A new integrated on-line fuzzy clustering and segmentation methodology with adaptive PCA approach for process monitoring and fault detection and diagnosis

A new on-line fuzzy clustering-based algorithm is developed using integration of an adaptive principal component analysis approach with a weighted fuzzy C-means (WFCM) methodology for process fault detection and diagnosis (FDD) applications. The proposed algorithm is based on the segmentation of mea...

Full description

Saved in:
Bibliographic Details
Published inSoft computing (Berlin, Germany) Vol. 17; no. 3; pp. 345 - 362
Main Authors Alaei, Hesam Komari, Salahshoor, Karim, Alaei, Hamed Komari
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer-Verlag 01.03.2013
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1432-7643
1433-7479
DOI10.1007/s00500-012-0910-9

Cover

Abstract A new on-line fuzzy clustering-based algorithm is developed using integration of an adaptive principal component analysis approach with a weighted fuzzy C-means (WFCM) methodology for process fault detection and diagnosis (FDD) applications. The proposed algorithm is based on the segmentation of measured multivariate time series process data through a sliding window scheme being realized in a bottom-up cluster merging approach to enable detection of probable changes embedded in their hidden structure. The method recursively maintain updated PCA models and their corresponding fuzzy membership functions based on the most recent arrival of each independent chunk of process data. The extracted chunk features are then retained in the memory to be merged using a new on-line fuzzy C-means methodology before incoming of the following chunks of data. A new formula is then presented for cluster merging improvement by incorporating an on-line weight to address the issue of cluster’s weight updating in the on-line WFCM methodology. The cluster merging mechanism is coordinated by a compatibility criterion, utilizing both similarities of the adapted clusters-based PCA models and their center closeness. The proposed algorithm has been evaluated on an artificial case study and Tennessee Eastman benchmark process plant. The observed performances demonstrate promising capabilities of the proposed algorithm to successfully detect and diagnose the introduced fault scenarios.
AbstractList A new on-line fuzzy clustering-based algorithm is developed using integration of an adaptive principal component analysis approach with a weighted fuzzy C-means (WFCM) methodology for process fault detection and diagnosis (FDD) applications. The proposed algorithm is based on the segmentation of measured multivariate time series process data through a sliding window scheme being realized in a bottom-up cluster merging approach to enable detection of probable changes embedded in their hidden structure. The method recursively maintain updated PCA models and their corresponding fuzzy membership functions based on the most recent arrival of each independent chunk of process data. The extracted chunk features are then retained in the memory to be merged using a new on-line fuzzy C-means methodology before incoming of the following chunks of data. A new formula is then presented for cluster merging improvement by incorporating an on-line weight to address the issue of cluster’s weight updating in the on-line WFCM methodology. The cluster merging mechanism is coordinated by a compatibility criterion, utilizing both similarities of the adapted clusters-based PCA models and their center closeness. The proposed algorithm has been evaluated on an artificial case study and Tennessee Eastman benchmark process plant. The observed performances demonstrate promising capabilities of the proposed algorithm to successfully detect and diagnose the introduced fault scenarios.
Author Salahshoor, Karim
Alaei, Hamed Komari
Alaei, Hesam Komari
Author_xml – sequence: 1
  givenname: Hesam Komari
  surname: Alaei
  fullname: Alaei, Hesam Komari
  email: hesamkomari@yahoo.com
  organization: Department of Automation and Instrumentation, Petroleum University of Technology
– sequence: 2
  givenname: Karim
  surname: Salahshoor
  fullname: Salahshoor, Karim
  organization: Department of Automation and Instrumentation, Petroleum University of Technology
– sequence: 3
  givenname: Hamed Komari
  surname: Alaei
  fullname: Alaei, Hamed Komari
  organization: Department of Engineering, Ferdowsi University
BookMark eNp9UV1r3DAQFCWFJml-QN4EfVazsnTW-fE4-hEIpA_ts1nLa5-CT3IlueHyU_prY8elhUL7tMsyMzvMXLAzHzwxdi3hvQQwNwlgAyBAFgIqCaJ6xc6lVkoYbaqzl70QptTqDbtI6QGgkGajztnPHff0yJ3P1EfM1PLgxeA88W56ejpxO0wpU3S-5-hbnqg_ks-YXfD8SPkQ2jCE_sQfXT5wbHHM7gfxL_sdx3GMAe2BdyHyebWUEj8G73L4LdfhNGTeUib7orjcWoe9D8mlt-x1h0Oiq1_zkn37-OHr_rO4u_90u9_dCatkmQWWTYMlQLWxGlqrC5ItIpZozaZSgC2ZwsxQ0LbThe46tW22Takb0KoEValL9m7VnU1-nyjl-iFM0c8v66KSWwBlZDmjzIqyMaQUqautW3PIEd1QS6iXIuq1iHouol6KqBd9-RdzjO6I8fRfTrFy0riERfGPp3-TngGQP5_0
CitedBy_id crossref_primary_10_1016_j_anucene_2015_09_007
crossref_primary_10_1016_j_compchemeng_2020_106755
crossref_primary_10_1002_cjce_24494
crossref_primary_10_1016_j_neucom_2021_06_039
crossref_primary_10_1155_2015_547238
crossref_primary_10_1051_e3sconf_202123604008
crossref_primary_10_1007_s00500_017_2865_3
crossref_primary_10_1109_TNNLS_2013_2280280
crossref_primary_10_1007_s42417_021_00373_z
crossref_primary_10_1016_j_chemolab_2015_06_014
crossref_primary_10_15388_21_INFOR444
crossref_primary_10_1007_s00500_014_1550_z
crossref_primary_10_1016_j_ymssp_2020_107130
crossref_primary_10_1016_j_artint_2023_104012
crossref_primary_10_1080_00207543_2018_1526421
crossref_primary_10_1007_s10845_020_01690_y
crossref_primary_10_3233_JIFS_169535
crossref_primary_10_1016_j_engappai_2015_11_005
Cites_doi 10.1080/01621459.1979.10481674
10.1016/j.datak.2005.05.009
10.1016/S0169-7439(99)00061-1
10.1111/1468-0394.00167
10.1016/S0959-1524(98)00023-7
10.1002/0471725331
10.1016/S0959-1524(00)00022-6
10.1007/978-3-540-45231-7_26
10.1007/s10489-010-0219-2
10.1016/0169-7439(93)E0075-F
10.3182/20020721-6-ES-1901.01632
10.1016/S0959-1524(01)00027-0
10.1016/j.arcontrol.2004.12.002
10.1016/S0098-1354(01)00683-4
10.1016/j.ymssp.2006.12.007
10.1016/B978-012722442-8/50016-1
10.1016/j.fss.2004.07.008
10.1109/MCS.2002.1035214
10.1016/S1474-6670(17)43143-0
10.1016/S0959-1524(00)00021-4
10.1109/NAFIPS.2008.4531233
10.1007/3-540-30368-5_1
ContentType Journal Article
Copyright Springer-Verlag 2012
Springer-Verlag 2012.
Copyright_xml – notice: Springer-Verlag 2012
– notice: Springer-Verlag 2012.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00500-012-0910-9
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1433-7479
EndPage 362
ExternalDocumentID 10_1007_s00500_012_0910_9
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c316t-a6bba60095c40dc42e1daaa6ac75930ade727c3104cf424ff38b8b64b04360393
IEDL.DBID U2A
ISSN 1432-7643
IngestDate Sat Oct 11 07:11:58 EDT 2025
Wed Oct 01 02:45:13 EDT 2025
Thu Apr 24 22:59:36 EDT 2025
Fri Feb 21 02:40:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Adaptive PCA
On-line weighted fuzzy C-means
Fault detection and isolation
On-line clustering
On-line weight (OW)
Gath–Geva algorithm
Time series data
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-a6bba60095c40dc42e1daaa6ac75930ade727c3104cf424ff38b8b64b04360393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918003716
PQPubID 2043697
PageCount 18
ParticipantIDs proquest_journals_2918003716
crossref_citationtrail_10_1007_s00500_012_0910_9
crossref_primary_10_1007_s00500_012_0910_9
springer_journals_10_1007_s00500_012_0910_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20130300
2013-3-00
20130301
PublicationDateYYYYMMDD 2013-03-01
PublicationDate_xml – month: 3
  year: 2013
  text: 20130300
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Fusion of Foundations, Methodologies and Applications
PublicationTitle Soft computing (Berlin, Germany)
PublicationTitleAbbrev Soft Comput
PublicationYear 2013
Publisher Springer-Verlag
Springer Nature B.V
Publisher_xml – name: Springer-Verlag
– name: Springer Nature B.V
References BahrampourSMoshiriBSalahshoorKWeighted and constrained possibilistic C-means clustering for online fault detection and isolationApplied Intell2011352269284
WoldSExponentially weighted moving principal component analysis and projection to latent structuresChemom Intell Lab Syst199423149161
ChenJLiaoCDynamic process fault monitoring based on neural network and PCAJ Process Control20021227728910.1016/S0959-1524(01)00027-0
Gallagher VB, Wise RM, Butler SW, White DD, Barna GG (1997) Development and benchmarking of multivariate statistical process control tools for a semiconductor etch process; improving robustness through model updating. In: Proceedings of ADCHEM 97, Ban, Canada, pp 78–83
Isermann R (2005b) Fault diagnosis systems. An introduction from fault detection to fault tolerance
LiWYueHHValle-CervantesSQinSJRecursive PCA for adaptive process monitoringJ Process Control200010471486
Collaghan LO, Mishra N, Meyerson A (2002) Streming-data algorithms for high-quality clustering. In: Proceedings of IEEE international conference on data engineering
Mauricio Sales Cruz A (2004) Tennessee Eastman Plant-wide Industrial Process. Challenge Problem
Agarwal CC, Han J, Wang J, Yu PS (2003) A framework for clustering evolving data streams. In: Proceedings of VLDB
KourtiTProcess analysis and abnormal situation detection: from theory to practiceIEEE Control Syst Mag200222101025
AngeliCAthertonDA model-based method for an online diagnostic knowledge-based systemExpert Syst2001183150158ISSN 0266-4720
Babuska R, van der Veen PJ, Kaymak U (2002) Improved covariance estimation for Gustafson-Kessel clustering. In: IEEE international conference on fuzzy systems, pp 1081–1085
Abonyi J, Feil B, Nemeth S, Arva P (2004) Principal component analysis based time series segmentation: a new sensor fusion algorithm, preprint
HuangYGertlerJMcAvoyTJSensor and actuator fault isolation by structured partial PCA with nonlinear extensionsJ Process Control20001045946910.1016/S0959-1524(00)00021-4
Salahshoor K, Kordestani M (2009) Design of on-line soft sensors based on combined adaptive PCA and DMLP neural networks. Computational intelligence in control and automation, CICA 2009, IEEE Symposium, pp 3481–3486
KanoMHasebeSHashimotoIOhnoHA new multivariate statistical process monitoring method using principal component analysisComput Chem Eng2001251103111310.1016/S0098-1354(01)00683-4
Palade V, Patton RJ, Uppal FJ, Quevedo J, Daley S (2002) Fault diagnosis of an industrial gaz turbine using neuro-fuzzy methods. IFAC World Congress, IFAC’02, Barcelona
JacksonJEA users guide to principal components1991New YorkWiely10.1002/0471725331
Seborg D (2012) A perspective on advance strategies for process control. In: Frank P (ed) Advances in control. Highlights of ECC’99 (revised)
WidodoAYangBSSupport vector machine in machine condition monitoring and fault diagnosisMech Syst Fault Diagn2007212560257410.1016/j.ymssp.2006.12.007
BeringerJHullermeierEOnline clustering of parallel data streamsData Knowl Eng2006582180204
Isermann R (2005a) Model-based fault detection and diagnosis—status and application
Laffey TJ, Cox PA, Schmidt JL, Kao SM, Read JY (1988) Real-time knowledge-based systems. AI Mag 9(1):27–45
Kelly PM (1994) An algorithm for merging hyperllipsoidal clusters. Technical Report LA-UR-94-3306
AbonyiJFeilBNemethSArvaPModified Gath–Geva clustering for fuzzy segmentation of multivariate time-seriesFuzzy Sets Syst2005149395621132051071.6854310.1016/j.fss.2004.07.008
Yang Q (2004) Model-based and data driven fault diagnosis methods with applications to process monitoring
Abonyi J, Feil B, Nemeth S, Arva P (2003) Fuzzy clustering based segmentation of time-series
WiseBMRickerNLVeltkampDFKowalskiBRA theoretical basis for the use of principal component models for monitoring multivariate processesProcess Control Qual199014151
ChiangLHRussellELBraatzRDFault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysisChemom Intell Lab Syst20005024325210.1016/S0169-7439(99)00061-1
ChenGMcAvoyTJPredictive on-line monitoring of continuous processesJ Process Control19988409
Kaymak U, Babuska R (1995) Compatible cluster merging for fuzzy modeling. In: Proceedings of the IEEE international conference on fuzzy systems, Yokohama, Japan, pp 897–904
MalinowskiERFactor analysis in chemistry1991New YorkWiley0925.62219
Krzanowsky WJ (1979) Between group comparison of principal components. J Am Stat Assoc
Hore P, Hall LO, Goldgof DB (2008) Online fuzzy c means. IEEE, ISBN: 978-1-4244-2325
Martinez WL, Martinez AR (2005) Exploratory data analysis with Matlab. Computer science and data analysis series. Chapman and Hall, London. ISBN 1-58488-366-9
910_CR23
910_CR22
A Widodo (910_CR28) 2007; 21
910_CR20
910_CR1
910_CR29
910_CR27
910_CR2
910_CR26
910_CR5
910_CR25
910_CR4
M Kano (910_CR17) 2001; 25
910_CR24
J Abonyi (910_CR3) 2005; 149
Y Huang (910_CR13) 2000; 10
LH Chiang (910_CR9) 2000; 50
910_CR12
910_CR55
910_CR11
910_CR10
910_CR54
910_CR53
910_CR52
910_CR51
J Chen (910_CR8) 2002; 12
910_CR50
910_CR19
910_CR18
910_CR15
JE Jackson (910_CR16) 1991
910_CR14
910_CR7
910_CR6
ER Malinowski (910_CR21) 1991
References_xml – reference: AbonyiJFeilBNemethSArvaPModified Gath–Geva clustering for fuzzy segmentation of multivariate time-seriesFuzzy Sets Syst2005149395621132051071.6854310.1016/j.fss.2004.07.008
– reference: Kaymak U, Babuska R (1995) Compatible cluster merging for fuzzy modeling. In: Proceedings of the IEEE international conference on fuzzy systems, Yokohama, Japan, pp 897–904
– reference: WiseBMRickerNLVeltkampDFKowalskiBRA theoretical basis for the use of principal component models for monitoring multivariate processesProcess Control Qual199014151
– reference: Agarwal CC, Han J, Wang J, Yu PS (2003) A framework for clustering evolving data streams. In: Proceedings of VLDB
– reference: Seborg D (2012) A perspective on advance strategies for process control. In: Frank P (ed) Advances in control. Highlights of ECC’99 (revised)
– reference: AngeliCAthertonDA model-based method for an online diagnostic knowledge-based systemExpert Syst2001183150158ISSN 0266-4720
– reference: ChenJLiaoCDynamic process fault monitoring based on neural network and PCAJ Process Control20021227728910.1016/S0959-1524(01)00027-0
– reference: Isermann R (2005a) Model-based fault detection and diagnosis—status and application
– reference: Mauricio Sales Cruz A (2004) Tennessee Eastman Plant-wide Industrial Process. Challenge Problem
– reference: ChiangLHRussellELBraatzRDFault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysisChemom Intell Lab Syst20005024325210.1016/S0169-7439(99)00061-1
– reference: Hore P, Hall LO, Goldgof DB (2008) Online fuzzy c means. IEEE, ISBN: 978-1-4244-2325
– reference: BeringerJHullermeierEOnline clustering of parallel data streamsData Knowl Eng2006582180204
– reference: Gallagher VB, Wise RM, Butler SW, White DD, Barna GG (1997) Development and benchmarking of multivariate statistical process control tools for a semiconductor etch process; improving robustness through model updating. In: Proceedings of ADCHEM 97, Ban, Canada, pp 78–83
– reference: BahrampourSMoshiriBSalahshoorKWeighted and constrained possibilistic C-means clustering for online fault detection and isolationApplied Intell2011352269284
– reference: Kelly PM (1994) An algorithm for merging hyperllipsoidal clusters. Technical Report LA-UR-94-3306
– reference: Abonyi J, Feil B, Nemeth S, Arva P (2003) Fuzzy clustering based segmentation of time-series
– reference: Abonyi J, Feil B, Nemeth S, Arva P (2004) Principal component analysis based time series segmentation: a new sensor fusion algorithm, preprint
– reference: Babuska R, van der Veen PJ, Kaymak U (2002) Improved covariance estimation for Gustafson-Kessel clustering. In: IEEE international conference on fuzzy systems, pp 1081–1085
– reference: Laffey TJ, Cox PA, Schmidt JL, Kao SM, Read JY (1988) Real-time knowledge-based systems. AI Mag 9(1):27–45
– reference: WidodoAYangBSSupport vector machine in machine condition monitoring and fault diagnosisMech Syst Fault Diagn2007212560257410.1016/j.ymssp.2006.12.007
– reference: Martinez WL, Martinez AR (2005) Exploratory data analysis with Matlab. Computer science and data analysis series. Chapman and Hall, London. ISBN 1-58488-366-9
– reference: Isermann R (2005b) Fault diagnosis systems. An introduction from fault detection to fault tolerance
– reference: KanoMHasebeSHashimotoIOhnoHA new multivariate statistical process monitoring method using principal component analysisComput Chem Eng2001251103111310.1016/S0098-1354(01)00683-4
– reference: Krzanowsky WJ (1979) Between group comparison of principal components. J Am Stat Assoc
– reference: Salahshoor K, Kordestani M (2009) Design of on-line soft sensors based on combined adaptive PCA and DMLP neural networks. Computational intelligence in control and automation, CICA 2009, IEEE Symposium, pp 3481–3486
– reference: JacksonJEA users guide to principal components1991New YorkWiely10.1002/0471725331
– reference: LiWYueHHValle-CervantesSQinSJRecursive PCA for adaptive process monitoringJ Process Control200010471486
– reference: Yang Q (2004) Model-based and data driven fault diagnosis methods with applications to process monitoring
– reference: HuangYGertlerJMcAvoyTJSensor and actuator fault isolation by structured partial PCA with nonlinear extensionsJ Process Control20001045946910.1016/S0959-1524(00)00021-4
– reference: KourtiTProcess analysis and abnormal situation detection: from theory to practiceIEEE Control Syst Mag200222101025
– reference: Collaghan LO, Mishra N, Meyerson A (2002) Streming-data algorithms for high-quality clustering. In: Proceedings of IEEE international conference on data engineering
– reference: Palade V, Patton RJ, Uppal FJ, Quevedo J, Daley S (2002) Fault diagnosis of an industrial gaz turbine using neuro-fuzzy methods. IFAC World Congress, IFAC’02, Barcelona
– reference: MalinowskiERFactor analysis in chemistry1991New YorkWiley0925.62219
– reference: WoldSExponentially weighted moving principal component analysis and projection to latent structuresChemom Intell Lab Syst199423149161
– reference: ChenGMcAvoyTJPredictive on-line monitoring of continuous processesJ Process Control19988409
– ident: 910_CR20
  doi: 10.1080/01621459.1979.10481674
– ident: 910_CR51
– ident: 910_CR26
– ident: 910_CR7
  doi: 10.1016/j.datak.2005.05.009
– volume: 50
  start-page: 243
  year: 2000
  ident: 910_CR9
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/S0169-7439(99)00061-1
– ident: 910_CR22
– ident: 910_CR2
– volume-title: Factor analysis in chemistry
  year: 1991
  ident: 910_CR21
– ident: 910_CR52
  doi: 10.1111/1468-0394.00167
– ident: 910_CR55
  doi: 10.1016/S0959-1524(98)00023-7
– volume-title: A users guide to principal components
  year: 1991
  ident: 910_CR16
  doi: 10.1002/0471725331
– ident: 910_CR18
– ident: 910_CR54
  doi: 10.1016/S0959-1524(00)00022-6
– ident: 910_CR1
  doi: 10.1007/978-3-540-45231-7_26
– ident: 910_CR10
– ident: 910_CR6
  doi: 10.1007/s10489-010-0219-2
– ident: 910_CR27
– ident: 910_CR53
  doi: 10.1016/0169-7439(93)E0075-F
– ident: 910_CR29
– ident: 910_CR5
– ident: 910_CR24
  doi: 10.3182/20020721-6-ES-1901.01632
– ident: 910_CR25
– ident: 910_CR23
– volume: 12
  start-page: 277
  year: 2002
  ident: 910_CR8
  publication-title: J Process Control
  doi: 10.1016/S0959-1524(01)00027-0
– ident: 910_CR19
– ident: 910_CR14
  doi: 10.1016/j.arcontrol.2004.12.002
– volume: 25
  start-page: 1103
  year: 2001
  ident: 910_CR17
  publication-title: Comput Chem Eng
  doi: 10.1016/S0098-1354(01)00683-4
– volume: 21
  start-page: 2560
  year: 2007
  ident: 910_CR28
  publication-title: Mech Syst Fault Diagn
  doi: 10.1016/j.ymssp.2006.12.007
– ident: 910_CR4
  doi: 10.1016/B978-012722442-8/50016-1
– volume: 149
  start-page: 39
  year: 2005
  ident: 910_CR3
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/j.fss.2004.07.008
– ident: 910_CR50
  doi: 10.1109/MCS.2002.1035214
– ident: 910_CR11
  doi: 10.1016/S1474-6670(17)43143-0
– volume: 10
  start-page: 459
  year: 2000
  ident: 910_CR13
  publication-title: J Process Control
  doi: 10.1016/S0959-1524(00)00021-4
– ident: 910_CR12
  doi: 10.1109/NAFIPS.2008.4531233
– ident: 910_CR15
  doi: 10.1007/3-540-30368-5_1
SSID ssj0021753
Score 2.1129532
Snippet A new on-line fuzzy clustering-based algorithm is developed using integration of an adaptive principal component analysis approach with a weighted fuzzy...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 345
SubjectTerms Algorithms
Artificial Intelligence
Clustering
Computational Intelligence
Control
Data mining
Data processing
Engineering
Engineers
Fault detection
Fault diagnosis
Fuzzy sets
Industrial plants
Mathematical Logic and Foundations
Mathematical models
Mechatronics
Methodology
Multivariate analysis
Original Paper
Principal components analysis
Process controls
Robotics
Segmentation
Statistical methods
Time series
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB7R5MKllEfV8NIcOBWtcBx7sQ-oCggUcYgQKhI3a59VpeCkjXOAn9Jf2531riOQ4OrHWPLszny7O_N9ACeFdYsCXSSsNEqzzFrFpOWaUQ8kT4y0tq22mPLJQ3b7mD9uwDT2wlBZZYyJPlDruaI98rO0HBaeX47_WPxhpBpFp6tRQkMEaQV94SnGPkE_JWasHvQvr6d3990SLPBSOpDgcKVLxvGcM_G0ojl1WVOpgsuhrHydqdbw882JqU9EN1_gc0CQOG5dvg0bpt6BrajOgGGy7sK_MTrIjB0fhMZ5zQhUol29vDyjmq2IJMF9A0WtcWl-PYU-pBpbXWm_4460U4tCiwUFRry7GmPkIUcHeHHRdhrgkw8OnTkrVrMGtWl8qVftr-m2rO_3cg8ebq5_Xk1YUGJgajTkDRNcSsEJjqks0SpLzVALIbhQ53k5SoQ2Dga5R5NM2Sx1Hh8VspA8k0RwT92_X6FXz2vzDVAMUykcqsypElQ5_COKUkmdl4XhpbMwgCT-9UoFmnJSy5hVHcGyd1TlHFWRo6pyAN-7VxYtR8dHDx9GV1Zhui6r9eAawGl07_r2u8b2PzZ2AJupV8-gkrVD6DV_V-bIYZhGHoeB-R9lMe_s
  priority: 102
  providerName: ProQuest
Title A new integrated on-line fuzzy clustering and segmentation methodology with adaptive PCA approach for process monitoring and fault detection and diagnosis
URI https://link.springer.com/article/10.1007/s00500-012-0910-9
https://www.proquest.com/docview/2918003716
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: AFBBN
  dateStart: 19970401
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-7479
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: U2A
  dateStart: 19970404
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS-RAEC58XHYPvtbF8THUwdNKQyaTtMkxDjOKgojsgHsK_RRhjIOTOehP8dda3XnMKip4CiSVunzdXV93V30FcJhY2hToJGCpUZpF1iomLdfM1UDywEhrq2yLS342js5v4pu6jnvWZLs3V5J-pW6L3ZxUiUuiCpmLcSxdhtXYqXnRIB6HWbvLqqUniQcQdaR421xlfuTibTBaMMx3l6I-1ow2YK0miZhVqG7Ckim2YL1pwID1fNyCn_-pCf6ClwyJI2MrAKHxoWCORaKdPz8_oZrMnSoC2aIoNM7M7X1deFRg1UjaH7GjO5pFocXUrYR4NciwER5HYrg4rUoL8N6vBq07K-aTErUpfW5X4d_pKo_vbrYN49Hw7-CM1a0XmOr3eMkEl1Jwx79UFGgVhaanhRBcqOM47QdCG-I9ZBpEykYhQdxPZCJ5JJ2ivSv3_Q0rxUNhdgBFL5SCaGTsUj8VER6RpErqOE0MT8lDB4IGg1zVuuSuPcYkbxWVPWw5wZY72PK0A3_aX6aVKMdXxvsNsHk9P2d5mPYSr1bIO3DUgL34_Kmz3W9Z78GP0HfPcClr-7BSPs7NAXGYUnZhORmddmE1O_13MaTnyfDy6rrrR_Ir1cHucQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKe4ALb9SFUuYAF5BFNuuY-FBV25e2tKwq1Eq9BT8R0ja7sFmh9qfwY_htHTt2VkWit17zmCgZZ-azPfN9hLwtHU4KTJlRYbWhzDlNleOG-h5InlnlXFttMeajM_b5vDhfIX9TL4wvq0wxMQRqM9V-jfxjLvpl4Jfj27Of1KtG-d3VJKEho7SC2QoUY7Gx48he_sYp3HzrcA_9_S7PD_ZPd0c0qgxQPejzhkqulOQeamiWGc1y2zdSSi71p0IMMmkspni8NGPasRzfZlCqUnGmPHm772xFu_fIGhswgZO_tZ398cnXbsoXeTARlCCOxeSf9lWzQGNa-K5uXxqBOZuKm5lxCXf_2aENie_gMXkYESsM2yH2hKzY-il5lNQgIAaHZ-TPEBCiQ8c_YWBaUw9iwS2uri5BTxaelAGfAbI2MLffL2LfUw2tjnVY4Qe_MgzSyJkPxHCyO4TEew4IsGHWdjbARQhGnTknF5MGjG1CaVkdjpm2jPDH_Dk5uxOfvCCr9bS26wRkP1cSUWzhK0814i1ZCq1MIUrLBVrokSx99UpHWnSvzjGpOkLn4KgKHVV5R1WiR953t8xaTpDbLt5IrqxieJhXy8HcIx-Se5en_2vs5e3G3pD7o9Mvx9Xx4fjoFXmQB-UOXy63QVabXwv7GvFTozbjIAXy7a7_i2t_8izR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BkRAc2BFlnQMnkEWapiY5VkDFJsSBStwirwiphIqmB_opfC0eZ2ERIHFNxnN5tufZnnkDsB9bdyjQccASozSLrFVMWq4Z1UDywEhri2yLG37ejy7vO_dln9NRle1ePUkWNQ2k0pTlR0Ntj-rCN5ItoYSqkFG8Y8k0zESkk-AmdD_s1ieuUobScQJHI13srZ41f3LxNTB9sM1vD6Q-7vSWYKEkjNgtEF6GKZOtwGLVjAHLtbkC85-UBVfhrYuOL2MtBqHxOWPEKNGOJ5NXVIMxKSQ4WxSZxpF5eCqLkDIsmkr763aka1oUWgxpV8Tbky5WIuTo2C4OizIDfPI7Q-3OivEgR21yn-eV-W-6yOl7HK1Bv3d2d3LOyjYMTLVbPGeCSyk4cTEVBVpFoWlpIQQX6riTtAOhjeNAzjSIlI1CB3c7lrHkkSR1eyr9XYdG9pyZDUDRCqVwlLJDaaDKkR8RJ0rqThIbnjgPTQgqDFJVapRTq4xBWqsre9hSB1tKsKVJEw7qIcNCoOMv4-0K2LRcq6M0TFqxVy7kTTiswP74_auzzX9Z78Hs7Wkvvb64udqCudA31aBMtm1o5C9js-OoTS53_fR9Bz188YU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+integrated+on-line+fuzzy+clustering+and+segmentation+methodology+with+adaptive+PCA+approach+for+process+monitoring+and+fault+detection+and+diagnosis&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Alaei%2C+Hesam+Komari&rft.au=Salahshoor%2C+Karim&rft.au=Alaei%2C+Hamed+Komari&rft.date=2013-03-01&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=17&rft.issue=3&rft.spage=345&rft.epage=362&rft_id=info:doi/10.1007%2Fs00500-012-0910-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00500_012_0910_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon