High Order Algorithm for the Time-Tempered Fractional Feynman–Kac Equation

We provide and analyze the high order algorithms for the model describing the functional distributions of particles performing anomalous motion with power-law jump length and tempered power-law waiting time. The model is derived in Wu et al. (Phys Rev E 93:032151, 2016 ), being called the time-tempe...

Full description

Saved in:
Bibliographic Details
Published inJournal of scientific computing Vol. 76; no. 2; pp. 867 - 887
Main Authors Chen, Minghua, Deng, Weihua
Format Journal Article
LanguageEnglish
Published New York Springer US 01.08.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0885-7474
1573-7691
DOI10.1007/s10915-018-0640-y

Cover

Abstract We provide and analyze the high order algorithms for the model describing the functional distributions of particles performing anomalous motion with power-law jump length and tempered power-law waiting time. The model is derived in Wu et al. (Phys Rev E 93:032151, 2016 ), being called the time-tempered fractional Feynman–Kac equation named after Richard Feynman and Mark Kac who first considered the model describing the functional distribution of normal motion. The key step of designing the algorithms is to discretize the time tempered fractional substantial derivative, being defined as S D t γ , λ ~ G ( x , p , t ) = D t γ , λ ~ G ( x , p , t ) - λ γ G ( x , p , t ) with λ ~ = λ + p U ( x ) , p = ρ + J η , J = - 1 , where D t γ , λ ~ G ( x , p , t ) = 1 Γ ( 1 - γ ) ∂ ∂ t + λ ~ ∫ 0 t t - z - γ e - λ ~ · ( t - z ) G ( x , p , z ) d z , and λ ≥ 0 , 0 < γ < 1 , ρ > 0 , and η is a real number. The designed schemes are unconditionally stable and have the global truncation error O ( τ 2 + h 2 ) , being theoretically proved and numerically verified in complex space. Moreover, some simulations for the distributions of the first passage time are performed, and the second order convergence is also obtained for solving the ‘physical’ equation (without artificial source term).
AbstractList We provide and analyze the high order algorithms for the model describing the functional distributions of particles performing anomalous motion with power-law jump length and tempered power-law waiting time. The model is derived in Wu et al. (Phys Rev E 93:032151, 2016 ), being called the time-tempered fractional Feynman–Kac equation named after Richard Feynman and Mark Kac who first considered the model describing the functional distribution of normal motion. The key step of designing the algorithms is to discretize the time tempered fractional substantial derivative, being defined as S D t γ , λ ~ G ( x , p , t ) = D t γ , λ ~ G ( x , p , t ) - λ γ G ( x , p , t ) with λ ~ = λ + p U ( x ) , p = ρ + J η , J = - 1 , where D t γ , λ ~ G ( x , p , t ) = 1 Γ ( 1 - γ ) ∂ ∂ t + λ ~ ∫ 0 t t - z - γ e - λ ~ · ( t - z ) G ( x , p , z ) d z , and λ ≥ 0 , 0 < γ < 1 , ρ > 0 , and η is a real number. The designed schemes are unconditionally stable and have the global truncation error O ( τ 2 + h 2 ) , being theoretically proved and numerically verified in complex space. Moreover, some simulations for the distributions of the first passage time are performed, and the second order convergence is also obtained for solving the ‘physical’ equation (without artificial source term).
We provide and analyze the high order algorithms for the model describing the functional distributions of particles performing anomalous motion with power-law jump length and tempered power-law waiting time. The model is derived in Wu et al. (Phys Rev E 93:032151, 2016), being called the time-tempered fractional Feynman–Kac equation named after Richard Feynman and Mark Kac who first considered the model describing the functional distribution of normal motion. The key step of designing the algorithms is to discretize the time tempered fractional substantial derivative, being defined as SDtγ,λ~G(x,p,t)=Dtγ,λ~G(x,p,t)-λγG(x,p,t)with λ~=λ+pU(x),p=ρ+Jη,J=-1, where Dtγ,λ~G(x,p,t)=1Γ(1-γ)∂∂t+λ~∫0tt-z-γe-λ~·(t-z)G(x,p,z)dz,and λ≥0, 0<γ<1, ρ>0, and η is a real number. The designed schemes are unconditionally stable and have the global truncation error O(τ2+h2), being theoretically proved and numerically verified in complex space. Moreover, some simulations for the distributions of the first passage time are performed, and the second order convergence is also obtained for solving the ‘physical’ equation (without artificial source term).
Author Deng, Weihua
Chen, Minghua
Author_xml – sequence: 1
  givenname: Minghua
  orcidid: 0000-0002-1327-7688
  surname: Chen
  fullname: Chen, Minghua
  email: chenmh@lzu.edu.cn
  organization: School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University
– sequence: 2
  givenname: Weihua
  surname: Deng
  fullname: Deng, Weihua
  organization: School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University
BookMark eNp9kM1KAzEURoNUsFYfwF3AdfQmmUwyy1JaKxa6qeuQmWTaKfPTJtPF7HwH39AnceoIgqCry-V-5_JxrtGobmqH0B2FBwogHwOFhAoCVBGIIyDdBRpTITmRcUJHaAxKCSIjGV2h6xD2AJCohI3Rallsd3jtrfN4Wm4bX7S7CueNx-3O4U1RObJx1cF5Z_HCm6wtmtqUeOG6ujL1x9v7i8nw_Hgy58MNusxNGdzt95yg18V8M1uS1frpeTZdkYzTuCUpOOCWWSWE4FHKIbVMMZZKEXFuraXOxjKnWWSFhUwxI9JIZIZZo_rNWT5B98Pfg2-OJxdavW9Ovu8VNEuo4pTzGPqUHFKZb0LwLtdZ0X71bL0pSk1Bn9XpQZ3u1emzOt31JP1FHnxRGd_9y7CBCX223jr_0-lv6BOaZoQM
CitedBy_id crossref_primary_10_1007_s11075_018_0514_2
crossref_primary_10_1016_j_apnum_2019_08_002
crossref_primary_10_1080_00207160_2020_1841175
crossref_primary_10_1007_s10915_019_01027_9
crossref_primary_10_1002_num_22571
crossref_primary_10_3390_fractalfract7050380
crossref_primary_10_1016_j_apnum_2020_10_027
crossref_primary_10_1360_SSM_2023_0046
crossref_primary_10_1007_s10915_021_01509_9
crossref_primary_10_1142_S0218348X23400455
crossref_primary_10_1002_mma_8153
crossref_primary_10_1007_s11071_022_07561_w
crossref_primary_10_1007_s10444_024_10152_5
crossref_primary_10_1051_m2an_2019052
crossref_primary_10_1007_s10915_020_01256_3
crossref_primary_10_1007_s10915_020_01331_9
crossref_primary_10_1007_s10915_021_01581_1
crossref_primary_10_1007_s42967_020_00067_5
Cites_doi 10.1016/j.apm.2013.12.002
10.1016/j.cam.2009.10.027
10.1007/s10444-015-9434-z
10.1137/12086491X
10.1016/j.jcp.2011.10.005
10.1007/s10915-014-9873-6
10.1209/epl/i2003-10154-7
10.1016/j.cam.2004.01.033
10.1137/0517050
10.1016/j.jcp.2005.08.008
10.1016/j.jcp.2014.10.053
10.1137/130927292
10.1137/130933447
10.1137/14097207X
10.1007/s10915-014-9956-4
10.1155/IJMMS/2006/48391
10.1103/PhysRevE.76.041105
10.1016/j.apnum.2005.02.008
10.1016/j.physa.2003.12.044
10.1137/080718942
10.1016/j.apm.2007.11.005
10.4208/cicp.120713.280214a
10.1016/j.apnum.2014.11.007
10.1093/acprof:oso/9780199234868.001.0001
10.1090/S0025-5718-2015-02917-2
10.1051/m2an/2014052
10.1137/130910865
10.1103/PhysRevLett.96.230601
10.1063/1.4863995
10.1137/110840959
10.1016/j.jcp.2013.09.016
10.1137/120880719
10.1016/j.jcp.2014.04.024
10.1137/080730597
10.1137/080714130
10.1002/num.20112
10.1007/978-3-642-14003-7
10.1016/j.matpur.2013.06.003
10.1103/PhysRevE.93.032151
10.1016/j.camwa.2016.12.017
10.1103/PhysRevE.84.061104
10.1103/PhysRevE.79.031120
10.1137/1.9780898718850
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Springer Science+Business Media, LLC, part of Springer Nature 2018.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2018.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s10915-018-0640-y
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection (Proquest)
ProQuest Computer Science Collection
Computer Science Database (Proquest)
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1573-7691
EndPage 887
ExternalDocumentID 10_1007_s10915_018_0640_y
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11601206; 11671182
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z92
ZMTXR
ZWQNP
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c316t-b0e03d2d855534b30bd2822b75433ddd1ed67f1c4d5d0c82a5b45ca2da8c82ed3
IEDL.DBID AGYKE
ISSN 0885-7474
IngestDate Fri Jul 25 19:57:23 EDT 2025
Thu Apr 24 23:06:02 EDT 2025
Wed Oct 08 04:20:31 EDT 2025
Fri Feb 21 02:36:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords First passage time
35R11
65L20
Time-tempered fractional Feynman–Kac equation
Stability and convergence
Tempered fractional substantial derivative
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-b0e03d2d855534b30bd2822b75433ddd1ed67f1c4d5d0c82a5b45ca2da8c82ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1327-7688
PQID 2918313360
PQPubID 2043771
PageCount 21
ParticipantIDs proquest_journals_2918313360
crossref_citationtrail_10_1007_s10915_018_0640_y
crossref_primary_10_1007_s10915_018_0640_y
springer_journals_10_1007_s10915_018_0640_y
PublicationCentury 2000
PublicationDate 20180800
2018-8-00
20180801
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 8
  year: 2018
  text: 20180800
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of scientific computing
PublicationTitleAbbrev J Sci Comput
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References MustaphaKMcleanWSuperconvergence of a discontinuous Galerkin method for fractional diffusion and wave equationsSIAM J. Numer. Anal.201351491515303302010.1137/1208807191267.26005
Ros-OtonXSerraJThe Dirichlet problem for the fractional Laplacian: regularity up to the boundaryJ. Math. Pures Appl.2014101275302316891210.1016/j.matpur.2013.06.0031285.35020
del-Castillo-NegreteDTruncation effects in super diffusive front propagation with Lévy flightsPhys. Rev. E20097903112010.1103/PhysRevE.79.031120
PangHSunHMultigrid method for fractional diffusion equationsJ. Comput. Phys.2012231693703287209910.1016/j.jcp.2011.10.0051243.65117
HaoZPSunZZCaoWRA fourth-order approximation of fractional derivatives with its applicationsJ. Comput. Phys.2015281787805328199510.1016/j.jcp.2014.10.0531352.65238
YangXHZhangHXXuDOrthogonal spline collocation method for the two-dimensional fractionl sub-difusion equationJ. Comput. Phys.2014256824837311743710.1016/j.jcp.2013.09.0161349.65529
DengWHFinite element method for the space and time fractional Fokker–Planck equationSIAM J. Numer. Anal.200847204226245285810.1137/08071413005686546
SousaELiCA weighted finite difference method for the fractional diffusion equation based on the Riemann–Liouville drivativeAppl. Numer. Math.2015902237330089310.1016/j.apnum.2014.11.0071326.65111
DengWHChenMHBarkaiENumerical algorithms for the forward and backward fractional Feynman–Kac equationsJ. Sci. Comput.201562718746330433010.1007/s10915-014-9873-61335.65069
MeerschaertMMTadjeranCFinite difference approximations for two-sided space-fractional partial differential equationsAppl. Numer. Math.2006568090218643210.1016/j.apnum.2005.02.0081086.65087
CarteaÁdel-Castillo-NegreteDFluid limit of the continuous-time random walk with general Lévy jump distribution functionsPhys. Rev. E20077604110510.1103/PhysRevE.76.041105
MeerschaertMMTadjeranCFinite difference approximations for fractional advection-dispersion flow equationsJ. Comput. Appl. Math.20041726577209113110.1016/j.cam.2004.01.0331126.76346
FriedrichRJenkoFBauleAEuleSAnomalous diffusion of inertial, weakly damped particlesPhys. Rev. Lett.20069623060110.1103/PhysRevLett.96.230601
JiCCSunZZA high-order compact finite difference shcemes for the fractional sub-diffusion equationJ. Sci. Comput.201564959985337784610.1007/s10915-014-9956-41328.65176
CarmiSBarkaiEFractional Feynman–Kac equation for weak ergodicity breakingPhys. Rev. E20118406110410.1103/PhysRevE.84.061104
ChenMHDengWHHigh order algorithms for the fractional substantial diffusion equation with truncated Lévy flightsSIAM J. Sci. Comput.201537A890A91710.1137/14097207X1317.65198
BaeumeraBMeerschaertMMTempered stable Lévy motion and transient super-diffusionJ. Comput. Appl. Math.201023324382448257783410.1016/j.cam.2009.10.02705669187
ChenMHDengWHFourth order accurate scheme for the space fractional diffusion equationsSIAM J. Numer. Anal.20145214181438321721710.1137/1309334471318.65048
SokolovIMChechkinAVKlafterJFractional diffusion equation for a power-law-truncated Lévy processPhysica A200433624525110.1016/j.physa.2003.12.044
TadjeranCMeerschaertMMSchefflerHPA second-order accurate numerical approximation for the fractional diffusion equationJ. Comput. Phys.2006213205213220343910.1016/j.jcp.2005.08.0081089.65089
LiXJXuCJA space-time spectral method for the time fractional diffusion equationSIAM J. Numer. Anal.20094721082131251959610.1137/0807189421193.35243
ErvinVJRoopJPVariational formulation for the stationary fractional advection dispersion equationNumer. Meth. Partial Differ. Equ.200622558576221222610.1002/num.201121095.65118
BrunoRSorriso-ValvoLCarboneVBavassanoBA possible truncated-Lévy-flight statistics recovered from interplanetary solar-wind velocity and magnetic-field fluctuationsEurophys. Lett.20046614615210.1209/epl/i2003-10154-7
StanislavskyAWeronKWeronAAnomalous diffusion with transient subordinators: a link to compound relaxation lawsJ. Chem. Phys.201414005411310.1063/1.4863995
MajumdarSNBrownian functionals in physics and computer scienceCurr. Sci.200589207620922189860
TianWYZhouHDengWHA class of second order difference approximations for solving space fractional diffusion equationsMath. Comput.20158417031727333588810.1090/S0025-5718-2015-02917-21318.65058
SabzikarFMeerschaertMMChenJHTempered fractional calculusJ. Comput. Phys.20152931428334245310.1016/j.jcp.2014.04.0241349.26017
HesthavenJSWarburtonTNodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications2007BerlinSpringer1134.65068
WuXCDengWHBarkaiETempered fractional Feynman–Kac equation: theory and examplesPhys. Rev. E201693032151365270510.1103/PhysRevE.93.032151
ChanRHJinXQAn Introduction to Iterative Toeplitz Solvers2007PhiladelphiaSIAM10.1137/1.97808987188501146.65028
TarasovVEFractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media2010BerlinSpringer10.1007/978-3-642-14003-71214.81004
KlafterJSokolovIMFirst Steps in Randow Walks: From Tools to Applications2011New YorkOxford University Press10.1093/acprof:oso/9780199234868.001.00011242.60046
ZhuangPLiuFAnhVTurnerINumerical methods for the variable-order fractional advection–diffusion equation with a nonlinear source termSIAM J. Numer. Anal.20094717601781250587310.1137/0807305971204.26013
LiCDengWHHigh order schemes for the tempered fractional diffusion equationsAdv. Comput. Math.201642543572350210310.1007/s10444-015-9434-z1347.65136
ZhangYNSunZZZhaoXCompact ADI schemes for the two-dimensional fractional diffusion-wave equationSIAM J. Numer. Anal.20125015351555297075410.1137/1108409591251.65126
ChenMHDengWHFourth order difference approximations for space Riemann–Liouville derivatives based on weighted and shifted Lubich difference operatorsCommun. Comput. Phys.201416516540321698210.4208/cicp.120713.280214a06799455
LiCPDingHFHigher order finite difference method for the reaction and anomalous-diffusion equationAppl. Math. Model.20143838023821323380810.1016/j.apm.2013.12.002
DengWHZhangZJNumerical schemes of the time tempered fractional Feynman–Kac equationComput. Math. Appl.201773610631076362310710.1016/j.camwa.2016.12.017
WangHBasuTA fast finite difference method for two-dimensional space-fractional diffusion equationsSIAM J. Sci. Comput.201234A2444A2458302371110.1137/12086491X1256.35194
ZengFLiCLiuFTurnerIThe use of finite difference/element approximations for solving the time-fractional subdiffusion equationSIAM J. Sci. Comput.201335A2976A300010.1137/1309108651292.65096
HanertEPiretCA chebyshev pseudo-spectral method to solve the space-time tempered fractional diffusion equationSIAM J. Sci. Comput.201436A1797A181210.1137/1309272921302.35403
ChenMHDengWHDiscretized fractional substantial calculusESAIM: Math. Model. Numer. Anal.201549373394334221010.1051/m2an/20140521314.26007
ChenSLiuFZhuangPAnhVFinite difference approximation for the fractional Fokker–Planck equationAppl. Math. Model.200933256273245851010.1016/j.apm.2007.11.0051167.65419
OrtigueiraMDRiesz potential operators and inverses via fractional centred derivativesInt. J. Math. Math. Sci.2006624839122517181122.26007
LubichChDiscretized fractional calculusSIAM J. Math. Anal.19861770471983824910.1137/05170500624.65015
PodlubnyIFractional Differential Equations1999New YorkAcademic Press0924.34008
WY Tian (640_CR15) 2015; 84
D del-Castillo-Negrete (640_CR5) 2009; 79
XJ Li (640_CR22) 2009; 47
MD Ortigueira (640_CR39) 2006; 62
JS Hesthaven (640_CR45) 2007
A Stanislavsky (640_CR7) 2014; 140
MH Chen (640_CR38) 2014; 16
WH Deng (640_CR34) 2015; 62
R Bruno (640_CR3) 2004; 66
MH Chen (640_CR12) 2014; 52
WH Deng (640_CR18) 2008; 47
Á Cartea (640_CR4) 2007; 76
K Mustapha (640_CR20) 2013; 51
CP Li (640_CR13) 2014; 38
S Carmi (640_CR31) 2011; 84
ZP Hao (640_CR27) 2015; 281
H Pang (640_CR24) 2012; 231
H Wang (640_CR25) 2012; 34
F Sabzikar (640_CR10) 2015; 293
R Friedrich (640_CR30) 2006; 96
RH Chan (640_CR44) 2007
Ch Lubich (640_CR26) 1986; 17
X Ros-Oton (640_CR46) 2014; 101
CC Ji (640_CR28) 2015; 64
E Sousa (640_CR40) 2015; 90
F Zeng (640_CR21) 2013; 35
B Baeumera (640_CR2) 2010; 233
YN Zhang (640_CR16) 2012; 50
VJ Ervin (640_CR19) 2006; 22
MM Meerschaert (640_CR42) 2006; 56
C Tadjeran (640_CR41) 2006; 213
MH Chen (640_CR32) 2015; 49
SN Majumdar (640_CR11) 2005; 89
XC Wu (640_CR8) 2016; 93
E Hanert (640_CR6) 2014; 36
MM Meerschaert (640_CR14) 2004; 172
MH Chen (640_CR33) 2015; 37
IM Sokolov (640_CR9) 2004; 336
VE Tarasov (640_CR37) 2010
S Chen (640_CR43) 2009; 33
P Zhuang (640_CR17) 2009; 47
XH Yang (640_CR23) 2014; 256
WH Deng (640_CR35) 2017; 73
I Podlubny (640_CR36) 1999
J Klafter (640_CR1) 2011
C Li (640_CR29) 2016; 42
References_xml – reference: LiXJXuCJA space-time spectral method for the time fractional diffusion equationSIAM J. Numer. Anal.20094721082131251959610.1137/0807189421193.35243
– reference: ChenMHDengWHDiscretized fractional substantial calculusESAIM: Math. Model. Numer. Anal.201549373394334221010.1051/m2an/20140521314.26007
– reference: SabzikarFMeerschaertMMChenJHTempered fractional calculusJ. Comput. Phys.20152931428334245310.1016/j.jcp.2014.04.0241349.26017
– reference: StanislavskyAWeronKWeronAAnomalous diffusion with transient subordinators: a link to compound relaxation lawsJ. Chem. Phys.201414005411310.1063/1.4863995
– reference: PangHSunHMultigrid method for fractional diffusion equationsJ. Comput. Phys.2012231693703287209910.1016/j.jcp.2011.10.0051243.65117
– reference: MeerschaertMMTadjeranCFinite difference approximations for two-sided space-fractional partial differential equationsAppl. Numer. Math.2006568090218643210.1016/j.apnum.2005.02.0081086.65087
– reference: DengWHZhangZJNumerical schemes of the time tempered fractional Feynman–Kac equationComput. Math. Appl.201773610631076362310710.1016/j.camwa.2016.12.017
– reference: HaoZPSunZZCaoWRA fourth-order approximation of fractional derivatives with its applicationsJ. Comput. Phys.2015281787805328199510.1016/j.jcp.2014.10.0531352.65238
– reference: PodlubnyIFractional Differential Equations1999New YorkAcademic Press0924.34008
– reference: ChanRHJinXQAn Introduction to Iterative Toeplitz Solvers2007PhiladelphiaSIAM10.1137/1.97808987188501146.65028
– reference: SokolovIMChechkinAVKlafterJFractional diffusion equation for a power-law-truncated Lévy processPhysica A200433624525110.1016/j.physa.2003.12.044
– reference: KlafterJSokolovIMFirst Steps in Randow Walks: From Tools to Applications2011New YorkOxford University Press10.1093/acprof:oso/9780199234868.001.00011242.60046
– reference: OrtigueiraMDRiesz potential operators and inverses via fractional centred derivativesInt. J. Math. Math. Sci.2006624839122517181122.26007
– reference: BaeumeraBMeerschaertMMTempered stable Lévy motion and transient super-diffusionJ. Comput. Appl. Math.201023324382448257783410.1016/j.cam.2009.10.02705669187
– reference: YangXHZhangHXXuDOrthogonal spline collocation method for the two-dimensional fractionl sub-difusion equationJ. Comput. Phys.2014256824837311743710.1016/j.jcp.2013.09.0161349.65529
– reference: ChenMHDengWHHigh order algorithms for the fractional substantial diffusion equation with truncated Lévy flightsSIAM J. Sci. Comput.201537A890A91710.1137/14097207X1317.65198
– reference: TarasovVEFractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media2010BerlinSpringer10.1007/978-3-642-14003-71214.81004
– reference: ChenMHDengWHFourth order accurate scheme for the space fractional diffusion equationsSIAM J. Numer. Anal.20145214181438321721710.1137/1309334471318.65048
– reference: LiCPDingHFHigher order finite difference method for the reaction and anomalous-diffusion equationAppl. Math. Model.20143838023821323380810.1016/j.apm.2013.12.002
– reference: SousaELiCA weighted finite difference method for the fractional diffusion equation based on the Riemann–Liouville drivativeAppl. Numer. Math.2015902237330089310.1016/j.apnum.2014.11.0071326.65111
– reference: CarmiSBarkaiEFractional Feynman–Kac equation for weak ergodicity breakingPhys. Rev. E20118406110410.1103/PhysRevE.84.061104
– reference: MeerschaertMMTadjeranCFinite difference approximations for fractional advection-dispersion flow equationsJ. Comput. Appl. Math.20041726577209113110.1016/j.cam.2004.01.0331126.76346
– reference: FriedrichRJenkoFBauleAEuleSAnomalous diffusion of inertial, weakly damped particlesPhys. Rev. Lett.20069623060110.1103/PhysRevLett.96.230601
– reference: MustaphaKMcleanWSuperconvergence of a discontinuous Galerkin method for fractional diffusion and wave equationsSIAM J. Numer. Anal.201351491515303302010.1137/1208807191267.26005
– reference: ChenMHDengWHFourth order difference approximations for space Riemann–Liouville derivatives based on weighted and shifted Lubich difference operatorsCommun. Comput. Phys.201416516540321698210.4208/cicp.120713.280214a06799455
– reference: ZhangYNSunZZZhaoXCompact ADI schemes for the two-dimensional fractional diffusion-wave equationSIAM J. Numer. Anal.20125015351555297075410.1137/1108409591251.65126
– reference: DengWHChenMHBarkaiENumerical algorithms for the forward and backward fractional Feynman–Kac equationsJ. Sci. Comput.201562718746330433010.1007/s10915-014-9873-61335.65069
– reference: CarteaÁdel-Castillo-NegreteDFluid limit of the continuous-time random walk with general Lévy jump distribution functionsPhys. Rev. E20077604110510.1103/PhysRevE.76.041105
– reference: HanertEPiretCA chebyshev pseudo-spectral method to solve the space-time tempered fractional diffusion equationSIAM J. Sci. Comput.201436A1797A181210.1137/1309272921302.35403
– reference: TianWYZhouHDengWHA class of second order difference approximations for solving space fractional diffusion equationsMath. Comput.20158417031727333588810.1090/S0025-5718-2015-02917-21318.65058
– reference: HesthavenJSWarburtonTNodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications2007BerlinSpringer1134.65068
– reference: WuXCDengWHBarkaiETempered fractional Feynman–Kac equation: theory and examplesPhys. Rev. E201693032151365270510.1103/PhysRevE.93.032151
– reference: DengWHFinite element method for the space and time fractional Fokker–Planck equationSIAM J. Numer. Anal.200847204226245285810.1137/08071413005686546
– reference: BrunoRSorriso-ValvoLCarboneVBavassanoBA possible truncated-Lévy-flight statistics recovered from interplanetary solar-wind velocity and magnetic-field fluctuationsEurophys. Lett.20046614615210.1209/epl/i2003-10154-7
– reference: LiCDengWHHigh order schemes for the tempered fractional diffusion equationsAdv. Comput. Math.201642543572350210310.1007/s10444-015-9434-z1347.65136
– reference: MajumdarSNBrownian functionals in physics and computer scienceCurr. Sci.200589207620922189860
– reference: ZengFLiCLiuFTurnerIThe use of finite difference/element approximations for solving the time-fractional subdiffusion equationSIAM J. Sci. Comput.201335A2976A300010.1137/1309108651292.65096
– reference: Ros-OtonXSerraJThe Dirichlet problem for the fractional Laplacian: regularity up to the boundaryJ. Math. Pures Appl.2014101275302316891210.1016/j.matpur.2013.06.0031285.35020
– reference: ChenSLiuFZhuangPAnhVFinite difference approximation for the fractional Fokker–Planck equationAppl. Math. Model.200933256273245851010.1016/j.apm.2007.11.0051167.65419
– reference: JiCCSunZZA high-order compact finite difference shcemes for the fractional sub-diffusion equationJ. Sci. Comput.201564959985337784610.1007/s10915-014-9956-41328.65176
– reference: WangHBasuTA fast finite difference method for two-dimensional space-fractional diffusion equationsSIAM J. Sci. Comput.201234A2444A2458302371110.1137/12086491X1256.35194
– reference: TadjeranCMeerschaertMMSchefflerHPA second-order accurate numerical approximation for the fractional diffusion equationJ. Comput. Phys.2006213205213220343910.1016/j.jcp.2005.08.0081089.65089
– reference: del-Castillo-NegreteDTruncation effects in super diffusive front propagation with Lévy flightsPhys. Rev. E20097903112010.1103/PhysRevE.79.031120
– reference: ZhuangPLiuFAnhVTurnerINumerical methods for the variable-order fractional advection–diffusion equation with a nonlinear source termSIAM J. Numer. Anal.20094717601781250587310.1137/0807305971204.26013
– reference: ErvinVJRoopJPVariational formulation for the stationary fractional advection dispersion equationNumer. Meth. Partial Differ. Equ.200622558576221222610.1002/num.201121095.65118
– reference: LubichChDiscretized fractional calculusSIAM J. Math. Anal.19861770471983824910.1137/05170500624.65015
– volume: 38
  start-page: 3802
  year: 2014
  ident: 640_CR13
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2013.12.002
– volume: 233
  start-page: 2438
  year: 2010
  ident: 640_CR2
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2009.10.027
– volume: 42
  start-page: 543
  year: 2016
  ident: 640_CR29
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-015-9434-z
– volume: 34
  start-page: A2444
  year: 2012
  ident: 640_CR25
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/12086491X
– volume: 231
  start-page: 693
  year: 2012
  ident: 640_CR24
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.10.005
– volume: 62
  start-page: 718
  year: 2015
  ident: 640_CR34
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-014-9873-6
– volume: 66
  start-page: 146
  year: 2004
  ident: 640_CR3
  publication-title: Europhys. Lett.
  doi: 10.1209/epl/i2003-10154-7
– volume: 172
  start-page: 65
  year: 2004
  ident: 640_CR14
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2004.01.033
– volume: 17
  start-page: 704
  year: 1986
  ident: 640_CR26
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0517050
– volume: 213
  start-page: 205
  year: 2006
  ident: 640_CR41
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.08.008
– volume: 281
  start-page: 787
  year: 2015
  ident: 640_CR27
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.10.053
– volume: 36
  start-page: A1797
  year: 2014
  ident: 640_CR6
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/130927292
– volume: 52
  start-page: 1418
  year: 2014
  ident: 640_CR12
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/130933447
– volume: 37
  start-page: A890
  year: 2015
  ident: 640_CR33
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/14097207X
– volume: 64
  start-page: 959
  year: 2015
  ident: 640_CR28
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-014-9956-4
– volume: 62
  start-page: 48391
  year: 2006
  ident: 640_CR39
  publication-title: Int. J. Math. Math. Sci.
  doi: 10.1155/IJMMS/2006/48391
– volume: 76
  start-page: 041105
  year: 2007
  ident: 640_CR4
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.76.041105
– volume: 56
  start-page: 80
  year: 2006
  ident: 640_CR42
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2005.02.008
– volume: 336
  start-page: 245
  year: 2004
  ident: 640_CR9
  publication-title: Physica A
  doi: 10.1016/j.physa.2003.12.044
– volume: 89
  start-page: 2076
  year: 2005
  ident: 640_CR11
  publication-title: Curr. Sci.
– volume: 47
  start-page: 2108
  year: 2009
  ident: 640_CR22
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/080718942
– volume: 33
  start-page: 256
  year: 2009
  ident: 640_CR43
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2007.11.005
– volume: 16
  start-page: 516
  year: 2014
  ident: 640_CR38
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.120713.280214a
– volume: 90
  start-page: 22
  year: 2015
  ident: 640_CR40
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2014.11.007
– volume-title: First Steps in Randow Walks: From Tools to Applications
  year: 2011
  ident: 640_CR1
  doi: 10.1093/acprof:oso/9780199234868.001.0001
– volume: 84
  start-page: 1703
  year: 2015
  ident: 640_CR15
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-2015-02917-2
– volume: 49
  start-page: 373
  year: 2015
  ident: 640_CR32
  publication-title: ESAIM: Math. Model. Numer. Anal.
  doi: 10.1051/m2an/2014052
– volume: 35
  start-page: A2976
  year: 2013
  ident: 640_CR21
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/130910865
– volume: 96
  start-page: 230601
  year: 2006
  ident: 640_CR30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.230601
– volume: 140
  start-page: 054113
  year: 2014
  ident: 640_CR7
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4863995
– volume: 50
  start-page: 1535
  year: 2012
  ident: 640_CR16
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/110840959
– volume: 256
  start-page: 824
  year: 2014
  ident: 640_CR23
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.09.016
– volume-title: Fractional Differential Equations
  year: 1999
  ident: 640_CR36
– volume: 51
  start-page: 491
  year: 2013
  ident: 640_CR20
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/120880719
– volume: 293
  start-page: 14
  year: 2015
  ident: 640_CR10
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.04.024
– volume: 47
  start-page: 1760
  year: 2009
  ident: 640_CR17
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/080730597
– volume: 47
  start-page: 204
  year: 2008
  ident: 640_CR18
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/080714130
– volume: 22
  start-page: 558
  year: 2006
  ident: 640_CR19
  publication-title: Numer. Meth. Partial Differ. Equ.
  doi: 10.1002/num.20112
– volume-title: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media
  year: 2010
  ident: 640_CR37
  doi: 10.1007/978-3-642-14003-7
– volume: 101
  start-page: 275
  year: 2014
  ident: 640_CR46
  publication-title: J. Math. Pures Appl.
  doi: 10.1016/j.matpur.2013.06.003
– volume: 93
  start-page: 032151
  year: 2016
  ident: 640_CR8
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.93.032151
– volume: 73
  start-page: 1063
  issue: 6
  year: 2017
  ident: 640_CR35
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2016.12.017
– volume: 84
  start-page: 061104
  year: 2011
  ident: 640_CR31
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.84.061104
– volume: 79
  start-page: 031120
  year: 2009
  ident: 640_CR5
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.79.031120
– volume-title: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications
  year: 2007
  ident: 640_CR45
– volume-title: An Introduction to Iterative Toeplitz Solvers
  year: 2007
  ident: 640_CR44
  doi: 10.1137/1.9780898718850
SSID ssj0009892
Score 2.3206584
Snippet We provide and analyze the high order algorithms for the model describing the functional distributions of particles performing anomalous motion with power-law...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 867
SubjectTerms Algorithms
Approximation
Computational Mathematics and Numerical Analysis
Fourier transforms
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Partial differential equations
Power law
Queuing theory
Real numbers
Theoretical
Truncation errors
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5qe_Ei1gfWF3vw4IPFJPtochBRaSkqVUTBW9hX9NBG28ZDb_4H_6G_xN08DAp6S0gykNmZ3dmdme8D2IuU4kolEaZJojDlkuCQ2ytjdz7GV5Evkhztc8gHD_TykT02YFj1wriyympOzCdq_aLcGflxEFnjsxsq7p2-TrBjjXLZ1YpCQ5TUCvokhxhbgFbgkLGa0DrvDW_vahjeMKdJtq7FsA2kaZXnLJrpIt8VsoXYZbfw_OdKVYefvzKm-ULUX4alMoJEZ8WQt6Fh0hVolz46Q_slkPTBKly7Ig5048A10dnoyf5N9jxGNkpFNupDrvkD3xsbNk-NRv1p0eFgJffNPB2L9PP940oo1JsUYOBr8NDv3V8McMmegBXxeYalZzyiAx0yxgiVxJPalYzKLqOEaK19o3k38RXVTHsqDASTlCkRaBHaO6PJOjTTl9RsAAqE76iqmOB29yFpNxQ6PzCyviu5jsIOeJWmYlVCizuGi1FcgyI75cZWubFTbjzvwOH3J68FrsZ_L29X6o9LF5vFtUF04Kgakvrxn8I2_xe2BYtBbgOuxm8bmtn0zezYuCOTu6UxfQFFS9QY
  priority: 102
  providerName: ProQuest
Title High Order Algorithm for the Time-Tempered Fractional Feynman–Kac Equation
URI https://link.springer.com/article/10.1007/s10915-018-0640-y
https://www.proquest.com/docview/2918313360
Volume 76
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7691
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: AFBBN
  dateStart: 19860301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-7691
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: BENPR
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxRBEK7ActGDAmpcxU0fPICmyTy6e3uOu2YHAroQs5vgadKvESIMujsc1hP_gX_oL7F6HiwSNeE0M-nXTFdVd_VU1VcAbxNjhDF5QlmeG8qEjqkUeOfw5ONCk4Qqr9A-x2J_yg5O-EkTxz1vvd1bk2S1Ut8JdktC72gmqbc-0cUqrFVwWx1YG-x9ORwtsXZllQsZ5YdT1JZZa8z8Wyd_bkdLHfOeWbTabdKnMGnfs3Yy-bZ7Vepd8_MehOMDP2QdnjTaJxnU7LIBK67YhMefbqFb55uw0Uj7nGw3kNQ7z-CjdwchRx6mkwzOv17OzsrTC4L6LsGWxIeR0IlDBXzmLElndawEjpO6RXGhil_XN4fKkNGPGlb8OUzT0eTDPm3yMFATh6KkOnBBbCMrOecx03GgrXc-1X3O4thaGzor-nlomOU2MDJSXDNuVGSVxCdn4xfQKS4L9xJIpEKf9IorgecYzfpS2erXE64CWthEdiFoyZGZBqTc58o4z5bwyn72Mpy9zM9etujCu9sm32uEjv9V3mppnDXCOs-iBNc1PKuLoAvvW5Iti__Z2asH1X4Nj6KK5t55cAs65ezKvUGFptQ9WJXpXg_ZOB0Ox72GnfE6HI2PP2PpNBr8BmT48Sc
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5ROLQXVPpQQ2nZQyv1oVVt7yP2AVU8EoUmTasqSNzMvgwHMJAEodz6H_g__Jj-ks7a61qtVG7cbNmew-zs7Ixn5vsA3mTGSGOKjPKiMJRLzWgq8cph5uNik8WqqNA-x3JwwL8cisMluG1mYXxbZeMTK0dtz43_R_4pydD4MKGS0eeLS-pZo3x1taHQUIFawW5VEGNhsGPoFteYws229vdwvd8mSb832R3QwDJADYvlnOrIRcwmNhVCMK5ZpK1vrdRdwRmz1sbOym4RG26FjUyaKKG5MCqxKsU7ZxnKfQArnPEMk7-Vnd74-48W9jetaJlxKwuKgTtv6qr18F4W-8a5lPpqGl38fTK24e4_Fdrq4Os_htUQsZLt2sTWYMmVT2At-IQZeReAq98_hZFvGiHfPJgn2T49Ru3NT84IRsUEo0zih03oxGGYPnWW9Kf1RAVK7rtFeabKXz9vhsqQ3mUNPv4MDu5Fj89huTwv3QsgiYo9NZZQErMdzbupstUPKvQVWtos7UDUaCo3AcrcM2qc5i0Is1dujsrNvXLzRQc-_PnkosbxuOvljUb9edjSs7w1wA58bJakffxfYet3C9uEh4PJ11E-2h8PX8KjpLIH31-4Acvz6ZV7hTHPXL8OhkXg6L5t-Te_IxHH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BkRAcEGURhQI-cGCRRRbbTY4VEJWtcKASt8hbAAkCtOHQG__AH_Il2FlaQIDELVFsR5olfs7MvAHYCqVkUiYhJkkiMWHCxwEzV9qcfLQrQ5cnOdtnl3V65OSaXpd9TgdVtnsVkixqGixLU5rtP6lk_1PhW-japLMA20gUHk7CFLE8Ccage157zLob5F2RjSdRbHAzqcKaPy3xdWMao81vAdJ834nmYa4EjKhdaLgOEzpdgNnzEdvqYAHqpYMO0HbJIr2zCGc2gwNdWGZN1L6_eezfZbcPyEBUZGYiW_mBr7TBzH2tUNQvyhvMeyI9TB94-v76dsolOnoumMCXoBcdXR10cNk6AUvfZRkWjnZ85amAUuoT4TtC2XxR0aLE95VSrlaslbiSKKocGXicCkIl9xQPzJ1W_jLU0sdUrwDyuGv7VFHOzNFDkFbAVf63yDiuYCoMGuBUcotlyStu21vcx2NGZCvq2Ig6tqKOhw3YHU15Kkg1_hrcrJQRl_41iL3QfIrM8Zo5DdirFDR-_Otiq_8avQnTl4dRfHbcPV2DGS-3FZv614Ra1n_R6waOZGIjN7kPqw7WWg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Order+Algorithm+for+the+Time-Tempered+Fractional+Feynman%E2%80%93Kac+Equation&rft.jtitle=Journal+of+scientific+computing&rft.au=Chen%2C+Minghua&rft.au=Deng%2C+Weihua&rft.date=2018-08-01&rft.pub=Springer+US&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=76&rft.issue=2&rft.spage=867&rft.epage=887&rft_id=info:doi/10.1007%2Fs10915-018-0640-y&rft.externalDocID=10_1007_s10915_018_0640_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon