An algorithm for a constrained P-spline

Regression splines are largely used to investigate and predict data behavior, attracting the interest of mathematicians for their beautiful numerical properties, and of statisticians for their versatility with respect to the applications. Several penalized spline regression models are available in t...

Full description

Saved in:
Bibliographic Details
Published inBIT Vol. 65; no. 2
Main Authors Campagna, Rosanna, Crisci, Serena, Santin, Gabriele, Toraldo, Gerardo, Viola, Marco
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.06.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0006-3835
1572-9125
1572-9125
DOI10.1007/s10543-025-01071-y

Cover

Abstract Regression splines are largely used to investigate and predict data behavior, attracting the interest of mathematicians for their beautiful numerical properties, and of statisticians for their versatility with respect to the applications. Several penalized spline regression models are available in the literature, and the most commonly used ones in real-world applications are P-splines, which enjoy the advantages of penalized models while being easy to generalize across different functional spaces and higher degree order, because of their discrete penalty term. To face the different requirements imposed by the nature of the problem or the physical meaning of the expected values, the P-spline definition is often modified by additional hypotheses, often translated into constraints on the solution or its derivatives. In this framework, our work is motivated by the aim of getting approximation models that fall within pre-established thresholds. Specifically, starting from a set of observed data, we consider a P-spline constrained between some prefixed bounds. In our paper, we just consider 0 as lower bound, although our approach applies to more general cases. We propose to get nonnegativity by imposing lower bounds on selected sample points. The spline can be computed through a sequence of linearly constrained problems. We suggest a strategy to dynamically select the sample points, to avoid extremely dense sampling, and therefore try to reduce as much as possible the computational burden. We show through some computational experiments the reliability of our approach and the accuracy of the results compared to some state-of-the-art models.
AbstractList Regression splines are largely used to investigate and predict data behavior, attracting the interest of mathematicians for their beautiful numerical properties, and of statisticians for their versatility with respect to the applications. Several penalized spline regression models are available in the literature, and the most commonly used ones in real-world applications are P-splines, which enjoy the advantages of penalized models while being easy to generalize across different functional spaces and higher degree order, because of their discrete penalty term. To face the different requirements imposed by the nature of the problem or the physical meaning of the expected values, the P-spline definition is often modified by additional hypotheses, often translated into constraints on the solution or its derivatives. In this framework, our work is motivated by the aim of getting approximation models that fall within pre-established thresholds. Specifically, starting from a set of observed data, we consider a P-spline constrained between some prefixed bounds. In our paper, we just consider 0 as lower bound, although our approach applies to more general cases. We propose to get nonnegativity by imposing lower bounds on selected sample points. The spline can be computed through a sequence of linearly constrained problems. We suggest a strategy to dynamically select the sample points, to avoid extremely dense sampling, and therefore try to reduce as much as possible the computational burden. We show through some computational experiments the reliability of our approach and the accuracy of the results compared to some state-of-the-art models.
ArticleNumber 29
Author Campagna, Rosanna
Crisci, Serena
Toraldo, Gerardo
Viola, Marco
Santin, Gabriele
Author_xml – sequence: 1
  givenname: Rosanna
  orcidid: 0000-0003-4694-0113
  surname: Campagna
  fullname: Campagna, Rosanna
  email: rosanna.campagna@unicampania.it
  organization: Department of Mathematics and Physics, University of Campania “L. Vanvitelli”
– sequence: 2
  givenname: Serena
  surname: Crisci
  fullname: Crisci, Serena
  organization: Department of Mathematics and Physics, University of Campania “L. Vanvitelli”
– sequence: 3
  givenname: Gabriele
  surname: Santin
  fullname: Santin, Gabriele
  organization: Department of Environmental Sciences, Informatics and Statistics, Ca’Foscari University of Venice
– sequence: 4
  givenname: Gerardo
  surname: Toraldo
  fullname: Toraldo, Gerardo
  organization: Department of Mathematics and Physics, University of Campania “L. Vanvitelli”
– sequence: 5
  givenname: Marco
  surname: Viola
  fullname: Viola, Marco
  organization: School of Mathematical Sciences, Dublin City University
BookMark eNqNj0tPwzAQhC1UJNrCH-AUiQMnw65fiY9VxUtCggOcLTexS6vUCXYqlH9PSipxQ5x2DjOz883IJDTBEXKJcIMA-W1CkIJTYJICQo60PyFTlDmjGpmckCkAKMoLLs_ILKUtANMK-ZRcL0Jm63UTN93HLvNNzGxWNiF10W6Cq7JXmtp6UOfk1Ns6uYvjnZP3-7u35SN9fnl4Wi6eaclRdXQlpBROYeG4rHIvueW-klLqQhVce1uoSlbonQAvnHYaoZRCOBB6tVIMgM8JH3v3obX9l61r08bNzsbeIJgDqxlZzcBqflhNP6SuxlQbm8-9S53ZNvsYhqGGM1CH_6gHFxtdZWxSis7_r_o4KA3msHbxt_qP1Dc5RnM6
Cites_doi 10.1016/j.aml.2021.107159
10.1016/j.amc.2022.127679
10.1214/ss/1177013525
10.1007/s00180-011-0289-6
10.1007/BF02510176
10.1090/S0025-5718-1974-0378357-2
10.1073/pnas.52.4.947
10.1201/b10954
10.1016/j.aml.2022.108133
10.1007/978-3-319-94911-6_1
10.1007/BF01990532
10.1007/s00211-011-0442-8
10.1016/j.jat.2013.01.004
10.14658/PUPJ-DRNA-2019-1-6
10.1007/978-1-4612-6333-3
10.1007/s00180-021-01066-7
10.1017/S0013091500077853
10.1016/j.amc.2023.128241
10.1111/1467-842X.00119
10.1214/SS/1038425655
10.1007/978-3-319-07176-3_7
10.1007/BF02162161
10.1016/j.neucom.2019.11.109
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1007/s10543-025-01071-y
DatabaseName Springer Nature OA Free Journals
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Computer Science
EISSN 1572-9125
ExternalDocumentID 10.1007/s10543-025-01071-y
10_1007_s10543_025_01071_y
GrantInformation_xml – fundername: Università degli Studi della Campania Luigi Vanvitelli
GroupedDBID -~X
1N0
40D
40E
95-
95.
95~
ABMNI
ACIWK
AGWIL
ALMA_UNASSIGNED_HOLDINGS
C6C
CS3
RHV
SDD
SOJ
TN5
WH7
~EX
23N
AAYXX
ABDPE
ASPBG
AVWKF
BBWZM
CAG
CITATION
COF
H~9
KOW
N2Q
ADTOC
UNPAY
ID FETCH-LOGICAL-c316t-b4554e618e35d7f53a3fd555986839fa86d5d1fe40f4e9e910c544e049bb62003
IEDL.DBID C6C
ISSN 0006-3835
1572-9125
IngestDate Tue Aug 19 23:44:45 EDT 2025
Mon Oct 06 16:35:40 EDT 2025
Wed Oct 01 05:48:18 EDT 2025
Thu Jul 03 03:22:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords P-splines
Constrained splines
65D10
65D15
Regression splines
Algorithms for first-order approximation
65D07
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-b4554e618e35d7f53a3fd555986839fa86d5d1fe40f4e9e910c544e049bb62003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4694-0113
OpenAccessLink https://doi.org/10.1007/s10543-025-01071-y
PQID 3206559819
PQPubID 2043657
ParticipantIDs unpaywall_primary_10_1007_s10543_025_01071_y
proquest_journals_3206559819
crossref_primary_10_1007_s10543_025_01071_y
springer_journals_10_1007_s10543_025_01071_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle BIT
PublicationTitleAbbrev Bit Numer Math
PublicationYear 2025
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References ET Whittaker (1071_CR24) 1922; 41
M Navarro-García (1071_CR15) 2023; 441
R Campagna (1071_CR4) 2021; 118
IJ Schoenberg (1071_CR20) 1964; 52
C Hautecoeur (1071_CR12) 2020; 416
1071_CR10
1071_CR11
1071_CR13
D Ruppert (1071_CR18) 2000; 42
T Schütze (1071_CR22) 1997; 37
1071_CR5
C Reinsch (1071_CR17) 1967; 10
1071_CR7
1071_CR1
R Campagna (1071_CR6) 2023; 458
C Schellhase (1071_CR19) 2012; 27
PHC Eilers (1071_CR9) 1996; 11
F O’Sullivan (1071_CR16) 1986; 1
H Schwetlick (1071_CR21) 1993; 33
L Bos (1071_CR2) 2012; 121
L Bos (1071_CR3) 2013; 169
1071_CR23
1071_CR25
P Maturana-Russel (1071_CR14) 2021; 36
C de Boor (1071_CR8) 1974; 28
References_xml – volume: 118
  year: 2021
  ident: 1071_CR4
  publication-title: Applied Mathematics Letters
  doi: 10.1016/j.aml.2021.107159
– volume: 441
  year: 2023
  ident: 1071_CR15
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2022.127679
– volume: 1
  start-page: 502
  issue: 4
  year: 1986
  ident: 1071_CR16
  publication-title: Statistical Science
  doi: 10.1214/ss/1177013525
– volume: 27
  start-page: 757
  year: 2012
  ident: 1071_CR19
  publication-title: Comput Stat
  doi: 10.1007/s00180-011-0289-6
– ident: 1071_CR11
– volume: 37
  start-page: 105
  year: 1997
  ident: 1071_CR22
  publication-title: BIT Numerical Mathematics
  doi: 10.1007/BF02510176
– volume: 28
  start-page: 565
  year: 1974
  ident: 1071_CR8
  publication-title: Mathematics of Computation
  doi: 10.1090/S0025-5718-1974-0378357-2
– volume: 52
  start-page: 947
  issue: 52
  year: 1964
  ident: 1071_CR20
  publication-title: Proc. Nat. Acad. Sci.
  doi: 10.1073/pnas.52.4.947
– ident: 1071_CR23
  doi: 10.1201/b10954
– ident: 1071_CR5
  doi: 10.1016/j.aml.2022.108133
– ident: 1071_CR13
  doi: 10.1007/978-3-319-94911-6_1
– volume: 33
  start-page: 512
  year: 1993
  ident: 1071_CR21
  publication-title: BIT Numerical Mathematics
  doi: 10.1007/BF01990532
– volume: 121
  start-page: 461
  year: 2012
  ident: 1071_CR2
  publication-title: Numer. Math
  doi: 10.1007/s00211-011-0442-8
– volume: 169
  start-page: 7
  year: 2013
  ident: 1071_CR3
  publication-title: J. Approx. Theory
  doi: 10.1016/j.jat.2013.01.004
– ident: 1071_CR1
  doi: 10.14658/PUPJ-DRNA-2019-1-6
– ident: 1071_CR7
  doi: 10.1007/978-1-4612-6333-3
– volume: 36
  start-page: 2055
  year: 2021
  ident: 1071_CR14
  publication-title: Computational Statistics
  doi: 10.1007/s00180-021-01066-7
– ident: 1071_CR10
– volume: 41
  start-page: 63
  year: 1922
  ident: 1071_CR24
  publication-title: Proceedings of the Edinburgh Mathematical Society
  doi: 10.1017/S0013091500077853
– volume: 458
  year: 2023
  ident: 1071_CR6
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2023.128241
– volume: 42
  start-page: 205
  issue: 2
  year: 2000
  ident: 1071_CR18
  publication-title: Australian & New Zealand Journal of Statistics
  doi: 10.1111/1467-842X.00119
– volume: 11
  start-page: 89
  issue: 2
  year: 1996
  ident: 1071_CR9
  publication-title: Statistical Science
  doi: 10.1214/SS/1038425655
– ident: 1071_CR25
  doi: 10.1007/978-3-319-07176-3_7
– volume: 10
  start-page: 177
  issue: 10
  year: 1967
  ident: 1071_CR17
  publication-title: Numer. Math.
  doi: 10.1007/BF02162161
– volume: 416
  start-page: 256
  year: 2020
  ident: 1071_CR12
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.11.109
SSID ssj0029613
ssj0014816
ssj0000615
Score 2.3925781
Snippet Regression splines are largely used to investigate and predict data behavior, attracting the interest of mathematicians for their beautiful numerical...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
Computational Mathematics and Numerical Analysis
Constraints
Lower bounds
Mathematics
Mathematics and Statistics
Numeric Computing
Regression models
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BGYCB8hSFgjIgMYDbJn40GSseqpBAHahUpsh2HECUUNFUqPx6znlQQAiBWG3Hie_s3Gff3WeAA-lSHmjOSduXijDNfKKC2CeRYoHibSPdLFH48kp0--xiwAdzcFrmwmTR7qVLMs9psCxNSdocRXHzQ-IbZ9b_aAPP0EiSaQOr52FBcETkFVjoX_U6NznyFQQ3YTyjTW17uLY9XuTOfN_RZ_s0A53vftJlWJwkIzl9kcPhB1N0XgVTDiKPQHloTFLV0K9f-B3_O8pVWCmwqtPJJ9cazJlkHaoFbnWKv8IYi8qrIcqyDTjsJI4c3j4936d3jw4CY0c62kJReyMFPtwjY5sKbDahf352fdIlxZ0MRFNXpEQxxB9GuL6hPGrHnEoaRzxjeUeoFUtfRDxyY8NaMTOBQTCiOWMG9yFKCRsItwWV5Ckx2-AobK8jT1FqTaTl3uJK-14gfC141NI1OCo1EY5y6o1wRrJsRROiaMJMNOG0BvVSWWGxDMch9RBh4be5QQ2OS3nPqn_q7fhdyb94-c7fmu_Ckpdp1R7m1KGSPk_MHmKbVO0XU_cN8xXstw
  priority: 102
  providerName: Unpaywall
Title An algorithm for a constrained P-spline
URI https://link.springer.com/article/10.1007/s10543-025-01071-y
https://www.proquest.com/docview/3206559819
https://link.springer.com/content/pdf/10.1007/s10543-025-01071-y.pdf
UnpaywallVersion publishedVersion
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1572-9125
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014816
  issn: 0006-3835
  databaseCode: AFBBN
  dateStart: 19610301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1572-9125
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014816
  issn: 0006-3835
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1572-9125
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014816
  issn: 0006-3835
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED7UPege_C1O5-iD4IMG7Jpk7WMdm6Js-GBBn0qSpirMKmtF9t97qWmnIqIvLVzLtXxJet_1cncAh8L1WKAYIz1fSEIV9YkMUp8kkgaS9bRwy0Th0ZhfRPTylt3aMjkmF-Zb_N6kuDFqIo1mixmaQzJbhAYaKV4GZnn_01fXrXkvUnxDeqzbFXDX9lPjBP0xZlNnftb-1TzNOWcdJm3C8mv2ImZvYjL5ZImG67BqKaQTfoz5BizobBPWLJ107GLNUVR1bKhkm9Ac1VVa8y04CjNHTO6fp4_Fw5OD7NURjjJ80bSNQFXXJDf5unobouHgpn9BbOMEojyXF0RSJAmau772WNJLmSe8NGFlKXbkQ6nwecISN9X0NKU60MgYFKNUo7MgJTe71XZgKXvO9C44Eu9XSVd6nrFjpkAWk8pHTH3FWXKqWnBc4RW_fNTHiOeVkA26MaIbl-jGsxa0K0hju1by2OsiDcJ3c4MWnFQwzy__pu2kHoo_PHzvf9r3YaVbTgzzx6UNS8X0VR8gASlkBxrh8OxsbM7nd1eDTjkT8Rh1Q5RF4-vw7h3EFM-i
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5RPCAHf6BGFHUHEw_ShK7t2I7EaFCBeICE29J2nZrgIGzE8N_bjg4wMUav3fK6fP3xvu71fQ_gmmPCAskYavlcICqpj0QQ-ygSNBCspTjOE4V7fa8zpE8jNrJJYWlx270ISeY79UayG6Mm5mgum2nHiBbbsGMErIxi_tBtb-y_eMWANdk39McewAIP28pqHtInM2aTaH62_t1RrdnnKmBagfI8mfLFJx-PN3zSwwHsWTLptJejfwhbKqnCviWWjl22qW4qajcUbVWo9FZ6rekR3LQTh49fJ7P37O3D0TzW4Y40zNEUkNCmXlBqMnfVMQwf7gd3HWRLKCBJsJchQTVdUB72FWFRK2aEkzhiuSi7ZkYx972IRThWtBlTFSjNHSSjVOljgxCeubd2AqVkkqhTcIR-X0auIMR4NCOVxYT0Naa-9FjUlDW4LfAKp0uljHCtiWzQDTW6YY5uuKhBvYA0tKsmDYmrCZH-NhzUoFHAvH78m7XGaij-0PnZ_6xfQbkz6HXD7mP_-Rx23XySmP8wdShls7m60LQkE5f5LPwCLSzRCQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3fT8IwEMcvionKgz9QI4q6BxMfpIGxtmyPBCX4A8KDJLwtbdepCQ4CI4b_3uvYABNj9LVbbsu37e7TtXcHcC1sh3mKMVJ3hSRUUZdIL3RJIKknWV0LOwkU7nR5u08fB2ywFsWfnHbPtiQXMQ0mS1MUV8ZBWFkLfGPU7D-ag2foJMl8E7YoejdTw6DJm2vfYntJwwj-BoXSxZjH7bTKGie4SmNpQM3P1r87rRWJLjdP87Azi8Zi_imGwzX_1DqAvRQsrcZiJBzCho4KsJ9CppVO4Sk2ZXUcsrYC5DvL3K3TI7hpRJYYvo4m7_Hbh4VMawlLGYo0xSTQVI9MTRSvPoZ-6_6l2SZpOQWiHJvHRFJEB81tVzssqIfMEU4YsCRBO1JSKFwesMAONa2GVHsaOUIxSjUuIaTk5gzbCeSiUaRPwZJ4vwpq0nGMdzNps5hULmrqKs6CqirCbaaXP15kzfBX-ZGNuj6q6yfq-vMilDJJ_XQGTX2nhnCE72Z7RShnMq8u_2atvOyKPzz87H_Wr2C7d9fynx-6T-ewW0vGiPklU4JcPJnpCySUWF4mg_ALubfVLw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BGYCB8hSFgjIgMYDbJn40GSseqpBAHahUpsh2HECUUNFUqPx6znlQQAiBWG3Hie_s3Gff3WeAA-lSHmjOSduXijDNfKKC2CeRYoHibSPdLFH48kp0--xiwAdzcFrmwmTR7qVLMs9psCxNSdocRXHzQ-IbZ9b_aAPP0EiSaQOr52FBcETkFVjoX_U6NznyFQQ3YTyjTW17uLY9XuTOfN_RZ_s0A53vftJlWJwkIzl9kcPhB1N0XgVTDiKPQHloTFLV0K9f-B3_O8pVWCmwqtPJJ9cazJlkHaoFbnWKv8IYi8qrIcqyDTjsJI4c3j4936d3jw4CY0c62kJReyMFPtwjY5sKbDahf352fdIlxZ0MRFNXpEQxxB9GuL6hPGrHnEoaRzxjeUeoFUtfRDxyY8NaMTOBQTCiOWMG9yFKCRsItwWV5Ckx2-AobK8jT1FqTaTl3uJK-14gfC141NI1OCo1EY5y6o1wRrJsRROiaMJMNOG0BvVSWWGxDMch9RBh4be5QQ2OS3nPqn_q7fhdyb94-c7fmu_Ckpdp1R7m1KGSPk_MHmKbVO0XU_cN8xXstw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+algorithm+for+a+constrained+P-spline&rft.jtitle=BIT&rft.au=Campagna+Rosanna&rft.au=Crisci+Serena&rft.au=Santin+Gabriele&rft.au=Toraldo+Gerardo&rft.date=2025-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0006-3835&rft.eissn=1572-9125&rft.volume=65&rft.issue=2&rft_id=info:doi/10.1007%2Fs10543-025-01071-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3835&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3835&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3835&client=summon