Knowledge Base Completion by Variational Bayesian Neural Tensor Decomposition
Knowledge base completion is an important research problem in knowledge bases, which play important roles in question answering, information retrieval, and other applications. A number of relational learning algorithms have been proposed to solve this problem. However, despite their success in model...
        Saved in:
      
    
          | Published in | Cognitive computation Vol. 10; no. 6; pp. 1075 - 1084 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.12.2018
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1866-9956 1866-9964  | 
| DOI | 10.1007/s12559-018-9565-x | 
Cover
| Abstract | Knowledge base completion is an important research problem in knowledge bases, which play important roles in question answering, information retrieval, and other applications. A number of relational learning algorithms have been proposed to solve this problem. However, despite their success in modeling the entity relations, they are not well founded in a Bayesian manner and thus are hard to model the prior information of the entity and relation factors. Furthermore, they under-represent the interaction between entity and relation factors. In order to avoid these disadvantages, we provide a neural-inspired approach, namely Bayesian Neural Tensor Decomposition approach for knowledge base completion based on the Stochastic Gradient Variational Bayesian framework. We employ a multivariate Bernoulli likelihood function to represent the existence of facts in knowledge graphs. We further employ a Multi-layered Perceptrons to represent more complex interactions between the latent
subject
,
predicate
, and
object
factors. The SGVB framework can enable us to make efficient approximate variational inference for the proposed nonlinear probabilistic tensor decomposition by a novel local reparameterization trick. This way avoids the need of expensive iterative inference schemes such as MCMC and does not make any over-simplified assumptions about the posterior distributions, in contrary to the common variational inference. In order to evaluate the proposed model, we have conducted experiments on real-world knowledge bases, i.e., FreeBase and WordNet. Experimental results have indicated the promising performance of the proposed method. | 
    
|---|---|
| AbstractList | Knowledge base completion is an important research problem in knowledge bases, which play important roles in question answering, information retrieval, and other applications. A number of relational learning algorithms have been proposed to solve this problem. However, despite their success in modeling the entity relations, they are not well founded in a Bayesian manner and thus are hard to model the prior information of the entity and relation factors. Furthermore, they under-represent the interaction between entity and relation factors. In order to avoid these disadvantages, we provide a neural-inspired approach, namely Bayesian Neural Tensor Decomposition approach for knowledge base completion based on the Stochastic Gradient Variational Bayesian framework. We employ a multivariate Bernoulli likelihood function to represent the existence of facts in knowledge graphs. We further employ a Multi-layered Perceptrons to represent more complex interactions between the latent subject, predicate, and object factors. The SGVB framework can enable us to make efficient approximate variational inference for the proposed nonlinear probabilistic tensor decomposition by a novel local reparameterization trick. This way avoids the need of expensive iterative inference schemes such as MCMC and does not make any over-simplified assumptions about the posterior distributions, in contrary to the common variational inference. In order to evaluate the proposed model, we have conducted experiments on real-world knowledge bases, i.e., FreeBase and WordNet. Experimental results have indicated the promising performance of the proposed method. Knowledge base completion is an important research problem in knowledge bases, which play important roles in question answering, information retrieval, and other applications. A number of relational learning algorithms have been proposed to solve this problem. However, despite their success in modeling the entity relations, they are not well founded in a Bayesian manner and thus are hard to model the prior information of the entity and relation factors. Furthermore, they under-represent the interaction between entity and relation factors. In order to avoid these disadvantages, we provide a neural-inspired approach, namely Bayesian Neural Tensor Decomposition approach for knowledge base completion based on the Stochastic Gradient Variational Bayesian framework. We employ a multivariate Bernoulli likelihood function to represent the existence of facts in knowledge graphs. We further employ a Multi-layered Perceptrons to represent more complex interactions between the latent subject , predicate , and object factors. The SGVB framework can enable us to make efficient approximate variational inference for the proposed nonlinear probabilistic tensor decomposition by a novel local reparameterization trick. This way avoids the need of expensive iterative inference schemes such as MCMC and does not make any over-simplified assumptions about the posterior distributions, in contrary to the common variational inference. In order to evaluate the proposed model, we have conducted experiments on real-world knowledge bases, i.e., FreeBase and WordNet. Experimental results have indicated the promising performance of the proposed method.  | 
    
| Author | Liu, Bin Xu, Zenglin He, Lirong Wang, Yafang Li, Guangxi Sheng, Yongpan  | 
    
| Author_xml | – sequence: 1 givenname: Lirong surname: He fullname: He, Lirong organization: SMILE Lab, School of Computer Science and Engineering, University of Electronic Science and Technology of China – sequence: 2 givenname: Bin surname: Liu fullname: Liu, Bin organization: SMILE Lab, School of Computer Science and Engineering, University of Electronic Science and Technology of China – sequence: 3 givenname: Guangxi surname: Li fullname: Li, Guangxi organization: SMILE Lab, School of Computer Science and Engineering, University of Electronic Science and Technology of China – sequence: 4 givenname: Yongpan surname: Sheng fullname: Sheng, Yongpan organization: SMILE Lab, School of Computer Science and Engineering, University of Electronic Science and Technology of China – sequence: 5 givenname: Yafang surname: Wang fullname: Wang, Yafang organization: Ant Financial Service Co – sequence: 6 givenname: Zenglin surname: Xu fullname: Xu, Zenglin email: zlxu@uestc.edu.cn organization: SMILE Lab, School of Computer Science and Engineering, University of Electronic Science and Technology of China  | 
    
| BookMark | eNp9kMtOwzAQRS1UJNrCB7CLxDpgO7FjL6E8xWtT2FqOM6lcpXGxU9H-PQ5BICHBamY094zu3Akata4FhI4JPiUYF2eBUMZkiolIJeMs3e6hMRGcp1LyfPTdM36AJiEsMeZMMjpGj_ete2-gWkByoQMkM7daN9BZ1yblLnnV3up-0E1c7yBY3SZPsPFxnkMbnE8uwUTEBdvLDtF-rZsAR191il6ur-az2_Th-eZudv6QmozwLtUyOhEl0aKqK8YKUgomDRVc1hXNdV6XJZcaAOcZM4UAbWSdSVPKogJqDMum6GS4u_bubQOhU0u38dFlUFQSyWnGsyKqikFlvAvBQ62M7T7f6by2jSJY9dmpITsVs1N9dmobSfKLXHu70n73L0MHJkRtuwD_4-lv6APiFIUt | 
    
| CitedBy_id | crossref_primary_10_1016_j_knosys_2020_106077 crossref_primary_10_1016_j_knosys_2021_107258 crossref_primary_10_1007_s12559_019_09686_4 crossref_primary_10_1016_j_knosys_2019_104870 crossref_primary_10_1142_S021800142059034X crossref_primary_10_1016_j_knosys_2021_107310 crossref_primary_10_1109_TIP_2021_3062195 crossref_primary_10_1109_TKDE_2020_3014166 crossref_primary_10_1016_j_neucom_2020_10_091 crossref_primary_10_1007_s12559_019_09694_4 crossref_primary_10_1016_j_neucom_2021_04_128 crossref_primary_10_3390_e24101453 crossref_primary_10_1109_TKDE_2020_2970044  | 
    
| Cites_doi | 10.1007/s10994-013-5363-6 10.1109/TETCI.2018.2806934 10.1162/NECO_a_00570 10.1145/219717.219748 10.1007/978-3-642-40994-3_40 10.1007/978-3-540-76298-0_52 10.1016/j.patcog.2014.09.025 10.1016/j.knosys.2018.02.020 10.1109/IJCNN.2017.7965828 10.1609/aaai.v29i1.9491 10.1007/s12559-015-9375-3 10.1016/j.neunet.2018.01.011 10.1609/aaai.v30i1.10222 10.1609/aaai.v28i1.8870 10.18653/v1/D13-1136 10.1007/s12559-016-9425-5 10.1109/JPROC.2015.2483592 10.1109/TPAMI.2013.201 10.1145/2623330.2623623 10.1007/s10994-010-5205-8 10.1007/s10618-017-0543-9 10.1145/1242572.1242667 10.1145/1376616.1376746 10.1007/s12559-012-9183-y  | 
    
| ContentType | Journal Article | 
    
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2018 Springer Science+Business Media, LLC, part of Springer Nature 2018.  | 
    
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018.  | 
    
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI  | 
    
| DOI | 10.1007/s12559-018-9565-x | 
    
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition  | 
    
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Advanced Technologies & Aerospace Collection | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Psychology | 
    
| EISSN | 1866-9964 | 
    
| EndPage | 1084 | 
    
| ExternalDocumentID | 10_1007_s12559_018_9565_x | 
    
| GrantInformation_xml | – fundername: Fundamental Research Fund for the Central Universities of China grantid: No. ZYGX2016Z003 – fundername: 985 Project of UESTC grantid: No.A1098531023601041 – fundername: National Natural Science Foundation of China grantid: No. 61572111 funderid: https://doi.org/10.13039/501100001809  | 
    
| GroupedDBID | -56 -5G -BR -EM -~C 06C 06D 0R~ 0VY 1N0 203 29F 29~ 2JY 2KG 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 67N 67Z 6NX 875 8TC 96X AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABMQK ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARAPS AUKKA AXYYD BA0 BENPR BGLVJ BGNMA CAG CCPQU COF CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD EN4 ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI G-Y G-Z GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG6 HLICF HMJXF HQYDN HRMNR HZ~ I0C IJ- IKXTQ IWAJR IXC IXD IZIGR I~X J-C J0Z JBSCW JCJTX JZLTJ K7- KOV KPH LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM PT4 QOR QOS R89 RLLFE ROL RSV S1Z S27 S3A S3B SBL SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE T13 TSG U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7R Z7X Z83 Z88 ZMTXR ZOVNA ~A9 AAFWJ AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI  | 
    
| ID | FETCH-LOGICAL-c316t-a99958b1a8dfd5571b859c2869fd24a4fbb69aee0435c78eac9f39cb97de2cc53 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1866-9956 | 
    
| IngestDate | Fri Jul 25 23:30:32 EDT 2025 Thu Apr 24 22:56:54 EDT 2025 Wed Oct 01 05:46:30 EDT 2025 Fri Feb 21 02:31:17 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 6 | 
    
| Keywords | Knowledge base completion Variational Bayesian Neural networks  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c316t-a99958b1a8dfd5571b859c2869fd24a4fbb69aee0435c78eac9f39cb97de2cc53 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 2919623637 | 
    
| PQPubID | 6623279 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | proquest_journals_2919623637 crossref_citationtrail_10_1007_s12559_018_9565_x crossref_primary_10_1007_s12559_018_9565_x springer_journals_10_1007_s12559_018_9565_x  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20181200 2018-12-00 20181201  | 
    
| PublicationDateYYYYMMDD | 2018-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2018 text: 20181200  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | Cognitive computation | 
    
| PublicationTitleAbbrev | Cogn Comput | 
    
| PublicationYear | 2018 | 
    
| Publisher | Springer US Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V  | 
    
| References | ZhongGCherietMTensor representation learning based image patch analysis for text identification and recognitionPattern Recogn20154841211122410.1016/j.patcog.2014.09.025 Auer S, Bizer C, Kobilarov G, Lehmann J, Ives Z. DBpedia: A nucleus for a web of open data. In: Proceedings ISWC; 2007. p. 11–15. Chen S, Lyu MR, King I, Xu Z. Exact and stable recovery of pairwise interaction tensors. In: Advances in neural information processing systems 26: 27th annual conference on neural information processing systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe; 2013. pp. 1691–1699. Lin Y, Liu Z, Zhu X, Zhu X, Zhu X. Learning entity and relation embeddings for knowledge graph completion. In: Twenty-ninth AAAI conference on artificial intelligence; 2015. p. 2181– 2187. HuangSXuZLvJAdaptive local structure learning for document co-clusteringKnowl-Based Syst2018148748410.1016/j.knosys.2018.02.020https://doi.org/10.1016/j.knosys.2018.02.020 Zhe S, Xu Z, Chu X, Qi Y, Park Y. Scalable nonparametric multiway data analysis. In: Proceedings of the eighteenth international conference on artificial intelligence and statistics, AISTATS 2015, San Diego; 2015. HuangSWangHLiTLiTXuZRobust graph regularized nonnegative matrix factorization for clusteringData Min Knowl Discov201832248350310.1007/s10618-017-0543-9https://doi.org/10.1007/s10618-017-0543-9 Bordes A, Usunier N, García-Durán A, Weston J, Yakhnenko O. Translating embeddings for modeling multi-relational data. In: Advances in neural information processing systems; 2013. pp. 2787–2795. XuZYanFQiYBayesian nonparametric models for multiway data analysisIEEE Trans Pattern Anal Mach Intell20153724754872635325510.1109/TPAMI.2013.201 BordesAGlorotXWestonJBengioYA semantic matching energy function for learning with multi-relational data - application to word-sense disambiguationMach Learn201494223325910.1007/s10994-013-5363-6 Yang X, Huang K, Zhang R, Hussain A. Learning latent features with infinite non-negative binary matrix tri-factorization. IEEE Trans Emerg Topics Comput Intell. 2018;2(3). https://doi.org/10.1109/TETCI.2018.2806934. Nickel M, Tresp V, Kriegel HP. A three-way model for collective learning on multi-relational data. In: International conference on international conference on machine learning; 2011, vol. 11. p. 809–816. Zhe S, Zhang K, Wang P, Lee K, Xu Z, Qi Y, Ghahramani Z. Distributed flexible nonlinear tensor factorization. In: Advances in neural information processing systems 29, Barcelona; 2016. p. 920–928. Sutskever I, Salakhutdinov R, Tenenbaum JB. Modelling relational data using bayesian clustered tensor factorization. In: Advances in neural information processing systems; 2009. p. 1821–1828. Nickel M, Tresp V. 2013. Logistic tensor factorization for multi-relational data. arXiv:1306.2084. Bishop CM, Nasrabadi NM. Pattern recognition and machine learning. Springer, 2006. p. 461–462. Wang Z, Zhang J, Feng J, Chen Z. Knowledge graph embedding by translating on hyperplanes. In: The association for the advance of artificial intelligence; 2014, vol. 14. p. 1112–1119. Kingma DP, Welling M. 2013. Auto-encoding variational bayes. arXiv:1312.6114. Li G, Xu Z, Wang L, Ye J, King I, Lyu MR. Simple and efficient parallelization for probabilistic temporal tensor factorization. In: 2017 international joint conference on neural networks, IJCNN 2017, anchorage; 2017, p. 1–8. Zhu J. Max-margin nonparametric latent feature models for link prediction. In: Proceedings of the 29th international coference on international conference on machine learning. Omnipress; 2012. p. 1179–1186. Dong X, Gabrilovich E, Heitz G, Horn W, Lao N, Murphy K, Strohmann T, Sun S, Zhang W. Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: ACM SIGKDD international conference on knowledge discovery and data mining; 2014. p. 601–610. Socher R, Chen D, Manning CD, Ng AY. Reasoning with neural tensor networks for knowledge base completion. In: Advances in neural information processing systems; 2013. p. 926– 934. Weston J, Bordes A, Yakhnenko O, Usunier N. Connecting language and knowledge bases with embedding models for relation extraction. In: Conference on empirical methods in natural language processing; 2013. p. 1366–1371. LaoNCohenWWRelational retrieval using a combination of path-constrained random walksMach Learn2010811536710.1007/s10994-010-5205-8 Zhe S, Qi Y, Park Y, Xu Z, Molloy I, Chari S. Dintucker: Scaling up gaussian process models on large multidimensional arrays. In: Proceedings of the thirtieth AAAI conference on artificial intelligence. Phoenix; 2016. p. 2386–2392. LiuBLiYXuZManifold regularized matrix completion for multi-label learning with ADMMNeural Netw201810157672948638110.1016/j.neunet.2018.01.011https://doi.org/10.1016/j.neunet.2018.01.011 OfekNPoriaSRokachLCambriaEHussainAShabtaiAUnsupervised commonsense knowledge enrichment for domain-specific sentiment analysisCogn Comput20168346747710.1007/s12559-015-9375-3 DuchiJHazanESingerYAdaptive subgradient methods for online learning and stochastic optimizationJ Mach Learn Res201112Jul21212159 ZhongGCherietMLarge margin low rank tensor analysisNeural Comput20142647617802447977810.1162/NECO_a_00570 Suchanek FM, Kasneci G, Weikum G. Yago: a core of semantic knowledge. Proceedings of the 16th international conference on World Wide Web. ACM; 2007. p. 697–706. WangQFCambriaELiuCLHussainACommon sense knowledge for handwritten Chinese text recognitionCogn Comput20135223424210.1007/s12559-012-9183-y FanMZhouQAbelAZhengTFGrishmanRProbabilistic belief embedding for large-scale knowledge populationCogn Comput2016861087110210.1007/s12559-016-9425-5 MillerGAWordnet: a lexical database for englishCommun Acm19953811394110.1145/219717.219748 Bollacker K, Evans C, Paritosh P, Sturge T, Taylor J. Freebase: a collaboratively created graph database for structuring human knowledge. In: ACM’S special interest group on management of data conference; 2008. p. 1247–1250. NickelMMurphyKTrespVGabrilovichEA review of relational machine learning for knowledge graphsProc IEEE20161041113310.1109/JPROC.2015.2483592 Xu Z, Yan F, Qi Y. Infinite tucker decomposition: Nonparametric bayesian models for multiway data analysis. In: Proceedings of the 29th international conference on machine learning, ICML 2012. Edinburgh; 2012. Lao N, Mitchell T, Cohen WW. Random walk inference and learning in a large scale knowledge base. In: Conference on empirical methods in natural language processing, EMNLP 2011, john mcintyre conference centre, edinburgh, uk, a meeting of sigdat, a special interest group of the ACL; 2012. p. 529–539. 9565_CR14 9565_CR15 9565_CR37 9565_CR12 9565_CR34 M Nickel (9565_CR19) 2016; 104 9565_CR32 9565_CR33 A Bordes (9565_CR4) 2014; 94 9565_CR31 9565_CR5 QF Wang (9565_CR26) 2013; 5 9565_CR6 9565_CR3 9565_CR7 9565_CR16 N Lao (9565_CR13) 2010; 81 GA Miller (9565_CR18) 1995; 38 J Duchi (9565_CR8) 2011; 12 9565_CR25 9565_CR23 9565_CR24 G Zhong (9565_CR36) 2015; 48 9565_CR21 B Liu (9565_CR17) 2018; 101 M Fan (9565_CR9) 2016; 8 9565_CR20 9565_CR29 9565_CR27 9565_CR28 N Ofek (9565_CR22) 2016; 8 S Huang (9565_CR10) 2018; 32 9565_CR1 G Zhong (9565_CR35) 2014; 26 9565_CR2 Z Xu (9565_CR30) 2015; 37 S Huang (9565_CR11) 2018; 148  | 
    
| References_xml | – reference: Socher R, Chen D, Manning CD, Ng AY. Reasoning with neural tensor networks for knowledge base completion. In: Advances in neural information processing systems; 2013. p. 926– 934. – reference: DuchiJHazanESingerYAdaptive subgradient methods for online learning and stochastic optimizationJ Mach Learn Res201112Jul21212159 – reference: Li G, Xu Z, Wang L, Ye J, King I, Lyu MR. Simple and efficient parallelization for probabilistic temporal tensor factorization. In: 2017 international joint conference on neural networks, IJCNN 2017, anchorage; 2017, p. 1–8. – reference: Bollacker K, Evans C, Paritosh P, Sturge T, Taylor J. Freebase: a collaboratively created graph database for structuring human knowledge. In: ACM’S special interest group on management of data conference; 2008. p. 1247–1250. – reference: LiuBLiYXuZManifold regularized matrix completion for multi-label learning with ADMMNeural Netw201810157672948638110.1016/j.neunet.2018.01.011https://doi.org/10.1016/j.neunet.2018.01.011 – reference: XuZYanFQiYBayesian nonparametric models for multiway data analysisIEEE Trans Pattern Anal Mach Intell20153724754872635325510.1109/TPAMI.2013.201 – reference: Wang Z, Zhang J, Feng J, Chen Z. Knowledge graph embedding by translating on hyperplanes. In: The association for the advance of artificial intelligence; 2014, vol. 14. p. 1112–1119. – reference: Lao N, Mitchell T, Cohen WW. Random walk inference and learning in a large scale knowledge base. In: Conference on empirical methods in natural language processing, EMNLP 2011, john mcintyre conference centre, edinburgh, uk, a meeting of sigdat, a special interest group of the ACL; 2012. p. 529–539. – reference: Zhu J. Max-margin nonparametric latent feature models for link prediction. In: Proceedings of the 29th international coference on international conference on machine learning. Omnipress; 2012. p. 1179–1186. – reference: OfekNPoriaSRokachLCambriaEHussainAShabtaiAUnsupervised commonsense knowledge enrichment for domain-specific sentiment analysisCogn Comput20168346747710.1007/s12559-015-9375-3 – reference: ZhongGCherietMTensor representation learning based image patch analysis for text identification and recognitionPattern Recogn20154841211122410.1016/j.patcog.2014.09.025 – reference: Chen S, Lyu MR, King I, Xu Z. Exact and stable recovery of pairwise interaction tensors. In: Advances in neural information processing systems 26: 27th annual conference on neural information processing systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe; 2013. pp. 1691–1699. – reference: NickelMMurphyKTrespVGabrilovichEA review of relational machine learning for knowledge graphsProc IEEE20161041113310.1109/JPROC.2015.2483592 – reference: HuangSXuZLvJAdaptive local structure learning for document co-clusteringKnowl-Based Syst2018148748410.1016/j.knosys.2018.02.020https://doi.org/10.1016/j.knosys.2018.02.020 – reference: Suchanek FM, Kasneci G, Weikum G. Yago: a core of semantic knowledge. Proceedings of the 16th international conference on World Wide Web. ACM; 2007. p. 697–706. – reference: Nickel M, Tresp V. 2013. Logistic tensor factorization for multi-relational data. arXiv:1306.2084. – reference: Nickel M, Tresp V, Kriegel HP. A three-way model for collective learning on multi-relational data. In: International conference on international conference on machine learning; 2011, vol. 11. p. 809–816. – reference: Bordes A, Usunier N, García-Durán A, Weston J, Yakhnenko O. Translating embeddings for modeling multi-relational data. In: Advances in neural information processing systems; 2013. pp. 2787–2795. – reference: BordesAGlorotXWestonJBengioYA semantic matching energy function for learning with multi-relational data - application to word-sense disambiguationMach Learn201494223325910.1007/s10994-013-5363-6 – reference: Dong X, Gabrilovich E, Heitz G, Horn W, Lao N, Murphy K, Strohmann T, Sun S, Zhang W. Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: ACM SIGKDD international conference on knowledge discovery and data mining; 2014. p. 601–610. – reference: Yang X, Huang K, Zhang R, Hussain A. Learning latent features with infinite non-negative binary matrix tri-factorization. IEEE Trans Emerg Topics Comput Intell. 2018;2(3). https://doi.org/10.1109/TETCI.2018.2806934. – reference: HuangSWangHLiTLiTXuZRobust graph regularized nonnegative matrix factorization for clusteringData Min Knowl Discov201832248350310.1007/s10618-017-0543-9https://doi.org/10.1007/s10618-017-0543-9 – reference: Sutskever I, Salakhutdinov R, Tenenbaum JB. Modelling relational data using bayesian clustered tensor factorization. In: Advances in neural information processing systems; 2009. p. 1821–1828. – reference: Bishop CM, Nasrabadi NM. Pattern recognition and machine learning. Springer, 2006. p. 461–462. – reference: Auer S, Bizer C, Kobilarov G, Lehmann J, Ives Z. DBpedia: A nucleus for a web of open data. In: Proceedings ISWC; 2007. p. 11–15. – reference: Zhe S, Zhang K, Wang P, Lee K, Xu Z, Qi Y, Ghahramani Z. Distributed flexible nonlinear tensor factorization. In: Advances in neural information processing systems 29, Barcelona; 2016. p. 920–928. – reference: WangQFCambriaELiuCLHussainACommon sense knowledge for handwritten Chinese text recognitionCogn Comput20135223424210.1007/s12559-012-9183-y – reference: Zhe S, Qi Y, Park Y, Xu Z, Molloy I, Chari S. Dintucker: Scaling up gaussian process models on large multidimensional arrays. In: Proceedings of the thirtieth AAAI conference on artificial intelligence. Phoenix; 2016. p. 2386–2392. – reference: FanMZhouQAbelAZhengTFGrishmanRProbabilistic belief embedding for large-scale knowledge populationCogn Comput2016861087110210.1007/s12559-016-9425-5 – reference: Lin Y, Liu Z, Zhu X, Zhu X, Zhu X. Learning entity and relation embeddings for knowledge graph completion. In: Twenty-ninth AAAI conference on artificial intelligence; 2015. p. 2181– 2187. – reference: Weston J, Bordes A, Yakhnenko O, Usunier N. Connecting language and knowledge bases with embedding models for relation extraction. In: Conference on empirical methods in natural language processing; 2013. p. 1366–1371. – reference: MillerGAWordnet: a lexical database for englishCommun Acm19953811394110.1145/219717.219748 – reference: ZhongGCherietMLarge margin low rank tensor analysisNeural Comput20142647617802447977810.1162/NECO_a_00570 – reference: Zhe S, Xu Z, Chu X, Qi Y, Park Y. Scalable nonparametric multiway data analysis. In: Proceedings of the eighteenth international conference on artificial intelligence and statistics, AISTATS 2015, San Diego; 2015. – reference: Kingma DP, Welling M. 2013. Auto-encoding variational bayes. arXiv:1312.6114. – reference: LaoNCohenWWRelational retrieval using a combination of path-constrained random walksMach Learn2010811536710.1007/s10994-010-5205-8 – reference: Xu Z, Yan F, Qi Y. Infinite tucker decomposition: Nonparametric bayesian models for multiway data analysis. In: Proceedings of the 29th international conference on machine learning, ICML 2012. Edinburgh; 2012. – volume: 94 start-page: 233 issue: 2 year: 2014 ident: 9565_CR4 publication-title: Mach Learn doi: 10.1007/s10994-013-5363-6 – ident: 9565_CR31 doi: 10.1109/TETCI.2018.2806934 – volume: 26 start-page: 761 issue: 4 year: 2014 ident: 9565_CR35 publication-title: Neural Comput doi: 10.1162/NECO_a_00570 – ident: 9565_CR21 – volume: 38 start-page: 39 issue: 11 year: 1995 ident: 9565_CR18 publication-title: Commun Acm doi: 10.1145/219717.219748 – ident: 9565_CR20 doi: 10.1007/978-3-642-40994-3_40 – ident: 9565_CR23 – ident: 9565_CR1 doi: 10.1007/978-3-540-76298-0_52 – volume: 48 start-page: 1211 issue: 4 year: 2015 ident: 9565_CR36 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2014.09.025 – ident: 9565_CR6 – volume: 148 start-page: 74 year: 2018 ident: 9565_CR11 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2018.02.020 – ident: 9565_CR2 – ident: 9565_CR15 doi: 10.1109/IJCNN.2017.7965828 – ident: 9565_CR16 doi: 10.1609/aaai.v29i1.9491 – volume: 8 start-page: 467 issue: 3 year: 2016 ident: 9565_CR22 publication-title: Cogn Comput doi: 10.1007/s12559-015-9375-3 – ident: 9565_CR33 – ident: 9565_CR12 – volume: 101 start-page: 57 year: 2018 ident: 9565_CR17 publication-title: Neural Netw doi: 10.1016/j.neunet.2018.01.011 – ident: 9565_CR32 doi: 10.1609/aaai.v30i1.10222 – ident: 9565_CR14 – ident: 9565_CR37 – ident: 9565_CR27 doi: 10.1609/aaai.v28i1.8870 – ident: 9565_CR28 doi: 10.18653/v1/D13-1136 – volume: 8 start-page: 1087 issue: 6 year: 2016 ident: 9565_CR9 publication-title: Cogn Comput doi: 10.1007/s12559-016-9425-5 – volume: 104 start-page: 11 issue: 1 year: 2016 ident: 9565_CR19 publication-title: Proc IEEE doi: 10.1109/JPROC.2015.2483592 – volume: 37 start-page: 475 issue: 2 year: 2015 ident: 9565_CR30 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2013.201 – ident: 9565_CR5 – ident: 9565_CR7 doi: 10.1145/2623330.2623623 – volume: 81 start-page: 53 issue: 1 year: 2010 ident: 9565_CR13 publication-title: Mach Learn doi: 10.1007/s10994-010-5205-8 – ident: 9565_CR25 – volume: 32 start-page: 483 issue: 2 year: 2018 ident: 9565_CR10 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-017-0543-9 – ident: 9565_CR29 – ident: 9565_CR24 doi: 10.1145/1242572.1242667 – ident: 9565_CR3 doi: 10.1145/1376616.1376746 – volume: 5 start-page: 234 issue: 2 year: 2013 ident: 9565_CR26 publication-title: Cogn Comput doi: 10.1007/s12559-012-9183-y – volume: 12 start-page: 2121 issue: Jul year: 2011 ident: 9565_CR8 publication-title: J Mach Learn Res – ident: 9565_CR34  | 
    
| SSID | ssj0065952 | 
    
| Score | 2.2732368 | 
    
| Snippet | Knowledge base completion is an important research problem in knowledge bases, which play important roles in question answering, information retrieval, and... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1075 | 
    
| SubjectTerms | Algorithms Artificial Intelligence Bayesian analysis Biomedical and Life Sciences Biomedicine Computation by Abstract Devices Computational Biology/Bioinformatics Decomposition Graphs Inference Information retrieval Iterative methods Knowledge bases (artificial intelligence) Knowledge representation Machine learning Mathematical analysis Methods Multilayers Neural networks Neurosciences Query expansion Tensors  | 
    
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQWbognqJQkAcmkKXEiV9jeVQVqEwt6mbFjj2hFLVFov-ecxo3AgESQ4YotiOdz-fvfHefEbrKPYB8UWTEUMtJ7pwkBvwgYoQDBXJJkdbnHeNnPprmjzM2a-q4lzHbPYYka0vdFrsF9AuuLyxQQCEEgOMuC2xeoMRTOojmN_Dj1SFOyTkJZZsxlPnTEF83oxZhfguK1nvNcB_tNSARDzazeoB2XHWIultbtT5C46d4FoZvYR_CYVkHGu15hc0av4AD3Bzywee1C4WSONBwwPsE_Nb5At-7kEzeZGwdo-nwYXI3Is3NCMRmKV-RAmAdkyYtZOlLxkRqJFOWSq58SfMi98ZwVTiXABiyQoJxVT5T1ihROmoty05Qp5pX7hThlDPvhBcqUTKXyhcm9HbUUAWPFT2URBFp29CGh9srXnVLeBykqkGqOkhVf_TQ9bbL24Yz46_G_Sh33SyfpaYKDAPNeAa_v4lz0X7-dbCzf7U-R10adKFOTumjzmrx7i4AYqzMZa1Sn_YWycA priority: 102 providerName: Springer Nature  | 
    
| Title | Knowledge Base Completion by Variational Bayesian Neural Tensor Decomposition | 
    
| URI | https://link.springer.com/article/10.1007/s12559-018-9565-x https://www.proquest.com/docview/2919623637  | 
    
| Volume | 10 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1866-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065952 issn: 1866-9956 databaseCode: AFBBN dateStart: 20090301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1866-9964 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0065952 issn: 1866-9956 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1866-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065952 issn: 1866-9956 databaseCode: AGYKE dateStart: 20090101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1866-9964 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065952 issn: 1866-9956 databaseCode: U2A dateStart: 20090301 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED7RdumCeIryqDIwgSwaJ_FjQKhACwJRIdSiMkWx40yoLVAk-u-5CzEVSDBkSBx7OJ_P370BDuMCQb7MIma4FSx2TjGDehAz0iEDuU4WlvaOu4G4HsU342S8AgOfC0NhlV4mloI6n1qykZ9wjbzCIxHJs9kLo65R5F31LTSyqrVCflqWGKtBg1NlrDo0znuD-wcvm6l4Xun_VEIwyun0fs4ymY7QNarWKAAQ5bCPnzfVEn7-8piWF1F_DVYrBBl0v7Z8HVbcZAOa34JssQl3t95QFpzjJRXQmaca29NJYBbBI2rHlQUQhxeOsigDqtGB70NUaqevwaWjSPMqnGsLRv3e8OKaVW0TmI1CMWcZYr5EmTBTeZEniQyNSrTlSugi53EWF8YInTnXQaRkpULJq4tIW6Nl7ri1SbQN9cl04nYgCEVSOFlI3dEqVrrIDM123HCNj5Ut6HgSpbaqKU6tLZ7TZTVkomqKVE2JqulHC46-p8y-Cmr89_O-p3tana23dMkJLTj2e7Ec_nOx3f8X24Mmp80vQ1X2oT5_fXcHCDjmpg011b9qQ6N79XTba1c8hV9HvPsJwD3Whw | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB4hOMAFtaWIUGj3ABeqFfHa3scBoaaAAiFRVQXEzXjX6xNKeARB_lx_GzPOLlErlRsHH6z17mF2PPPNG2AnqxHkqzLlVjjJM-81t2gHcas8MpBvl0nj7-gPZPciO7vKrxbgT6yFobTKKBMbQV2NHfnI94VBXhGpTNXh7R2nqVEUXY0jNMowWqE6aFqMhcKOnp8-oQn3cHB6hPe9K8TJ8fBnl4cpA9yliZzwEiFSrm1S6qqu8lwlVufGCS1NXYmszGprpSm9byOwcEqjoDJ1apw1qvLCOZoagSpgKUszg8bfUud48Ot31AXUrK-Jt2opOdWQxrhqU7xHaB5NeRQ4iKr489-acQ53_4nQNorv5AOsBsTKfsxY7CMs-NEnWHkVnNM16PeiY451UCkykjHU03s8YnbKLtEaDx5HXJ56qtpk1BME34doRI_v2ZGnzPaQPvYZLt6FgOuwOBqP_AawROa1V7UybaMzberS0m4vrDD4ONWCdiRR4UIPcxqlcVPMuy8TVQukakFULZ5bsPe65XbWwOOtj7ci3YvwLz8Uc85rwfd4F_Pl_x62-fZh32C5O-yfF-eng94XWBHECE2azBYsTu4f_TaCnYn9GjiKwfV7M_ELVeARwQ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-iILuInzid2oMnJaxN23wcp3NM54aHTXYrTZqcpBtbBfff-9I1K4oKHnooTVJ4eXn5vbz3fkHoOjIA8lkaYkkUxZHWHEvwg7BkGhRI-2lQnncMR7Q_iZ6m8bS653Tpst1dSHJd02BZmvKiPc9Muy58s0gY3GBYrIBIMIDIncjyJIBCT0jHmWLLlVeGOzml2JZwurDmT0N83ZhqtPktQFruO719tFcBRq-znuEDtKXzQ9TY2K3VERoO3LmYdwd7kmeXuKXUnuWeXHmv4AxXB37weaVt0aRnKTngfQw-7GzhdbVNLK-yt47RpPcwvu_j6pYErMKAFjgFiBdzGaQ8M1kcs0DyWCjCqTAZidLISElFqrUPwEgxDoZWmFAoKVimiVJxeIK281muT5EX0NhoZpjwBY-4MKm0vTWRRMCjWBP5TkSJqijE7U0Wb0lNfmylmoBUEyvV5KOJbjZd5mv-jL8at5zck2opLRMiwEiQkIbw-1s3F_XnXwc7-1frK7T70u0lz4-jwTlqEKsWZc5KC20Xi3d9AcijkJeldn0CfyTQ6A | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Knowledge+Base+Completion+by+Variational+Bayesian+Neural+Tensor+Decomposition&rft.jtitle=Cognitive+computation&rft.au=He%2C+Lirong&rft.au=Liu%2C+Bin&rft.au=Li%2C+Guangxi&rft.au=Sheng%2C+Yongpan&rft.date=2018-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1866-9956&rft.eissn=1866-9964&rft.volume=10&rft.issue=6&rft.spage=1075&rft.epage=1084&rft_id=info:doi/10.1007%2Fs12559-018-9565-x | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-9956&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-9956&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-9956&client=summon |