An algorithm for a constrained P-spline
Regression splines are largely used to investigate and predict data behavior, attracting the interest of mathematicians for their beautiful numerical properties, and of statisticians for their versatility with respect to the applications. Several penalized spline regression models are available in t...
Saved in:
| Published in | BIT Vol. 65; no. 2 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Dordrecht
Springer Netherlands
01.06.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0006-3835 1572-9125 1572-9125 |
| DOI | 10.1007/s10543-025-01071-y |
Cover
| Abstract | Regression splines are largely used to investigate and predict data behavior, attracting the interest of mathematicians for their beautiful numerical properties, and of statisticians for their versatility with respect to the applications. Several penalized spline regression models are available in the literature, and the most commonly used ones in real-world applications are P-splines, which enjoy the advantages of penalized models while being easy to generalize across different functional spaces and higher degree order, because of their discrete penalty term. To face the different requirements imposed by the nature of the problem or the physical meaning of the expected values, the P-spline definition is often modified by additional hypotheses, often translated into constraints on the solution or its derivatives. In this framework, our work is motivated by the aim of getting approximation models that fall within pre-established thresholds. Specifically, starting from a set of observed data, we consider a P-spline constrained between some prefixed bounds. In our paper, we just consider 0 as lower bound, although our approach applies to more general cases. We propose to get nonnegativity by imposing lower bounds on selected sample points. The spline can be computed through a sequence of linearly constrained problems. We suggest a strategy to dynamically select the sample points, to avoid extremely dense sampling, and therefore try to reduce as much as possible the computational burden. We show through some computational experiments the reliability of our approach and the accuracy of the results compared to some state-of-the-art models. |
|---|---|
| AbstractList | Regression splines are largely used to investigate and predict data behavior, attracting the interest of mathematicians for their beautiful numerical properties, and of statisticians for their versatility with respect to the applications. Several penalized spline regression models are available in the literature, and the most commonly used ones in real-world applications are P-splines, which enjoy the advantages of penalized models while being easy to generalize across different functional spaces and higher degree order, because of their discrete penalty term. To face the different requirements imposed by the nature of the problem or the physical meaning of the expected values, the P-spline definition is often modified by additional hypotheses, often translated into constraints on the solution or its derivatives. In this framework, our work is motivated by the aim of getting approximation models that fall within pre-established thresholds. Specifically, starting from a set of observed data, we consider a P-spline constrained between some prefixed bounds. In our paper, we just consider 0 as lower bound, although our approach applies to more general cases. We propose to get nonnegativity by imposing lower bounds on selected sample points. The spline can be computed through a sequence of linearly constrained problems. We suggest a strategy to dynamically select the sample points, to avoid extremely dense sampling, and therefore try to reduce as much as possible the computational burden. We show through some computational experiments the reliability of our approach and the accuracy of the results compared to some state-of-the-art models. |
| ArticleNumber | 29 |
| Author | Campagna, Rosanna Crisci, Serena Toraldo, Gerardo Viola, Marco Santin, Gabriele |
| Author_xml | – sequence: 1 givenname: Rosanna orcidid: 0000-0003-4694-0113 surname: Campagna fullname: Campagna, Rosanna email: rosanna.campagna@unicampania.it organization: Department of Mathematics and Physics, University of Campania “L. Vanvitelli” – sequence: 2 givenname: Serena surname: Crisci fullname: Crisci, Serena organization: Department of Mathematics and Physics, University of Campania “L. Vanvitelli” – sequence: 3 givenname: Gabriele surname: Santin fullname: Santin, Gabriele organization: Department of Environmental Sciences, Informatics and Statistics, Ca’Foscari University of Venice – sequence: 4 givenname: Gerardo surname: Toraldo fullname: Toraldo, Gerardo organization: Department of Mathematics and Physics, University of Campania “L. Vanvitelli” – sequence: 5 givenname: Marco surname: Viola fullname: Viola, Marco organization: School of Mathematical Sciences, Dublin City University |
| BookMark | eNqNj0tPwzAQhC1UJNrCH-AUiQMnw65fiY9VxUtCggOcLTexS6vUCXYqlH9PSipxQ5x2DjOz883IJDTBEXKJcIMA-W1CkIJTYJICQo60PyFTlDmjGpmckCkAKMoLLs_ILKUtANMK-ZRcL0Jm63UTN93HLvNNzGxWNiF10W6Cq7JXmtp6UOfk1Ns6uYvjnZP3-7u35SN9fnl4Wi6eaclRdXQlpBROYeG4rHIvueW-klLqQhVce1uoSlbonQAvnHYaoZRCOBB6tVIMgM8JH3v3obX9l61r08bNzsbeIJgDqxlZzcBqflhNP6SuxlQbm8-9S53ZNvsYhqGGM1CH_6gHFxtdZWxSis7_r_o4KA3msHbxt_qP1Dc5RnM6 |
| Cites_doi | 10.1016/j.aml.2021.107159 10.1016/j.amc.2022.127679 10.1214/ss/1177013525 10.1007/s00180-011-0289-6 10.1007/BF02510176 10.1090/S0025-5718-1974-0378357-2 10.1073/pnas.52.4.947 10.1201/b10954 10.1016/j.aml.2022.108133 10.1007/978-3-319-94911-6_1 10.1007/BF01990532 10.1007/s00211-011-0442-8 10.1016/j.jat.2013.01.004 10.14658/PUPJ-DRNA-2019-1-6 10.1007/978-1-4612-6333-3 10.1007/s00180-021-01066-7 10.1017/S0013091500077853 10.1016/j.amc.2023.128241 10.1111/1467-842X.00119 10.1214/SS/1038425655 10.1007/978-3-319-07176-3_7 10.1007/BF02162161 10.1016/j.neucom.2019.11.109 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1007/s10543-025-01071-y |
| DatabaseName | Springer Nature OA Free Journals CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics Computer Science |
| EISSN | 1572-9125 |
| ExternalDocumentID | 10.1007/s10543-025-01071-y 10_1007_s10543_025_01071_y |
| GrantInformation_xml | – fundername: Università degli Studi della Campania Luigi Vanvitelli |
| GroupedDBID | -~X 1N0 40D 40E 95- 95. 95~ ABMNI ACIWK AGWIL ALMA_UNASSIGNED_HOLDINGS C6C CS3 RHV SDD SOJ TN5 WH7 ~EX 23N AAYXX ABDPE ASPBG AVWKF BBWZM CAG CITATION COF H~9 KOW N2Q ADTOC UNPAY |
| ID | FETCH-LOGICAL-c316t-b4554e618e35d7f53a3fd555986839fa86d5d1fe40f4e9e910c544e049bb62003 |
| IEDL.DBID | C6C |
| ISSN | 0006-3835 1572-9125 |
| IngestDate | Tue Aug 19 23:44:45 EDT 2025 Mon Oct 06 16:35:40 EDT 2025 Wed Oct 01 05:48:18 EDT 2025 Thu Jul 03 03:22:05 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | P-splines Constrained splines 65D10 65D15 Regression splines Algorithms for first-order approximation 65D07 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-b4554e618e35d7f53a3fd555986839fa86d5d1fe40f4e9e910c544e049bb62003 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4694-0113 |
| OpenAccessLink | https://doi.org/10.1007/s10543-025-01071-y |
| PQID | 3206559819 |
| PQPubID | 2043657 |
| ParticipantIDs | unpaywall_primary_10_1007_s10543_025_01071_y proquest_journals_3206559819 crossref_primary_10_1007_s10543_025_01071_y springer_journals_10_1007_s10543_025_01071_y |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationTitle | BIT |
| PublicationTitleAbbrev | Bit Numer Math |
| PublicationYear | 2025 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | ET Whittaker (1071_CR24) 1922; 41 M Navarro-García (1071_CR15) 2023; 441 R Campagna (1071_CR4) 2021; 118 IJ Schoenberg (1071_CR20) 1964; 52 C Hautecoeur (1071_CR12) 2020; 416 1071_CR10 1071_CR11 1071_CR13 D Ruppert (1071_CR18) 2000; 42 T Schütze (1071_CR22) 1997; 37 1071_CR5 C Reinsch (1071_CR17) 1967; 10 1071_CR7 1071_CR1 R Campagna (1071_CR6) 2023; 458 C Schellhase (1071_CR19) 2012; 27 PHC Eilers (1071_CR9) 1996; 11 F O’Sullivan (1071_CR16) 1986; 1 H Schwetlick (1071_CR21) 1993; 33 L Bos (1071_CR2) 2012; 121 L Bos (1071_CR3) 2013; 169 1071_CR23 1071_CR25 P Maturana-Russel (1071_CR14) 2021; 36 C de Boor (1071_CR8) 1974; 28 |
| References_xml | – volume: 118 year: 2021 ident: 1071_CR4 publication-title: Applied Mathematics Letters doi: 10.1016/j.aml.2021.107159 – volume: 441 year: 2023 ident: 1071_CR15 publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2022.127679 – volume: 1 start-page: 502 issue: 4 year: 1986 ident: 1071_CR16 publication-title: Statistical Science doi: 10.1214/ss/1177013525 – volume: 27 start-page: 757 year: 2012 ident: 1071_CR19 publication-title: Comput Stat doi: 10.1007/s00180-011-0289-6 – ident: 1071_CR11 – volume: 37 start-page: 105 year: 1997 ident: 1071_CR22 publication-title: BIT Numerical Mathematics doi: 10.1007/BF02510176 – volume: 28 start-page: 565 year: 1974 ident: 1071_CR8 publication-title: Mathematics of Computation doi: 10.1090/S0025-5718-1974-0378357-2 – volume: 52 start-page: 947 issue: 52 year: 1964 ident: 1071_CR20 publication-title: Proc. Nat. Acad. Sci. doi: 10.1073/pnas.52.4.947 – ident: 1071_CR23 doi: 10.1201/b10954 – ident: 1071_CR5 doi: 10.1016/j.aml.2022.108133 – ident: 1071_CR13 doi: 10.1007/978-3-319-94911-6_1 – volume: 33 start-page: 512 year: 1993 ident: 1071_CR21 publication-title: BIT Numerical Mathematics doi: 10.1007/BF01990532 – volume: 121 start-page: 461 year: 2012 ident: 1071_CR2 publication-title: Numer. Math doi: 10.1007/s00211-011-0442-8 – volume: 169 start-page: 7 year: 2013 ident: 1071_CR3 publication-title: J. Approx. Theory doi: 10.1016/j.jat.2013.01.004 – ident: 1071_CR1 doi: 10.14658/PUPJ-DRNA-2019-1-6 – ident: 1071_CR7 doi: 10.1007/978-1-4612-6333-3 – volume: 36 start-page: 2055 year: 2021 ident: 1071_CR14 publication-title: Computational Statistics doi: 10.1007/s00180-021-01066-7 – ident: 1071_CR10 – volume: 41 start-page: 63 year: 1922 ident: 1071_CR24 publication-title: Proceedings of the Edinburgh Mathematical Society doi: 10.1017/S0013091500077853 – volume: 458 year: 2023 ident: 1071_CR6 publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2023.128241 – volume: 42 start-page: 205 issue: 2 year: 2000 ident: 1071_CR18 publication-title: Australian & New Zealand Journal of Statistics doi: 10.1111/1467-842X.00119 – volume: 11 start-page: 89 issue: 2 year: 1996 ident: 1071_CR9 publication-title: Statistical Science doi: 10.1214/SS/1038425655 – ident: 1071_CR25 doi: 10.1007/978-3-319-07176-3_7 – volume: 10 start-page: 177 issue: 10 year: 1967 ident: 1071_CR17 publication-title: Numer. Math. doi: 10.1007/BF02162161 – volume: 416 start-page: 256 year: 2020 ident: 1071_CR12 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.11.109 |
| SSID | ssj0029613 ssj0014816 ssj0000615 |
| Score | 2.3925781 |
| Snippet | Regression splines are largely used to investigate and predict data behavior, attracting the interest of mathematicians for their beautiful numerical... |
| SourceID | unpaywall proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| SubjectTerms | Algorithms Computational Mathematics and Numerical Analysis Constraints Lower bounds Mathematics Mathematics and Statistics Numeric Computing Regression models |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BGYCB8hSFgjIgMYDbJn40GSseqpBAHahUpsh2HECUUNFUqPx6znlQQAiBWG3Hie_s3Gff3WeAA-lSHmjOSduXijDNfKKC2CeRYoHibSPdLFH48kp0--xiwAdzcFrmwmTR7qVLMs9psCxNSdocRXHzQ-IbZ9b_aAPP0EiSaQOr52FBcETkFVjoX_U6NznyFQQ3YTyjTW17uLY9XuTOfN_RZ_s0A53vftJlWJwkIzl9kcPhB1N0XgVTDiKPQHloTFLV0K9f-B3_O8pVWCmwqtPJJ9cazJlkHaoFbnWKv8IYi8qrIcqyDTjsJI4c3j4936d3jw4CY0c62kJReyMFPtwjY5sKbDahf352fdIlxZ0MRFNXpEQxxB9GuL6hPGrHnEoaRzxjeUeoFUtfRDxyY8NaMTOBQTCiOWMG9yFKCRsItwWV5Ckx2-AobK8jT1FqTaTl3uJK-14gfC141NI1OCo1EY5y6o1wRrJsRROiaMJMNOG0BvVSWWGxDMch9RBh4be5QQ2OS3nPqn_q7fhdyb94-c7fmu_Ckpdp1R7m1KGSPk_MHmKbVO0XU_cN8xXstw priority: 102 providerName: Unpaywall |
| Title | An algorithm for a constrained P-spline |
| URI | https://link.springer.com/article/10.1007/s10543-025-01071-y https://www.proquest.com/docview/3206559819 https://link.springer.com/content/pdf/10.1007/s10543-025-01071-y.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 65 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1572-9125 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014816 issn: 0006-3835 databaseCode: AFBBN dateStart: 19610301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1572-9125 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014816 issn: 0006-3835 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1572-9125 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014816 issn: 0006-3835 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED7UPege_C1O5-iD4IMG7Jpk7WMdm6Js-GBBn0qSpirMKmtF9t97qWmnIqIvLVzLtXxJet_1cncAh8L1WKAYIz1fSEIV9YkMUp8kkgaS9bRwy0Th0ZhfRPTylt3aMjkmF-Zb_N6kuDFqIo1mixmaQzJbhAYaKV4GZnn_01fXrXkvUnxDeqzbFXDX9lPjBP0xZlNnftb-1TzNOWcdJm3C8mv2ImZvYjL5ZImG67BqKaQTfoz5BizobBPWLJ107GLNUVR1bKhkm9Ac1VVa8y04CjNHTO6fp4_Fw5OD7NURjjJ80bSNQFXXJDf5unobouHgpn9BbOMEojyXF0RSJAmau772WNJLmSe8NGFlKXbkQ6nwecISN9X0NKU60MgYFKNUo7MgJTe71XZgKXvO9C44Eu9XSVd6nrFjpkAWk8pHTH3FWXKqWnBc4RW_fNTHiOeVkA26MaIbl-jGsxa0K0hju1by2OsiDcJ3c4MWnFQwzy__pu2kHoo_PHzvf9r3YaVbTgzzx6UNS8X0VR8gASlkBxrh8OxsbM7nd1eDTjkT8Rh1Q5RF4-vw7h3EFM-i |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5RPCAHf6BGFHUHEw_ShK7t2I7EaFCBeICE29J2nZrgIGzE8N_bjg4wMUav3fK6fP3xvu71fQ_gmmPCAskYavlcICqpj0QQ-ygSNBCspTjOE4V7fa8zpE8jNrJJYWlx270ISeY79UayG6Mm5mgum2nHiBbbsGMErIxi_tBtb-y_eMWANdk39McewAIP28pqHtInM2aTaH62_t1RrdnnKmBagfI8mfLFJx-PN3zSwwHsWTLptJejfwhbKqnCviWWjl22qW4qajcUbVWo9FZ6rekR3LQTh49fJ7P37O3D0TzW4Y40zNEUkNCmXlBqMnfVMQwf7gd3HWRLKCBJsJchQTVdUB72FWFRK2aEkzhiuSi7ZkYx972IRThWtBlTFSjNHSSjVOljgxCeubd2AqVkkqhTcIR-X0auIMR4NCOVxYT0Naa-9FjUlDW4LfAKp0uljHCtiWzQDTW6YY5uuKhBvYA0tKsmDYmrCZH-NhzUoFHAvH78m7XGaij-0PnZ_6xfQbkz6HXD7mP_-Rx23XySmP8wdShls7m60LQkE5f5LPwCLSzRCQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3fT8IwEMcvionKgz9QI4q6BxMfpIGxtmyPBCX4A8KDJLwtbdepCQ4CI4b_3uvYABNj9LVbbsu37e7TtXcHcC1sh3mKMVJ3hSRUUZdIL3RJIKknWV0LOwkU7nR5u08fB2ywFsWfnHbPtiQXMQ0mS1MUV8ZBWFkLfGPU7D-ag2foJMl8E7YoejdTw6DJm2vfYntJwwj-BoXSxZjH7bTKGie4SmNpQM3P1r87rRWJLjdP87Azi8Zi_imGwzX_1DqAvRQsrcZiJBzCho4KsJ9CppVO4Sk2ZXUcsrYC5DvL3K3TI7hpRJYYvo4m7_Hbh4VMawlLGYo0xSTQVI9MTRSvPoZ-6_6l2SZpOQWiHJvHRFJEB81tVzssqIfMEU4YsCRBO1JSKFwesMAONa2GVHsaOUIxSjUuIaTk5gzbCeSiUaRPwZJ4vwpq0nGMdzNps5hULmrqKs6CqirCbaaXP15kzfBX-ZGNuj6q6yfq-vMilDJJ_XQGTX2nhnCE72Z7RShnMq8u_2atvOyKPzz87H_Wr2C7d9fynx-6T-ewW0vGiPklU4JcPJnpCySUWF4mg_ALubfVLw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BGYCB8hSFgjIgMYDbJn40GSseqpBAHahUpsh2HECUUNFUqPx6znlQQAiBWG3Hie_s3Gff3WeAA-lSHmjOSduXijDNfKKC2CeRYoHibSPdLFH48kp0--xiwAdzcFrmwmTR7qVLMs9psCxNSdocRXHzQ-IbZ9b_aAPP0EiSaQOr52FBcETkFVjoX_U6NznyFQQ3YTyjTW17uLY9XuTOfN_RZ_s0A53vftJlWJwkIzl9kcPhB1N0XgVTDiKPQHloTFLV0K9f-B3_O8pVWCmwqtPJJ9cazJlkHaoFbnWKv8IYi8qrIcqyDTjsJI4c3j4936d3jw4CY0c62kJReyMFPtwjY5sKbDahf352fdIlxZ0MRFNXpEQxxB9GuL6hPGrHnEoaRzxjeUeoFUtfRDxyY8NaMTOBQTCiOWMG9yFKCRsItwWV5Ckx2-AobK8jT1FqTaTl3uJK-14gfC141NI1OCo1EY5y6o1wRrJsRROiaMJMNOG0BvVSWWGxDMch9RBh4be5QQ2OS3nPqn_q7fhdyb94-c7fmu_Ckpdp1R7m1KGSPk_MHmKbVO0XU_cN8xXstw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+algorithm+for+a+constrained+P-spline&rft.jtitle=BIT&rft.au=Campagna+Rosanna&rft.au=Crisci+Serena&rft.au=Santin+Gabriele&rft.au=Toraldo+Gerardo&rft.date=2025-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0006-3835&rft.eissn=1572-9125&rft.volume=65&rft.issue=2&rft_id=info:doi/10.1007%2Fs10543-025-01071-y&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3835&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3835&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3835&client=summon |