High Order Algorithm for the Time-Tempered Fractional Feynman–Kac Equation
We provide and analyze the high order algorithms for the model describing the functional distributions of particles performing anomalous motion with power-law jump length and tempered power-law waiting time. The model is derived in Wu et al. (Phys Rev E 93:032151, 2016 ), being called the time-tempe...
Saved in:
| Published in | Journal of scientific computing Vol. 76; no. 2; pp. 867 - 887 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.08.2018
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0885-7474 1573-7691 |
| DOI | 10.1007/s10915-018-0640-y |
Cover
| Abstract | We provide and analyze the high order algorithms for the model describing the functional distributions of particles performing anomalous motion with power-law jump length and tempered power-law waiting time. The model is derived in Wu et al. (Phys Rev E 93:032151,
2016
), being called the time-tempered fractional Feynman–Kac equation named after Richard Feynman and Mark Kac who first considered the model describing the functional distribution of normal motion. The key step of designing the algorithms is to discretize the time tempered fractional substantial derivative, being defined as
S
D
t
γ
,
λ
~
G
(
x
,
p
,
t
)
=
D
t
γ
,
λ
~
G
(
x
,
p
,
t
)
-
λ
γ
G
(
x
,
p
,
t
)
with
λ
~
=
λ
+
p
U
(
x
)
,
p
=
ρ
+
J
η
,
J
=
-
1
, where
D
t
γ
,
λ
~
G
(
x
,
p
,
t
)
=
1
Γ
(
1
-
γ
)
∂
∂
t
+
λ
~
∫
0
t
t
-
z
-
γ
e
-
λ
~
·
(
t
-
z
)
G
(
x
,
p
,
z
)
d
z
,
and
λ
≥
0
,
0
<
γ
<
1
,
ρ
>
0
, and
η
is a real number. The designed schemes are unconditionally stable and have the global truncation error
O
(
τ
2
+
h
2
)
, being theoretically proved and numerically verified in
complex
space. Moreover, some simulations for the distributions of the first passage time are performed, and the second order convergence is also obtained for solving the ‘physical’ equation (without artificial source term). |
|---|---|
| AbstractList | We provide and analyze the high order algorithms for the model describing the functional distributions of particles performing anomalous motion with power-law jump length and tempered power-law waiting time. The model is derived in Wu et al. (Phys Rev E 93:032151,
2016
), being called the time-tempered fractional Feynman–Kac equation named after Richard Feynman and Mark Kac who first considered the model describing the functional distribution of normal motion. The key step of designing the algorithms is to discretize the time tempered fractional substantial derivative, being defined as
S
D
t
γ
,
λ
~
G
(
x
,
p
,
t
)
=
D
t
γ
,
λ
~
G
(
x
,
p
,
t
)
-
λ
γ
G
(
x
,
p
,
t
)
with
λ
~
=
λ
+
p
U
(
x
)
,
p
=
ρ
+
J
η
,
J
=
-
1
, where
D
t
γ
,
λ
~
G
(
x
,
p
,
t
)
=
1
Γ
(
1
-
γ
)
∂
∂
t
+
λ
~
∫
0
t
t
-
z
-
γ
e
-
λ
~
·
(
t
-
z
)
G
(
x
,
p
,
z
)
d
z
,
and
λ
≥
0
,
0
<
γ
<
1
,
ρ
>
0
, and
η
is a real number. The designed schemes are unconditionally stable and have the global truncation error
O
(
τ
2
+
h
2
)
, being theoretically proved and numerically verified in
complex
space. Moreover, some simulations for the distributions of the first passage time are performed, and the second order convergence is also obtained for solving the ‘physical’ equation (without artificial source term). We provide and analyze the high order algorithms for the model describing the functional distributions of particles performing anomalous motion with power-law jump length and tempered power-law waiting time. The model is derived in Wu et al. (Phys Rev E 93:032151, 2016), being called the time-tempered fractional Feynman–Kac equation named after Richard Feynman and Mark Kac who first considered the model describing the functional distribution of normal motion. The key step of designing the algorithms is to discretize the time tempered fractional substantial derivative, being defined as SDtγ,λ~G(x,p,t)=Dtγ,λ~G(x,p,t)-λγG(x,p,t)with λ~=λ+pU(x),p=ρ+Jη,J=-1, where Dtγ,λ~G(x,p,t)=1Γ(1-γ)∂∂t+λ~∫0tt-z-γe-λ~·(t-z)G(x,p,z)dz,and λ≥0, 0<γ<1, ρ>0, and η is a real number. The designed schemes are unconditionally stable and have the global truncation error O(τ2+h2), being theoretically proved and numerically verified in complex space. Moreover, some simulations for the distributions of the first passage time are performed, and the second order convergence is also obtained for solving the ‘physical’ equation (without artificial source term). |
| Author | Deng, Weihua Chen, Minghua |
| Author_xml | – sequence: 1 givenname: Minghua orcidid: 0000-0002-1327-7688 surname: Chen fullname: Chen, Minghua email: chenmh@lzu.edu.cn organization: School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University – sequence: 2 givenname: Weihua surname: Deng fullname: Deng, Weihua organization: School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University |
| BookMark | eNp9kM1KAzEURoNUsFYfwF3AdfQmmUwyy1JaKxa6qeuQmWTaKfPTJtPF7HwH39AnceoIgqCry-V-5_JxrtGobmqH0B2FBwogHwOFhAoCVBGIIyDdBRpTITmRcUJHaAxKCSIjGV2h6xD2AJCohI3Rallsd3jtrfN4Wm4bX7S7CueNx-3O4U1RObJx1cF5Z_HCm6wtmtqUeOG6ujL1x9v7i8nw_Hgy58MNusxNGdzt95yg18V8M1uS1frpeTZdkYzTuCUpOOCWWSWE4FHKIbVMMZZKEXFuraXOxjKnWWSFhUwxI9JIZIZZo_rNWT5B98Pfg2-OJxdavW9Ovu8VNEuo4pTzGPqUHFKZb0LwLtdZ0X71bL0pSk1Bn9XpQZ3u1emzOt31JP1FHnxRGd_9y7CBCX223jr_0-lv6BOaZoQM |
| CitedBy_id | crossref_primary_10_1007_s11075_018_0514_2 crossref_primary_10_1016_j_apnum_2019_08_002 crossref_primary_10_1080_00207160_2020_1841175 crossref_primary_10_1007_s10915_019_01027_9 crossref_primary_10_1002_num_22571 crossref_primary_10_3390_fractalfract7050380 crossref_primary_10_1016_j_apnum_2020_10_027 crossref_primary_10_1360_SSM_2023_0046 crossref_primary_10_1007_s10915_021_01509_9 crossref_primary_10_1142_S0218348X23400455 crossref_primary_10_1002_mma_8153 crossref_primary_10_1007_s11071_022_07561_w crossref_primary_10_1007_s10444_024_10152_5 crossref_primary_10_1051_m2an_2019052 crossref_primary_10_1007_s10915_020_01256_3 crossref_primary_10_1007_s10915_020_01331_9 crossref_primary_10_1007_s10915_021_01581_1 crossref_primary_10_1007_s42967_020_00067_5 |
| Cites_doi | 10.1016/j.apm.2013.12.002 10.1016/j.cam.2009.10.027 10.1007/s10444-015-9434-z 10.1137/12086491X 10.1016/j.jcp.2011.10.005 10.1007/s10915-014-9873-6 10.1209/epl/i2003-10154-7 10.1016/j.cam.2004.01.033 10.1137/0517050 10.1016/j.jcp.2005.08.008 10.1016/j.jcp.2014.10.053 10.1137/130927292 10.1137/130933447 10.1137/14097207X 10.1007/s10915-014-9956-4 10.1155/IJMMS/2006/48391 10.1103/PhysRevE.76.041105 10.1016/j.apnum.2005.02.008 10.1016/j.physa.2003.12.044 10.1137/080718942 10.1016/j.apm.2007.11.005 10.4208/cicp.120713.280214a 10.1016/j.apnum.2014.11.007 10.1093/acprof:oso/9780199234868.001.0001 10.1090/S0025-5718-2015-02917-2 10.1051/m2an/2014052 10.1137/130910865 10.1103/PhysRevLett.96.230601 10.1063/1.4863995 10.1137/110840959 10.1016/j.jcp.2013.09.016 10.1137/120880719 10.1016/j.jcp.2014.04.024 10.1137/080730597 10.1137/080714130 10.1002/num.20112 10.1007/978-3-642-14003-7 10.1016/j.matpur.2013.06.003 10.1103/PhysRevE.93.032151 10.1016/j.camwa.2016.12.017 10.1103/PhysRevE.84.061104 10.1103/PhysRevE.79.031120 10.1137/1.9780898718850 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2018 Springer Science+Business Media, LLC, part of Springer Nature 2018. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1007/s10915-018-0640-y |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection (Proquest) ProQuest Computer Science Collection Computer Science Database (Proquest) Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Mathematics |
| EISSN | 1573-7691 |
| EndPage | 887 |
| ExternalDocumentID | 10_1007_s10915_018_0640_y |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11601206; 11671182 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8T Z92 ZMTXR ZWQNP ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c316t-b0e03d2d855534b30bd2822b75433ddd1ed67f1c4d5d0c82a5b45ca2da8c82ed3 |
| IEDL.DBID | AGYKE |
| ISSN | 0885-7474 |
| IngestDate | Fri Jul 25 19:57:23 EDT 2025 Thu Apr 24 23:06:02 EDT 2025 Wed Oct 08 04:20:31 EDT 2025 Fri Feb 21 02:36:39 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | First passage time 35R11 65L20 Time-tempered fractional Feynman–Kac equation Stability and convergence Tempered fractional substantial derivative |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-b0e03d2d855534b30bd2822b75433ddd1ed67f1c4d5d0c82a5b45ca2da8c82ed3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1327-7688 |
| PQID | 2918313360 |
| PQPubID | 2043771 |
| PageCount | 21 |
| ParticipantIDs | proquest_journals_2918313360 crossref_citationtrail_10_1007_s10915_018_0640_y crossref_primary_10_1007_s10915_018_0640_y springer_journals_10_1007_s10915_018_0640_y |
| PublicationCentury | 2000 |
| PublicationDate | 20180800 2018-8-00 20180801 |
| PublicationDateYYYYMMDD | 2018-08-01 |
| PublicationDate_xml | – month: 8 year: 2018 text: 20180800 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Journal of scientific computing |
| PublicationTitleAbbrev | J Sci Comput |
| PublicationYear | 2018 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | MustaphaKMcleanWSuperconvergence of a discontinuous Galerkin method for fractional diffusion and wave equationsSIAM J. Numer. Anal.201351491515303302010.1137/1208807191267.26005 Ros-OtonXSerraJThe Dirichlet problem for the fractional Laplacian: regularity up to the boundaryJ. Math. Pures Appl.2014101275302316891210.1016/j.matpur.2013.06.0031285.35020 del-Castillo-NegreteDTruncation effects in super diffusive front propagation with Lévy flightsPhys. Rev. E20097903112010.1103/PhysRevE.79.031120 PangHSunHMultigrid method for fractional diffusion equationsJ. Comput. Phys.2012231693703287209910.1016/j.jcp.2011.10.0051243.65117 HaoZPSunZZCaoWRA fourth-order approximation of fractional derivatives with its applicationsJ. Comput. Phys.2015281787805328199510.1016/j.jcp.2014.10.0531352.65238 YangXHZhangHXXuDOrthogonal spline collocation method for the two-dimensional fractionl sub-difusion equationJ. Comput. Phys.2014256824837311743710.1016/j.jcp.2013.09.0161349.65529 DengWHFinite element method for the space and time fractional Fokker–Planck equationSIAM J. Numer. Anal.200847204226245285810.1137/08071413005686546 SousaELiCA weighted finite difference method for the fractional diffusion equation based on the Riemann–Liouville drivativeAppl. Numer. Math.2015902237330089310.1016/j.apnum.2014.11.0071326.65111 DengWHChenMHBarkaiENumerical algorithms for the forward and backward fractional Feynman–Kac equationsJ. Sci. Comput.201562718746330433010.1007/s10915-014-9873-61335.65069 MeerschaertMMTadjeranCFinite difference approximations for two-sided space-fractional partial differential equationsAppl. Numer. Math.2006568090218643210.1016/j.apnum.2005.02.0081086.65087 CarteaÁdel-Castillo-NegreteDFluid limit of the continuous-time random walk with general Lévy jump distribution functionsPhys. Rev. E20077604110510.1103/PhysRevE.76.041105 MeerschaertMMTadjeranCFinite difference approximations for fractional advection-dispersion flow equationsJ. Comput. Appl. Math.20041726577209113110.1016/j.cam.2004.01.0331126.76346 FriedrichRJenkoFBauleAEuleSAnomalous diffusion of inertial, weakly damped particlesPhys. Rev. Lett.20069623060110.1103/PhysRevLett.96.230601 JiCCSunZZA high-order compact finite difference shcemes for the fractional sub-diffusion equationJ. Sci. Comput.201564959985337784610.1007/s10915-014-9956-41328.65176 CarmiSBarkaiEFractional Feynman–Kac equation for weak ergodicity breakingPhys. Rev. E20118406110410.1103/PhysRevE.84.061104 ChenMHDengWHHigh order algorithms for the fractional substantial diffusion equation with truncated Lévy flightsSIAM J. Sci. Comput.201537A890A91710.1137/14097207X1317.65198 BaeumeraBMeerschaertMMTempered stable Lévy motion and transient super-diffusionJ. Comput. Appl. Math.201023324382448257783410.1016/j.cam.2009.10.02705669187 ChenMHDengWHFourth order accurate scheme for the space fractional diffusion equationsSIAM J. Numer. Anal.20145214181438321721710.1137/1309334471318.65048 SokolovIMChechkinAVKlafterJFractional diffusion equation for a power-law-truncated Lévy processPhysica A200433624525110.1016/j.physa.2003.12.044 TadjeranCMeerschaertMMSchefflerHPA second-order accurate numerical approximation for the fractional diffusion equationJ. Comput. Phys.2006213205213220343910.1016/j.jcp.2005.08.0081089.65089 LiXJXuCJA space-time spectral method for the time fractional diffusion equationSIAM J. Numer. Anal.20094721082131251959610.1137/0807189421193.35243 ErvinVJRoopJPVariational formulation for the stationary fractional advection dispersion equationNumer. Meth. Partial Differ. Equ.200622558576221222610.1002/num.201121095.65118 BrunoRSorriso-ValvoLCarboneVBavassanoBA possible truncated-Lévy-flight statistics recovered from interplanetary solar-wind velocity and magnetic-field fluctuationsEurophys. Lett.20046614615210.1209/epl/i2003-10154-7 StanislavskyAWeronKWeronAAnomalous diffusion with transient subordinators: a link to compound relaxation lawsJ. Chem. Phys.201414005411310.1063/1.4863995 MajumdarSNBrownian functionals in physics and computer scienceCurr. Sci.200589207620922189860 TianWYZhouHDengWHA class of second order difference approximations for solving space fractional diffusion equationsMath. Comput.20158417031727333588810.1090/S0025-5718-2015-02917-21318.65058 SabzikarFMeerschaertMMChenJHTempered fractional calculusJ. Comput. Phys.20152931428334245310.1016/j.jcp.2014.04.0241349.26017 HesthavenJSWarburtonTNodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications2007BerlinSpringer1134.65068 WuXCDengWHBarkaiETempered fractional Feynman–Kac equation: theory and examplesPhys. Rev. E201693032151365270510.1103/PhysRevE.93.032151 ChanRHJinXQAn Introduction to Iterative Toeplitz Solvers2007PhiladelphiaSIAM10.1137/1.97808987188501146.65028 TarasovVEFractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media2010BerlinSpringer10.1007/978-3-642-14003-71214.81004 KlafterJSokolovIMFirst Steps in Randow Walks: From Tools to Applications2011New YorkOxford University Press10.1093/acprof:oso/9780199234868.001.00011242.60046 ZhuangPLiuFAnhVTurnerINumerical methods for the variable-order fractional advection–diffusion equation with a nonlinear source termSIAM J. Numer. Anal.20094717601781250587310.1137/0807305971204.26013 LiCDengWHHigh order schemes for the tempered fractional diffusion equationsAdv. Comput. Math.201642543572350210310.1007/s10444-015-9434-z1347.65136 ZhangYNSunZZZhaoXCompact ADI schemes for the two-dimensional fractional diffusion-wave equationSIAM J. Numer. Anal.20125015351555297075410.1137/1108409591251.65126 ChenMHDengWHFourth order difference approximations for space Riemann–Liouville derivatives based on weighted and shifted Lubich difference operatorsCommun. Comput. Phys.201416516540321698210.4208/cicp.120713.280214a06799455 LiCPDingHFHigher order finite difference method for the reaction and anomalous-diffusion equationAppl. Math. Model.20143838023821323380810.1016/j.apm.2013.12.002 DengWHZhangZJNumerical schemes of the time tempered fractional Feynman–Kac equationComput. Math. Appl.201773610631076362310710.1016/j.camwa.2016.12.017 WangHBasuTA fast finite difference method for two-dimensional space-fractional diffusion equationsSIAM J. Sci. Comput.201234A2444A2458302371110.1137/12086491X1256.35194 ZengFLiCLiuFTurnerIThe use of finite difference/element approximations for solving the time-fractional subdiffusion equationSIAM J. Sci. Comput.201335A2976A300010.1137/1309108651292.65096 HanertEPiretCA chebyshev pseudo-spectral method to solve the space-time tempered fractional diffusion equationSIAM J. Sci. Comput.201436A1797A181210.1137/1309272921302.35403 ChenMHDengWHDiscretized fractional substantial calculusESAIM: Math. Model. Numer. Anal.201549373394334221010.1051/m2an/20140521314.26007 ChenSLiuFZhuangPAnhVFinite difference approximation for the fractional Fokker–Planck equationAppl. Math. Model.200933256273245851010.1016/j.apm.2007.11.0051167.65419 OrtigueiraMDRiesz potential operators and inverses via fractional centred derivativesInt. J. Math. Math. Sci.2006624839122517181122.26007 LubichChDiscretized fractional calculusSIAM J. Math. Anal.19861770471983824910.1137/05170500624.65015 PodlubnyIFractional Differential Equations1999New YorkAcademic Press0924.34008 WY Tian (640_CR15) 2015; 84 D del-Castillo-Negrete (640_CR5) 2009; 79 XJ Li (640_CR22) 2009; 47 MD Ortigueira (640_CR39) 2006; 62 JS Hesthaven (640_CR45) 2007 A Stanislavsky (640_CR7) 2014; 140 MH Chen (640_CR38) 2014; 16 WH Deng (640_CR34) 2015; 62 R Bruno (640_CR3) 2004; 66 MH Chen (640_CR12) 2014; 52 WH Deng (640_CR18) 2008; 47 Á Cartea (640_CR4) 2007; 76 K Mustapha (640_CR20) 2013; 51 CP Li (640_CR13) 2014; 38 S Carmi (640_CR31) 2011; 84 ZP Hao (640_CR27) 2015; 281 H Pang (640_CR24) 2012; 231 H Wang (640_CR25) 2012; 34 F Sabzikar (640_CR10) 2015; 293 R Friedrich (640_CR30) 2006; 96 RH Chan (640_CR44) 2007 Ch Lubich (640_CR26) 1986; 17 X Ros-Oton (640_CR46) 2014; 101 CC Ji (640_CR28) 2015; 64 E Sousa (640_CR40) 2015; 90 F Zeng (640_CR21) 2013; 35 B Baeumera (640_CR2) 2010; 233 YN Zhang (640_CR16) 2012; 50 VJ Ervin (640_CR19) 2006; 22 MM Meerschaert (640_CR42) 2006; 56 C Tadjeran (640_CR41) 2006; 213 MH Chen (640_CR32) 2015; 49 SN Majumdar (640_CR11) 2005; 89 XC Wu (640_CR8) 2016; 93 E Hanert (640_CR6) 2014; 36 MM Meerschaert (640_CR14) 2004; 172 MH Chen (640_CR33) 2015; 37 IM Sokolov (640_CR9) 2004; 336 VE Tarasov (640_CR37) 2010 S Chen (640_CR43) 2009; 33 P Zhuang (640_CR17) 2009; 47 XH Yang (640_CR23) 2014; 256 WH Deng (640_CR35) 2017; 73 I Podlubny (640_CR36) 1999 J Klafter (640_CR1) 2011 C Li (640_CR29) 2016; 42 |
| References_xml | – reference: LiXJXuCJA space-time spectral method for the time fractional diffusion equationSIAM J. Numer. Anal.20094721082131251959610.1137/0807189421193.35243 – reference: ChenMHDengWHDiscretized fractional substantial calculusESAIM: Math. Model. Numer. Anal.201549373394334221010.1051/m2an/20140521314.26007 – reference: SabzikarFMeerschaertMMChenJHTempered fractional calculusJ. Comput. Phys.20152931428334245310.1016/j.jcp.2014.04.0241349.26017 – reference: StanislavskyAWeronKWeronAAnomalous diffusion with transient subordinators: a link to compound relaxation lawsJ. Chem. Phys.201414005411310.1063/1.4863995 – reference: PangHSunHMultigrid method for fractional diffusion equationsJ. Comput. Phys.2012231693703287209910.1016/j.jcp.2011.10.0051243.65117 – reference: MeerschaertMMTadjeranCFinite difference approximations for two-sided space-fractional partial differential equationsAppl. Numer. Math.2006568090218643210.1016/j.apnum.2005.02.0081086.65087 – reference: DengWHZhangZJNumerical schemes of the time tempered fractional Feynman–Kac equationComput. Math. Appl.201773610631076362310710.1016/j.camwa.2016.12.017 – reference: HaoZPSunZZCaoWRA fourth-order approximation of fractional derivatives with its applicationsJ. Comput. Phys.2015281787805328199510.1016/j.jcp.2014.10.0531352.65238 – reference: PodlubnyIFractional Differential Equations1999New YorkAcademic Press0924.34008 – reference: ChanRHJinXQAn Introduction to Iterative Toeplitz Solvers2007PhiladelphiaSIAM10.1137/1.97808987188501146.65028 – reference: SokolovIMChechkinAVKlafterJFractional diffusion equation for a power-law-truncated Lévy processPhysica A200433624525110.1016/j.physa.2003.12.044 – reference: KlafterJSokolovIMFirst Steps in Randow Walks: From Tools to Applications2011New YorkOxford University Press10.1093/acprof:oso/9780199234868.001.00011242.60046 – reference: OrtigueiraMDRiesz potential operators and inverses via fractional centred derivativesInt. J. Math. Math. Sci.2006624839122517181122.26007 – reference: BaeumeraBMeerschaertMMTempered stable Lévy motion and transient super-diffusionJ. Comput. Appl. Math.201023324382448257783410.1016/j.cam.2009.10.02705669187 – reference: YangXHZhangHXXuDOrthogonal spline collocation method for the two-dimensional fractionl sub-difusion equationJ. Comput. Phys.2014256824837311743710.1016/j.jcp.2013.09.0161349.65529 – reference: ChenMHDengWHHigh order algorithms for the fractional substantial diffusion equation with truncated Lévy flightsSIAM J. Sci. Comput.201537A890A91710.1137/14097207X1317.65198 – reference: TarasovVEFractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media2010BerlinSpringer10.1007/978-3-642-14003-71214.81004 – reference: ChenMHDengWHFourth order accurate scheme for the space fractional diffusion equationsSIAM J. Numer. Anal.20145214181438321721710.1137/1309334471318.65048 – reference: LiCPDingHFHigher order finite difference method for the reaction and anomalous-diffusion equationAppl. Math. Model.20143838023821323380810.1016/j.apm.2013.12.002 – reference: SousaELiCA weighted finite difference method for the fractional diffusion equation based on the Riemann–Liouville drivativeAppl. Numer. Math.2015902237330089310.1016/j.apnum.2014.11.0071326.65111 – reference: CarmiSBarkaiEFractional Feynman–Kac equation for weak ergodicity breakingPhys. Rev. E20118406110410.1103/PhysRevE.84.061104 – reference: MeerschaertMMTadjeranCFinite difference approximations for fractional advection-dispersion flow equationsJ. Comput. Appl. Math.20041726577209113110.1016/j.cam.2004.01.0331126.76346 – reference: FriedrichRJenkoFBauleAEuleSAnomalous diffusion of inertial, weakly damped particlesPhys. Rev. Lett.20069623060110.1103/PhysRevLett.96.230601 – reference: MustaphaKMcleanWSuperconvergence of a discontinuous Galerkin method for fractional diffusion and wave equationsSIAM J. Numer. Anal.201351491515303302010.1137/1208807191267.26005 – reference: ChenMHDengWHFourth order difference approximations for space Riemann–Liouville derivatives based on weighted and shifted Lubich difference operatorsCommun. Comput. Phys.201416516540321698210.4208/cicp.120713.280214a06799455 – reference: ZhangYNSunZZZhaoXCompact ADI schemes for the two-dimensional fractional diffusion-wave equationSIAM J. Numer. Anal.20125015351555297075410.1137/1108409591251.65126 – reference: DengWHChenMHBarkaiENumerical algorithms for the forward and backward fractional Feynman–Kac equationsJ. Sci. Comput.201562718746330433010.1007/s10915-014-9873-61335.65069 – reference: CarteaÁdel-Castillo-NegreteDFluid limit of the continuous-time random walk with general Lévy jump distribution functionsPhys. Rev. E20077604110510.1103/PhysRevE.76.041105 – reference: HanertEPiretCA chebyshev pseudo-spectral method to solve the space-time tempered fractional diffusion equationSIAM J. Sci. Comput.201436A1797A181210.1137/1309272921302.35403 – reference: TianWYZhouHDengWHA class of second order difference approximations for solving space fractional diffusion equationsMath. Comput.20158417031727333588810.1090/S0025-5718-2015-02917-21318.65058 – reference: HesthavenJSWarburtonTNodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications2007BerlinSpringer1134.65068 – reference: WuXCDengWHBarkaiETempered fractional Feynman–Kac equation: theory and examplesPhys. Rev. E201693032151365270510.1103/PhysRevE.93.032151 – reference: DengWHFinite element method for the space and time fractional Fokker–Planck equationSIAM J. Numer. Anal.200847204226245285810.1137/08071413005686546 – reference: BrunoRSorriso-ValvoLCarboneVBavassanoBA possible truncated-Lévy-flight statistics recovered from interplanetary solar-wind velocity and magnetic-field fluctuationsEurophys. Lett.20046614615210.1209/epl/i2003-10154-7 – reference: LiCDengWHHigh order schemes for the tempered fractional diffusion equationsAdv. Comput. Math.201642543572350210310.1007/s10444-015-9434-z1347.65136 – reference: MajumdarSNBrownian functionals in physics and computer scienceCurr. Sci.200589207620922189860 – reference: ZengFLiCLiuFTurnerIThe use of finite difference/element approximations for solving the time-fractional subdiffusion equationSIAM J. Sci. Comput.201335A2976A300010.1137/1309108651292.65096 – reference: Ros-OtonXSerraJThe Dirichlet problem for the fractional Laplacian: regularity up to the boundaryJ. Math. Pures Appl.2014101275302316891210.1016/j.matpur.2013.06.0031285.35020 – reference: ChenSLiuFZhuangPAnhVFinite difference approximation for the fractional Fokker–Planck equationAppl. Math. Model.200933256273245851010.1016/j.apm.2007.11.0051167.65419 – reference: JiCCSunZZA high-order compact finite difference shcemes for the fractional sub-diffusion equationJ. Sci. Comput.201564959985337784610.1007/s10915-014-9956-41328.65176 – reference: WangHBasuTA fast finite difference method for two-dimensional space-fractional diffusion equationsSIAM J. Sci. Comput.201234A2444A2458302371110.1137/12086491X1256.35194 – reference: TadjeranCMeerschaertMMSchefflerHPA second-order accurate numerical approximation for the fractional diffusion equationJ. Comput. Phys.2006213205213220343910.1016/j.jcp.2005.08.0081089.65089 – reference: del-Castillo-NegreteDTruncation effects in super diffusive front propagation with Lévy flightsPhys. Rev. E20097903112010.1103/PhysRevE.79.031120 – reference: ZhuangPLiuFAnhVTurnerINumerical methods for the variable-order fractional advection–diffusion equation with a nonlinear source termSIAM J. Numer. Anal.20094717601781250587310.1137/0807305971204.26013 – reference: ErvinVJRoopJPVariational formulation for the stationary fractional advection dispersion equationNumer. Meth. Partial Differ. Equ.200622558576221222610.1002/num.201121095.65118 – reference: LubichChDiscretized fractional calculusSIAM J. Math. Anal.19861770471983824910.1137/05170500624.65015 – volume: 38 start-page: 3802 year: 2014 ident: 640_CR13 publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2013.12.002 – volume: 233 start-page: 2438 year: 2010 ident: 640_CR2 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2009.10.027 – volume: 42 start-page: 543 year: 2016 ident: 640_CR29 publication-title: Adv. Comput. Math. doi: 10.1007/s10444-015-9434-z – volume: 34 start-page: A2444 year: 2012 ident: 640_CR25 publication-title: SIAM J. Sci. Comput. doi: 10.1137/12086491X – volume: 231 start-page: 693 year: 2012 ident: 640_CR24 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2011.10.005 – volume: 62 start-page: 718 year: 2015 ident: 640_CR34 publication-title: J. Sci. Comput. doi: 10.1007/s10915-014-9873-6 – volume: 66 start-page: 146 year: 2004 ident: 640_CR3 publication-title: Europhys. Lett. doi: 10.1209/epl/i2003-10154-7 – volume: 172 start-page: 65 year: 2004 ident: 640_CR14 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2004.01.033 – volume: 17 start-page: 704 year: 1986 ident: 640_CR26 publication-title: SIAM J. Math. Anal. doi: 10.1137/0517050 – volume: 213 start-page: 205 year: 2006 ident: 640_CR41 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2005.08.008 – volume: 281 start-page: 787 year: 2015 ident: 640_CR27 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.10.053 – volume: 36 start-page: A1797 year: 2014 ident: 640_CR6 publication-title: SIAM J. Sci. Comput. doi: 10.1137/130927292 – volume: 52 start-page: 1418 year: 2014 ident: 640_CR12 publication-title: SIAM J. Numer. Anal. doi: 10.1137/130933447 – volume: 37 start-page: A890 year: 2015 ident: 640_CR33 publication-title: SIAM J. Sci. Comput. doi: 10.1137/14097207X – volume: 64 start-page: 959 year: 2015 ident: 640_CR28 publication-title: J. Sci. Comput. doi: 10.1007/s10915-014-9956-4 – volume: 62 start-page: 48391 year: 2006 ident: 640_CR39 publication-title: Int. J. Math. Math. Sci. doi: 10.1155/IJMMS/2006/48391 – volume: 76 start-page: 041105 year: 2007 ident: 640_CR4 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.76.041105 – volume: 56 start-page: 80 year: 2006 ident: 640_CR42 publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2005.02.008 – volume: 336 start-page: 245 year: 2004 ident: 640_CR9 publication-title: Physica A doi: 10.1016/j.physa.2003.12.044 – volume: 89 start-page: 2076 year: 2005 ident: 640_CR11 publication-title: Curr. Sci. – volume: 47 start-page: 2108 year: 2009 ident: 640_CR22 publication-title: SIAM J. Numer. Anal. doi: 10.1137/080718942 – volume: 33 start-page: 256 year: 2009 ident: 640_CR43 publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2007.11.005 – volume: 16 start-page: 516 year: 2014 ident: 640_CR38 publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.120713.280214a – volume: 90 start-page: 22 year: 2015 ident: 640_CR40 publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2014.11.007 – volume-title: First Steps in Randow Walks: From Tools to Applications year: 2011 ident: 640_CR1 doi: 10.1093/acprof:oso/9780199234868.001.0001 – volume: 84 start-page: 1703 year: 2015 ident: 640_CR15 publication-title: Math. Comput. doi: 10.1090/S0025-5718-2015-02917-2 – volume: 49 start-page: 373 year: 2015 ident: 640_CR32 publication-title: ESAIM: Math. Model. Numer. Anal. doi: 10.1051/m2an/2014052 – volume: 35 start-page: A2976 year: 2013 ident: 640_CR21 publication-title: SIAM J. Sci. Comput. doi: 10.1137/130910865 – volume: 96 start-page: 230601 year: 2006 ident: 640_CR30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.230601 – volume: 140 start-page: 054113 year: 2014 ident: 640_CR7 publication-title: J. Chem. Phys. doi: 10.1063/1.4863995 – volume: 50 start-page: 1535 year: 2012 ident: 640_CR16 publication-title: SIAM J. Numer. Anal. doi: 10.1137/110840959 – volume: 256 start-page: 824 year: 2014 ident: 640_CR23 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.09.016 – volume-title: Fractional Differential Equations year: 1999 ident: 640_CR36 – volume: 51 start-page: 491 year: 2013 ident: 640_CR20 publication-title: SIAM J. Numer. Anal. doi: 10.1137/120880719 – volume: 293 start-page: 14 year: 2015 ident: 640_CR10 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.04.024 – volume: 47 start-page: 1760 year: 2009 ident: 640_CR17 publication-title: SIAM J. Numer. Anal. doi: 10.1137/080730597 – volume: 47 start-page: 204 year: 2008 ident: 640_CR18 publication-title: SIAM J. Numer. Anal. doi: 10.1137/080714130 – volume: 22 start-page: 558 year: 2006 ident: 640_CR19 publication-title: Numer. Meth. Partial Differ. Equ. doi: 10.1002/num.20112 – volume-title: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media year: 2010 ident: 640_CR37 doi: 10.1007/978-3-642-14003-7 – volume: 101 start-page: 275 year: 2014 ident: 640_CR46 publication-title: J. Math. Pures Appl. doi: 10.1016/j.matpur.2013.06.003 – volume: 93 start-page: 032151 year: 2016 ident: 640_CR8 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.93.032151 – volume: 73 start-page: 1063 issue: 6 year: 2017 ident: 640_CR35 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2016.12.017 – volume: 84 start-page: 061104 year: 2011 ident: 640_CR31 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.84.061104 – volume: 79 start-page: 031120 year: 2009 ident: 640_CR5 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.79.031120 – volume-title: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications year: 2007 ident: 640_CR45 – volume-title: An Introduction to Iterative Toeplitz Solvers year: 2007 ident: 640_CR44 doi: 10.1137/1.9780898718850 |
| SSID | ssj0009892 |
| Score | 2.3206584 |
| Snippet | We provide and analyze the high order algorithms for the model describing the functional distributions of particles performing anomalous motion with power-law... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 867 |
| SubjectTerms | Algorithms Approximation Computational Mathematics and Numerical Analysis Fourier transforms Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Partial differential equations Power law Queuing theory Real numbers Theoretical Truncation errors |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5qe_Ei1gfWF3vw4IPFJPtochBRaSkqVUTBW9hX9NBG28ZDb_4H_6G_xN08DAp6S0gykNmZ3dmdme8D2IuU4kolEaZJojDlkuCQ2ytjdz7GV5Evkhztc8gHD_TykT02YFj1wriyympOzCdq_aLcGflxEFnjsxsq7p2-TrBjjXLZ1YpCQ5TUCvokhxhbgFbgkLGa0DrvDW_vahjeMKdJtq7FsA2kaZXnLJrpIt8VsoXYZbfw_OdKVYefvzKm-ULUX4alMoJEZ8WQt6Fh0hVolz46Q_slkPTBKly7Ig5048A10dnoyf5N9jxGNkpFNupDrvkD3xsbNk-NRv1p0eFgJffNPB2L9PP940oo1JsUYOBr8NDv3V8McMmegBXxeYalZzyiAx0yxgiVxJPalYzKLqOEaK19o3k38RXVTHsqDASTlCkRaBHaO6PJOjTTl9RsAAqE76iqmOB29yFpNxQ6PzCyviu5jsIOeJWmYlVCizuGi1FcgyI75cZWubFTbjzvwOH3J68FrsZ_L29X6o9LF5vFtUF04Kgakvrxn8I2_xe2BYtBbgOuxm8bmtn0zezYuCOTu6UxfQFFS9QY priority: 102 providerName: ProQuest |
| Title | High Order Algorithm for the Time-Tempered Fractional Feynman–Kac Equation |
| URI | https://link.springer.com/article/10.1007/s10915-018-0640-y https://www.proquest.com/docview/2918313360 |
| Volume | 76 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7691 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: AFBBN dateStart: 19860301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-7691 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: BENPR dateStart: 19970301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7691 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7691 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxRBEK7ActGDAmpcxU0fPICmyTy6e3uOu2YHAroQs5vgadKvESIMujsc1hP_gX_oL7F6HiwSNeE0M-nXTFdVd_VU1VcAbxNjhDF5QlmeG8qEjqkUeOfw5ONCk4Qqr9A-x2J_yg5O-EkTxz1vvd1bk2S1Ut8JdktC72gmqbc-0cUqrFVwWx1YG-x9ORwtsXZllQsZ5YdT1JZZa8z8Wyd_bkdLHfOeWbTabdKnMGnfs3Yy-bZ7Vepd8_MehOMDP2QdnjTaJxnU7LIBK67YhMefbqFb55uw0Uj7nGw3kNQ7z-CjdwchRx6mkwzOv17OzsrTC4L6LsGWxIeR0IlDBXzmLElndawEjpO6RXGhil_XN4fKkNGPGlb8OUzT0eTDPm3yMFATh6KkOnBBbCMrOecx03GgrXc-1X3O4thaGzor-nlomOU2MDJSXDNuVGSVxCdn4xfQKS4L9xJIpEKf9IorgecYzfpS2erXE64CWthEdiFoyZGZBqTc58o4z5bwyn72Mpy9zM9etujCu9sm32uEjv9V3mppnDXCOs-iBNc1PKuLoAvvW5Iti__Z2asH1X4Nj6KK5t55cAs65ezKvUGFptQ9WJXpXg_ZOB0Ox72GnfE6HI2PP2PpNBr8BmT48Sc |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5ROLQXVPpQQ2nZQyv1oVVt7yP2AVU8EoUmTasqSNzMvgwHMJAEodz6H_g__Jj-ks7a61qtVG7cbNmew-zs7Ixn5vsA3mTGSGOKjPKiMJRLzWgq8cph5uNik8WqqNA-x3JwwL8cisMluG1mYXxbZeMTK0dtz43_R_4pydD4MKGS0eeLS-pZo3x1taHQUIFawW5VEGNhsGPoFteYws229vdwvd8mSb832R3QwDJADYvlnOrIRcwmNhVCMK5ZpK1vrdRdwRmz1sbOym4RG26FjUyaKKG5MCqxKsU7ZxnKfQArnPEMk7-Vnd74-48W9jetaJlxKwuKgTtv6qr18F4W-8a5lPpqGl38fTK24e4_Fdrq4Os_htUQsZLt2sTWYMmVT2At-IQZeReAq98_hZFvGiHfPJgn2T49Ru3NT84IRsUEo0zih03oxGGYPnWW9Kf1RAVK7rtFeabKXz9vhsqQ3mUNPv4MDu5Fj89huTwv3QsgiYo9NZZQErMdzbupstUPKvQVWtos7UDUaCo3AcrcM2qc5i0Is1dujsrNvXLzRQc-_PnkosbxuOvljUb9edjSs7w1wA58bJakffxfYet3C9uEh4PJ11E-2h8PX8KjpLIH31-4Acvz6ZV7hTHPXL8OhkXg6L5t-Te_IxHH |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BkRAcEGURhQI-cGCRRRbbTY4VEJWtcKASt8hbAAkCtOHQG__AH_Il2FlaQIDELVFsR5olfs7MvAHYCqVkUiYhJkkiMWHCxwEzV9qcfLQrQ5cnOdtnl3V65OSaXpd9TgdVtnsVkixqGixLU5rtP6lk_1PhW-japLMA20gUHk7CFLE8Ccage157zLob5F2RjSdRbHAzqcKaPy3xdWMao81vAdJ834nmYa4EjKhdaLgOEzpdgNnzEdvqYAHqpYMO0HbJIr2zCGc2gwNdWGZN1L6_eezfZbcPyEBUZGYiW_mBr7TBzH2tUNQvyhvMeyI9TB94-v76dsolOnoumMCXoBcdXR10cNk6AUvfZRkWjnZ85amAUuoT4TtC2XxR0aLE95VSrlaslbiSKKocGXicCkIl9xQPzJ1W_jLU0sdUrwDyuGv7VFHOzNFDkFbAVf63yDiuYCoMGuBUcotlyStu21vcx2NGZCvq2Ig6tqKOhw3YHU15Kkg1_hrcrJQRl_41iL3QfIrM8Zo5DdirFDR-_Otiq_8avQnTl4dRfHbcPV2DGS-3FZv614Ra1n_R6waOZGIjN7kPqw7WWg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Order+Algorithm+for+the+Time-Tempered+Fractional+Feynman%E2%80%93Kac+Equation&rft.jtitle=Journal+of+scientific+computing&rft.au=Chen%2C+Minghua&rft.au=Deng%2C+Weihua&rft.date=2018-08-01&rft.pub=Springer+US&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=76&rft.issue=2&rft.spage=867&rft.epage=887&rft_id=info:doi/10.1007%2Fs10915-018-0640-y&rft.externalDocID=10_1007_s10915_018_0640_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon |