Detection and classification of pulmonary nodules using deep learning and swarm intelligence
Cancer diagnosis is usually an arduous task in medicine, especially when it comes to pulmonary cancer, which is one of the most deadly and hard to treat types of that disease. Early detecting pulmonary cancerous nodules drastically increases surviving chances but also makes it an even harder problem...
        Saved in:
      
    
          | Published in | Multimedia tools and applications Vol. 79; no. 21-22; pp. 15437 - 15465 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.06.2020
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1380-7501 1573-7721  | 
| DOI | 10.1007/s11042-019-7473-z | 
Cover
| Abstract | Cancer diagnosis is usually an arduous task in medicine, especially when it comes to pulmonary cancer, which is one of the most deadly and hard to treat types of that disease. Early detecting pulmonary cancerous nodules drastically increases surviving chances but also makes it an even harder problem to solve, as it mostly depends on a visual inspection of tomography scans. In order to help improving cancer detection and surviving rates, engineers and scientists have been developing computer-aided diagnosis systems, similar to the one presented in this paper. These systems are used as second opinions, to help health professionals during the diagnosis of numerous diseases. This work uses computational intelligence techniques to propose a new approach towards solving the problem of detecting pulmonary carcinogenic nodules in computed tomography scans. The applied technology consists of using Deep Learning and Swarm Intelligence to develop different nodule detection and classification models. We exploit seven different swarm intelligence algorithms and convolutional neural networks, prepared for biomedical image segmentation, to find and classify cancerous pulmonary nodules in the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) databases. The aim of this work is to use swarm intelligence to train convolutional neural networks and verify whether this approach brings more efficiency than the classic training algorithms, such as back-propagation and gradient descent methods. As main contribution, this work confirms the superiority of swarm-trained models over the back-propagation-based model for this application, as three out of the seven algorithms are proved to be superior regarding all four performance metrics, which are accuracy, precision, sensitivity, and specificity, as well as training time, where the best swarm-trained model operates 25% faster than the back-propagation model. The performed experiments show that the developed models can achieve up to 93.71% accuracy, 93.53% precision, 92.96% sensitivity, and 98.52% specificity. | 
    
|---|---|
| AbstractList | Cancer diagnosis is usually an arduous task in medicine, especially when it comes to pulmonary cancer, which is one of the most deadly and hard to treat types of that disease. Early detecting pulmonary cancerous nodules drastically increases surviving chances but also makes it an even harder problem to solve, as it mostly depends on a visual inspection of tomography scans. In order to help improving cancer detection and surviving rates, engineers and scientists have been developing computer-aided diagnosis systems, similar to the one presented in this paper. These systems are used as second opinions, to help health professionals during the diagnosis of numerous diseases. This work uses computational intelligence techniques to propose a new approach towards solving the problem of detecting pulmonary carcinogenic nodules in computed tomography scans. The applied technology consists of using Deep Learning and Swarm Intelligence to develop different nodule detection and classification models. We exploit seven different swarm intelligence algorithms and convolutional neural networks, prepared for biomedical image segmentation, to find and classify cancerous pulmonary nodules in the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) databases. The aim of this work is to use swarm intelligence to train convolutional neural networks and verify whether this approach brings more efficiency than the classic training algorithms, such as back-propagation and gradient descent methods. As main contribution, this work confirms the superiority of swarm-trained models over the back-propagation-based model for this application, as three out of the seven algorithms are proved to be superior regarding all four performance metrics, which are accuracy, precision, sensitivity, and specificity, as well as training time, where the best swarm-trained model operates 25% faster than the back-propagation model. The performed experiments show that the developed models can achieve up to 93.71% accuracy, 93.53% precision, 92.96% sensitivity, and 98.52% specificity. | 
    
| Author | de Pinho Pinheiro, Cesar Affonso de Macedo Mourelle, Luiza Nedjah, Nadia  | 
    
| Author_xml | – sequence: 1 givenname: Cesar Affonso surname: de Pinho Pinheiro fullname: de Pinho Pinheiro, Cesar Affonso organization: Department of Electronics Engineering and Telecommunications, Faculty of Engineering, State University of Rio de Janeiro – sequence: 2 givenname: Nadia surname: Nedjah fullname: Nedjah, Nadia email: nadia@eng.uerj.br organization: Department of Electronics Engineering and Telecommunications, Faculty of Engineering, State University of Rio de Janeiro – sequence: 3 givenname: Luiza surname: de Macedo Mourelle fullname: de Macedo Mourelle, Luiza organization: Department of Systems Engineering and Computation, Faculty of Engineering, State University of Rio de Janeiro  | 
    
| BookMark | eNp9kE9LAzEQxYMo2FY_gLeA59Vks2l2j1L_QsGL3oSQJrMlJU3WZBexn95sKwiC5pJJeL-ZeW-Kjn3wgNAFJVeUEHGdKCVVWRDaFKISrNgdoQnluRCipMe5ZjUpBCf0FE1T2hBC57ysJujtFnrQvQ0eK2-wdiol21qt9l-hxd3gtsGr-Il9MIODhIdk_RobgA47UNGPr5FNHypusfU9OGfX4DWcoZNWuQTn3_cMvd7fvSwei-Xzw9PiZlloRud90Rgm8mE678SMYFUNXLOyrTlv65XiwHhVU0N4BcBr1YAShDQrZhqhuSkbNkOXh75dDO8DpF5uwhB9HilL2pB6nn2PKnFQ6RhSitBKbfu9zz4q6yQlcoxSHqKUGZFjlHKXSfqL7KLd5kz-ZcoDk7LWryH-7PQ39AVDzYlk | 
    
| CitedBy_id | crossref_primary_10_3390_app13010377 crossref_primary_10_1007_s11517_022_02578_0 crossref_primary_10_3390_robotics13050066 crossref_primary_10_1155_2022_2058284 crossref_primary_10_1016_j_ins_2022_03_053 crossref_primary_10_1007_s40477_025_00983_3 crossref_primary_10_1016_j_jocs_2019_101049 crossref_primary_10_1007_s10462_024_10807_1 crossref_primary_10_1155_2022_3341924 crossref_primary_10_1016_j_patcog_2021_108309 crossref_primary_10_1111_exsy_13150 crossref_primary_10_3390_met13050839 crossref_primary_10_1109_ACCESS_2022_3233596 crossref_primary_10_1016_j_asoc_2021_107297 crossref_primary_10_1016_j_eswa_2024_126250 crossref_primary_10_1080_17517575_2020_1856423 crossref_primary_10_3934_mbe_2021208 crossref_primary_10_1007_s00521_021_05960_5 crossref_primary_10_1080_13682199_2023_2222992 crossref_primary_10_3934_mbe_2022017 crossref_primary_10_1007_s11042_020_08618_x crossref_primary_10_32604_cmc_2022_024989  | 
    
| Cites_doi | 10.1109/CVPR.2016.90 10.1016/j.artmed.2010.04.011 10.1007/978-3-319-98446-9_16 10.17485/ijst/2012/v5i1.7 10.4018/jsir.2010010101 10.1007/978-3-642-13495-1_44 10.1016/S0933-3657(01)00094-X 10.1016/j.neunet.2007.12.031 10.1002/ima.22132 10.1016/j.bspc.2015.05.014 10.1177/003754970107600201 10.1118/1.3528204 10.1109/SNPD.2017.8022653 10.1007/s10898-007-9149-x 10.1007/978-3-319-24574-4_28 10.2528/PIER10090105 10.1109/CVPR.2015.7298594  | 
    
| ContentType | Journal Article | 
    
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Springer Science+Business Media, LLC, part of Springer Nature 2019.  | 
    
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019.  | 
    
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U  | 
    
| DOI | 10.1007/s11042-019-7473-z | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection (Proquest) ProQuest Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (Proquest) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library (Proquest) Research Library (Corporate) Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic  | 
    
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni)  | 
    
| DatabaseTitleList | ABI/INFORM Global (Corporate)  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| EISSN | 1573-7721 | 
    
| EndPage | 15465 | 
    
| ExternalDocumentID | 10_1007_s11042_019_7473_z | 
    
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI Q9U  | 
    
| ID | FETCH-LOGICAL-c316t-9d377773c1653d7348e5c32f855f8ba5e35481d054ee58a9ea7009b3d97c5d293 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 1380-7501 | 
    
| IngestDate | Fri Jul 25 23:44:31 EDT 2025 Wed Oct 01 02:50:33 EDT 2025 Thu Apr 24 22:59:37 EDT 2025 Fri Feb 21 02:37:37 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 21-22 | 
    
| Keywords | Deep learning Swarm intelligence Nodule detection Convolutional neural networks  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c316t-9d377773c1653d7348e5c32f855f8ba5e35481d054ee58a9ea7009b3d97c5d293 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 2190865019 | 
    
| PQPubID | 54626 | 
    
| PageCount | 29 | 
    
| ParticipantIDs | proquest_journals_2190865019 crossref_citationtrail_10_1007_s11042_019_7473_z crossref_primary_10_1007_s11042_019_7473_z springer_journals_10_1007_s11042_019_7473_z  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20200600 2020-6-00 20200601  | 
    
| PublicationDateYYYYMMDD | 2020-06-01 | 
    
| PublicationDate_xml | – month: 6 year: 2020 text: 20200600  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York – name: Dordrecht  | 
    
| PublicationSubtitle | An International Journal | 
    
| PublicationTitle | Multimedia tools and applications | 
    
| PublicationTitleAbbrev | Multimed Tools Appl | 
    
| PublicationYear | 2020 | 
    
| Publisher | Springer US Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V  | 
    
| References | Ritthipakdee T, Premasathian J (2017) Firefly mating algorithm for continuous optimization problems 2017 Morais R, Mourelle LM, Nedjah N (2018) Hitchcock birds inspired algorithm: 10th international conference, ICCCI 2018, Bristol, UK, September 5-7, 2018, Proceedings, Part ii, pp 169–180, 01 WangSZhangYDongZDuSJiGYanJYangJWangQFengCPhillipsPFeed-forward neural network optimized by hybridization of pso and abc for abnormal brain detectionInt J Imaging Syst Technol201525215316410.1002/ima.22132 Mhetre MRR, Sache MRG Detection of lung cancer nodule on ct scan images by using region growing method KarabogaDBasturkBA powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithmJ Global Optim2007393459471234617810.1007/s10898-007-9149-x Chon A, Balachandra N, Lu P (2017) Deep convolutional neural networks for lung cancer detection. Standford University Ritchie H, Roser M (2019) Causes of death. [Online; Accessed 10 Oct 2018] MazurowskiMAHabasPAZuradaJMLoJYBakerJATourassiGDTraining neural network classifiers for medical decision making: the effects of imbalanced datasets on classification performanceNeur Netw2008212-342743610.1016/j.neunet.2007.12.031 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778 Miah MBA, Yousuf MA (2015) Detection of lung cancer from ct image using image processing and neural network. In: 2015 International conference on electrical engineering and information communication technology (ICEEICT), pp 1–6 LeeMCBoroczkyLSungur-StasikKCannADBorczukACKawutSMPowellCAComputer-aided diagnosis of pulmonary nodules using a two-step approach for feature selection and classifier ensemble constructionArtif Intell Med2010501435310.1016/j.artmed.2010.04.011 SivakumarSChandrasekarCLung nodule detection using fuzzy clustering and support vector machinesInt J Eng Technol201351179185 ZhangYWangSPhillipsPDongZJiGYangJDetection of alzheimer’s disease and mild cognitive impairment based on structural volumetric mr images using 3d-dwt and wta-ksvm trained by psotvacBiomed Signal Process Control201521587310.1016/j.bspc.2015.05.014 Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9 GeemZWKimJHLoganathanGVA new heuristic optimization algorithm: harmony searchSimulation2001762606810.1177/003754970107600201 ArmatoSGIIIMcLennanGBidautLMcNitt-GrayMFMeyerCRReevesAPZhaoBAberleDRHenschkeCIHoffmanEAThe lung image database consortium (lidc) and image database resource initiative (idri): a completed reference database of lung nodules on ct scansMed Phys201138291593110.1118/1.3528204 Tan Y, Zhu Y (2010) Fireworks algorithm for optimization. In: Proceedings of the first international conference on advances in swarm intelligence - volume part I, ICSI’10. Springer, Berlin, pp 355–364 Kuan K, Ravaut M, Manek G, Chen H, Lin J, Nazir B, Chen C, Howe TC, Zeng Z, Chandrasekhar V (2017) Deep learning for lung cancer detection: tackling the kaggle data science bowl 2017 challenge. arXiv:1705.09435 PassinoKMBacterial foraging optimizationInt J Swarm Intell Res201011116164149610.4018/jsir.2010010101 Kennedy J, Eberhart R (1995) Particle swarm optimization Jayanthi SK, Preetha K (2016) Breast cancer detection and classification using artificial neural network with particle swarm optimization. Int J Adv Res Basic Eng Sci Technol, 2 Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 234–241 ZhangYWangSWuLA novel method for magnetic resonance brain image classification based on adaptive chaotic psoProg Electromagn Res201010932534310.2528/PIER10090105 Fabian Isensee (2018) U-net. [Online; Accessed 10 Oct 2018] National Institutes of Health (2011) Cancer costs projected to reach at least 158 billion in 2020. [Online; Accessed 10 Oct 2018] ZhouZ-HJiangYYangY-BChenS-FLung cancer cell identification based on artificial neural network ensemblesArtif Intell Med2002241253610.1016/S0933-3657(01)00094-X Khajehzadeh M, Eslami M (2012) Gravitational search algorithm for optimization of retaining structures. Indian J Sci Technol, 5(1) American Society of Clinical Oncology (2018) Biopsy. [Online; Accessed 10 Oct 2018] ZW Geem (7473_CR5) 2001; 76 7473_CR15 Y Zhang (7473_CR27) 2015; 21 7473_CR17 7473_CR16 7473_CR18 7473_CR7 7473_CR8 7473_CR6 7473_CR11 SGIII Armato (7473_CR2) 2011; 38 7473_CR10 MA Mazurowski (7473_CR14) 2008; 21 7473_CR12 MC Lee (7473_CR13) 2010; 50 7473_CR3 7473_CR4 7473_CR1 KM Passino (7473_CR19) 2010; 1 S Sivakumar (7473_CR22) 2013; 5 Z-H Zhou (7473_CR28) 2002; 24 D Karaboga (7473_CR9) 2007; 39 Y Zhang (7473_CR26) 2010; 109 7473_CR20 S Wang (7473_CR25) 2015; 25 7473_CR21 7473_CR24 7473_CR23  | 
    
| References_xml | – reference: Ritchie H, Roser M (2019) Causes of death. [Online; Accessed 10 Oct 2018] – reference: Kennedy J, Eberhart R (1995) Particle swarm optimization – reference: Fabian Isensee (2018) U-net. [Online; Accessed 10 Oct 2018] – reference: KarabogaDBasturkBA powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithmJ Global Optim2007393459471234617810.1007/s10898-007-9149-x – reference: ZhangYWangSWuLA novel method for magnetic resonance brain image classification based on adaptive chaotic psoProg Electromagn Res201010932534310.2528/PIER10090105 – reference: Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 234–241 – reference: ZhangYWangSPhillipsPDongZJiGYangJDetection of alzheimer’s disease and mild cognitive impairment based on structural volumetric mr images using 3d-dwt and wta-ksvm trained by psotvacBiomed Signal Process Control201521587310.1016/j.bspc.2015.05.014 – reference: Mhetre MRR, Sache MRG Detection of lung cancer nodule on ct scan images by using region growing method – reference: Ritthipakdee T, Premasathian J (2017) Firefly mating algorithm for continuous optimization problems 2017 – reference: He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778 – reference: Kuan K, Ravaut M, Manek G, Chen H, Lin J, Nazir B, Chen C, Howe TC, Zeng Z, Chandrasekhar V (2017) Deep learning for lung cancer detection: tackling the kaggle data science bowl 2017 challenge. arXiv:1705.09435 – reference: MazurowskiMAHabasPAZuradaJMLoJYBakerJATourassiGDTraining neural network classifiers for medical decision making: the effects of imbalanced datasets on classification performanceNeur Netw2008212-342743610.1016/j.neunet.2007.12.031 – reference: American Society of Clinical Oncology (2018) Biopsy. [Online; Accessed 10 Oct 2018] – reference: Morais R, Mourelle LM, Nedjah N (2018) Hitchcock birds inspired algorithm: 10th international conference, ICCCI 2018, Bristol, UK, September 5-7, 2018, Proceedings, Part ii, pp 169–180, 01 – reference: ZhouZ-HJiangYYangY-BChenS-FLung cancer cell identification based on artificial neural network ensemblesArtif Intell Med2002241253610.1016/S0933-3657(01)00094-X – reference: Miah MBA, Yousuf MA (2015) Detection of lung cancer from ct image using image processing and neural network. In: 2015 International conference on electrical engineering and information communication technology (ICEEICT), pp 1–6 – reference: National Institutes of Health (2011) Cancer costs projected to reach at least 158 billion in 2020. [Online; Accessed 10 Oct 2018] – reference: WangSZhangYDongZDuSJiGYanJYangJWangQFengCPhillipsPFeed-forward neural network optimized by hybridization of pso and abc for abnormal brain detectionInt J Imaging Syst Technol201525215316410.1002/ima.22132 – reference: ArmatoSGIIIMcLennanGBidautLMcNitt-GrayMFMeyerCRReevesAPZhaoBAberleDRHenschkeCIHoffmanEAThe lung image database consortium (lidc) and image database resource initiative (idri): a completed reference database of lung nodules on ct scansMed Phys201138291593110.1118/1.3528204 – reference: LeeMCBoroczkyLSungur-StasikKCannADBorczukACKawutSMPowellCAComputer-aided diagnosis of pulmonary nodules using a two-step approach for feature selection and classifier ensemble constructionArtif Intell Med2010501435310.1016/j.artmed.2010.04.011 – reference: GeemZWKimJHLoganathanGVA new heuristic optimization algorithm: harmony searchSimulation2001762606810.1177/003754970107600201 – reference: PassinoKMBacterial foraging optimizationInt J Swarm Intell Res201011116164149610.4018/jsir.2010010101 – reference: Chon A, Balachandra N, Lu P (2017) Deep convolutional neural networks for lung cancer detection. Standford University – reference: Khajehzadeh M, Eslami M (2012) Gravitational search algorithm for optimization of retaining structures. Indian J Sci Technol, 5(1) – reference: SivakumarSChandrasekarCLung nodule detection using fuzzy clustering and support vector machinesInt J Eng Technol201351179185 – reference: Jayanthi SK, Preetha K (2016) Breast cancer detection and classification using artificial neural network with particle swarm optimization. Int J Adv Res Basic Eng Sci Technol, 2 – reference: Tan Y, Zhu Y (2010) Fireworks algorithm for optimization. In: Proceedings of the first international conference on advances in swarm intelligence - volume part I, ICSI’10. Springer, Berlin, pp 355–364 – reference: Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9 – ident: 7473_CR18 – ident: 7473_CR7 doi: 10.1109/CVPR.2016.90 – ident: 7473_CR3 – ident: 7473_CR12 – volume: 50 start-page: 43 issue: 1 year: 2010 ident: 7473_CR13 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2010.04.011 – ident: 7473_CR16 – ident: 7473_CR17 doi: 10.1007/978-3-319-98446-9_16 – ident: 7473_CR11 doi: 10.17485/ijst/2012/v5i1.7 – volume: 1 start-page: 1 issue: 1 year: 2010 ident: 7473_CR19 publication-title: Int J Swarm Intell Res doi: 10.4018/jsir.2010010101 – ident: 7473_CR24 doi: 10.1007/978-3-642-13495-1_44 – ident: 7473_CR1 – volume: 24 start-page: 25 issue: 1 year: 2002 ident: 7473_CR28 publication-title: Artif Intell Med doi: 10.1016/S0933-3657(01)00094-X – volume: 21 start-page: 427 issue: 2-3 year: 2008 ident: 7473_CR14 publication-title: Neur Netw doi: 10.1016/j.neunet.2007.12.031 – volume: 25 start-page: 153 issue: 2 year: 2015 ident: 7473_CR25 publication-title: Int J Imaging Syst Technol doi: 10.1002/ima.22132 – ident: 7473_CR8 – ident: 7473_CR6 – ident: 7473_CR4 – ident: 7473_CR15 – volume: 21 start-page: 58 year: 2015 ident: 7473_CR27 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2015.05.014 – volume: 76 start-page: 60 issue: 2 year: 2001 ident: 7473_CR5 publication-title: Simulation doi: 10.1177/003754970107600201 – volume: 38 start-page: 915 issue: 2 year: 2011 ident: 7473_CR2 publication-title: Med Phys doi: 10.1118/1.3528204 – ident: 7473_CR10 – ident: 7473_CR20 doi: 10.1109/SNPD.2017.8022653 – volume: 39 start-page: 459 issue: 3 year: 2007 ident: 7473_CR9 publication-title: J Global Optim doi: 10.1007/s10898-007-9149-x – ident: 7473_CR21 doi: 10.1007/978-3-319-24574-4_28 – volume: 5 start-page: 179 issue: 1 year: 2013 ident: 7473_CR22 publication-title: Int J Eng Technol – volume: 109 start-page: 325 year: 2010 ident: 7473_CR26 publication-title: Prog Electromagn Res doi: 10.2528/PIER10090105 – ident: 7473_CR23 doi: 10.1109/CVPR.2015.7298594  | 
    
| SSID | ssj0016524 | 
    
| Score | 2.3734944 | 
    
| Snippet | Cancer diagnosis is usually an arduous task in medicine, especially when it comes to pulmonary cancer, which is one of the most deadly and hard to treat types... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 15437 | 
    
| SubjectTerms | Accuracy Algorithms Artificial intelligence Artificial neural networks Back propagation Cancer Carcinogens Computed tomography Computer Communication Networks Computer Science Consortia Data Structures and Information Theory Deep learning Diagnosis Image classification Image databases Image segmentation Lung cancer Medical imaging Multimedia Information Systems Neural networks Nodules Performance measurement Propagation Sensitivity Special Purpose and Application-Based Systems Swarm intelligence Tomography  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFD7M-aIP3sXplDz4pATbptnaBxFvQwSHiMIehJLrEGY3d0Hcr_ekpm4K2tc0KT0nly85J98HcGijVCqVSBrHgaHYKQIqjeU0SoQTe4l5KN3RwF27cfMU33Z4pwLt8i6MS6ss58RiotZ95c7IT3BkIfrmiEjOBm_UqUa56GopoSG8tII-LSjGFmAxcsxYVVi8uG7fP3zHFRrcy9wmAcW1MizjnMVlutBdVcEPUITYjE5_rlQz-PkrYlosRK01WPEIkpx_uXwdKibfgNVSnYH4wboBy3NUg5vwfGXGRdZVTkSuiXKg2WUJFY4hfUsGkx7-ohh-kLyvJz0zIi4lvku0MQPitSW6Rd3Ruxi-kpc5Ls8teGpdP17eUK-sQBULG2OaatbEhyk0CNOO4MZwxSKbcG4TKbhhuJEJNcI5Y3giUiOaiMUk02lTcY0IYRuqeT83O0BU0-IuV1tESja2CZOBQQzH0pA1JIIjUYOgtGKmPO24U7_oZTPCZGf4DA2fOcNn0xocfVcZfHFu_PdyvXRN5offKJt1lhocl-6aFf_Z2O7_je3BUuS228UhTB2q4-HE7CMmGcsD39E-AWlO3T4 priority: 102 providerName: ProQuest  | 
    
| Title | Detection and classification of pulmonary nodules using deep learning and swarm intelligence | 
    
| URI | https://link.springer.com/article/10.1007/s11042-019-7473-z https://www.proquest.com/docview/2190865019  | 
    
| Volume | 79 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-7721 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: ADMLS dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-7721 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-7721 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_UveiDH1NxOkcefFICbdNs7ePUfaA4RBxMEErzNYTZja1D9K_30rVORQX7kocmebi7JL_LXX4HcGK8UEgZCOr7jqZoFA4V2nDqBbEt9uJzV9irgZtevdv3rwZ8kL_jnhXZ7kVIMtupl4_dXPuUBCEJRQjM6NsqlLhl80Ij7nvNj9BBneeVbAOH4nHoFqHMn6b4ehgtEea3oGh21rS3YTMHiaS50OoOrOikDFtFAQaSr8cybHxiE9yFx0udZolVCYkTRaTFxTYRKJM9GRsymY_Q6OLpK0nGaj7SM2Kz3odEaT0hefmIYTZ29hJPn8nTJ7rOPei3W_cXXZoXT6CSufWUhoo18GMSBcKU5bDRXDLPBJybQMRcM_RVXIWITWsexKGOGwi3BFNhQ3KFIGAf1pJxog-AyIZBR1YZBEPGNwETjkaYxkKX1QXin7gCTiHFSObM4rbAxShaciJbwUco-MgKPnqrwOnHkMmCVuOvztVCNVG-wmYR7rTojaF-wwqcFepa_v51ssN_9T6Cdc862Nm1SxXW0ulcHyMKSUUNVoN2pwalZufhuoXteat3e1fLbPEdRBPX3g | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hOJQeSgutumXb-gAXKoskjrPJYVUBu2h5raoKJA6Vgp-o0jab7kMIflx_G-PgEIoEN3JNbCnjsecbz-MD2LBRJpVKJY3jwFBUioBKYzmNUuHIXmIeSnc1cDJMBmfx4Tk_X4B_dS2MS6usz8TqoNZj5e7It3FnIfrmiEi-l3-pY41y0dWaQkN4agXdrVqM-cKOI3N9hS7ctHvQw_XejKL9_unegHqWAapYmMxoplkHH6bChDPtmr0YrlhkU85tKgU3DEF9qBHaGMNTkRnRQVwimc46iuvINWNCE7AUszhD529ptz_88fM-jpFwT6ubBhRtc1jHVavivdCVxuAPUYT0jN78bxkbuPsoQlsZvv238MYjVrJzp2LvYMEUq7BSs0EQfziswusHrQ3X4FfPzKosr4KIQhPlQLrLSqoUgYwtKecjFKmYXJNirOcjMyUuBf-SaGNK4rksLqux0ysx-UN-P-gd-h7OXkTGH2CxGBfmIxDVsehVa4vIzMY2ZTIwiBlZFrJEIhgTLQhqKebKtzl3bBujvGnQ7ASfo-BzJ_j8pgVb90PKux4fz33crpcm99t9mjfK2YJv9XI1r5-c7NPzk32FV4PTk-P8-GB4tA7LkXP1qwugNizOJnPzGfHQTH7xSkfg4qX1_BaoFBjP | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB6tQKrgUFoKYgulPtBLkUUSx3kcEEIsy_Io4lAkDkghfq2QttntPoTgp_HrmMkmLFQqN3JNbCnjz_Znz8w3AFsuSJXWieJh6FmOoPC4sk7yIMmp2EsofUVXA7_Oo85leHIlrxrwWOfCUFhlvSaWC7Xpa7oj38GZhexbIiPZcVVYxEWrvTf4y6mCFHla63IaU4ic2vs7PL6Ndo9bONY_gqB9-Pugw6sKA1wLPxrz1IgYH6H9SApDQi9WahG4REqXqFxagYTeN0hrrJVJnto8Rk6ihEljLU1AQky4_M_HpOJOWerto2cPRiSrgrqJx3FX9muPapm251NSDP4KRzIv-MPrPXFGdP_xzZZbXvsTfKy4KtufguszNGyxDEt1HQhWLQvLsPhC1PALXLfsuIzvKlheGKaJnlM8UgkB1ndsMOmhAfPhPSv6ZtKzI0bB911mrB2wqopFt2w7usuHf9jtC9XQFbh8FwuvwlzRL-waMB07PE8bh5zMhS4RyrPIFkXqi0ghDcub4NVWzHQlcE51NnrZTJqZDJ-h4TMyfPbQhJ_PTQZTdY-3Pt6ohyarJvoom8GyCdv1cM1e_7ezr2939h0-ILqzs-Pz03VYCOiMX978bMDceDix35AIjdVmiTgGN-8N8SfpcBZp | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+and+classification+of+pulmonary+nodules+using+deep+learning+and+swarm+intelligence&rft.jtitle=Multimedia+tools+and+applications&rft.au=de+Pinho+Pinheiro%2C+Cesar+Affonso&rft.au=Nedjah%2C+Nadia&rft.au=de+Macedo+Mourelle%2C+Luiza&rft.date=2020-06-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=79&rft.issue=21-22&rft.spage=15437&rft.epage=15465&rft_id=info:doi/10.1007%2Fs11042-019-7473-z&rft.externalDocID=10_1007_s11042_019_7473_z | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |