YtUawNQLfVAnoUd2EuCm8T0TRuwvGHjmA2Hj3d3OF6PwI2NBFrnHtouSmYIdoJToWSTBvKci-jyoRMrVPOGpVymzJOUm2MVYYUlDJnJdeSHkOnXJbuBJBLqBG5po4Yzah2Kk08odDCsRCDsB4MGqAyUw8PDzssXrJ27HHANvPYZgHbTPTganPktZqc8Rdxv0E_q4VolRHl1cMgJQPeg-vmRdrPv152-i_qM-iSwBGxRKUPnfXbuzv3jsY6v4iM9QmN4Mir priority: 102 providerName: Springer Nature  | 
    
| Title | Human Pose and Path Estimation from Aerial Video Using Dynamic Classifier Selection | 
    
| URI | https://link.springer.com/article/10.1007/s12559-018-9577-6 https://www.proquest.com/docview/2919607205  | 
    
| Volume | 10 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1866-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065952 issn: 1866-9956 databaseCode: AFBBN dateStart: 20090301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1866-9964 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0065952 issn: 1866-9956 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1866-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065952 issn: 1866-9956 databaseCode: AGYKE dateStart: 20090101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1866-9964 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065952 issn: 1866-9956 databaseCode: U2A dateStart: 20090301 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTwIxEJ0IXLwYPyOKpAdPmkbo17YHY1ABo5EQFYOnTbctCYkBFDz4723LrkQTve62PbxOp9NO5z2AY2ols1xJLEjmDyiGMSytVHjErDRONXUWyXTue-JmwG6HfLgGvaIWJjyrLHxidNR2asId-RlR3lYaCWnwi9kbDqpRIbtaSGjoXFrBnkeKsRJUSGDGKkPlst3rPxS-OZDnxfynFAKHms4izxmL6UJ07Y_W3gHwJMHi5061Cj9_ZUzjRtTZhI08gkSt5ZRvwZqbbMP6tyP73IHHeDOP-tO5Q3piUd9Heajt1_KyTBGFkhLUiqaHnsfWTVF8OICul-r0KApljkd-w0SPUSbHd9qFQaf9dHWDc_EEbGhTLHDmcedmxAzRTnAqlGTaUJb5BaxMSOM65axRCbcJ4yTxAFplyIhS5qzkWtI9KE-mE7cPyDWpEZmmjhjNqHYqafqGQgvHwgGFVaFRAJWanFk8CFy8pitO5IBt6rFNA7apqMLJd5fZklbjv8a1Av00X2HzdGUPVTgtZmT1-8_BDv4f7BDWSTCB-GClBuXF-4c78mHHIqtDSXa6dai0ui937XpuWf7rgLS-ADI01eI | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5ROJQLamlRQ6H1gV5aWSR-rX2IqrQEhQJRVB7itnhtR4oEm7RJVeXP9bcxdnaJigQ3zmt7V-PP89jxzAewx70WXhpNFSswQHFCUO21oUPhtQumZYvUTOe0r3oX4seVvFqBf3UtTLxWWevEpKj92MV_5PvMIFaaGWvKr5NfNLJGxexqTaFhK2oF304txqrCjuMw_4sh3LR9dID7_Ymxw-759x6tWAao4y01owV-oHRD4ZgNSnJltLCOiwKRblzMdwYTvDOZ9JmQLMM3eePYkHMRvJZWc1z3BawJLgwGf2vfuv3Bz9oWxGZ9Kd-qlaKxhrTOq6bivejNYyiPCkdmGVX_W8alu_sgQ5sM3-Er2Kg8VtJZQOw1rIRyE9bvFef8DZylTAAZjKeB2NKTAXqVpIu6Y1EWSWIJC-kkqJPLkQ9jki4qkIN5aW9HjiRiztEQDTQ5S7Q8OOktXDyLGLdgtRyX4R2Q0OJOFZYH5qzgNpishQOVVUHEgEg0oFkLKndVJ_NIqHGTL3swR9nmKNs8yjZXDfh8P2WyaOPx1OCdWvp5daKn-RJ_DfhS78jy8aOLbT-92Ed42Ts_PclPjvrH72GdRTikyzI7sDr7_SfsosszKz5UuCJw_dxQvgNboA-8 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86QXYRP3E6NQdPStmarybH4Tb8HIM52a2kSQoD6YarB_97k7RdUVTw3JccXt5n33u_B8Al1pxoKnjAUGITFEVIwDUXQUo0V0aEMvFgOk8jdjsl9zM6K_ecrqpu96okWcw0OJSmLO8sddqpB99cJGzTYKusNIoCtgm2iMNJsAI9Rb3KFDusPF_u5IwFboSzKmv-dMVXx1RHm98KpN7vDHfBThkwwl7xwntgw2T7oLm2Wx8HYOJ_xMPxYmWgzDQc26AODqzqFlOJ0E2QwJ6XNPgy12YBfZ8A7BfL6KHfizlPrX-EE78Vxx46BNPh4PnmNih3JQQKhywPEstmqlKikDSMYiY4kQqTxOqrUK5qa4TRSkRUR4SiSCqlhUIpxsRoTiXHR6CRLTJzDKAJsWKJxAYpSbA0IgotIZPMEJePkBboVoyKVQkk7vZZvMY1BLLjbWx5GzvexqwFrtZHlgWKxl_E7Yr7calQqxgJayq6EerSFriuXqT-_OtlJ_-ivgDb4_4wfrwbPZyCJnLC4TtX2qCRv72bMxt_5Mm5l7FPKF_P0w | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+Pose+and+Path+Estimation+from+Aerial+Video+Using+Dynamic+Classifier+Selection&rft.jtitle=Cognitive+computation&rft.au=Perera%2C+Asanka+G.&rft.au=Law%2C+Yee+Wei&rft.au=Chahl%2C+Javaan&rft.date=2018-12-01&rft.issn=1866-9956&rft.eissn=1866-9964&rft.volume=10&rft.issue=6&rft.spage=1019&rft.epage=1041&rft_id=info:doi/10.1007%2Fs12559-018-9577-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12559_018_9577_6 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-9956&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-9956&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-9956&client=summon |