A new integrated on-line fuzzy clustering and segmentation methodology with adaptive PCA approach for process monitoring and fault detection and diagnosis
A new on-line fuzzy clustering-based algorithm is developed using integration of an adaptive principal component analysis approach with a weighted fuzzy C-means (WFCM) methodology for process fault detection and diagnosis (FDD) applications. The proposed algorithm is based on the segmentation of mea...
Saved in:
| Published in | Soft computing (Berlin, Germany) Vol. 17; no. 3; pp. 345 - 362 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer-Verlag
01.03.2013
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1432-7643 1433-7479 |
| DOI | 10.1007/s00500-012-0910-9 |
Cover
| Abstract | A new on-line fuzzy clustering-based algorithm is developed using integration of an adaptive principal component analysis approach with a weighted fuzzy C-means (WFCM) methodology for process fault detection and diagnosis (FDD) applications. The proposed algorithm is based on the segmentation of measured multivariate time series process data through a sliding window scheme being realized in a bottom-up cluster merging approach to enable detection of probable changes embedded in their hidden structure. The method recursively maintain updated PCA models and their corresponding fuzzy membership functions based on the most recent arrival of each independent chunk of process data. The extracted chunk features are then retained in the memory to be merged using a new on-line fuzzy C-means methodology before incoming of the following chunks of data. A new formula is then presented for cluster merging improvement by incorporating an on-line weight to address the issue of cluster’s weight updating in the on-line WFCM methodology. The cluster merging mechanism is coordinated by a compatibility criterion, utilizing both similarities of the adapted clusters-based PCA models and their center closeness. The proposed algorithm has been evaluated on an artificial case study and Tennessee Eastman benchmark process plant. The observed performances demonstrate promising capabilities of the proposed algorithm to successfully detect and diagnose the introduced fault scenarios. |
|---|---|
| AbstractList | A new on-line fuzzy clustering-based algorithm is developed using integration of an adaptive principal component analysis approach with a weighted fuzzy C-means (WFCM) methodology for process fault detection and diagnosis (FDD) applications. The proposed algorithm is based on the segmentation of measured multivariate time series process data through a sliding window scheme being realized in a bottom-up cluster merging approach to enable detection of probable changes embedded in their hidden structure. The method recursively maintain updated PCA models and their corresponding fuzzy membership functions based on the most recent arrival of each independent chunk of process data. The extracted chunk features are then retained in the memory to be merged using a new on-line fuzzy C-means methodology before incoming of the following chunks of data. A new formula is then presented for cluster merging improvement by incorporating an on-line weight to address the issue of cluster’s weight updating in the on-line WFCM methodology. The cluster merging mechanism is coordinated by a compatibility criterion, utilizing both similarities of the adapted clusters-based PCA models and their center closeness. The proposed algorithm has been evaluated on an artificial case study and Tennessee Eastman benchmark process plant. The observed performances demonstrate promising capabilities of the proposed algorithm to successfully detect and diagnose the introduced fault scenarios. |
| Author | Salahshoor, Karim Alaei, Hamed Komari Alaei, Hesam Komari |
| Author_xml | – sequence: 1 givenname: Hesam Komari surname: Alaei fullname: Alaei, Hesam Komari email: hesamkomari@yahoo.com organization: Department of Automation and Instrumentation, Petroleum University of Technology – sequence: 2 givenname: Karim surname: Salahshoor fullname: Salahshoor, Karim organization: Department of Automation and Instrumentation, Petroleum University of Technology – sequence: 3 givenname: Hamed Komari surname: Alaei fullname: Alaei, Hamed Komari organization: Department of Engineering, Ferdowsi University |
| BookMark | eNp9UV1r3DAQFCWFJml-QN4EfVazsnTW-fE4-hEIpA_ts1nLa5-CT3IlueHyU_prY8elhUL7tMsyMzvMXLAzHzwxdi3hvQQwNwlgAyBAFgIqCaJ6xc6lVkoYbaqzl70QptTqDbtI6QGgkGajztnPHff0yJ3P1EfM1PLgxeA88W56ejpxO0wpU3S-5-hbnqg_ks-YXfD8SPkQ2jCE_sQfXT5wbHHM7gfxL_sdx3GMAe2BdyHyebWUEj8G73L4LdfhNGTeUib7orjcWoe9D8mlt-x1h0Oiq1_zkn37-OHr_rO4u_90u9_dCatkmQWWTYMlQLWxGlqrC5ItIpZozaZSgC2ZwsxQ0LbThe46tW22Takb0KoEValL9m7VnU1-nyjl-iFM0c8v66KSWwBlZDmjzIqyMaQUqautW3PIEd1QS6iXIuq1iHouol6KqBd9-RdzjO6I8fRfTrFy0riERfGPp3-TngGQP5_0 |
| CitedBy_id | crossref_primary_10_1016_j_anucene_2015_09_007 crossref_primary_10_1016_j_compchemeng_2020_106755 crossref_primary_10_1002_cjce_24494 crossref_primary_10_1016_j_neucom_2021_06_039 crossref_primary_10_1155_2015_547238 crossref_primary_10_1051_e3sconf_202123604008 crossref_primary_10_1007_s00500_017_2865_3 crossref_primary_10_1109_TNNLS_2013_2280280 crossref_primary_10_1007_s42417_021_00373_z crossref_primary_10_1016_j_chemolab_2015_06_014 crossref_primary_10_15388_21_INFOR444 crossref_primary_10_1007_s00500_014_1550_z crossref_primary_10_1016_j_ymssp_2020_107130 crossref_primary_10_1016_j_artint_2023_104012 crossref_primary_10_1080_00207543_2018_1526421 crossref_primary_10_1007_s10845_020_01690_y crossref_primary_10_3233_JIFS_169535 crossref_primary_10_1016_j_engappai_2015_11_005 |
| Cites_doi | 10.1080/01621459.1979.10481674 10.1016/j.datak.2005.05.009 10.1016/S0169-7439(99)00061-1 10.1111/1468-0394.00167 10.1016/S0959-1524(98)00023-7 10.1002/0471725331 10.1016/S0959-1524(00)00022-6 10.1007/978-3-540-45231-7_26 10.1007/s10489-010-0219-2 10.1016/0169-7439(93)E0075-F 10.3182/20020721-6-ES-1901.01632 10.1016/S0959-1524(01)00027-0 10.1016/j.arcontrol.2004.12.002 10.1016/S0098-1354(01)00683-4 10.1016/j.ymssp.2006.12.007 10.1016/B978-012722442-8/50016-1 10.1016/j.fss.2004.07.008 10.1109/MCS.2002.1035214 10.1016/S1474-6670(17)43143-0 10.1016/S0959-1524(00)00021-4 10.1109/NAFIPS.2008.4531233 10.1007/3-540-30368-5_1 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag 2012 Springer-Verlag 2012. |
| Copyright_xml | – notice: Springer-Verlag 2012 – notice: Springer-Verlag 2012. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s00500-012-0910-9 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1433-7479 |
| EndPage | 362 |
| ExternalDocumentID | 10_1007_s00500_012_0910_9 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAS LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c316t-a6bba60095c40dc42e1daaa6ac75930ade727c3104cf424ff38b8b64b04360393 |
| IEDL.DBID | U2A |
| ISSN | 1432-7643 |
| IngestDate | Sat Oct 11 07:11:58 EDT 2025 Wed Oct 01 02:45:13 EDT 2025 Thu Apr 24 22:59:36 EDT 2025 Fri Feb 21 02:40:09 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Adaptive PCA On-line weighted fuzzy C-means Fault detection and isolation On-line clustering On-line weight (OW) Gath–Geva algorithm Time series data |
| Language | English |
| License | http://www.springer.com/tdm |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-a6bba60095c40dc42e1daaa6ac75930ade727c3104cf424ff38b8b64b04360393 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2918003716 |
| PQPubID | 2043697 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_2918003716 crossref_citationtrail_10_1007_s00500_012_0910_9 crossref_primary_10_1007_s00500_012_0910_9 springer_journals_10_1007_s00500_012_0910_9 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20130300 2013-3-00 20130301 |
| PublicationDateYYYYMMDD | 2013-03-01 |
| PublicationDate_xml | – month: 3 year: 2013 text: 20130300 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | A Fusion of Foundations, Methodologies and Applications |
| PublicationTitle | Soft computing (Berlin, Germany) |
| PublicationTitleAbbrev | Soft Comput |
| PublicationYear | 2013 |
| Publisher | Springer-Verlag Springer Nature B.V |
| Publisher_xml | – name: Springer-Verlag – name: Springer Nature B.V |
| References | BahrampourSMoshiriBSalahshoorKWeighted and constrained possibilistic C-means clustering for online fault detection and isolationApplied Intell2011352269284 WoldSExponentially weighted moving principal component analysis and projection to latent structuresChemom Intell Lab Syst199423149161 ChenJLiaoCDynamic process fault monitoring based on neural network and PCAJ Process Control20021227728910.1016/S0959-1524(01)00027-0 Gallagher VB, Wise RM, Butler SW, White DD, Barna GG (1997) Development and benchmarking of multivariate statistical process control tools for a semiconductor etch process; improving robustness through model updating. In: Proceedings of ADCHEM 97, Ban, Canada, pp 78–83 Isermann R (2005b) Fault diagnosis systems. An introduction from fault detection to fault tolerance LiWYueHHValle-CervantesSQinSJRecursive PCA for adaptive process monitoringJ Process Control200010471486 Collaghan LO, Mishra N, Meyerson A (2002) Streming-data algorithms for high-quality clustering. In: Proceedings of IEEE international conference on data engineering Mauricio Sales Cruz A (2004) Tennessee Eastman Plant-wide Industrial Process. Challenge Problem Agarwal CC, Han J, Wang J, Yu PS (2003) A framework for clustering evolving data streams. In: Proceedings of VLDB KourtiTProcess analysis and abnormal situation detection: from theory to practiceIEEE Control Syst Mag200222101025 AngeliCAthertonDA model-based method for an online diagnostic knowledge-based systemExpert Syst2001183150158ISSN 0266-4720 Babuska R, van der Veen PJ, Kaymak U (2002) Improved covariance estimation for Gustafson-Kessel clustering. In: IEEE international conference on fuzzy systems, pp 1081–1085 Abonyi J, Feil B, Nemeth S, Arva P (2004) Principal component analysis based time series segmentation: a new sensor fusion algorithm, preprint HuangYGertlerJMcAvoyTJSensor and actuator fault isolation by structured partial PCA with nonlinear extensionsJ Process Control20001045946910.1016/S0959-1524(00)00021-4 Salahshoor K, Kordestani M (2009) Design of on-line soft sensors based on combined adaptive PCA and DMLP neural networks. Computational intelligence in control and automation, CICA 2009, IEEE Symposium, pp 3481–3486 KanoMHasebeSHashimotoIOhnoHA new multivariate statistical process monitoring method using principal component analysisComput Chem Eng2001251103111310.1016/S0098-1354(01)00683-4 Palade V, Patton RJ, Uppal FJ, Quevedo J, Daley S (2002) Fault diagnosis of an industrial gaz turbine using neuro-fuzzy methods. IFAC World Congress, IFAC’02, Barcelona JacksonJEA users guide to principal components1991New YorkWiely10.1002/0471725331 Seborg D (2012) A perspective on advance strategies for process control. In: Frank P (ed) Advances in control. Highlights of ECC’99 (revised) WidodoAYangBSSupport vector machine in machine condition monitoring and fault diagnosisMech Syst Fault Diagn2007212560257410.1016/j.ymssp.2006.12.007 BeringerJHullermeierEOnline clustering of parallel data streamsData Knowl Eng2006582180204 Isermann R (2005a) Model-based fault detection and diagnosis—status and application Laffey TJ, Cox PA, Schmidt JL, Kao SM, Read JY (1988) Real-time knowledge-based systems. AI Mag 9(1):27–45 Kelly PM (1994) An algorithm for merging hyperllipsoidal clusters. Technical Report LA-UR-94-3306 AbonyiJFeilBNemethSArvaPModified Gath–Geva clustering for fuzzy segmentation of multivariate time-seriesFuzzy Sets Syst2005149395621132051071.6854310.1016/j.fss.2004.07.008 Yang Q (2004) Model-based and data driven fault diagnosis methods with applications to process monitoring Abonyi J, Feil B, Nemeth S, Arva P (2003) Fuzzy clustering based segmentation of time-series WiseBMRickerNLVeltkampDFKowalskiBRA theoretical basis for the use of principal component models for monitoring multivariate processesProcess Control Qual199014151 ChiangLHRussellELBraatzRDFault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysisChemom Intell Lab Syst20005024325210.1016/S0169-7439(99)00061-1 ChenGMcAvoyTJPredictive on-line monitoring of continuous processesJ Process Control19988409 Kaymak U, Babuska R (1995) Compatible cluster merging for fuzzy modeling. In: Proceedings of the IEEE international conference on fuzzy systems, Yokohama, Japan, pp 897–904 MalinowskiERFactor analysis in chemistry1991New YorkWiley0925.62219 Krzanowsky WJ (1979) Between group comparison of principal components. J Am Stat Assoc Hore P, Hall LO, Goldgof DB (2008) Online fuzzy c means. IEEE, ISBN: 978-1-4244-2325 Martinez WL, Martinez AR (2005) Exploratory data analysis with Matlab. Computer science and data analysis series. Chapman and Hall, London. ISBN 1-58488-366-9 910_CR23 910_CR22 A Widodo (910_CR28) 2007; 21 910_CR20 910_CR1 910_CR29 910_CR27 910_CR2 910_CR26 910_CR5 910_CR25 910_CR4 M Kano (910_CR17) 2001; 25 910_CR24 J Abonyi (910_CR3) 2005; 149 Y Huang (910_CR13) 2000; 10 LH Chiang (910_CR9) 2000; 50 910_CR12 910_CR55 910_CR11 910_CR10 910_CR54 910_CR53 910_CR52 910_CR51 J Chen (910_CR8) 2002; 12 910_CR50 910_CR19 910_CR18 910_CR15 JE Jackson (910_CR16) 1991 910_CR14 910_CR7 910_CR6 ER Malinowski (910_CR21) 1991 |
| References_xml | – reference: AbonyiJFeilBNemethSArvaPModified Gath–Geva clustering for fuzzy segmentation of multivariate time-seriesFuzzy Sets Syst2005149395621132051071.6854310.1016/j.fss.2004.07.008 – reference: Kaymak U, Babuska R (1995) Compatible cluster merging for fuzzy modeling. In: Proceedings of the IEEE international conference on fuzzy systems, Yokohama, Japan, pp 897–904 – reference: WiseBMRickerNLVeltkampDFKowalskiBRA theoretical basis for the use of principal component models for monitoring multivariate processesProcess Control Qual199014151 – reference: Agarwal CC, Han J, Wang J, Yu PS (2003) A framework for clustering evolving data streams. In: Proceedings of VLDB – reference: Seborg D (2012) A perspective on advance strategies for process control. In: Frank P (ed) Advances in control. Highlights of ECC’99 (revised) – reference: AngeliCAthertonDA model-based method for an online diagnostic knowledge-based systemExpert Syst2001183150158ISSN 0266-4720 – reference: ChenJLiaoCDynamic process fault monitoring based on neural network and PCAJ Process Control20021227728910.1016/S0959-1524(01)00027-0 – reference: Isermann R (2005a) Model-based fault detection and diagnosis—status and application – reference: Mauricio Sales Cruz A (2004) Tennessee Eastman Plant-wide Industrial Process. Challenge Problem – reference: ChiangLHRussellELBraatzRDFault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysisChemom Intell Lab Syst20005024325210.1016/S0169-7439(99)00061-1 – reference: Hore P, Hall LO, Goldgof DB (2008) Online fuzzy c means. IEEE, ISBN: 978-1-4244-2325 – reference: BeringerJHullermeierEOnline clustering of parallel data streamsData Knowl Eng2006582180204 – reference: Gallagher VB, Wise RM, Butler SW, White DD, Barna GG (1997) Development and benchmarking of multivariate statistical process control tools for a semiconductor etch process; improving robustness through model updating. In: Proceedings of ADCHEM 97, Ban, Canada, pp 78–83 – reference: BahrampourSMoshiriBSalahshoorKWeighted and constrained possibilistic C-means clustering for online fault detection and isolationApplied Intell2011352269284 – reference: Kelly PM (1994) An algorithm for merging hyperllipsoidal clusters. Technical Report LA-UR-94-3306 – reference: Abonyi J, Feil B, Nemeth S, Arva P (2003) Fuzzy clustering based segmentation of time-series – reference: Abonyi J, Feil B, Nemeth S, Arva P (2004) Principal component analysis based time series segmentation: a new sensor fusion algorithm, preprint – reference: Babuska R, van der Veen PJ, Kaymak U (2002) Improved covariance estimation for Gustafson-Kessel clustering. In: IEEE international conference on fuzzy systems, pp 1081–1085 – reference: Laffey TJ, Cox PA, Schmidt JL, Kao SM, Read JY (1988) Real-time knowledge-based systems. AI Mag 9(1):27–45 – reference: WidodoAYangBSSupport vector machine in machine condition monitoring and fault diagnosisMech Syst Fault Diagn2007212560257410.1016/j.ymssp.2006.12.007 – reference: Martinez WL, Martinez AR (2005) Exploratory data analysis with Matlab. Computer science and data analysis series. Chapman and Hall, London. ISBN 1-58488-366-9 – reference: Isermann R (2005b) Fault diagnosis systems. An introduction from fault detection to fault tolerance – reference: KanoMHasebeSHashimotoIOhnoHA new multivariate statistical process monitoring method using principal component analysisComput Chem Eng2001251103111310.1016/S0098-1354(01)00683-4 – reference: Krzanowsky WJ (1979) Between group comparison of principal components. J Am Stat Assoc – reference: Salahshoor K, Kordestani M (2009) Design of on-line soft sensors based on combined adaptive PCA and DMLP neural networks. Computational intelligence in control and automation, CICA 2009, IEEE Symposium, pp 3481–3486 – reference: JacksonJEA users guide to principal components1991New YorkWiely10.1002/0471725331 – reference: LiWYueHHValle-CervantesSQinSJRecursive PCA for adaptive process monitoringJ Process Control200010471486 – reference: Yang Q (2004) Model-based and data driven fault diagnosis methods with applications to process monitoring – reference: HuangYGertlerJMcAvoyTJSensor and actuator fault isolation by structured partial PCA with nonlinear extensionsJ Process Control20001045946910.1016/S0959-1524(00)00021-4 – reference: KourtiTProcess analysis and abnormal situation detection: from theory to practiceIEEE Control Syst Mag200222101025 – reference: Collaghan LO, Mishra N, Meyerson A (2002) Streming-data algorithms for high-quality clustering. In: Proceedings of IEEE international conference on data engineering – reference: Palade V, Patton RJ, Uppal FJ, Quevedo J, Daley S (2002) Fault diagnosis of an industrial gaz turbine using neuro-fuzzy methods. IFAC World Congress, IFAC’02, Barcelona – reference: MalinowskiERFactor analysis in chemistry1991New YorkWiley0925.62219 – reference: WoldSExponentially weighted moving principal component analysis and projection to latent structuresChemom Intell Lab Syst199423149161 – reference: ChenGMcAvoyTJPredictive on-line monitoring of continuous processesJ Process Control19988409 – ident: 910_CR20 doi: 10.1080/01621459.1979.10481674 – ident: 910_CR51 – ident: 910_CR26 – ident: 910_CR7 doi: 10.1016/j.datak.2005.05.009 – volume: 50 start-page: 243 year: 2000 ident: 910_CR9 publication-title: Chemom Intell Lab Syst doi: 10.1016/S0169-7439(99)00061-1 – ident: 910_CR22 – ident: 910_CR2 – volume-title: Factor analysis in chemistry year: 1991 ident: 910_CR21 – ident: 910_CR52 doi: 10.1111/1468-0394.00167 – ident: 910_CR55 doi: 10.1016/S0959-1524(98)00023-7 – volume-title: A users guide to principal components year: 1991 ident: 910_CR16 doi: 10.1002/0471725331 – ident: 910_CR18 – ident: 910_CR54 doi: 10.1016/S0959-1524(00)00022-6 – ident: 910_CR1 doi: 10.1007/978-3-540-45231-7_26 – ident: 910_CR10 – ident: 910_CR6 doi: 10.1007/s10489-010-0219-2 – ident: 910_CR27 – ident: 910_CR53 doi: 10.1016/0169-7439(93)E0075-F – ident: 910_CR29 – ident: 910_CR5 – ident: 910_CR24 doi: 10.3182/20020721-6-ES-1901.01632 – ident: 910_CR25 – ident: 910_CR23 – volume: 12 start-page: 277 year: 2002 ident: 910_CR8 publication-title: J Process Control doi: 10.1016/S0959-1524(01)00027-0 – ident: 910_CR19 – ident: 910_CR14 doi: 10.1016/j.arcontrol.2004.12.002 – volume: 25 start-page: 1103 year: 2001 ident: 910_CR17 publication-title: Comput Chem Eng doi: 10.1016/S0098-1354(01)00683-4 – volume: 21 start-page: 2560 year: 2007 ident: 910_CR28 publication-title: Mech Syst Fault Diagn doi: 10.1016/j.ymssp.2006.12.007 – ident: 910_CR4 doi: 10.1016/B978-012722442-8/50016-1 – volume: 149 start-page: 39 year: 2005 ident: 910_CR3 publication-title: Fuzzy Sets Syst doi: 10.1016/j.fss.2004.07.008 – ident: 910_CR50 doi: 10.1109/MCS.2002.1035214 – ident: 910_CR11 doi: 10.1016/S1474-6670(17)43143-0 – volume: 10 start-page: 459 year: 2000 ident: 910_CR13 publication-title: J Process Control doi: 10.1016/S0959-1524(00)00021-4 – ident: 910_CR12 doi: 10.1109/NAFIPS.2008.4531233 – ident: 910_CR15 doi: 10.1007/3-540-30368-5_1 |
| SSID | ssj0021753 |
| Score | 2.1129532 |
| Snippet | A new on-line fuzzy clustering-based algorithm is developed using integration of an adaptive principal component analysis approach with a weighted fuzzy... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 345 |
| SubjectTerms | Algorithms Artificial Intelligence Clustering Computational Intelligence Control Data mining Data processing Engineering Engineers Fault detection Fault diagnosis Fuzzy sets Industrial plants Mathematical Logic and Foundations Mathematical models Mechatronics Methodology Multivariate analysis Original Paper Principal components analysis Process controls Robotics Segmentation Statistical methods Time series |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB7R5MKllEfV8NIcOBWtcBx7sQ-oCggUcYgQKhI3a59VpeCkjXOAn9Jf2531riOQ4OrHWPLszny7O_N9ACeFdYsCXSSsNEqzzFrFpOWaUQ8kT4y0tq22mPLJQ3b7mD9uwDT2wlBZZYyJPlDruaI98rO0HBaeX47_WPxhpBpFp6tRQkMEaQV94SnGPkE_JWasHvQvr6d3990SLPBSOpDgcKVLxvGcM_G0ojl1WVOpgsuhrHydqdbw882JqU9EN1_gc0CQOG5dvg0bpt6BrajOgGGy7sK_MTrIjB0fhMZ5zQhUol29vDyjmq2IJMF9A0WtcWl-PYU-pBpbXWm_4460U4tCiwUFRry7GmPkIUcHeHHRdhrgkw8OnTkrVrMGtWl8qVftr-m2rO_3cg8ebq5_Xk1YUGJgajTkDRNcSsEJjqks0SpLzVALIbhQ53k5SoQ2Dga5R5NM2Sx1Hh8VspA8k0RwT92_X6FXz2vzDVAMUykcqsypElQ5_COKUkmdl4XhpbMwgCT-9UoFmnJSy5hVHcGyd1TlHFWRo6pyAN-7VxYtR8dHDx9GV1Zhui6r9eAawGl07_r2u8b2PzZ2AJupV8-gkrVD6DV_V-bIYZhGHoeB-R9lMe_s priority: 102 providerName: ProQuest |
| Title | A new integrated on-line fuzzy clustering and segmentation methodology with adaptive PCA approach for process monitoring and fault detection and diagnosis |
| URI | https://link.springer.com/article/10.1007/s00500-012-0910-9 https://www.proquest.com/docview/2918003716 |
| Volume | 17 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-7479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: AFBBN dateStart: 19970401 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-7479 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-7479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-7479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: U2A dateStart: 19970404 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS-RAEC58XHYPvtbF8THUwdNKQyaTtMkxDjOKgojsgHsK_RRhjIOTOehP8dda3XnMKip4CiSVunzdXV93V30FcJhY2hToJGCpUZpF1iomLdfM1UDywEhrq2yLS342js5v4pu6jnvWZLs3V5J-pW6L3ZxUiUuiCpmLcSxdhtXYqXnRIB6HWbvLqqUniQcQdaR421xlfuTibTBaMMx3l6I-1ow2YK0miZhVqG7Ckim2YL1pwID1fNyCn_-pCf6ClwyJI2MrAKHxoWCORaKdPz8_oZrMnSoC2aIoNM7M7X1deFRg1UjaH7GjO5pFocXUrYR4NciwER5HYrg4rUoL8N6vBq07K-aTErUpfW5X4d_pKo_vbrYN49Hw7-CM1a0XmOr3eMkEl1Jwx79UFGgVhaanhRBcqOM47QdCG-I9ZBpEykYhQdxPZCJ5JJ2ivSv3_Q0rxUNhdgBFL5SCaGTsUj8VER6RpErqOE0MT8lDB4IGg1zVuuSuPcYkbxWVPWw5wZY72PK0A3_aX6aVKMdXxvsNsHk9P2d5mPYSr1bIO3DUgL34_Kmz3W9Z78GP0HfPcClr-7BSPs7NAXGYUnZhORmddmE1O_13MaTnyfDy6rrrR_Ir1cHucQ |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKe4ALb9SFUuYAF5BFNuuY-FBV25e2tKwq1Eq9BT8R0ja7sFmh9qfwY_htHTt2VkWit17zmCgZZ-azPfN9hLwtHU4KTJlRYbWhzDlNleOG-h5InlnlXFttMeajM_b5vDhfIX9TL4wvq0wxMQRqM9V-jfxjLvpl4Jfj27Of1KtG-d3VJKEho7SC2QoUY7Gx48he_sYp3HzrcA_9_S7PD_ZPd0c0qgxQPejzhkqulOQeamiWGc1y2zdSSi71p0IMMmkspni8NGPasRzfZlCqUnGmPHm772xFu_fIGhswgZO_tZ398cnXbsoXeTARlCCOxeSf9lWzQGNa-K5uXxqBOZuKm5lxCXf_2aENie_gMXkYESsM2yH2hKzY-il5lNQgIAaHZ-TPEBCiQ8c_YWBaUw9iwS2uri5BTxaelAGfAbI2MLffL2LfUw2tjnVY4Qe_MgzSyJkPxHCyO4TEew4IsGHWdjbARQhGnTknF5MGjG1CaVkdjpm2jPDH_Dk5uxOfvCCr9bS26wRkP1cSUWzhK0814i1ZCq1MIUrLBVrokSx99UpHWnSvzjGpOkLn4KgKHVV5R1WiR953t8xaTpDbLt5IrqxieJhXy8HcIx-Se5en_2vs5e3G3pD7o9Mvx9Xx4fjoFXmQB-UOXy63QVabXwv7GvFTozbjIAXy7a7_i2t_8izR |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BkRAc2BFlnQMnkEWapiY5VkDFJsSBStwirwiphIqmB_opfC0eZ2ERIHFNxnN5tufZnnkDsB9bdyjQccASozSLrFVMWq4Z1UDywEhri2yLG37ejy7vO_dln9NRle1ePUkWNQ2k0pTlR0Ntj-rCN5ItoYSqkFG8Y8k0zESkk-AmdD_s1ieuUobScQJHI13srZ41f3LxNTB9sM1vD6Q-7vSWYKEkjNgtEF6GKZOtwGLVjAHLtbkC85-UBVfhrYuOL2MtBqHxOWPEKNGOJ5NXVIMxKSQ4WxSZxpF5eCqLkDIsmkr763aka1oUWgxpV8Tbky5WIuTo2C4OizIDfPI7Q-3OivEgR21yn-eV-W-6yOl7HK1Bv3d2d3LOyjYMTLVbPGeCSyk4cTEVBVpFoWlpIQQX6riTtAOhjeNAzjSIlI1CB3c7lrHkkSR1eyr9XYdG9pyZDUDRCqVwlLJDaaDKkR8RJ0rqThIbnjgPTQgqDFJVapRTq4xBWqsre9hSB1tKsKVJEw7qIcNCoOMv4-0K2LRcq6M0TFqxVy7kTTiswP74_auzzX9Z78Hs7Wkvvb64udqCudA31aBMtm1o5C9js-OoTS53_fR9Bz188YU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+integrated+on-line+fuzzy+clustering+and+segmentation+methodology+with+adaptive+PCA+approach+for+process+monitoring+and+fault+detection+and+diagnosis&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Alaei%2C+Hesam+Komari&rft.au=Salahshoor%2C+Karim&rft.au=Alaei%2C+Hamed+Komari&rft.date=2013-03-01&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=17&rft.issue=3&rft.spage=345&rft.epage=362&rft_id=info:doi/10.1007%2Fs00500-012-0910-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00500_012_0910_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon |