WiDriver: Driver Activity Recognition System Based on WiFi CSI

Driver is the most active factor in people–vehicle–road system, so the driver activity monitoring has become increasingly important to support the driver assistant system application. The possibility of using device-free sensing technology for driver activity recognition in a simulated driving envir...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of wireless information networks Vol. 25; no. 2; pp. 146 - 156
Main Authors Duan, Shihong, Yu, Tianqing, He, Jie
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1068-9605
1572-8129
DOI10.1007/s10776-018-0389-0

Cover

Abstract Driver is the most active factor in people–vehicle–road system, so the driver activity monitoring has become increasingly important to support the driver assistant system application. The possibility of using device-free sensing technology for driver activity recognition in a simulated driving environment is investigated in this paper. We present WiDriver, among the first efforts to employ channel state information (CSI) amplitude variation data to intelligently estimate driving actions with commodity WiFi devices. The WiDriver proposes the scheme of screening sensitive input data from original CSI matrix of WiFi signals based on BP neural network algorithm; and the continuous driving activities classification algorithm by introducing the posture sequence, driving context finite automate model. Our experimental driving study in carriage with 5 subjects shows that the sensitive input selection scheme can achieve high accuracy of 96.8% in posture recognition and the continuous action classification algorithm can reach 90.76% maneuver operation detection rate.
AbstractList Driver is the most active factor in people–vehicle–road system, so the driver activity monitoring has become increasingly important to support the driver assistant system application. The possibility of using device-free sensing technology for driver activity recognition in a simulated driving environment is investigated in this paper. We present WiDriver, among the first efforts to employ channel state information (CSI) amplitude variation data to intelligently estimate driving actions with commodity WiFi devices. The WiDriver proposes the scheme of screening sensitive input data from original CSI matrix of WiFi signals based on BP neural network algorithm; and the continuous driving activities classification algorithm by introducing the posture sequence, driving context finite automate model. Our experimental driving study in carriage with 5 subjects shows that the sensitive input selection scheme can achieve high accuracy of 96.8% in posture recognition and the continuous action classification algorithm can reach 90.76% maneuver operation detection rate.
Author He, Jie
Yu, Tianqing
Duan, Shihong
Author_xml – sequence: 1
  givenname: Shihong
  surname: Duan
  fullname: Duan, Shihong
  organization: School of Computer and Communication Engineering, University of Science and Technology Beijing
– sequence: 2
  givenname: Tianqing
  surname: Yu
  fullname: Yu, Tianqing
  organization: School of Computer and Communication Engineering, University of Science and Technology Beijing
– sequence: 3
  givenname: Jie
  surname: He
  fullname: He, Jie
  email: hejie@ustb.edu.cn
  organization: School of Computer and Communication Engineering, University of Science and Technology Beijing
BookMark eNp9UE1LAzEQDaJgW_0B3hY8Ryeb3Xx4EGq1WigIVukxZLNpSWl3a5IW-u9NWUEQ9DJvBt6bN_P66LRpG4vQFYEbAsBvAwHOGQYiMFAhMZygHil5jgXJ5WnqgQksGZTnqB_CCgAkl0UP3c_do3d76--yDrOhiW7v4iF7s6ZdNi66tslmhxDtJnvQwdZZmudu7LLRbHKBzhZ6HezlNw7Qx_jpffSCp6_Pk9Fwig0lLOKq0GWpgVS0zg2jCzBQ5bXmQjApoBLEgrFQlpwJzQlhrEiPaAoFt1xbUdMBuu72bn37ubMhqlW7802yVDlQkFJyKBOLdyzj2xC8XSjjoj4-EL12a0VAHcNSXVgqeahjWKkMEPml3Hq30f7wrybvNCFxm6X1Pzf9LfoCKV17cw
CitedBy_id crossref_primary_10_1109_JSEN_2024_3384703
crossref_primary_10_3390_s21072359
crossref_primary_10_1145_3610930
crossref_primary_10_3390_s20051381
crossref_primary_10_1155_2022_7353080
crossref_primary_10_30939_ijastech__1431379
crossref_primary_10_1007_s00521_023_08389_0
crossref_primary_10_1145_3411820
crossref_primary_10_1155_2020_8546237
crossref_primary_10_1109_JIOT_2019_2958692
crossref_primary_10_1109_OJIM_2024_3502885
crossref_primary_10_3390_app9245268
crossref_primary_10_1016_j_neucom_2020_04_133
crossref_primary_10_1109_ACCESS_2023_3249144
crossref_primary_10_1007_s11042_020_08998_0
crossref_primary_10_1016_j_aei_2021_101280
crossref_primary_10_3390_s20041210
crossref_primary_10_1016_j_engappai_2019_103281
crossref_primary_10_1109_ACCESS_2022_3226248
crossref_primary_10_1145_3380980
crossref_primary_10_1109_TMC_2020_2977902
crossref_primary_10_1109_JIOT_2022_3144400
crossref_primary_10_1109_ACCESS_2019_2949123
crossref_primary_10_1109_JIOT_2022_3190845
crossref_primary_10_1109_LSENS_2023_3334226
crossref_primary_10_3390_s19153329
crossref_primary_10_3390_s21103472
crossref_primary_10_1109_TWC_2023_3325345
crossref_primary_10_1016_j_neunet_2021_11_011
crossref_primary_10_3390_rs16050845
crossref_primary_10_3390_s23177324
crossref_primary_10_1109_TIM_2023_3289547
crossref_primary_10_1109_JIOT_2024_3400773
crossref_primary_10_1093_comjnl_bxae087
crossref_primary_10_1016_j_comcom_2022_08_004
crossref_primary_10_1109_COMST_2024_3373397
crossref_primary_10_1109_JIOT_2021_3103073
crossref_primary_10_1109_TVT_2022_3203725
crossref_primary_10_1093_jcde_qwaa048
crossref_primary_10_3390_rs14010019
crossref_primary_10_1109_ACCESS_2024_3415359
crossref_primary_10_1016_j_conbuildmat_2024_137280
crossref_primary_10_1109_TWC_2021_3098526
crossref_primary_10_1109_JSEN_2022_3200984
crossref_primary_10_3390_s22166018
Cites_doi 10.1145/2993422.2993579
10.1145/2789168.2790124
10.1109/CVPR.2016.211
10.1109/INFOCOM.2014.6847958
10.1145/1925861.1925870
10.1109/INFOCOM.2014.6847948
10.1145/2971648.2971744
10.1109/ITSC.2015.268
10.1109/GCCE.2016.7800363
10.1109/IVS.2014.6856610
10.1109/IVS.2005.1505176
10.1145/2639108.2639143
10.1109/TMC.2016.2517630
10.1109/UIC-ATC.2017.8397502
10.1145/2500423.2500436
10.1109/ICPR.2014.124
10.1109/MC.2017.7
10.1109/TMC.2015.2416186
10.1109/TMC.2015.2504935
10.1109/ITSC.2005.1520169
10.1109/JSEN.2013.2271721
10.1145/2789168.2790109
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s10776-018-0389-0
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1572-8129
EndPage 156
ExternalDocumentID 10_1007_s10776_018_0389_0
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: FRF-TP-15-026A
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 61304257; 61402033
– fundername: Natural Science Foundation of Beijing Municipality
  grantid: 4152036
  funderid: http://dx.doi.org/10.13039/501100004826
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29J
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77K
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9P
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UCJ
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z83
Z88
Z8M
Z8R
Z8W
Z92
ZMTXR
_50
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c316t-b4a55a01b3d2c63f0c0b2da7886980b81e0ce055768a711664018a3047e7ae8d3
IEDL.DBID U2A
ISSN 1068-9605
IngestDate Wed Sep 17 23:55:14 EDT 2025
Wed Oct 01 04:10:26 EDT 2025
Thu Apr 24 23:07:23 EDT 2025
Fri Feb 21 02:34:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords CSI
Activity recognition
RSSI
Neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-b4a55a01b3d2c63f0c0b2da7886980b81e0ce055768a711664018a3047e7ae8d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2030999705
PQPubID 2043703
PageCount 11
ParticipantIDs proquest_journals_2030999705
crossref_citationtrail_10_1007_s10776_018_0389_0
crossref_primary_10_1007_s10776_018_0389_0
springer_journals_10_1007_s10776_018_0389_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of wireless information networks
PublicationTitleAbbrev Int J Wireless Inf Networks
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References HalperinDHuWShethATool release: gathering 802.11 n traces with channel state informationACM SIGCOMM Computer Communication Review2011411535310.1145/1925861.1925870
C. Braunagel, E. Kasneci, W. Stolzmann, et al., Driver-activity recognition in the context of conditionally autonomous driving. In Intelligent Transportation Systems (ITSC), 2015 IEEE 18th International Conference on. IEEE, pages 1652–1657, 2015.
H. Veeraraghavan, S. Atev, N. Bird, et al., Driver activity monitoring through supervised and unsupervised learning. In Intelligent Transportation Systems, 2005, Proceedings. 2005 IEEE, 2005, pages 580–585. IEEE
LiuXCaoJTangSContactless respiration monitoring via off-the-shelf Wifi devicesIEEE Transactions on Mobile Computing201615102466247910.1109/TMC.2015.2504935
E. Ohn-Bar, S. Martin, and A. Tawari A, Head, eye, and hand patterns for driver activity recognition. In Pattern Recognition (ICPR), 2014 22nd International Conference on, pages 660–665, 2014. IEEE.
F. Caba Heilbron, J. Carlos Niebles, and B. Ghanem, Fast temporal activity proposals for efficient detection of human actions in untrimmed videos. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1914–1923, 2016.
C. Han, K. Wu, Y. Wang, and L. M. Ni, Wifall: Device-free fall detection by wireless networks. In Proceedings of the IEEE INFOCOM, Toronto, ON, Canada, 27 April–2 May 2014, pages 271–279.
Martin S, Ohn-Bar E, Tawari A, et al., Understanding head and hand activities and coordination in naturalistic driving videos. In Intelligent Vehicles Symposium Proceedings, 2014 IEEE, pages 884–889, 2014. IEEE
Dataset of the WiDriver. http://pan.baidu.com/s/1geFSmlX.
S. Park, M. Trivedi Driver activity analysis for intelligent vehicles: issues and development framework. In Intelligent Vehicles Symposium, 2005. Proceedings. IEEE, pages 644–649, 2005. IEEE
K. Ali, A. X. Liu, and W. Wang, et al. Keystroke recognition using wifi signals. In Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, pages 90–102, 2015. ACM
Y. Xie, Z. Li, and M. Li, Precise power delay profiling with commodity wifi. In Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, pages 53–64, 2015. ACM
HeJGengYWanYA cyber physical test-bed for virtualization of RF access environment for body sensor networkIEEE Sensors Journal201313103826383610.1109/JSEN.2013.2271721
H. Wang, D. Zhang, J. Ma, et al., Human respiration detection with commodity wifi devices: do user location and body orientation matter?. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pages 25–36, 2016. ACM
F. Adib, Z. Kabelac, D. Katabi, and R. C. Miller, 3D tracking via body radio reflections. In Proceedings of the 11th USENIX Conference on Networked Systems Design and Implementation, Seattle, WA, USA, 2–4 April 2014; pages 317–329.
ZhangDWangHWuDToward centimeter-scale human activity sensing with Wi-Fi signalsComputer2017501485710.1109/MC.2017.7
C. C Li, and S. H. Fang, Device-free human detection using WiFi signals. In Consumer Electronics, 2016 IEEE 5th Global Conference on, pages 1–3, 2016. IEEE
C. Xu, J. He, X. Zhang, H. Cai, et.al., A Classification capability quantification method for human activity recognition. In 2017 IEEE Ubiquitous Intelligence and Computing (UIC 2017), Aug 4–8, San Francisco, USA, 2017
GengYChenJFuREnlighten wearable physiological monitoring systems: on-body rf characteristics based human motion classification using a support vector machineIEEE Transactions on Mobile Computing201615365667110.1109/TMC.2015.2416186
S. Palipana, P. Agrawal, and D. Pesch D, Channel state information based human presence detection using non-linear techniques. BuildSys@ SenSystem, pp. 177–186, 2016.
Y. Wang, J. Liu, Y. Chen, M. Gruteser, J. Yang, and H. Liu, E-eyes: Device-free location-oriented activity identification using fine-grained wifi signatures. In Proceedings of the 20th annual International Conference on Mobile Computing and Networking, Maui, HI, USA, 7–11 September 2014; pages 617–628, 2014.
W. Xi, J. Zhao, X. Y. Li, et al., Electronic frog eye: Counting crowd using wifi. In Infocom, 2014 proceedings IEEE, pages 361–369, 2014. ACM.
Q. Pu, S. Gupta, S. Gollakota, et al. Whole-home gesture recognition using wireless signals. In Proceedings of the 19th Annual International Conference on Mobile Computing and Networking, pages 27–38, 2013. ACM.
WangGZouYZhouZWe can hear you with wi-fi!IEEE Transactions on Mobile Computing201615112907292010.1109/TMC.2016.2517630
389_CR6
D Zhang (389_CR22) 2017; 50
G Wang (389_CR16) 2016; 15
389_CR8
389_CR9
389_CR2
X Liu (389_CR19) 2016; 15
389_CR3
389_CR4
389_CR15
389_CR14
389_CR1
389_CR13
389_CR24
389_CR12
389_CR23
389_CR11
389_CR21
389_CR20
Y Geng (389_CR5) 2016; 15
389_CR18
D Halperin (389_CR10) 2011; 41
389_CR17
J He (389_CR7) 2013; 13
References_xml – reference: F. Adib, Z. Kabelac, D. Katabi, and R. C. Miller, 3D tracking via body radio reflections. In Proceedings of the 11th USENIX Conference on Networked Systems Design and Implementation, Seattle, WA, USA, 2–4 April 2014; pages 317–329.
– reference: W. Xi, J. Zhao, X. Y. Li, et al., Electronic frog eye: Counting crowd using wifi. In Infocom, 2014 proceedings IEEE, pages 361–369, 2014. ACM.
– reference: HeJGengYWanYA cyber physical test-bed for virtualization of RF access environment for body sensor networkIEEE Sensors Journal201313103826383610.1109/JSEN.2013.2271721
– reference: H. Wang, D. Zhang, J. Ma, et al., Human respiration detection with commodity wifi devices: do user location and body orientation matter?. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pages 25–36, 2016. ACM
– reference: C. Braunagel, E. Kasneci, W. Stolzmann, et al., Driver-activity recognition in the context of conditionally autonomous driving. In Intelligent Transportation Systems (ITSC), 2015 IEEE 18th International Conference on. IEEE, pages 1652–1657, 2015.
– reference: H. Veeraraghavan, S. Atev, N. Bird, et al., Driver activity monitoring through supervised and unsupervised learning. In Intelligent Transportation Systems, 2005, Proceedings. 2005 IEEE, 2005, pages 580–585. IEEE
– reference: C. C Li, and S. H. Fang, Device-free human detection using WiFi signals. In Consumer Electronics, 2016 IEEE 5th Global Conference on, pages 1–3, 2016. IEEE
– reference: Q. Pu, S. Gupta, S. Gollakota, et al. Whole-home gesture recognition using wireless signals. In Proceedings of the 19th Annual International Conference on Mobile Computing and Networking, pages 27–38, 2013. ACM.
– reference: S. Palipana, P. Agrawal, and D. Pesch D, Channel state information based human presence detection using non-linear techniques. BuildSys@ SenSystem, pp. 177–186, 2016.
– reference: WangGZouYZhouZWe can hear you with wi-fi!IEEE Transactions on Mobile Computing201615112907292010.1109/TMC.2016.2517630
– reference: E. Ohn-Bar, S. Martin, and A. Tawari A, Head, eye, and hand patterns for driver activity recognition. In Pattern Recognition (ICPR), 2014 22nd International Conference on, pages 660–665, 2014. IEEE.
– reference: ZhangDWangHWuDToward centimeter-scale human activity sensing with Wi-Fi signalsComputer2017501485710.1109/MC.2017.7
– reference: C. Han, K. Wu, Y. Wang, and L. M. Ni, Wifall: Device-free fall detection by wireless networks. In Proceedings of the IEEE INFOCOM, Toronto, ON, Canada, 27 April–2 May 2014, pages 271–279.
– reference: LiuXCaoJTangSContactless respiration monitoring via off-the-shelf Wifi devicesIEEE Transactions on Mobile Computing201615102466247910.1109/TMC.2015.2504935
– reference: Dataset of the WiDriver. http://pan.baidu.com/s/1geFSmlX.
– reference: F. Caba Heilbron, J. Carlos Niebles, and B. Ghanem, Fast temporal activity proposals for efficient detection of human actions in untrimmed videos. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1914–1923, 2016.
– reference: K. Ali, A. X. Liu, and W. Wang, et al. Keystroke recognition using wifi signals. In Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, pages 90–102, 2015. ACM
– reference: Y. Xie, Z. Li, and M. Li, Precise power delay profiling with commodity wifi. In Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, pages 53–64, 2015. ACM
– reference: Martin S, Ohn-Bar E, Tawari A, et al., Understanding head and hand activities and coordination in naturalistic driving videos. In Intelligent Vehicles Symposium Proceedings, 2014 IEEE, pages 884–889, 2014. IEEE
– reference: Y. Wang, J. Liu, Y. Chen, M. Gruteser, J. Yang, and H. Liu, E-eyes: Device-free location-oriented activity identification using fine-grained wifi signatures. In Proceedings of the 20th annual International Conference on Mobile Computing and Networking, Maui, HI, USA, 7–11 September 2014; pages 617–628, 2014.
– reference: GengYChenJFuREnlighten wearable physiological monitoring systems: on-body rf characteristics based human motion classification using a support vector machineIEEE Transactions on Mobile Computing201615365667110.1109/TMC.2015.2416186
– reference: C. Xu, J. He, X. Zhang, H. Cai, et.al., A Classification capability quantification method for human activity recognition. In 2017 IEEE Ubiquitous Intelligence and Computing (UIC 2017), Aug 4–8, San Francisco, USA, 2017
– reference: HalperinDHuWShethATool release: gathering 802.11 n traces with channel state informationACM SIGCOMM Computer Communication Review2011411535310.1145/1925861.1925870
– reference: S. Park, M. Trivedi Driver activity analysis for intelligent vehicles: issues and development framework. In Intelligent Vehicles Symposium, 2005. Proceedings. IEEE, pages 644–649, 2005. IEEE
– ident: 389_CR23
  doi: 10.1145/2993422.2993579
– ident: 389_CR11
  doi: 10.1145/2789168.2790124
– ident: 389_CR6
  doi: 10.1109/CVPR.2016.211
– ident: 389_CR15
  doi: 10.1109/INFOCOM.2014.6847958
– volume: 41
  start-page: 53
  issue: 1
  year: 2011
  ident: 389_CR10
  publication-title: ACM SIGCOMM Computer Communication Review
  doi: 10.1145/1925861.1925870
– ident: 389_CR12
  doi: 10.1109/INFOCOM.2014.6847948
– ident: 389_CR24
– ident: 389_CR18
  doi: 10.1145/2971648.2971744
– ident: 389_CR9
– ident: 389_CR3
  doi: 10.1109/ITSC.2015.268
– ident: 389_CR14
  doi: 10.1109/GCCE.2016.7800363
– ident: 389_CR2
  doi: 10.1109/IVS.2014.6856610
– ident: 389_CR4
  doi: 10.1109/IVS.2005.1505176
– ident: 389_CR13
  doi: 10.1145/2639108.2639143
– volume: 15
  start-page: 2907
  issue: 11
  year: 2016
  ident: 389_CR16
  publication-title: IEEE Transactions on Mobile Computing
  doi: 10.1109/TMC.2016.2517630
– ident: 389_CR20
  doi: 10.1109/UIC-ATC.2017.8397502
– ident: 389_CR8
  doi: 10.1145/2500423.2500436
– ident: 389_CR21
  doi: 10.1109/ICPR.2014.124
– volume: 50
  start-page: 48
  issue: 1
  year: 2017
  ident: 389_CR22
  publication-title: Computer
  doi: 10.1109/MC.2017.7
– volume: 15
  start-page: 656
  issue: 3
  year: 2016
  ident: 389_CR5
  publication-title: IEEE Transactions on Mobile Computing
  doi: 10.1109/TMC.2015.2416186
– volume: 15
  start-page: 2466
  issue: 10
  year: 2016
  ident: 389_CR19
  publication-title: IEEE Transactions on Mobile Computing
  doi: 10.1109/TMC.2015.2504935
– ident: 389_CR1
  doi: 10.1109/ITSC.2005.1520169
– volume: 13
  start-page: 3826
  issue: 10
  year: 2013
  ident: 389_CR7
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2013.2271721
– ident: 389_CR17
  doi: 10.1145/2789168.2790109
SSID ssj0009794
Score 2.357301
Snippet Driver is the most active factor in people–vehicle–road system, so the driver activity monitoring has become increasingly important to support the driver...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 146
SubjectTerms Activity recognition
Algorithms
Classification
Computer simulation
Electrical Engineering
Engineering
Neural networks
Title WiDriver: Driver Activity Recognition System Based on WiFi CSI
URI https://link.springer.com/article/10.1007/s10776-018-0389-0
https://www.proquest.com/docview/2030999705
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1572-8129
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009794
  issn: 1068-9605
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1572-8129
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009794
  issn: 1068-9605
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1572-8129
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009794
  issn: 1068-9605
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60vehBfGK1lj14UgK7eewmHoS0NlbFHtTSegqbZAOFkkpb_787eZgqKnhaQnY38O1sZoaZ-QbgPKaR4E4SGVJQadiWNA3PS02DpU6iPDtKmcAC58chH4zs-4kzKeu4l1W2exWSzP_Ua8VuQqD3iyVhmOezCU0H2by0EI9Mv2baFXn3Q-3q6JusjfUqlPnTFl-VUW1hfguK5rom2IWd0kgkfnGqe7Chsn3YXqMOPIDr8fRmgTkVV6QYiR8XjSDIU5UTNM9IQUhOulpXJUQ_j6fBlPSe7w5hFPRfegOj7IVgxBbjKyOypeNIyiIrMWNupVSDbCZSO7Dcc2nkMkVjhXxa3JWCMc613-RKjKkpIZWbWEfQyOaZOgaiLA-Zt5jEJP4kFlJy21W2kNqVU9pdbAGtQAnjkigc-1XMwpriGHEM9RdCxDGkLbj4XPJWsGT8NbldIR2WF2YZmhjq8TxBnRZcVujXr3_d7ORfs09hy8xPH4WgDY3V4l2daaNiFXWg6Qfd7hDH29eHficXqg8incKO
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oHNSDbyOKugdPmpLdPnZbDyaIIMjjoBDw1GzbbUI0YKBc_PXu9mGRqImnpul2287sdubLzHwDcOljj1Er8DTOMNdMg-ua44S6RkIrEI7phYSpAudujzYH5uPIGqV13PMs2z0LScZ_6qViN8YU-lUlYSrPZx2KpsQnegGK1YeXdj3n2mVx_0MJduRelu56Fsz8aZLv5ij3MVfCorG1aexAP3vPJMnktbKIvIr_sULh-M8P2YXt1PtE1WS57MGamOzD1hIn4QHcDsf3M5WscYOSI6r6SYcJ9JQlG00nKGE6R3fSCAZIng_HjTGqPbcOYdCo92tNLW2yoPkGoZHmmdyyOCaeEeg-NUIstacHXCJj6tjYs4nAvlBEXdTmjBBKJSCzuQrWCcaFHRhHUJhMJ-IYkDAcRelFuKoOCHzGOTVtYTIuMaKQOLQEOJO166cM5KoRxpubcycr0bjyCa4SjYtLcPV1y3tCv_HX4HKmQDfdiXNXVzEkx2HYKsF1po_88q-Tnfxr9AVsNPvdjttp9dqnsKnHylU6LkMhmi3EmfRcIu88XamffBbfMw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60guhBfGK16h48KaG7eewmHoTaGlofRdTS3pZNdgMFSUsb_7-7edgqKngKIZsNfJll5mNmvgE4j3HEqCcjSzAsLNcRthUEiW2RxJMqcKOEMNPg_Nin3YF7N_JG5ZzTeVXtXqUki54Go9KUZs2pTJpLjW-MGSZs2sNMzc8qrLlGJ0Eb9MBuLVR3WT4JUdMefap14F6lNX_a4qtjWkSb3xKkud8Jt2GrDBhRq_jDO7Ci0l3YXJIR3IPr4bgzM_UVV6i4olZcDIVAz1V90CRFhTg5utF-SyJ9PxyHY9R-6e3DILx9bXetci6CFTuEZlbkCs8TmESOtGPqJFgDbkuhySwNfBz5ROFYGW0t6gtGCKWaQ_nC5NcUE8qXzgHU0kmqDgEpJzAqXESYgn4ZMyGo6yuXCU3rlKaOdcAVKDwuRcPN7Io3vpA7Njhy_QVucOS4Dhefr0wLxYy_FjcqpHl5eObcNmmfIGDYq8Nlhf7i8a-bHf1r9RmsP3VC_tDr3x_Dhp0bgrGHBtSy2bs60bFGFp3m9vQB7urGpg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WiDriver%3A+Driver+Activity+Recognition+System+Based+on+WiFi+CSI&rft.jtitle=International+journal+of+wireless+information+networks&rft.au=Duan%2C+Shihong&rft.au=Yu%2C+Tianqing&rft.au=He%2C+Jie&rft.date=2018-06-01&rft.issn=1068-9605&rft.eissn=1572-8129&rft.volume=25&rft.issue=2&rft.spage=146&rft.epage=156&rft_id=info:doi/10.1007%2Fs10776-018-0389-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10776_018_0389_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1068-9605&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1068-9605&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1068-9605&client=summon