Proximal Gauss-Newton Method for Box-constrained Parameter Identification of a Nonlinear Railway Suspension System

The identification of railway vehicle components’ characteristics from measured data is a challenging task with compelling applications in health monitoring, fault detection, and system prognosis. Usually, though, such systems are highly nonlinear, and naive identification techniques may lead to uns...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of prognostics and health management Vol. 15; no. 2
Main Authors Bredies, Kristian, Chenchene, Enis, Fuchs, Josef, Luber, Bernd
Format Journal Article
LanguageEnglish
Published The Prognostics and Health Management Society 17.09.2024
Subjects
Online AccessGet full text
ISSN2153-2648
2153-2648
DOI10.36001/ijphm.2024.v15i2.3919

Cover

Abstract The identification of railway vehicle components’ characteristics from measured data is a challenging task with compelling applications in health monitoring, fault detection, and system prognosis. Usually, though, such systems are highly nonlinear, and naive identification techniques may lead to unstable methods and inaccurate results. In this paper, we show that these issues can be easily tackled with the recently introduced proximal Gauss–Newton method, which we employ to identify the parameters of a railway nonlinear suspension system. In the proposed model, the parameters are subject to safety bounds in form of box constraints, which allows preventing nonphysical solutions. The suspension system we consider is highly nonlinear due to the presence of an airspring in the secondary suspension, which we introduce in a simplified Berg model. Numerical examples, featuring data corrupted by various noise levels, demonstrate the accuracy and efficiency of our proposed method. Comparisons with state-of-the-art approaches are also provided.
AbstractList The identification of railway vehicle components’ characteristics from measured data is a challenging task with compelling applications in health monitoring, fault detection, and system prognosis. Usually, though, such systems are highly nonlinear, and naive identification techniques may lead to unstable methods and inaccurate results. In this paper, we show that these issues can be easily tackled with the recently introduced proximal Gauss–Newton method, which we employ to identify the parameters of a railway nonlinear suspension system. In the proposed model, the parameters are subject to safety bounds in form of box constraints, which allows preventing nonphysical solutions. The suspension system we consider is highly nonlinear due to the presence of an airspring in the secondary suspension, which we introduce in a simplified Berg model. Numerical examples, featuring data corrupted by various noise levels, demonstrate the accuracy and efficiency of our proposed method. Comparisons with state-of-the-art approaches are also provided.
Author Bredies, Kristian
Chenchene, Enis
Fuchs, Josef
Luber, Bernd
Author_xml – sequence: 1
  givenname: Kristian
  surname: Bredies
  fullname: Bredies, Kristian
– sequence: 2
  givenname: Enis
  surname: Chenchene
  fullname: Chenchene, Enis
– sequence: 3
  givenname: Josef
  surname: Fuchs
  fullname: Fuchs, Josef
– sequence: 4
  givenname: Bernd
  surname: Luber
  fullname: Luber, Bernd
BookMark eNqNkdtOGzEQhi1EJSjwCsgvsKnPu7mkiEMkoAjKtTXrAzja2JHtEPL2bJIKcdm5mdFovl8afT_RYUzRIXROyYQrQuivMF--LSaMMDF5pzKwCZ_S6QE6ZlTyhinRHX6bj9BZKXMylpoK1tJjlB9z-ggLGPANrEppHty6pojvXX1LFvuU8e_00ZgUS80QorP4ETIsXHUZz6yLNfhgoIaRSR4DfkhxGM8g4ycIwxo2-HlVli6W7cXzplS3OEU_PAzFnf3rJ-jl-urv5W1z9-dmdnlx1xhOVW2m1nEiekmVc7KTzDMCHjrVy9YKYZXngkHvW8Ipp5QZSToFSraUWMU6AH6CZvtcm2Cul3n8Mm90gqB3i5RfNeQazOB0R721fS9lR5Tg1PZScOikMUwaD5aNWe0-axWXsFnDMHwFUqJ3JvTOhN6a0DsTemtiJNWeNDmVkp3_X_ATtk6TaA
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.36001/ijphm.2024.v15i2.3919
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2153-2648
ExternalDocumentID oai_doaj_org_article_81fddbb55806431db543a85cc25cfad2
10.36001/ijphm.2024.v15i2.3919
10_36001_ijphm_2024_v15i2_3919
GroupedDBID 5VS
AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c316t-9de304b516ee5852f20afa86b57d44d6f342abf70313112c5086a65710d628aa3
IEDL.DBID DOA
ISSN 2153-2648
IngestDate Fri Oct 03 12:45:43 EDT 2025
Mon Sep 15 08:16:37 EDT 2025
Tue Jul 01 02:50:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-9de304b516ee5852f20afa86b57d44d6f342abf70313112c5086a65710d628aa3
OpenAccessLink https://doaj.org/article/81fddbb55806431db543a85cc25cfad2
ParticipantIDs doaj_primary_oai_doaj_org_article_81fddbb55806431db543a85cc25cfad2
unpaywall_primary_10_36001_ijphm_2024_v15i2_3919
crossref_primary_10_36001_ijphm_2024_v15i2_3919
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-17
PublicationDateYYYYMMDD 2024-09-17
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-17
  day: 17
PublicationDecade 2020
PublicationTitle International journal of prognostics and health management
PublicationYear 2024
Publisher The Prognostics and Health Management Society
Publisher_xml – name: The Prognostics and Health Management Society
SSID ssj0000694271
Score 2.2991014
Snippet The identification of railway vehicle components’ characteristics from measured data is a challenging task with compelling applications in health monitoring,...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Index Database
SubjectTerms airspring
fault detection and isolation
parameter identification
proximal gauss-newton method
railway suspension systems
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwELZQewAOvFd0ecgHrilN_Gh6LIiHkKgq2EpwisaxrS2Utmqb7bK_npkkQFdICK6WLUcz9sw3zsw3jB056W1DORuAjkUgY2MCSAUaQwlokcE2bf6Yc93Rlz15dafuForV33_fC3LFx_2H8W8qGI9k_U-o-hHG6ETyWdUKoXeFVXudbvueGsjhzc2ztYoq4E8W_-eAcp7-VbacDcfwPIfBYMG5nK-zzmuJTpFT8ljPZqae_vvI2Pi1795gayXM5O3iXGyyJTfcYqsL5IPbbNLF3fpPOOsCsuk0QHOHOJBf5y2lOWJZfjL6G6SEH6mNhLO8C5TJhYrgRXmvL9_7-Mhz4J2CdAMm_Ab6gzk889tsOqb8eJxREKPvsN752a_Ty6DswBCkItSzoGWdaEijQu0cxhWRjxrgIdZGNa2UVnshIzCeOPAFArcU0Z4GrRC1WB3FAOIHqwxHQ7dLteGA0YkFAa4lZdO1vNdCKKcglsKEpsaOX9WSjAuijQQDlFyaSS7NhKSZ5NJMSJo1dkLae5tNRNn5ACoiKe9dEofeWmOUigl7hdYoKSBWaRqp1IONaqzxpvsv7vvz-0v22AqNUJ5J2NxnldkkcwcIZmbmsDzCLy0p8Mw
  priority: 102
  providerName: Unpaywall
Title Proximal Gauss-Newton Method for Box-constrained Parameter Identification of a Nonlinear Railway Suspension System
URI http://doi.org/10.36001/ijphm.2024.v15i2.3919
https://doaj.org/article/81fddbb55806431db543a85cc25cfad2
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2153-2648
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000694271
  issn: 2153-2648
  databaseCode: KQ8
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2153-2648
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000694271
  issn: 2153-2648
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2153-2648
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000694271
  issn: 2153-2648
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDBaK7tD1UGxth2WPQodd3djWw_KxHdoVAxoE3QK0J4OyJCxDlgR59HHbf9g_7C8ZKWWFb9thV4OwjI8G-VEgPzL2wcvgcuVdBtqITBprM2gFBkMJGJHBVS5e5lwO9MVIfr5W151VX9QTluSBE3B9UwTnrFXKUPIsnFVSgFFtW6o2gIvRNzd1p5hKMbiWZVWkkWBBSb0__j7_RqPnpTy-LdS4xGqf5HU62SiK9u-ynfV0Dg93MJl0Ms35C7a3oYj8JH3aS7blp_tstyMceMBWw8XsfvwDrT7Berl8_PkLgxWyOH4ZF0JzZKL8dHaftcT-aAmEd3wI1IeFMPI0nBs2t3V8FjjwQZLMgAW_gvHkDh74l_VyTt3taJFkzQ_Z6Pzs68eLbLM_IWtFoVdZ7bzIpVWF9h6rgjKUOQQw2qrKSel0ELIEG0jBXiDtapGradAKOYfTpQEQr9j2dDb1r2myG7C2cCDA11JWvg5BC6G8AiOFLWyP9f_g2MyTTEaD5UVEvonIN4R8E5FvCPkeOyW4n6xJ5jo-QOc3G-c3f3N-j-VPzvrHc9_8j3Pfsuf0WuobKap3bHu1WPv3SE5W9ij-h0fs2WgwPLn5DYah53k
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwELZQewAOvFd0ecgHrilN_Gh6LIiHkKgq2EpwisaxrS2Utmqb7bK_npkkQFdICK6WLUcz9sw3zsw3jB056W1DORuAjkUgY2MCSAUaQwlokcE2bf6Yc93Rlz15dafuForV33_fC3LFx_2H8W8qGI9k_U-o-hHG6ETyWdUKoXeFVXudbvueGsjhzc2ztYoq4E8W_-eAcp7-VbacDcfwPIfBYMG5nK-zzmuJTpFT8ljPZqae_vvI2Pi1795gayXM5O3iXGyyJTfcYqsL5IPbbNLF3fpPOOsCsuk0QHOHOJBf5y2lOWJZfjL6G6SEH6mNhLO8C5TJhYrgRXmvL9_7-Mhz4J2CdAMm_Ab6gzk889tsOqb8eJxREKPvsN752a_Ty6DswBCkItSzoGWdaEijQu0cxhWRjxrgIdZGNa2UVnshIzCeOPAFArcU0Z4GrRC1WB3FAOIHqwxHQ7dLteGA0YkFAa4lZdO1vNdCKKcglsKEpsaOX9WSjAuijQQDlFyaSS7NhKSZ5NJMSJo1dkLae5tNRNn5ACoiKe9dEofeWmOUigl7hdYoKSBWaRqp1IONaqzxpvsv7vvz-0v22AqNUJ5J2NxnldkkcwcIZmbmsDzCLy0p8Mw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proximal+Gauss-Newton+Method+for+Box-constrained+Parameter+Identification+of+a+Nonlinear+Railway+Suspension+System&rft.jtitle=International+journal+of+prognostics+and+health+management&rft.au=Bredies%2C+Kristian&rft.au=Chenchene%2C+Enis&rft.au=Fuchs%2C+Josef&rft.au=Luber%2C+Bernd&rft.date=2024-09-17&rft.issn=2153-2648&rft.eissn=2153-2648&rft.volume=15&rft.issue=2&rft_id=info:doi/10.36001%2Fijphm.2024.v15i2.3919&rft.externalDBID=n%2Fa&rft.externalDocID=10_36001_ijphm_2024_v15i2_3919
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2153-2648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2153-2648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2153-2648&client=summon