Proximal Gauss-Newton Method for Box-constrained Parameter Identification of a Nonlinear Railway Suspension System
The identification of railway vehicle components’ characteristics from measured data is a challenging task with compelling applications in health monitoring, fault detection, and system prognosis. Usually, though, such systems are highly nonlinear, and naive identification techniques may lead to uns...
Saved in:
| Published in | International journal of prognostics and health management Vol. 15; no. 2 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
The Prognostics and Health Management Society
17.09.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2153-2648 2153-2648 |
| DOI | 10.36001/ijphm.2024.v15i2.3919 |
Cover
| Abstract | The identification of railway vehicle components’ characteristics from measured data is a challenging task with compelling applications in health monitoring, fault detection, and system prognosis. Usually, though, such systems are highly nonlinear, and naive identification techniques may lead to unstable methods and inaccurate results. In this paper, we show that these issues can be easily tackled with the recently introduced proximal Gauss–Newton method, which we employ to identify the parameters of a railway nonlinear suspension system. In the proposed model, the parameters are subject to safety bounds in form of box constraints, which allows preventing nonphysical solutions. The suspension system we consider is highly nonlinear due to the presence of an airspring in the secondary suspension, which we introduce in a simplified Berg model. Numerical examples, featuring data corrupted by various noise levels, demonstrate the accuracy and efficiency of our proposed method. Comparisons with state-of-the-art approaches are also provided. |
|---|---|
| AbstractList | The identification of railway vehicle components’ characteristics from measured data is a challenging task with compelling applications in health monitoring, fault detection, and system prognosis. Usually, though, such systems are highly nonlinear, and naive identification techniques may lead to unstable methods and inaccurate results. In this paper, we show that these issues can be easily tackled with the recently introduced proximal Gauss–Newton method, which we employ to identify the parameters of a railway nonlinear suspension system. In the proposed model, the parameters are subject to safety bounds in form of box constraints, which allows preventing nonphysical solutions. The suspension system we consider is highly nonlinear due to the presence of an airspring in the secondary suspension, which we introduce in a simplified Berg model. Numerical examples, featuring data corrupted by various noise levels, demonstrate the accuracy and efficiency of our proposed method. Comparisons with state-of-the-art approaches are also provided. |
| Author | Bredies, Kristian Chenchene, Enis Fuchs, Josef Luber, Bernd |
| Author_xml | – sequence: 1 givenname: Kristian surname: Bredies fullname: Bredies, Kristian – sequence: 2 givenname: Enis surname: Chenchene fullname: Chenchene, Enis – sequence: 3 givenname: Josef surname: Fuchs fullname: Fuchs, Josef – sequence: 4 givenname: Bernd surname: Luber fullname: Luber, Bernd |
| BookMark | eNqNkdtOGzEQhi1EJSjwCsgvsKnPu7mkiEMkoAjKtTXrAzja2JHtEPL2bJIKcdm5mdFovl8afT_RYUzRIXROyYQrQuivMF--LSaMMDF5pzKwCZ_S6QE6ZlTyhinRHX6bj9BZKXMylpoK1tJjlB9z-ggLGPANrEppHty6pojvXX1LFvuU8e_00ZgUS80QorP4ETIsXHUZz6yLNfhgoIaRSR4DfkhxGM8g4ycIwxo2-HlVli6W7cXzplS3OEU_PAzFnf3rJ-jl-urv5W1z9-dmdnlx1xhOVW2m1nEiekmVc7KTzDMCHjrVy9YKYZXngkHvW8Ipp5QZSToFSraUWMU6AH6CZvtcm2Cul3n8Mm90gqB3i5RfNeQazOB0R721fS9lR5Tg1PZScOikMUwaD5aNWe0-axWXsFnDMHwFUqJ3JvTOhN6a0DsTemtiJNWeNDmVkp3_X_ATtk6TaA |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.36001/ijphm.2024.v15i2.3919 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2153-2648 |
| ExternalDocumentID | oai_doaj_org_article_81fddbb55806431db543a85cc25cfad2 10.36001/ijphm.2024.v15i2.3919 10_36001_ijphm_2024_v15i2_3919 |
| GroupedDBID | 5VS AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ KQ8 M~E OK1 ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c316t-9de304b516ee5852f20afa86b57d44d6f342abf70313112c5086a65710d628aa3 |
| IEDL.DBID | DOA |
| ISSN | 2153-2648 |
| IngestDate | Fri Oct 03 12:45:43 EDT 2025 Mon Sep 15 08:16:37 EDT 2025 Tue Jul 01 02:50:06 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-9de304b516ee5852f20afa86b57d44d6f342abf70313112c5086a65710d628aa3 |
| OpenAccessLink | https://doaj.org/article/81fddbb55806431db543a85cc25cfad2 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_81fddbb55806431db543a85cc25cfad2 unpaywall_primary_10_36001_ijphm_2024_v15i2_3919 crossref_primary_10_36001_ijphm_2024_v15i2_3919 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-09-17 |
| PublicationDateYYYYMMDD | 2024-09-17 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of prognostics and health management |
| PublicationYear | 2024 |
| Publisher | The Prognostics and Health Management Society |
| Publisher_xml | – name: The Prognostics and Health Management Society |
| SSID | ssj0000694271 |
| Score | 2.2991014 |
| Snippet | The identification of railway vehicle components’ characteristics from measured data is a challenging task with compelling applications in health monitoring,... |
| SourceID | doaj unpaywall crossref |
| SourceType | Open Website Open Access Repository Index Database |
| SubjectTerms | airspring fault detection and isolation parameter identification proximal gauss-newton method railway suspension systems |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwELZQewAOvFd0ecgHrilN_Gh6LIiHkKgq2EpwisaxrS2Utmqb7bK_npkkQFdICK6WLUcz9sw3zsw3jB056W1DORuAjkUgY2MCSAUaQwlokcE2bf6Yc93Rlz15dafuForV33_fC3LFx_2H8W8qGI9k_U-o-hHG6ETyWdUKoXeFVXudbvueGsjhzc2ztYoq4E8W_-eAcp7-VbacDcfwPIfBYMG5nK-zzmuJTpFT8ljPZqae_vvI2Pi1795gayXM5O3iXGyyJTfcYqsL5IPbbNLF3fpPOOsCsuk0QHOHOJBf5y2lOWJZfjL6G6SEH6mNhLO8C5TJhYrgRXmvL9_7-Mhz4J2CdAMm_Ab6gzk889tsOqb8eJxREKPvsN752a_Ty6DswBCkItSzoGWdaEijQu0cxhWRjxrgIdZGNa2UVnshIzCeOPAFArcU0Z4GrRC1WB3FAOIHqwxHQ7dLteGA0YkFAa4lZdO1vNdCKKcglsKEpsaOX9WSjAuijQQDlFyaSS7NhKSZ5NJMSJo1dkLae5tNRNn5ACoiKe9dEofeWmOUigl7hdYoKSBWaRqp1IONaqzxpvsv7vvz-0v22AqNUJ5J2NxnldkkcwcIZmbmsDzCLy0p8Mw priority: 102 providerName: Unpaywall |
| Title | Proximal Gauss-Newton Method for Box-constrained Parameter Identification of a Nonlinear Railway Suspension System |
| URI | http://doi.org/10.36001/ijphm.2024.v15i2.3919 https://doaj.org/article/81fddbb55806431db543a85cc25cfad2 |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2153-2648 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000694271 issn: 2153-2648 databaseCode: KQ8 dateStart: 20100101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2153-2648 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000694271 issn: 2153-2648 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2153-2648 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000694271 issn: 2153-2648 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDBaK7tD1UGxth2WPQodd3djWw_KxHdoVAxoE3QK0J4OyJCxDlgR59HHbf9g_7C8ZKWWFb9thV4OwjI8G-VEgPzL2wcvgcuVdBtqITBprM2gFBkMJGJHBVS5e5lwO9MVIfr5W151VX9QTluSBE3B9UwTnrFXKUPIsnFVSgFFtW6o2gIvRNzd1p5hKMbiWZVWkkWBBSb0__j7_RqPnpTy-LdS4xGqf5HU62SiK9u-ynfV0Dg93MJl0Ms35C7a3oYj8JH3aS7blp_tstyMceMBWw8XsfvwDrT7Berl8_PkLgxWyOH4ZF0JzZKL8dHaftcT-aAmEd3wI1IeFMPI0nBs2t3V8FjjwQZLMgAW_gvHkDh74l_VyTt3taJFkzQ_Z6Pzs68eLbLM_IWtFoVdZ7bzIpVWF9h6rgjKUOQQw2qrKSel0ELIEG0jBXiDtapGradAKOYfTpQEQr9j2dDb1r2myG7C2cCDA11JWvg5BC6G8AiOFLWyP9f_g2MyTTEaD5UVEvonIN4R8E5FvCPkeOyW4n6xJ5jo-QOc3G-c3f3N-j-VPzvrHc9_8j3Pfsuf0WuobKap3bHu1WPv3SE5W9ij-h0fs2WgwPLn5DYah53k |
| linkProvider | Directory of Open Access Journals |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwELZQewAOvFd0ecgHrilN_Gh6LIiHkKgq2EpwisaxrS2Utmqb7bK_npkkQFdICK6WLUcz9sw3zsw3jB056W1DORuAjkUgY2MCSAUaQwlokcE2bf6Yc93Rlz15dafuForV33_fC3LFx_2H8W8qGI9k_U-o-hHG6ETyWdUKoXeFVXudbvueGsjhzc2ztYoq4E8W_-eAcp7-VbacDcfwPIfBYMG5nK-zzmuJTpFT8ljPZqae_vvI2Pi1795gayXM5O3iXGyyJTfcYqsL5IPbbNLF3fpPOOsCsuk0QHOHOJBf5y2lOWJZfjL6G6SEH6mNhLO8C5TJhYrgRXmvL9_7-Mhz4J2CdAMm_Ab6gzk889tsOqb8eJxREKPvsN752a_Ty6DswBCkItSzoGWdaEijQu0cxhWRjxrgIdZGNa2UVnshIzCeOPAFArcU0Z4GrRC1WB3FAOIHqwxHQ7dLteGA0YkFAa4lZdO1vNdCKKcglsKEpsaOX9WSjAuijQQDlFyaSS7NhKSZ5NJMSJo1dkLae5tNRNn5ACoiKe9dEofeWmOUigl7hdYoKSBWaRqp1IONaqzxpvsv7vvz-0v22AqNUJ5J2NxnldkkcwcIZmbmsDzCLy0p8Mw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proximal+Gauss-Newton+Method+for+Box-constrained+Parameter+Identification+of+a+Nonlinear+Railway+Suspension+System&rft.jtitle=International+journal+of+prognostics+and+health+management&rft.au=Bredies%2C+Kristian&rft.au=Chenchene%2C+Enis&rft.au=Fuchs%2C+Josef&rft.au=Luber%2C+Bernd&rft.date=2024-09-17&rft.issn=2153-2648&rft.eissn=2153-2648&rft.volume=15&rft.issue=2&rft_id=info:doi/10.36001%2Fijphm.2024.v15i2.3919&rft.externalDBID=n%2Fa&rft.externalDocID=10_36001_ijphm_2024_v15i2_3919 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2153-2648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2153-2648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2153-2648&client=summon |