Knowledge Base Completion by Variational Bayesian Neural Tensor Decomposition

Knowledge base completion is an important research problem in knowledge bases, which play important roles in question answering, information retrieval, and other applications. A number of relational learning algorithms have been proposed to solve this problem. However, despite their success in model...

Full description

Saved in:
Bibliographic Details
Published inCognitive computation Vol. 10; no. 6; pp. 1075 - 1084
Main Authors He, Lirong, Liu, Bin, Li, Guangxi, Sheng, Yongpan, Wang, Yafang, Xu, Zenglin
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1866-9956
1866-9964
DOI10.1007/s12559-018-9565-x

Cover

Abstract Knowledge base completion is an important research problem in knowledge bases, which play important roles in question answering, information retrieval, and other applications. A number of relational learning algorithms have been proposed to solve this problem. However, despite their success in modeling the entity relations, they are not well founded in a Bayesian manner and thus are hard to model the prior information of the entity and relation factors. Furthermore, they under-represent the interaction between entity and relation factors. In order to avoid these disadvantages, we provide a neural-inspired approach, namely Bayesian Neural Tensor Decomposition approach for knowledge base completion based on the Stochastic Gradient Variational Bayesian framework. We employ a multivariate Bernoulli likelihood function to represent the existence of facts in knowledge graphs. We further employ a Multi-layered Perceptrons to represent more complex interactions between the latent subject , predicate , and object factors. The SGVB framework can enable us to make efficient approximate variational inference for the proposed nonlinear probabilistic tensor decomposition by a novel local reparameterization trick. This way avoids the need of expensive iterative inference schemes such as MCMC and does not make any over-simplified assumptions about the posterior distributions, in contrary to the common variational inference. In order to evaluate the proposed model, we have conducted experiments on real-world knowledge bases, i.e., FreeBase and WordNet. Experimental results have indicated the promising performance of the proposed method.
AbstractList Knowledge base completion is an important research problem in knowledge bases, which play important roles in question answering, information retrieval, and other applications. A number of relational learning algorithms have been proposed to solve this problem. However, despite their success in modeling the entity relations, they are not well founded in a Bayesian manner and thus are hard to model the prior information of the entity and relation factors. Furthermore, they under-represent the interaction between entity and relation factors. In order to avoid these disadvantages, we provide a neural-inspired approach, namely Bayesian Neural Tensor Decomposition approach for knowledge base completion based on the Stochastic Gradient Variational Bayesian framework. We employ a multivariate Bernoulli likelihood function to represent the existence of facts in knowledge graphs. We further employ a Multi-layered Perceptrons to represent more complex interactions between the latent subject, predicate, and object factors. The SGVB framework can enable us to make efficient approximate variational inference for the proposed nonlinear probabilistic tensor decomposition by a novel local reparameterization trick. This way avoids the need of expensive iterative inference schemes such as MCMC and does not make any over-simplified assumptions about the posterior distributions, in contrary to the common variational inference. In order to evaluate the proposed model, we have conducted experiments on real-world knowledge bases, i.e., FreeBase and WordNet. Experimental results have indicated the promising performance of the proposed method.
Knowledge base completion is an important research problem in knowledge bases, which play important roles in question answering, information retrieval, and other applications. A number of relational learning algorithms have been proposed to solve this problem. However, despite their success in modeling the entity relations, they are not well founded in a Bayesian manner and thus are hard to model the prior information of the entity and relation factors. Furthermore, they under-represent the interaction between entity and relation factors. In order to avoid these disadvantages, we provide a neural-inspired approach, namely Bayesian Neural Tensor Decomposition approach for knowledge base completion based on the Stochastic Gradient Variational Bayesian framework. We employ a multivariate Bernoulli likelihood function to represent the existence of facts in knowledge graphs. We further employ a Multi-layered Perceptrons to represent more complex interactions between the latent subject , predicate , and object factors. The SGVB framework can enable us to make efficient approximate variational inference for the proposed nonlinear probabilistic tensor decomposition by a novel local reparameterization trick. This way avoids the need of expensive iterative inference schemes such as MCMC and does not make any over-simplified assumptions about the posterior distributions, in contrary to the common variational inference. In order to evaluate the proposed model, we have conducted experiments on real-world knowledge bases, i.e., FreeBase and WordNet. Experimental results have indicated the promising performance of the proposed method.
Author Liu, Bin
Xu, Zenglin
He, Lirong
Wang, Yafang
Li, Guangxi
Sheng, Yongpan
Author_xml – sequence: 1
  givenname: Lirong
  surname: He
  fullname: He, Lirong
  organization: SMILE Lab, School of Computer Science and Engineering, University of Electronic Science and Technology of China
– sequence: 2
  givenname: Bin
  surname: Liu
  fullname: Liu, Bin
  organization: SMILE Lab, School of Computer Science and Engineering, University of Electronic Science and Technology of China
– sequence: 3
  givenname: Guangxi
  surname: Li
  fullname: Li, Guangxi
  organization: SMILE Lab, School of Computer Science and Engineering, University of Electronic Science and Technology of China
– sequence: 4
  givenname: Yongpan
  surname: Sheng
  fullname: Sheng, Yongpan
  organization: SMILE Lab, School of Computer Science and Engineering, University of Electronic Science and Technology of China
– sequence: 5
  givenname: Yafang
  surname: Wang
  fullname: Wang, Yafang
  organization: Ant Financial Service Co
– sequence: 6
  givenname: Zenglin
  surname: Xu
  fullname: Xu, Zenglin
  email: zlxu@uestc.edu.cn
  organization: SMILE Lab, School of Computer Science and Engineering, University of Electronic Science and Technology of China
BookMark eNp9kMtOwzAQRS1UJNrCB7CLxDpgO7FjL6E8xWtT2FqOM6lcpXGxU9H-PQ5BICHBamY094zu3Akata4FhI4JPiUYF2eBUMZkiolIJeMs3e6hMRGcp1LyfPTdM36AJiEsMeZMMjpGj_ete2-gWkByoQMkM7daN9BZ1yblLnnV3up-0E1c7yBY3SZPsPFxnkMbnE8uwUTEBdvLDtF-rZsAR191il6ur-az2_Th-eZudv6QmozwLtUyOhEl0aKqK8YKUgomDRVc1hXNdV6XJZcaAOcZM4UAbWSdSVPKogJqDMum6GS4u_bubQOhU0u38dFlUFQSyWnGsyKqikFlvAvBQ62M7T7f6by2jSJY9dmpITsVs1N9dmobSfKLXHu70n73L0MHJkRtuwD_4-lv6APiFIUt
CitedBy_id crossref_primary_10_1016_j_knosys_2020_106077
crossref_primary_10_1016_j_knosys_2021_107258
crossref_primary_10_1007_s12559_019_09686_4
crossref_primary_10_1016_j_knosys_2019_104870
crossref_primary_10_1142_S021800142059034X
crossref_primary_10_1016_j_knosys_2021_107310
crossref_primary_10_1109_TIP_2021_3062195
crossref_primary_10_1109_TKDE_2020_3014166
crossref_primary_10_1016_j_neucom_2020_10_091
crossref_primary_10_1007_s12559_019_09694_4
crossref_primary_10_1016_j_neucom_2021_04_128
crossref_primary_10_3390_e24101453
crossref_primary_10_1109_TKDE_2020_2970044
Cites_doi 10.1007/s10994-013-5363-6
10.1109/TETCI.2018.2806934
10.1162/NECO_a_00570
10.1145/219717.219748
10.1007/978-3-642-40994-3_40
10.1007/978-3-540-76298-0_52
10.1016/j.patcog.2014.09.025
10.1016/j.knosys.2018.02.020
10.1109/IJCNN.2017.7965828
10.1609/aaai.v29i1.9491
10.1007/s12559-015-9375-3
10.1016/j.neunet.2018.01.011
10.1609/aaai.v30i1.10222
10.1609/aaai.v28i1.8870
10.18653/v1/D13-1136
10.1007/s12559-016-9425-5
10.1109/JPROC.2015.2483592
10.1109/TPAMI.2013.201
10.1145/2623330.2623623
10.1007/s10994-010-5205-8
10.1007/s10618-017-0543-9
10.1145/1242572.1242667
10.1145/1376616.1376746
10.1007/s12559-012-9183-y
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Springer Science+Business Media, LLC, part of Springer Nature 2018.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2018.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s12559-018-9565-x
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
EISSN 1866-9964
EndPage 1084
ExternalDocumentID 10_1007_s12559_018_9565_x
GrantInformation_xml – fundername: Fundamental Research Fund for the Central Universities of China
  grantid: No. ZYGX2016Z003
– fundername: 985 Project of UESTC
  grantid: No.A1098531023601041
– fundername: National Natural Science Foundation of China
  grantid: No. 61572111
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID -56
-5G
-BR
-EM
-~C
06C
06D
0R~
0VY
1N0
203
29F
29~
2JY
2KG
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
67N
67Z
6NX
875
8TC
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABMQK
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARAPS
AUKKA
AXYYD
BA0
BENPR
BGLVJ
BGNMA
CAG
CCPQU
COF
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
EN4
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KOV
KPH
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
PT4
QOR
QOS
R89
RLLFE
ROL
RSV
S1Z
S27
S3A
S3B
SBL
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
T13
TSG
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7R
Z7X
Z83
Z88
ZMTXR
ZOVNA
~A9
AAFWJ
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c316t-a99958b1a8dfd5571b859c2869fd24a4fbb69aee0435c78eac9f39cb97de2cc53
IEDL.DBID BENPR
ISSN 1866-9956
IngestDate Fri Jul 25 23:30:32 EDT 2025
Thu Apr 24 22:56:54 EDT 2025
Wed Oct 01 05:46:30 EDT 2025
Fri Feb 21 02:31:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Knowledge base completion
Variational Bayesian
Neural networks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-a99958b1a8dfd5571b859c2869fd24a4fbb69aee0435c78eac9f39cb97de2cc53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2919623637
PQPubID 6623279
PageCount 10
ParticipantIDs proquest_journals_2919623637
crossref_citationtrail_10_1007_s12559_018_9565_x
crossref_primary_10_1007_s12559_018_9565_x
springer_journals_10_1007_s12559_018_9565_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20181200
2018-12-00
20181201
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 20181200
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Cognitive computation
PublicationTitleAbbrev Cogn Comput
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References ZhongGCherietMTensor representation learning based image patch analysis for text identification and recognitionPattern Recogn20154841211122410.1016/j.patcog.2014.09.025
Auer S, Bizer C, Kobilarov G, Lehmann J, Ives Z. DBpedia: A nucleus for a web of open data. In: Proceedings ISWC; 2007. p. 11–15.
Chen S, Lyu MR, King I, Xu Z. Exact and stable recovery of pairwise interaction tensors. In: Advances in neural information processing systems 26: 27th annual conference on neural information processing systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe; 2013. pp. 1691–1699.
Lin Y, Liu Z, Zhu X, Zhu X, Zhu X. Learning entity and relation embeddings for knowledge graph completion. In: Twenty-ninth AAAI conference on artificial intelligence; 2015. p. 2181– 2187.
HuangSXuZLvJAdaptive local structure learning for document co-clusteringKnowl-Based Syst2018148748410.1016/j.knosys.2018.02.020https://doi.org/10.1016/j.knosys.2018.02.020
Zhe S, Xu Z, Chu X, Qi Y, Park Y. Scalable nonparametric multiway data analysis. In: Proceedings of the eighteenth international conference on artificial intelligence and statistics, AISTATS 2015, San Diego; 2015.
HuangSWangHLiTLiTXuZRobust graph regularized nonnegative matrix factorization for clusteringData Min Knowl Discov201832248350310.1007/s10618-017-0543-9https://doi.org/10.1007/s10618-017-0543-9
Bordes A, Usunier N, García-Durán A, Weston J, Yakhnenko O. Translating embeddings for modeling multi-relational data. In: Advances in neural information processing systems; 2013. pp. 2787–2795.
XuZYanFQiYBayesian nonparametric models for multiway data analysisIEEE Trans Pattern Anal Mach Intell20153724754872635325510.1109/TPAMI.2013.201
BordesAGlorotXWestonJBengioYA semantic matching energy function for learning with multi-relational data - application to word-sense disambiguationMach Learn201494223325910.1007/s10994-013-5363-6
Yang X, Huang K, Zhang R, Hussain A. Learning latent features with infinite non-negative binary matrix tri-factorization. IEEE Trans Emerg Topics Comput Intell. 2018;2(3). https://doi.org/10.1109/TETCI.2018.2806934.
Nickel M, Tresp V, Kriegel HP. A three-way model for collective learning on multi-relational data. In: International conference on international conference on machine learning; 2011, vol. 11. p. 809–816.
Zhe S, Zhang K, Wang P, Lee K, Xu Z, Qi Y, Ghahramani Z. Distributed flexible nonlinear tensor factorization. In: Advances in neural information processing systems 29, Barcelona; 2016. p. 920–928.
Sutskever I, Salakhutdinov R, Tenenbaum JB. Modelling relational data using bayesian clustered tensor factorization. In: Advances in neural information processing systems; 2009. p. 1821–1828.
Nickel M, Tresp V. 2013. Logistic tensor factorization for multi-relational data. arXiv:1306.2084.
Bishop CM, Nasrabadi NM. Pattern recognition and machine learning. Springer, 2006. p. 461–462.
Wang Z, Zhang J, Feng J, Chen Z. Knowledge graph embedding by translating on hyperplanes. In: The association for the advance of artificial intelligence; 2014, vol. 14. p. 1112–1119.
Kingma DP, Welling M. 2013. Auto-encoding variational bayes. arXiv:1312.6114.
Li G, Xu Z, Wang L, Ye J, King I, Lyu MR. Simple and efficient parallelization for probabilistic temporal tensor factorization. In: 2017 international joint conference on neural networks, IJCNN 2017, anchorage; 2017, p. 1–8.
Zhu J. Max-margin nonparametric latent feature models for link prediction. In: Proceedings of the 29th international coference on international conference on machine learning. Omnipress; 2012. p. 1179–1186.
Dong X, Gabrilovich E, Heitz G, Horn W, Lao N, Murphy K, Strohmann T, Sun S, Zhang W. Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: ACM SIGKDD international conference on knowledge discovery and data mining; 2014. p. 601–610.
Socher R, Chen D, Manning CD, Ng AY. Reasoning with neural tensor networks for knowledge base completion. In: Advances in neural information processing systems; 2013. p. 926– 934.
Weston J, Bordes A, Yakhnenko O, Usunier N. Connecting language and knowledge bases with embedding models for relation extraction. In: Conference on empirical methods in natural language processing; 2013. p. 1366–1371.
LaoNCohenWWRelational retrieval using a combination of path-constrained random walksMach Learn2010811536710.1007/s10994-010-5205-8
Zhe S, Qi Y, Park Y, Xu Z, Molloy I, Chari S. Dintucker: Scaling up gaussian process models on large multidimensional arrays. In: Proceedings of the thirtieth AAAI conference on artificial intelligence. Phoenix; 2016. p. 2386–2392.
LiuBLiYXuZManifold regularized matrix completion for multi-label learning with ADMMNeural Netw201810157672948638110.1016/j.neunet.2018.01.011https://doi.org/10.1016/j.neunet.2018.01.011
OfekNPoriaSRokachLCambriaEHussainAShabtaiAUnsupervised commonsense knowledge enrichment for domain-specific sentiment analysisCogn Comput20168346747710.1007/s12559-015-9375-3
DuchiJHazanESingerYAdaptive subgradient methods for online learning and stochastic optimizationJ Mach Learn Res201112Jul21212159
ZhongGCherietMLarge margin low rank tensor analysisNeural Comput20142647617802447977810.1162/NECO_a_00570
Suchanek FM, Kasneci G, Weikum G. Yago: a core of semantic knowledge. Proceedings of the 16th international conference on World Wide Web. ACM; 2007. p. 697–706.
WangQFCambriaELiuCLHussainACommon sense knowledge for handwritten Chinese text recognitionCogn Comput20135223424210.1007/s12559-012-9183-y
FanMZhouQAbelAZhengTFGrishmanRProbabilistic belief embedding for large-scale knowledge populationCogn Comput2016861087110210.1007/s12559-016-9425-5
MillerGAWordnet: a lexical database for englishCommun Acm19953811394110.1145/219717.219748
Bollacker K, Evans C, Paritosh P, Sturge T, Taylor J. Freebase: a collaboratively created graph database for structuring human knowledge. In: ACM’S special interest group on management of data conference; 2008. p. 1247–1250.
NickelMMurphyKTrespVGabrilovichEA review of relational machine learning for knowledge graphsProc IEEE20161041113310.1109/JPROC.2015.2483592
Xu Z, Yan F, Qi Y. Infinite tucker decomposition: Nonparametric bayesian models for multiway data analysis. In: Proceedings of the 29th international conference on machine learning, ICML 2012. Edinburgh; 2012.
Lao N, Mitchell T, Cohen WW. Random walk inference and learning in a large scale knowledge base. In: Conference on empirical methods in natural language processing, EMNLP 2011, john mcintyre conference centre, edinburgh, uk, a meeting of sigdat, a special interest group of the ACL; 2012. p. 529–539.
9565_CR14
9565_CR15
9565_CR37
9565_CR12
9565_CR34
M Nickel (9565_CR19) 2016; 104
9565_CR32
9565_CR33
A Bordes (9565_CR4) 2014; 94
9565_CR31
9565_CR5
QF Wang (9565_CR26) 2013; 5
9565_CR6
9565_CR3
9565_CR7
9565_CR16
N Lao (9565_CR13) 2010; 81
GA Miller (9565_CR18) 1995; 38
J Duchi (9565_CR8) 2011; 12
9565_CR25
9565_CR23
9565_CR24
G Zhong (9565_CR36) 2015; 48
9565_CR21
B Liu (9565_CR17) 2018; 101
M Fan (9565_CR9) 2016; 8
9565_CR20
9565_CR29
9565_CR27
9565_CR28
N Ofek (9565_CR22) 2016; 8
S Huang (9565_CR10) 2018; 32
9565_CR1
G Zhong (9565_CR35) 2014; 26
9565_CR2
Z Xu (9565_CR30) 2015; 37
S Huang (9565_CR11) 2018; 148
References_xml – reference: Socher R, Chen D, Manning CD, Ng AY. Reasoning with neural tensor networks for knowledge base completion. In: Advances in neural information processing systems; 2013. p. 926– 934.
– reference: DuchiJHazanESingerYAdaptive subgradient methods for online learning and stochastic optimizationJ Mach Learn Res201112Jul21212159
– reference: Li G, Xu Z, Wang L, Ye J, King I, Lyu MR. Simple and efficient parallelization for probabilistic temporal tensor factorization. In: 2017 international joint conference on neural networks, IJCNN 2017, anchorage; 2017, p. 1–8.
– reference: Bollacker K, Evans C, Paritosh P, Sturge T, Taylor J. Freebase: a collaboratively created graph database for structuring human knowledge. In: ACM’S special interest group on management of data conference; 2008. p. 1247–1250.
– reference: LiuBLiYXuZManifold regularized matrix completion for multi-label learning with ADMMNeural Netw201810157672948638110.1016/j.neunet.2018.01.011https://doi.org/10.1016/j.neunet.2018.01.011
– reference: XuZYanFQiYBayesian nonparametric models for multiway data analysisIEEE Trans Pattern Anal Mach Intell20153724754872635325510.1109/TPAMI.2013.201
– reference: Wang Z, Zhang J, Feng J, Chen Z. Knowledge graph embedding by translating on hyperplanes. In: The association for the advance of artificial intelligence; 2014, vol. 14. p. 1112–1119.
– reference: Lao N, Mitchell T, Cohen WW. Random walk inference and learning in a large scale knowledge base. In: Conference on empirical methods in natural language processing, EMNLP 2011, john mcintyre conference centre, edinburgh, uk, a meeting of sigdat, a special interest group of the ACL; 2012. p. 529–539.
– reference: Zhu J. Max-margin nonparametric latent feature models for link prediction. In: Proceedings of the 29th international coference on international conference on machine learning. Omnipress; 2012. p. 1179–1186.
– reference: OfekNPoriaSRokachLCambriaEHussainAShabtaiAUnsupervised commonsense knowledge enrichment for domain-specific sentiment analysisCogn Comput20168346747710.1007/s12559-015-9375-3
– reference: ZhongGCherietMTensor representation learning based image patch analysis for text identification and recognitionPattern Recogn20154841211122410.1016/j.patcog.2014.09.025
– reference: Chen S, Lyu MR, King I, Xu Z. Exact and stable recovery of pairwise interaction tensors. In: Advances in neural information processing systems 26: 27th annual conference on neural information processing systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe; 2013. pp. 1691–1699.
– reference: NickelMMurphyKTrespVGabrilovichEA review of relational machine learning for knowledge graphsProc IEEE20161041113310.1109/JPROC.2015.2483592
– reference: HuangSXuZLvJAdaptive local structure learning for document co-clusteringKnowl-Based Syst2018148748410.1016/j.knosys.2018.02.020https://doi.org/10.1016/j.knosys.2018.02.020
– reference: Suchanek FM, Kasneci G, Weikum G. Yago: a core of semantic knowledge. Proceedings of the 16th international conference on World Wide Web. ACM; 2007. p. 697–706.
– reference: Nickel M, Tresp V. 2013. Logistic tensor factorization for multi-relational data. arXiv:1306.2084.
– reference: Nickel M, Tresp V, Kriegel HP. A three-way model for collective learning on multi-relational data. In: International conference on international conference on machine learning; 2011, vol. 11. p. 809–816.
– reference: Bordes A, Usunier N, García-Durán A, Weston J, Yakhnenko O. Translating embeddings for modeling multi-relational data. In: Advances in neural information processing systems; 2013. pp. 2787–2795.
– reference: BordesAGlorotXWestonJBengioYA semantic matching energy function for learning with multi-relational data - application to word-sense disambiguationMach Learn201494223325910.1007/s10994-013-5363-6
– reference: Dong X, Gabrilovich E, Heitz G, Horn W, Lao N, Murphy K, Strohmann T, Sun S, Zhang W. Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: ACM SIGKDD international conference on knowledge discovery and data mining; 2014. p. 601–610.
– reference: Yang X, Huang K, Zhang R, Hussain A. Learning latent features with infinite non-negative binary matrix tri-factorization. IEEE Trans Emerg Topics Comput Intell. 2018;2(3). https://doi.org/10.1109/TETCI.2018.2806934.
– reference: HuangSWangHLiTLiTXuZRobust graph regularized nonnegative matrix factorization for clusteringData Min Knowl Discov201832248350310.1007/s10618-017-0543-9https://doi.org/10.1007/s10618-017-0543-9
– reference: Sutskever I, Salakhutdinov R, Tenenbaum JB. Modelling relational data using bayesian clustered tensor factorization. In: Advances in neural information processing systems; 2009. p. 1821–1828.
– reference: Bishop CM, Nasrabadi NM. Pattern recognition and machine learning. Springer, 2006. p. 461–462.
– reference: Auer S, Bizer C, Kobilarov G, Lehmann J, Ives Z. DBpedia: A nucleus for a web of open data. In: Proceedings ISWC; 2007. p. 11–15.
– reference: Zhe S, Zhang K, Wang P, Lee K, Xu Z, Qi Y, Ghahramani Z. Distributed flexible nonlinear tensor factorization. In: Advances in neural information processing systems 29, Barcelona; 2016. p. 920–928.
– reference: WangQFCambriaELiuCLHussainACommon sense knowledge for handwritten Chinese text recognitionCogn Comput20135223424210.1007/s12559-012-9183-y
– reference: Zhe S, Qi Y, Park Y, Xu Z, Molloy I, Chari S. Dintucker: Scaling up gaussian process models on large multidimensional arrays. In: Proceedings of the thirtieth AAAI conference on artificial intelligence. Phoenix; 2016. p. 2386–2392.
– reference: FanMZhouQAbelAZhengTFGrishmanRProbabilistic belief embedding for large-scale knowledge populationCogn Comput2016861087110210.1007/s12559-016-9425-5
– reference: Lin Y, Liu Z, Zhu X, Zhu X, Zhu X. Learning entity and relation embeddings for knowledge graph completion. In: Twenty-ninth AAAI conference on artificial intelligence; 2015. p. 2181– 2187.
– reference: Weston J, Bordes A, Yakhnenko O, Usunier N. Connecting language and knowledge bases with embedding models for relation extraction. In: Conference on empirical methods in natural language processing; 2013. p. 1366–1371.
– reference: MillerGAWordnet: a lexical database for englishCommun Acm19953811394110.1145/219717.219748
– reference: ZhongGCherietMLarge margin low rank tensor analysisNeural Comput20142647617802447977810.1162/NECO_a_00570
– reference: Zhe S, Xu Z, Chu X, Qi Y, Park Y. Scalable nonparametric multiway data analysis. In: Proceedings of the eighteenth international conference on artificial intelligence and statistics, AISTATS 2015, San Diego; 2015.
– reference: Kingma DP, Welling M. 2013. Auto-encoding variational bayes. arXiv:1312.6114.
– reference: LaoNCohenWWRelational retrieval using a combination of path-constrained random walksMach Learn2010811536710.1007/s10994-010-5205-8
– reference: Xu Z, Yan F, Qi Y. Infinite tucker decomposition: Nonparametric bayesian models for multiway data analysis. In: Proceedings of the 29th international conference on machine learning, ICML 2012. Edinburgh; 2012.
– volume: 94
  start-page: 233
  issue: 2
  year: 2014
  ident: 9565_CR4
  publication-title: Mach Learn
  doi: 10.1007/s10994-013-5363-6
– ident: 9565_CR31
  doi: 10.1109/TETCI.2018.2806934
– volume: 26
  start-page: 761
  issue: 4
  year: 2014
  ident: 9565_CR35
  publication-title: Neural Comput
  doi: 10.1162/NECO_a_00570
– ident: 9565_CR21
– volume: 38
  start-page: 39
  issue: 11
  year: 1995
  ident: 9565_CR18
  publication-title: Commun Acm
  doi: 10.1145/219717.219748
– ident: 9565_CR20
  doi: 10.1007/978-3-642-40994-3_40
– ident: 9565_CR23
– ident: 9565_CR1
  doi: 10.1007/978-3-540-76298-0_52
– volume: 48
  start-page: 1211
  issue: 4
  year: 2015
  ident: 9565_CR36
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2014.09.025
– ident: 9565_CR6
– volume: 148
  start-page: 74
  year: 2018
  ident: 9565_CR11
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2018.02.020
– ident: 9565_CR2
– ident: 9565_CR15
  doi: 10.1109/IJCNN.2017.7965828
– ident: 9565_CR16
  doi: 10.1609/aaai.v29i1.9491
– volume: 8
  start-page: 467
  issue: 3
  year: 2016
  ident: 9565_CR22
  publication-title: Cogn Comput
  doi: 10.1007/s12559-015-9375-3
– ident: 9565_CR33
– ident: 9565_CR12
– volume: 101
  start-page: 57
  year: 2018
  ident: 9565_CR17
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2018.01.011
– ident: 9565_CR32
  doi: 10.1609/aaai.v30i1.10222
– ident: 9565_CR14
– ident: 9565_CR37
– ident: 9565_CR27
  doi: 10.1609/aaai.v28i1.8870
– ident: 9565_CR28
  doi: 10.18653/v1/D13-1136
– volume: 8
  start-page: 1087
  issue: 6
  year: 2016
  ident: 9565_CR9
  publication-title: Cogn Comput
  doi: 10.1007/s12559-016-9425-5
– volume: 104
  start-page: 11
  issue: 1
  year: 2016
  ident: 9565_CR19
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2015.2483592
– volume: 37
  start-page: 475
  issue: 2
  year: 2015
  ident: 9565_CR30
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2013.201
– ident: 9565_CR5
– ident: 9565_CR7
  doi: 10.1145/2623330.2623623
– volume: 81
  start-page: 53
  issue: 1
  year: 2010
  ident: 9565_CR13
  publication-title: Mach Learn
  doi: 10.1007/s10994-010-5205-8
– ident: 9565_CR25
– volume: 32
  start-page: 483
  issue: 2
  year: 2018
  ident: 9565_CR10
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-017-0543-9
– ident: 9565_CR29
– ident: 9565_CR24
  doi: 10.1145/1242572.1242667
– ident: 9565_CR3
  doi: 10.1145/1376616.1376746
– volume: 5
  start-page: 234
  issue: 2
  year: 2013
  ident: 9565_CR26
  publication-title: Cogn Comput
  doi: 10.1007/s12559-012-9183-y
– volume: 12
  start-page: 2121
  issue: Jul
  year: 2011
  ident: 9565_CR8
  publication-title: J Mach Learn Res
– ident: 9565_CR34
SSID ssj0065952
Score 2.2732368
Snippet Knowledge base completion is an important research problem in knowledge bases, which play important roles in question answering, information retrieval, and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1075
SubjectTerms Algorithms
Artificial Intelligence
Bayesian analysis
Biomedical and Life Sciences
Biomedicine
Computation by Abstract Devices
Computational Biology/Bioinformatics
Decomposition
Graphs
Inference
Information retrieval
Iterative methods
Knowledge bases (artificial intelligence)
Knowledge representation
Machine learning
Mathematical analysis
Methods
Multilayers
Neural networks
Neurosciences
Query expansion
Tensors
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQWbognqJQkAcmkKXEiV9jeVQVqEwt6mbFjj2hFLVFov-ecxo3AgESQ4YotiOdz-fvfHefEbrKPYB8UWTEUMtJ7pwkBvwgYoQDBXJJkdbnHeNnPprmjzM2a-q4lzHbPYYka0vdFrsF9AuuLyxQQCEEgOMuC2xeoMRTOojmN_Dj1SFOyTkJZZsxlPnTEF83oxZhfguK1nvNcB_tNSARDzazeoB2XHWIultbtT5C46d4FoZvYR_CYVkHGu15hc0av4AD3Bzywee1C4WSONBwwPsE_Nb5At-7kEzeZGwdo-nwYXI3Is3NCMRmKV-RAmAdkyYtZOlLxkRqJFOWSq58SfMi98ZwVTiXABiyQoJxVT5T1ihROmoty05Qp5pX7hThlDPvhBcqUTKXyhcm9HbUUAWPFT2URBFp29CGh9srXnVLeBykqkGqOkhVf_TQ9bbL24Yz46_G_Sh33SyfpaYKDAPNeAa_v4lz0X7-dbCzf7U-R10adKFOTumjzmrx7i4AYqzMZa1Sn_YWycA
  priority: 102
  providerName: Springer Nature
Title Knowledge Base Completion by Variational Bayesian Neural Tensor Decomposition
URI https://link.springer.com/article/10.1007/s12559-018-9565-x
https://www.proquest.com/docview/2919623637
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1866-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065952
  issn: 1866-9956
  databaseCode: AFBBN
  dateStart: 20090301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1866-9964
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0065952
  issn: 1866-9956
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1866-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065952
  issn: 1866-9956
  databaseCode: AGYKE
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1866-9964
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065952
  issn: 1866-9956
  databaseCode: U2A
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED7RdumCeIryqDIwgSwaJ_FjQKhACwJRIdSiMkWx40yoLVAk-u-5CzEVSDBkSBx7OJ_P370BDuMCQb7MIma4FSx2TjGDehAz0iEDuU4WlvaOu4G4HsU342S8AgOfC0NhlV4mloI6n1qykZ9wjbzCIxHJs9kLo65R5F31LTSyqrVCflqWGKtBg1NlrDo0znuD-wcvm6l4Xun_VEIwyun0fs4ymY7QNarWKAAQ5bCPnzfVEn7-8piWF1F_DVYrBBl0v7Z8HVbcZAOa34JssQl3t95QFpzjJRXQmaca29NJYBbBI2rHlQUQhxeOsigDqtGB70NUaqevwaWjSPMqnGsLRv3e8OKaVW0TmI1CMWcZYr5EmTBTeZEniQyNSrTlSugi53EWF8YInTnXQaRkpULJq4tIW6Nl7ri1SbQN9cl04nYgCEVSOFlI3dEqVrrIDM123HCNj5Ut6HgSpbaqKU6tLZ7TZTVkomqKVE2JqulHC46-p8y-Cmr89_O-p3tana23dMkJLTj2e7Ec_nOx3f8X24Mmp80vQ1X2oT5_fXcHCDjmpg011b9qQ6N79XTba1c8hV9HvPsJwD3Whw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB4hOMAFtaWIUGj3ABeqFfHa3scBoaaAAiFRVQXEzXjX6xNKeARB_lx_GzPOLlErlRsHH6z17mF2PPPNG2AnqxHkqzLlVjjJM-81t2gHcas8MpBvl0nj7-gPZPciO7vKrxbgT6yFobTKKBMbQV2NHfnI94VBXhGpTNXh7R2nqVEUXY0jNMowWqE6aFqMhcKOnp8-oQn3cHB6hPe9K8TJ8fBnl4cpA9yliZzwEiFSrm1S6qqu8lwlVufGCS1NXYmszGprpSm9byOwcEqjoDJ1apw1qvLCOZoagSpgKUszg8bfUud48Ot31AXUrK-Jt2opOdWQxrhqU7xHaB5NeRQ4iKr489-acQ53_4nQNorv5AOsBsTKfsxY7CMs-NEnWHkVnNM16PeiY451UCkykjHU03s8YnbKLtEaDx5HXJ56qtpk1BME34doRI_v2ZGnzPaQPvYZLt6FgOuwOBqP_AawROa1V7UybaMzberS0m4vrDD4ONWCdiRR4UIPcxqlcVPMuy8TVQukakFULZ5bsPe65XbWwOOtj7ci3YvwLz8Uc85rwfd4F_Pl_x62-fZh32C5O-yfF-eng94XWBHECE2azBYsTu4f_TaCnYn9GjiKwfV7M_ELVeARwQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-iILuInzid2oMnJaxN23wcp3NM54aHTXYrTZqcpBtbBfff-9I1K4oKHnooTVJ4eXn5vbz3fkHoOjIA8lkaYkkUxZHWHEvwg7BkGhRI-2lQnncMR7Q_iZ6m8bS653Tpst1dSHJd02BZmvKiPc9Muy58s0gY3GBYrIBIMIDIncjyJIBCT0jHmWLLlVeGOzml2JZwurDmT0N83ZhqtPktQFruO719tFcBRq-znuEDtKXzQ9TY2K3VERoO3LmYdwd7kmeXuKXUnuWeXHmv4AxXB37weaVt0aRnKTngfQw-7GzhdbVNLK-yt47RpPcwvu_j6pYErMKAFjgFiBdzGaQ8M1kcs0DyWCjCqTAZidLISElFqrUPwEgxDoZWmFAoKVimiVJxeIK281muT5EX0NhoZpjwBY-4MKm0vTWRRMCjWBP5TkSJqijE7U0Wb0lNfmylmoBUEyvV5KOJbjZd5mv-jL8at5zck2opLRMiwEiQkIbw-1s3F_XnXwc7-1frK7T70u0lz4-jwTlqEKsWZc5KC20Xi3d9AcijkJeldn0CfyTQ6A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Knowledge+Base+Completion+by+Variational+Bayesian+Neural+Tensor+Decomposition&rft.jtitle=Cognitive+computation&rft.au=He%2C+Lirong&rft.au=Liu%2C+Bin&rft.au=Li%2C+Guangxi&rft.au=Sheng%2C+Yongpan&rft.date=2018-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1866-9956&rft.eissn=1866-9964&rft.volume=10&rft.issue=6&rft.spage=1075&rft.epage=1084&rft_id=info:doi/10.1007%2Fs12559-018-9565-x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-9956&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-9956&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-9956&client=summon