Detection and classification of pulmonary nodules using deep learning and swarm intelligence

Cancer diagnosis is usually an arduous task in medicine, especially when it comes to pulmonary cancer, which is one of the most deadly and hard to treat types of that disease. Early detecting pulmonary cancerous nodules drastically increases surviving chances but also makes it an even harder problem...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 79; no. 21-22; pp. 15437 - 15465
Main Authors de Pinho Pinheiro, Cesar Affonso, Nedjah, Nadia, de Macedo Mourelle, Luiza
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1380-7501
1573-7721
DOI10.1007/s11042-019-7473-z

Cover

Abstract Cancer diagnosis is usually an arduous task in medicine, especially when it comes to pulmonary cancer, which is one of the most deadly and hard to treat types of that disease. Early detecting pulmonary cancerous nodules drastically increases surviving chances but also makes it an even harder problem to solve, as it mostly depends on a visual inspection of tomography scans. In order to help improving cancer detection and surviving rates, engineers and scientists have been developing computer-aided diagnosis systems, similar to the one presented in this paper. These systems are used as second opinions, to help health professionals during the diagnosis of numerous diseases. This work uses computational intelligence techniques to propose a new approach towards solving the problem of detecting pulmonary carcinogenic nodules in computed tomography scans. The applied technology consists of using Deep Learning and Swarm Intelligence to develop different nodule detection and classification models. We exploit seven different swarm intelligence algorithms and convolutional neural networks, prepared for biomedical image segmentation, to find and classify cancerous pulmonary nodules in the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) databases. The aim of this work is to use swarm intelligence to train convolutional neural networks and verify whether this approach brings more efficiency than the classic training algorithms, such as back-propagation and gradient descent methods. As main contribution, this work confirms the superiority of swarm-trained models over the back-propagation-based model for this application, as three out of the seven algorithms are proved to be superior regarding all four performance metrics, which are accuracy, precision, sensitivity, and specificity, as well as training time, where the best swarm-trained model operates 25% faster than the back-propagation model. The performed experiments show that the developed models can achieve up to 93.71% accuracy, 93.53% precision, 92.96% sensitivity, and 98.52% specificity.
AbstractList Cancer diagnosis is usually an arduous task in medicine, especially when it comes to pulmonary cancer, which is one of the most deadly and hard to treat types of that disease. Early detecting pulmonary cancerous nodules drastically increases surviving chances but also makes it an even harder problem to solve, as it mostly depends on a visual inspection of tomography scans. In order to help improving cancer detection and surviving rates, engineers and scientists have been developing computer-aided diagnosis systems, similar to the one presented in this paper. These systems are used as second opinions, to help health professionals during the diagnosis of numerous diseases. This work uses computational intelligence techniques to propose a new approach towards solving the problem of detecting pulmonary carcinogenic nodules in computed tomography scans. The applied technology consists of using Deep Learning and Swarm Intelligence to develop different nodule detection and classification models. We exploit seven different swarm intelligence algorithms and convolutional neural networks, prepared for biomedical image segmentation, to find and classify cancerous pulmonary nodules in the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) databases. The aim of this work is to use swarm intelligence to train convolutional neural networks and verify whether this approach brings more efficiency than the classic training algorithms, such as back-propagation and gradient descent methods. As main contribution, this work confirms the superiority of swarm-trained models over the back-propagation-based model for this application, as three out of the seven algorithms are proved to be superior regarding all four performance metrics, which are accuracy, precision, sensitivity, and specificity, as well as training time, where the best swarm-trained model operates 25% faster than the back-propagation model. The performed experiments show that the developed models can achieve up to 93.71% accuracy, 93.53% precision, 92.96% sensitivity, and 98.52% specificity.
Author de Pinho Pinheiro, Cesar Affonso
de Macedo Mourelle, Luiza
Nedjah, Nadia
Author_xml – sequence: 1
  givenname: Cesar Affonso
  surname: de Pinho Pinheiro
  fullname: de Pinho Pinheiro, Cesar Affonso
  organization: Department of Electronics Engineering and Telecommunications, Faculty of Engineering, State University of Rio de Janeiro
– sequence: 2
  givenname: Nadia
  surname: Nedjah
  fullname: Nedjah, Nadia
  email: nadia@eng.uerj.br
  organization: Department of Electronics Engineering and Telecommunications, Faculty of Engineering, State University of Rio de Janeiro
– sequence: 3
  givenname: Luiza
  surname: de Macedo Mourelle
  fullname: de Macedo Mourelle, Luiza
  organization: Department of Systems Engineering and Computation, Faculty of Engineering, State University of Rio de Janeiro
BookMark eNp9kE9LAzEQxYMo2FY_gLeA59Vks2l2j1L_QsGL3oSQJrMlJU3WZBexn95sKwiC5pJJeL-ZeW-Kjn3wgNAFJVeUEHGdKCVVWRDaFKISrNgdoQnluRCipMe5ZjUpBCf0FE1T2hBC57ysJujtFnrQvQ0eK2-wdiol21qt9l-hxd3gtsGr-Il9MIODhIdk_RobgA47UNGPr5FNHypusfU9OGfX4DWcoZNWuQTn3_cMvd7fvSwei-Xzw9PiZlloRud90Rgm8mE678SMYFUNXLOyrTlv65XiwHhVU0N4BcBr1YAShDQrZhqhuSkbNkOXh75dDO8DpF5uwhB9HilL2pB6nn2PKnFQ6RhSitBKbfu9zz4q6yQlcoxSHqKUGZFjlHKXSfqL7KLd5kz-ZcoDk7LWryH-7PQ39AVDzYlk
CitedBy_id crossref_primary_10_3390_app13010377
crossref_primary_10_1007_s11517_022_02578_0
crossref_primary_10_3390_robotics13050066
crossref_primary_10_1155_2022_2058284
crossref_primary_10_1016_j_ins_2022_03_053
crossref_primary_10_1007_s40477_025_00983_3
crossref_primary_10_1016_j_jocs_2019_101049
crossref_primary_10_1007_s10462_024_10807_1
crossref_primary_10_1155_2022_3341924
crossref_primary_10_1016_j_patcog_2021_108309
crossref_primary_10_1111_exsy_13150
crossref_primary_10_3390_met13050839
crossref_primary_10_1109_ACCESS_2022_3233596
crossref_primary_10_1016_j_asoc_2021_107297
crossref_primary_10_1016_j_eswa_2024_126250
crossref_primary_10_1080_17517575_2020_1856423
crossref_primary_10_3934_mbe_2021208
crossref_primary_10_1007_s00521_021_05960_5
crossref_primary_10_1080_13682199_2023_2222992
crossref_primary_10_3934_mbe_2022017
crossref_primary_10_1007_s11042_020_08618_x
crossref_primary_10_32604_cmc_2022_024989
Cites_doi 10.1109/CVPR.2016.90
10.1016/j.artmed.2010.04.011
10.1007/978-3-319-98446-9_16
10.17485/ijst/2012/v5i1.7
10.4018/jsir.2010010101
10.1007/978-3-642-13495-1_44
10.1016/S0933-3657(01)00094-X
10.1016/j.neunet.2007.12.031
10.1002/ima.22132
10.1016/j.bspc.2015.05.014
10.1177/003754970107600201
10.1118/1.3528204
10.1109/SNPD.2017.8022653
10.1007/s10898-007-9149-x
10.1007/978-3-319-24574-4_28
10.2528/PIER10090105
10.1109/CVPR.2015.7298594
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Springer Science+Business Media, LLC, part of Springer Nature 2019.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2019.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-019-7473-z
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection (Proquest)
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (Proquest)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library (Proquest)
Research Library (Corporate)
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 15465
ExternalDocumentID 10_1007_s11042_019_7473_z
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c316t-9d377773c1653d7348e5c32f855f8ba5e35481d054ee58a9ea7009b3d97c5d293
IEDL.DBID U2A
ISSN 1380-7501
IngestDate Fri Jul 25 23:44:31 EDT 2025
Wed Oct 01 02:50:33 EDT 2025
Thu Apr 24 22:59:37 EDT 2025
Fri Feb 21 02:37:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 21-22
Keywords Deep learning
Swarm intelligence
Nodule detection
Convolutional neural networks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-9d377773c1653d7348e5c32f855f8ba5e35481d054ee58a9ea7009b3d97c5d293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2190865019
PQPubID 54626
PageCount 29
ParticipantIDs proquest_journals_2190865019
crossref_citationtrail_10_1007_s11042_019_7473_z
crossref_primary_10_1007_s11042_019_7473_z
springer_journals_10_1007_s11042_019_7473_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200600
2020-6-00
20200601
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 6
  year: 2020
  text: 20200600
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Ritthipakdee T, Premasathian J (2017) Firefly mating algorithm for continuous optimization problems 2017
Morais R, Mourelle LM, Nedjah N (2018) Hitchcock birds inspired algorithm: 10th international conference, ICCCI 2018, Bristol, UK, September 5-7, 2018, Proceedings, Part ii, pp 169–180, 01
WangSZhangYDongZDuSJiGYanJYangJWangQFengCPhillipsPFeed-forward neural network optimized by hybridization of pso and abc for abnormal brain detectionInt J Imaging Syst Technol201525215316410.1002/ima.22132
Mhetre MRR, Sache MRG Detection of lung cancer nodule on ct scan images by using region growing method
KarabogaDBasturkBA powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithmJ Global Optim2007393459471234617810.1007/s10898-007-9149-x
Chon A, Balachandra N, Lu P (2017) Deep convolutional neural networks for lung cancer detection. Standford University
Ritchie H, Roser M (2019) Causes of death. [Online; Accessed 10 Oct 2018]
MazurowskiMAHabasPAZuradaJMLoJYBakerJATourassiGDTraining neural network classifiers for medical decision making: the effects of imbalanced datasets on classification performanceNeur Netw2008212-342743610.1016/j.neunet.2007.12.031
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778
Miah MBA, Yousuf MA (2015) Detection of lung cancer from ct image using image processing and neural network. In: 2015 International conference on electrical engineering and information communication technology (ICEEICT), pp 1–6
LeeMCBoroczkyLSungur-StasikKCannADBorczukACKawutSMPowellCAComputer-aided diagnosis of pulmonary nodules using a two-step approach for feature selection and classifier ensemble constructionArtif Intell Med2010501435310.1016/j.artmed.2010.04.011
SivakumarSChandrasekarCLung nodule detection using fuzzy clustering and support vector machinesInt J Eng Technol201351179185
ZhangYWangSPhillipsPDongZJiGYangJDetection of alzheimer’s disease and mild cognitive impairment based on structural volumetric mr images using 3d-dwt and wta-ksvm trained by psotvacBiomed Signal Process Control201521587310.1016/j.bspc.2015.05.014
Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9
GeemZWKimJHLoganathanGVA new heuristic optimization algorithm: harmony searchSimulation2001762606810.1177/003754970107600201
ArmatoSGIIIMcLennanGBidautLMcNitt-GrayMFMeyerCRReevesAPZhaoBAberleDRHenschkeCIHoffmanEAThe lung image database consortium (lidc) and image database resource initiative (idri): a completed reference database of lung nodules on ct scansMed Phys201138291593110.1118/1.3528204
Tan Y, Zhu Y (2010) Fireworks algorithm for optimization. In: Proceedings of the first international conference on advances in swarm intelligence - volume part I, ICSI’10. Springer, Berlin, pp 355–364
Kuan K, Ravaut M, Manek G, Chen H, Lin J, Nazir B, Chen C, Howe TC, Zeng Z, Chandrasekhar V (2017) Deep learning for lung cancer detection: tackling the kaggle data science bowl 2017 challenge. arXiv:1705.09435
PassinoKMBacterial foraging optimizationInt J Swarm Intell Res201011116164149610.4018/jsir.2010010101
Kennedy J, Eberhart R (1995) Particle swarm optimization
Jayanthi SK, Preetha K (2016) Breast cancer detection and classification using artificial neural network with particle swarm optimization. Int J Adv Res Basic Eng Sci Technol, 2
Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 234–241
ZhangYWangSWuLA novel method for magnetic resonance brain image classification based on adaptive chaotic psoProg Electromagn Res201010932534310.2528/PIER10090105
Fabian Isensee (2018) U-net. [Online; Accessed 10 Oct 2018]
National Institutes of Health (2011) Cancer costs projected to reach at least 158 billion in 2020. [Online; Accessed 10 Oct 2018]
ZhouZ-HJiangYYangY-BChenS-FLung cancer cell identification based on artificial neural network ensemblesArtif Intell Med2002241253610.1016/S0933-3657(01)00094-X
Khajehzadeh M, Eslami M (2012) Gravitational search algorithm for optimization of retaining structures. Indian J Sci Technol, 5(1)
American Society of Clinical Oncology (2018) Biopsy. [Online; Accessed 10 Oct 2018]
ZW Geem (7473_CR5) 2001; 76
7473_CR15
Y Zhang (7473_CR27) 2015; 21
7473_CR17
7473_CR16
7473_CR18
7473_CR7
7473_CR8
7473_CR6
7473_CR11
SGIII Armato (7473_CR2) 2011; 38
7473_CR10
MA Mazurowski (7473_CR14) 2008; 21
7473_CR12
MC Lee (7473_CR13) 2010; 50
7473_CR3
7473_CR4
7473_CR1
KM Passino (7473_CR19) 2010; 1
S Sivakumar (7473_CR22) 2013; 5
Z-H Zhou (7473_CR28) 2002; 24
D Karaboga (7473_CR9) 2007; 39
Y Zhang (7473_CR26) 2010; 109
7473_CR20
S Wang (7473_CR25) 2015; 25
7473_CR21
7473_CR24
7473_CR23
References_xml – reference: Ritchie H, Roser M (2019) Causes of death. [Online; Accessed 10 Oct 2018]
– reference: Kennedy J, Eberhart R (1995) Particle swarm optimization
– reference: Fabian Isensee (2018) U-net. [Online; Accessed 10 Oct 2018]
– reference: KarabogaDBasturkBA powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithmJ Global Optim2007393459471234617810.1007/s10898-007-9149-x
– reference: ZhangYWangSWuLA novel method for magnetic resonance brain image classification based on adaptive chaotic psoProg Electromagn Res201010932534310.2528/PIER10090105
– reference: Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 234–241
– reference: ZhangYWangSPhillipsPDongZJiGYangJDetection of alzheimer’s disease and mild cognitive impairment based on structural volumetric mr images using 3d-dwt and wta-ksvm trained by psotvacBiomed Signal Process Control201521587310.1016/j.bspc.2015.05.014
– reference: Mhetre MRR, Sache MRG Detection of lung cancer nodule on ct scan images by using region growing method
– reference: Ritthipakdee T, Premasathian J (2017) Firefly mating algorithm for continuous optimization problems 2017
– reference: He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778
– reference: Kuan K, Ravaut M, Manek G, Chen H, Lin J, Nazir B, Chen C, Howe TC, Zeng Z, Chandrasekhar V (2017) Deep learning for lung cancer detection: tackling the kaggle data science bowl 2017 challenge. arXiv:1705.09435
– reference: MazurowskiMAHabasPAZuradaJMLoJYBakerJATourassiGDTraining neural network classifiers for medical decision making: the effects of imbalanced datasets on classification performanceNeur Netw2008212-342743610.1016/j.neunet.2007.12.031
– reference: American Society of Clinical Oncology (2018) Biopsy. [Online; Accessed 10 Oct 2018]
– reference: Morais R, Mourelle LM, Nedjah N (2018) Hitchcock birds inspired algorithm: 10th international conference, ICCCI 2018, Bristol, UK, September 5-7, 2018, Proceedings, Part ii, pp 169–180, 01
– reference: ZhouZ-HJiangYYangY-BChenS-FLung cancer cell identification based on artificial neural network ensemblesArtif Intell Med2002241253610.1016/S0933-3657(01)00094-X
– reference: Miah MBA, Yousuf MA (2015) Detection of lung cancer from ct image using image processing and neural network. In: 2015 International conference on electrical engineering and information communication technology (ICEEICT), pp 1–6
– reference: National Institutes of Health (2011) Cancer costs projected to reach at least 158 billion in 2020. [Online; Accessed 10 Oct 2018]
– reference: WangSZhangYDongZDuSJiGYanJYangJWangQFengCPhillipsPFeed-forward neural network optimized by hybridization of pso and abc for abnormal brain detectionInt J Imaging Syst Technol201525215316410.1002/ima.22132
– reference: ArmatoSGIIIMcLennanGBidautLMcNitt-GrayMFMeyerCRReevesAPZhaoBAberleDRHenschkeCIHoffmanEAThe lung image database consortium (lidc) and image database resource initiative (idri): a completed reference database of lung nodules on ct scansMed Phys201138291593110.1118/1.3528204
– reference: LeeMCBoroczkyLSungur-StasikKCannADBorczukACKawutSMPowellCAComputer-aided diagnosis of pulmonary nodules using a two-step approach for feature selection and classifier ensemble constructionArtif Intell Med2010501435310.1016/j.artmed.2010.04.011
– reference: GeemZWKimJHLoganathanGVA new heuristic optimization algorithm: harmony searchSimulation2001762606810.1177/003754970107600201
– reference: PassinoKMBacterial foraging optimizationInt J Swarm Intell Res201011116164149610.4018/jsir.2010010101
– reference: Chon A, Balachandra N, Lu P (2017) Deep convolutional neural networks for lung cancer detection. Standford University
– reference: Khajehzadeh M, Eslami M (2012) Gravitational search algorithm for optimization of retaining structures. Indian J Sci Technol, 5(1)
– reference: SivakumarSChandrasekarCLung nodule detection using fuzzy clustering and support vector machinesInt J Eng Technol201351179185
– reference: Jayanthi SK, Preetha K (2016) Breast cancer detection and classification using artificial neural network with particle swarm optimization. Int J Adv Res Basic Eng Sci Technol, 2
– reference: Tan Y, Zhu Y (2010) Fireworks algorithm for optimization. In: Proceedings of the first international conference on advances in swarm intelligence - volume part I, ICSI’10. Springer, Berlin, pp 355–364
– reference: Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9
– ident: 7473_CR18
– ident: 7473_CR7
  doi: 10.1109/CVPR.2016.90
– ident: 7473_CR3
– ident: 7473_CR12
– volume: 50
  start-page: 43
  issue: 1
  year: 2010
  ident: 7473_CR13
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2010.04.011
– ident: 7473_CR16
– ident: 7473_CR17
  doi: 10.1007/978-3-319-98446-9_16
– ident: 7473_CR11
  doi: 10.17485/ijst/2012/v5i1.7
– volume: 1
  start-page: 1
  issue: 1
  year: 2010
  ident: 7473_CR19
  publication-title: Int J Swarm Intell Res
  doi: 10.4018/jsir.2010010101
– ident: 7473_CR24
  doi: 10.1007/978-3-642-13495-1_44
– ident: 7473_CR1
– volume: 24
  start-page: 25
  issue: 1
  year: 2002
  ident: 7473_CR28
  publication-title: Artif Intell Med
  doi: 10.1016/S0933-3657(01)00094-X
– volume: 21
  start-page: 427
  issue: 2-3
  year: 2008
  ident: 7473_CR14
  publication-title: Neur Netw
  doi: 10.1016/j.neunet.2007.12.031
– volume: 25
  start-page: 153
  issue: 2
  year: 2015
  ident: 7473_CR25
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.22132
– ident: 7473_CR8
– ident: 7473_CR6
– ident: 7473_CR4
– ident: 7473_CR15
– volume: 21
  start-page: 58
  year: 2015
  ident: 7473_CR27
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2015.05.014
– volume: 76
  start-page: 60
  issue: 2
  year: 2001
  ident: 7473_CR5
  publication-title: Simulation
  doi: 10.1177/003754970107600201
– volume: 38
  start-page: 915
  issue: 2
  year: 2011
  ident: 7473_CR2
  publication-title: Med Phys
  doi: 10.1118/1.3528204
– ident: 7473_CR10
– ident: 7473_CR20
  doi: 10.1109/SNPD.2017.8022653
– volume: 39
  start-page: 459
  issue: 3
  year: 2007
  ident: 7473_CR9
  publication-title: J Global Optim
  doi: 10.1007/s10898-007-9149-x
– ident: 7473_CR21
  doi: 10.1007/978-3-319-24574-4_28
– volume: 5
  start-page: 179
  issue: 1
  year: 2013
  ident: 7473_CR22
  publication-title: Int J Eng Technol
– volume: 109
  start-page: 325
  year: 2010
  ident: 7473_CR26
  publication-title: Prog Electromagn Res
  doi: 10.2528/PIER10090105
– ident: 7473_CR23
  doi: 10.1109/CVPR.2015.7298594
SSID ssj0016524
Score 2.3734944
Snippet Cancer diagnosis is usually an arduous task in medicine, especially when it comes to pulmonary cancer, which is one of the most deadly and hard to treat types...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 15437
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Artificial neural networks
Back propagation
Cancer
Carcinogens
Computed tomography
Computer Communication Networks
Computer Science
Consortia
Data Structures and Information Theory
Deep learning
Diagnosis
Image classification
Image databases
Image segmentation
Lung cancer
Medical imaging
Multimedia Information Systems
Neural networks
Nodules
Performance measurement
Propagation
Sensitivity
Special Purpose and Application-Based Systems
Swarm intelligence
Tomography
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFD7M-aIP3sXplDz4pATbptnaBxFvQwSHiMIehJLrEGY3d0Hcr_ekpm4K2tc0KT0nly85J98HcGijVCqVSBrHgaHYKQIqjeU0SoQTe4l5KN3RwF27cfMU33Z4pwLt8i6MS6ss58RiotZ95c7IT3BkIfrmiEjOBm_UqUa56GopoSG8tII-LSjGFmAxcsxYVVi8uG7fP3zHFRrcy9wmAcW1MizjnMVlutBdVcEPUITYjE5_rlQz-PkrYlosRK01WPEIkpx_uXwdKibfgNVSnYH4wboBy3NUg5vwfGXGRdZVTkSuiXKg2WUJFY4hfUsGkx7-ohh-kLyvJz0zIi4lvku0MQPitSW6Rd3Ruxi-kpc5Ls8teGpdP17eUK-sQBULG2OaatbEhyk0CNOO4MZwxSKbcG4TKbhhuJEJNcI5Y3giUiOaiMUk02lTcY0IYRuqeT83O0BU0-IuV1tESja2CZOBQQzH0pA1JIIjUYOgtGKmPO24U7_oZTPCZGf4DA2fOcNn0xocfVcZfHFu_PdyvXRN5offKJt1lhocl-6aFf_Z2O7_je3BUuS228UhTB2q4-HE7CMmGcsD39E-AWlO3T4
  priority: 102
  providerName: ProQuest
Title Detection and classification of pulmonary nodules using deep learning and swarm intelligence
URI https://link.springer.com/article/10.1007/s11042-019-7473-z
https://www.proquest.com/docview/2190865019
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: ADMLS
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-7721
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_UveiDH1NxOkcefFICbdNs7ePUfaA4RBxMEErzNYTZja1D9K_30rVORQX7kocmebi7JL_LXX4HcGK8UEgZCOr7jqZoFA4V2nDqBbEt9uJzV9irgZtevdv3rwZ8kL_jnhXZ7kVIMtupl4_dXPuUBCEJRQjM6NsqlLhl80Ij7nvNj9BBneeVbAOH4nHoFqHMn6b4ehgtEea3oGh21rS3YTMHiaS50OoOrOikDFtFAQaSr8cybHxiE9yFx0udZolVCYkTRaTFxTYRKJM9GRsymY_Q6OLpK0nGaj7SM2Kz3odEaT0hefmIYTZ29hJPn8nTJ7rOPei3W_cXXZoXT6CSufWUhoo18GMSBcKU5bDRXDLPBJybQMRcM_RVXIWITWsexKGOGwi3BFNhQ3KFIGAf1pJxog-AyIZBR1YZBEPGNwETjkaYxkKX1QXin7gCTiHFSObM4rbAxShaciJbwUco-MgKPnqrwOnHkMmCVuOvztVCNVG-wmYR7rTojaF-wwqcFepa_v51ssN_9T6Cdc862Nm1SxXW0ulcHyMKSUUNVoN2pwalZufhuoXteat3e1fLbPEdRBPX3g
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hOJQeSgutumXb-gAXKoskjrPJYVUBu2h5raoKJA6Vgp-o0jab7kMIflx_G-PgEIoEN3JNbCnjsecbz-MD2LBRJpVKJY3jwFBUioBKYzmNUuHIXmIeSnc1cDJMBmfx4Tk_X4B_dS2MS6usz8TqoNZj5e7It3FnIfrmiEi-l3-pY41y0dWaQkN4agXdrVqM-cKOI3N9hS7ctHvQw_XejKL9_unegHqWAapYmMxoplkHH6bChDPtmr0YrlhkU85tKgU3DEF9qBHaGMNTkRnRQVwimc46iuvINWNCE7AUszhD529ptz_88fM-jpFwT6ubBhRtc1jHVavivdCVxuAPUYT0jN78bxkbuPsoQlsZvv238MYjVrJzp2LvYMEUq7BSs0EQfziswusHrQ3X4FfPzKosr4KIQhPlQLrLSqoUgYwtKecjFKmYXJNirOcjMyUuBf-SaGNK4rksLqux0ysx-UN-P-gd-h7OXkTGH2CxGBfmIxDVsehVa4vIzMY2ZTIwiBlZFrJEIhgTLQhqKebKtzl3bBujvGnQ7ASfo-BzJ_j8pgVb90PKux4fz33crpcm99t9mjfK2YJv9XI1r5-c7NPzk32FV4PTk-P8-GB4tA7LkXP1qwugNizOJnPzGfHQTH7xSkfg4qX1_BaoFBjP
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB6tQKrgUFoKYgulPtBLkUUSx3kcEEIsy_Io4lAkDkghfq2QttntPoTgp_HrmMkmLFQqN3JNbCnjz_Znz8w3AFsuSJXWieJh6FmOoPC4sk7yIMmp2EsofUVXA7_Oo85leHIlrxrwWOfCUFhlvSaWC7Xpa7oj38GZhexbIiPZcVVYxEWrvTf4y6mCFHla63IaU4ic2vs7PL6Ndo9bONY_gqB9-Pugw6sKA1wLPxrz1IgYH6H9SApDQi9WahG4REqXqFxagYTeN0hrrJVJnto8Rk6ihEljLU1AQky4_M_HpOJOWerto2cPRiSrgrqJx3FX9muPapm251NSDP4KRzIv-MPrPXFGdP_xzZZbXvsTfKy4KtufguszNGyxDEt1HQhWLQvLsPhC1PALXLfsuIzvKlheGKaJnlM8UgkB1ndsMOmhAfPhPSv6ZtKzI0bB911mrB2wqopFt2w7usuHf9jtC9XQFbh8FwuvwlzRL-waMB07PE8bh5zMhS4RyrPIFkXqi0ghDcub4NVWzHQlcE51NnrZTJqZDJ-h4TMyfPbQhJ_PTQZTdY-3Pt6ohyarJvoom8GyCdv1cM1e_7ezr2939h0-ILqzs-Pz03VYCOiMX978bMDceDix35AIjdVmiTgGN-8N8SfpcBZp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+and+classification+of+pulmonary+nodules+using+deep+learning+and+swarm+intelligence&rft.jtitle=Multimedia+tools+and+applications&rft.au=de+Pinho+Pinheiro%2C+Cesar+Affonso&rft.au=Nedjah%2C+Nadia&rft.au=de+Macedo+Mourelle%2C+Luiza&rft.date=2020-06-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=79&rft.issue=21-22&rft.spage=15437&rft.epage=15465&rft_id=info:doi/10.1007%2Fs11042-019-7473-z&rft.externalDocID=10_1007_s11042_019_7473_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon