Development of Algorithms and Software for Modeling Controlled Dynamic Systems Using Symbolic Computations and Stochastic Methods

The development of software for synthesizing and analyzing models of controlled systems taking into account their deterministic and stochastic description is an important direction of research. Results of the development of software for modeling dynamic systems the behavior of which can be described...

Full description

Saved in:
Bibliographic Details
Published inProgramming and computer software Vol. 49; no. 2; pp. 108 - 121
Main Authors Demidova, A. V., Druzhinina, O. V., Masina, O. N., Petrov, A. A.
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.04.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0361-7688
1608-3261
DOI10.1134/S036176882302007X

Cover

Abstract The development of software for synthesizing and analyzing models of controlled systems taking into account their deterministic and stochastic description is an important direction of research. Results of the development of software for modeling dynamic systems the behavior of which can be described by one-step processes are presented. Models of population dynamics are considered as an example. The software uses a deterministic description of the model at its input to obtain a corresponding stochastic model in symbolic form and also analyze the model in detail (calculate trajectories in the deterministic and stochastic cases, find control functions, and visualize the results). An important aspect of the development is the use of computer algebra for analyzing the model and synthesizing controls. Methods and algorithms based on deterministic and stochastic Runge–Kutta methods, stability and control theory, methods for designing self-consistent stochastic models, numerical optimization algorithms, and artificial intelligence are implemented. The software was developed using high-level programming languages Python and Julia. As the basic tools, high-performance libraries for vector–matrix computations, symbolic computation libraries, libraries for the numerical solution of ordinary differential equations, and libraries of global optimization algorithms are used.
AbstractList The development of software for synthesizing and analyzing models of controlled systems taking into account their deterministic and stochastic description is an important direction of research. Results of the development of software for modeling dynamic systems the behavior of which can be described by one-step processes are presented. Models of population dynamics are considered as an example. The software uses a deterministic description of the model at its input to obtain a corresponding stochastic model in symbolic form and also analyze the model in detail (calculate trajectories in the deterministic and stochastic cases, find control functions, and visualize the results). An important aspect of the development is the use of computer algebra for analyzing the model and synthesizing controls. Methods and algorithms based on deterministic and stochastic Runge–Kutta methods, stability and control theory, methods for designing self-consistent stochastic models, numerical optimization algorithms, and artificial intelligence are implemented. The software was developed using high-level programming languages Python and Julia. As the basic tools, high-performance libraries for vector–matrix computations, symbolic computation libraries, libraries for the numerical solution of ordinary differential equations, and libraries of global optimization algorithms are used.
Author Masina, O. N.
Petrov, A. A.
Demidova, A. V.
Druzhinina, O. V.
Author_xml – sequence: 1
  givenname: A. V.
  surname: Demidova
  fullname: Demidova, A. V.
  email: demidova-av@rudn.ru
  organization: Peoples’ Friendship University of Russia (RUDN University)
– sequence: 2
  givenname: O. V.
  surname: Druzhinina
  fullname: Druzhinina, O. V.
  email: ovdruzh@mail.ru
  organization: Federal Research Center “Computer Science and Control” of Russian Academy of Sciences
– sequence: 3
  givenname: O. N.
  surname: Masina
  fullname: Masina, O. N.
  email: olga121@inbox.ru
  organization: Bunin Yelets State University
– sequence: 4
  givenname: A. A.
  surname: Petrov
  fullname: Petrov, A. A.
  email: xeal91@yandex.ru
  organization: Bunin Yelets State University
BookMark eNp9kEtLLDEQhYMoOD5-gLuA69ZUOv3IUsYnKC5GwV2TTlfPtHSn5iYZZZb-c3sYQfCi1KKgzvmqDnXAdh05ZOwExBlAqs5nIs2hyMtSpkIKUbzssAnkokxSmcMum2zkZKPvs4MQXoUAIZSasI9LfMOelgO6yKnlF_2cfBcXQ-DGNXxGbXw3HnlLnj9Qg33n5nxKLnrqe2z45dqZobN8tg4RR-g5bAyz9VBTP46nNCxX0cSO3NfCSHZhQhy1B4wLasIR22tNH_D4qx-y5-urp-ltcv94cze9uE9sCnlMdKnQmCwtMp2ntZaFtk3dIphMobKtVKWGOivHwhJsq63RUlhpRa1yaLRID9npdu_S078Vhli90sq78WQlNZQ5ZErA6Cq2LuspBI9tZbtt_uhN11cgqs2_q__-PZLwg1z6bjB-_Scjt0wYvW6O_jvT79AnGuyVBg
CitedBy_id crossref_primary_10_31857_S0132347424020051
crossref_primary_10_1134_S0361768824700580
crossref_primary_10_1134_S0361768824020051
crossref_primary_10_1016_j_rinp_2024_107550
Cites_doi 10.1007/978-3-662-02452-2
10.1134/S1990478921040037
10.1038/s41592-019-0686-2
10.3390/math9243303
10.1137/141000671
10.1109/ICUMT.2018.8631252
10.1134/S0361768818020044
10.1533/9780857099402
10.1038/ncomms12285
10.1038/s41586-020-2649-2
10.1007/978-3-319-99447-5_46
10.1051/epjconf/202022602014
10.7717/peerjcs-cs.103
10.1615/JAutomatInfScien.v31.i1-3.70
10.1017/S0962492900002920
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2023. ISSN 0361-7688, Programming and Computer Software, 2023, Vol. 49, No. 2, pp. 108–121. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Programmirovanie, 2023, Vol. 49, No. 2.
Copyright_xml – notice: Pleiades Publishing, Ltd. 2023. ISSN 0361-7688, Programming and Computer Software, 2023, Vol. 49, No. 2, pp. 108–121. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Programmirovanie, 2023, Vol. 49, No. 2.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1134/S036176882302007X
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1608-3261
EndPage 121
ExternalDocumentID 10_1134_S036176882302007X
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
29P
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P9O
PF0
PT4
QOS
R89
R9I
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c316t-984eaa5375963b9279cdbfe1a54e4cf24891b58585e81cf9ca920c2c0b461d903
IEDL.DBID BENPR
ISSN 0361-7688
IngestDate Sat Aug 23 13:13:23 EDT 2025
Wed Oct 01 03:54:40 EDT 2025
Thu Apr 24 22:59:20 EDT 2025
Fri Feb 21 02:44:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-984eaa5375963b9279cdbfe1a54e4cf24891b58585e81cf9ca920c2c0b461d903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918615401
PQPubID 2043762
PageCount 14
ParticipantIDs proquest_journals_2918615401
crossref_citationtrail_10_1134_S036176882302007X
crossref_primary_10_1134_S036176882302007X
springer_journals_10_1134_S036176882302007X
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230400
2023-04-00
20230401
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 4
  year: 2023
  text: 20230400
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: New York
PublicationTitle Programming and computer software
PublicationTitleAbbrev Program Comput Soft
PublicationYear 2023
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References Malashonok, G.I. and Rybakov, M.A., Solving systems of linear differential equations and calculation of dynamic characteristics of control systems in the web service mathpartner, Vestn. Ross. Univ.,Ser. Mat., 2014, no. 2, pp. 517–529.
Gevorkyan, M.N., Demidova, A.V., Korolkova, A.V., and Kulyabov, D.S., Issues in the software implementation of stochastic numerical Runge–Kutta, Distributed Computer and Communication Networks, V. M., Vishnevskiy and D. V. Kozyrev, Eds., Cham: Springer, 2018, Vol. 919 of Communications in Computer and Information Science, pp. 532–546. arXiv: 1811.01719.
DemidovaA.V.DruzhininaO.V.JacimovicM.The generalized algorithms of global parametric optimization and stochastization for dynamical models of interconnected populations, Optim. Appl. OPTIMA2020ChamSpringer07645976
Demidova, A.V., Equations of population dynamics in the form of stochastic differential equations, Vestn. RUDN, Ser. Mat. Inform. Fiz., 2013, no. 1, pp. 67–76. https://journals.rudn.ru/miph/article/ view/8319.
Demidova, A.V., Druzhinina, O.V., Masina, O.N., and Petrov, A.A., Synthesis and computer study of population dynamics controlled models using methods of numerical optimization, stochastization and machine learning, Mathematics, 2021, vol. 9, no. 24. www.mdpi.com/2227-7390/9/24/3303.
Van KampenN.Stochastic Processes in Physics and Chemistry1992AmsterdamElsevier0511.60038
KarpenkoA.P.Modern Search Optimization Algorithms: Algorithms Inspired by Nature2016MoscowBauman Mosk. Gos. Tekh. Univ.
GardinerC.W.Handbook of Stochastic Methods: For Physics, Chemistry and the Natural Sciences1985HeidelbergSpringer10.1007/978-3-662-02452-2
ChetaevN.G.Stability of Motion1964MoscowGITTL
DemidovaA.DruzhininaO.JacimovicM.Computer and Information Science2020ChamSpringer1471.92248
KulchitskiyO.KuznetsovD.Numerical methods of modeling control systems described by stochastic differential equationsJ. Autom. Inf. Sci.199931476110.1615/JAutomatInfScien.v31.i1-3.70
LamyR.Instant SymPy Starter2013
Altunin, K.Yu. and Senichenkov, Yu.B., On the possibility of symbolic computations in packages of visual modeling of complex dynamic systems, Inf., Telekommun. upravl., 2009, no. 3(80), pp. 153–158.
VolterraV.Leçons sur la théorie mathématique de la lutte pour la vie1931ParisGauthier-Villars57.0466.02
BezansonJ.EdelmanA.KarpinskiS.ShahV.B.Julia: A fresh approach to numerical computingSIAM Rev.2017596598360582610.1137/1410006711356.68030
Korolkova, A. and Kulyabov, D., Onestep stochastization methods for open systems, EPJ Web of Conferences, 2020, vol. 226, p. 02014. https://doi.org/10.1051/epjconf/202022602014.
VirtanenP.GommersR.OliphantT.E.Scipy 1.0: Fundamental algorithms for scientific computing in PythonNature Methods20201726127210.1038/s41592-019-0686-2
OliphantT.E.Guide to NumPy2015North Charlston, SCCreateSpace Independent Publishing Platform
Banshchikov, A.V., Burlakova, L.A., Irtegov, V.D., and Titorenko, T.N., symbolic computations in modeling nd qualitative analysis of dynamic systems, Vych. Tekhnol., 2014, no. 6, pp. 3–18.
DemidovaA.V.DruzhininaO.V.MasinaO.N.PetrovA.A.Computer research of the controlled models with migration rows, Proc. of the Selected Papers of the 10th Int. Conf. on Information and Telecommunication Technologies and Mathematical Modeling of High-Tech Systems (ITTMM-2020)CEUR Workshop Proc.20202639117129
PlatenE.An introduction to numerical methods for stochastic differential equationsActa Numerica19998197246181964610.1017/S09624929000029200942.65004
GevorkyanM.N.DemidovaA.V.VelievaT.R.Implementing a Method for Stochastization of One-Step Processes in a Computer Algebra SystemProgram. Comput. Software2018448693378332310.1134/S03617688180200441455.68282
ShestakovA.A.Generalized Direct Lyapunov’s Method for Systems with Distributed Parameters1990MoscowNauka
FaleichikB.V.One-Step Methods for the numerical Solution of the Cauchy Problem2010MinskBel. Gos. Univ.
Meurer, A., Smith, C.P., Paprocki, M., et al., Sympy: Symbolic computing in Python, PeerJ Comput. Sci., 2017, vol. 3, p. e103. https://doi.org/10.7717/peerjcs-cs.103
GevorkyanM.N.VelievaT.R.KorolkovaA.V.Stochastic Runge–Kutta software package for stochastic differential equations, Dependability Engineering and Complex Systems2016ChamSpringer
GolubyatnikovV.P.PodkolodnayaO.A.PodkolodnyiN.L.AyupovaN.B.KirillovaN.E.YunoshevaE.V.On conditions for the existence of cycles in two models of a circadian oscillator of mammalsJ. Appl. Industr. Math.20211559760810.1134/S199047892104003707668755
DilaoR.Mathematical models in population dynamics and ecology, Biomathematics: Modelling and Simulation2006SingaporeWorld Sci
Jacimovic, M. and Masina, O.N., Synthesis and analysis of multidimensional mathematical models of population dynamics, Proc. of the Selected Papers of the of the 10th Int. Congress on Ultra Modern Telecommunications and Control Systems ICUMT (Moscow, Russia, November 5–9, 2018). New York: IEEE Xplore Digital Library, 2018. https://doi.org/10.1109/ICUMT.2018.8631252.
Kulyabov, D.S. and Kokotchikova, M.G., Analytical eview of symbolic computation systems, Vestn. RUDN,Ser. Mat. Inform. Fiz., 2007, no. 1–2, pp. 38–45.
BaireyE.KelsicE.D.KishonyR.High-order species interactions shape ecosystem diversityNature Commun.201671228510.1038/ncomms12285
PykhYu.A.Equilibrium and Stability in Models of Population Dynamics1983MoscowNauka0522.92009
MaoX.Stochastic Differential Equations and Applications2008CambridgeWoodhead10.1533/9780857099402
FirsovA.N.InovenkovI.N.NefedovV.V.TikhomirovV.V.Numerical study of the effect of stochastic disturbances on the behavior of solutions of some differential equationsModern Information Technologies and IT-Education2021173743
SvirezhevYu.M.LogofetD.O.Stability of Biological Communities1978MoscowNauka
FuhrerC.SolemJ.VerdierO.Scientific Computing with Python2016
BazykinA.D.Nonlinear Dynamics of Interconnected Populations2003MoscowInst. Komput. Issled
HarrisC.R.MillmanK.J.van der WaltS.J.Array programming with numpyNature202058535736210.1038/s41586-020-2649-2
R. Lamy (3727_CR34) 2013
3727_CR38
3727_CR15
A.V. Demidova (3727_CR31) 2020; 2639
M.N. Gevorkyan (3727_CR8) 2016
3727_CR11
Yu.A. Pykh (3727_CR25) 1983
3727_CR9
V.P. Golubyatnikov (3727_CR19) 2021; 15
C.R. Harris (3727_CR32) 2020; 585
O. Kulchitskiy (3727_CR7) 1999; 31
3727_CR1
3727_CR2
3727_CR3
M.N. Gevorkyan (3727_CR10) 2018; 44
3727_CR4
E. Bairey (3727_CR18) 2016; 7
C. Fuhrer (3727_CR33) 2016
T.E. Oliphant (3727_CR35) 2015
A.N. Firsov (3727_CR13) 2021; 17
P. Virtanen (3727_CR36) 2020; 17
3727_CR29
3727_CR28
E. Platen (3727_CR6) 1999; 8
X. Mao (3727_CR14) 2008
N. Van Kampen (3727_CR17) 1992
B.V. Faleichik (3727_CR5) 2010
N.G. Chetaev (3727_CR24) 1964
J. Bezanson (3727_CR37) 2017; 59
Yu.M. Svirezhev (3727_CR21) 1978
A.A. Shestakov (3727_CR26) 1990
A.V. Demidova (3727_CR27) 2020
R. Dilao (3727_CR23) 2006
A. Demidova (3727_CR30) 2020
A.P. Karpenko (3727_CR12) 2016
C.W. Gardiner (3727_CR16) 1985
A.D. Bazykin (3727_CR22) 2003
V. Volterra (3727_CR20) 1931
References_xml – reference: BaireyE.KelsicE.D.KishonyR.High-order species interactions shape ecosystem diversityNature Commun.201671228510.1038/ncomms12285
– reference: GevorkyanM.N.DemidovaA.V.VelievaT.R.Implementing a Method for Stochastization of One-Step Processes in a Computer Algebra SystemProgram. Comput. Software2018448693378332310.1134/S03617688180200441455.68282
– reference: KulchitskiyO.KuznetsovD.Numerical methods of modeling control systems described by stochastic differential equationsJ. Autom. Inf. Sci.199931476110.1615/JAutomatInfScien.v31.i1-3.70
– reference: Korolkova, A. and Kulyabov, D., Onestep stochastization methods for open systems, EPJ Web of Conferences, 2020, vol. 226, p. 02014. https://doi.org/10.1051/epjconf/202022602014.
– reference: Kulyabov, D.S. and Kokotchikova, M.G., Analytical eview of symbolic computation systems, Vestn. RUDN,Ser. Mat. Inform. Fiz., 2007, no. 1–2, pp. 38–45.
– reference: VolterraV.Leçons sur la théorie mathématique de la lutte pour la vie1931ParisGauthier-Villars57.0466.02
– reference: ShestakovA.A.Generalized Direct Lyapunov’s Method for Systems with Distributed Parameters1990MoscowNauka
– reference: GevorkyanM.N.VelievaT.R.KorolkovaA.V.Stochastic Runge–Kutta software package for stochastic differential equations, Dependability Engineering and Complex Systems2016ChamSpringer
– reference: DemidovaA.V.DruzhininaO.V.MasinaO.N.PetrovA.A.Computer research of the controlled models with migration rows, Proc. of the Selected Papers of the 10th Int. Conf. on Information and Telecommunication Technologies and Mathematical Modeling of High-Tech Systems (ITTMM-2020)CEUR Workshop Proc.20202639117129
– reference: SvirezhevYu.M.LogofetD.O.Stability of Biological Communities1978MoscowNauka
– reference: KarpenkoA.P.Modern Search Optimization Algorithms: Algorithms Inspired by Nature2016MoscowBauman Mosk. Gos. Tekh. Univ.
– reference: HarrisC.R.MillmanK.J.van der WaltS.J.Array programming with numpyNature202058535736210.1038/s41586-020-2649-2
– reference: ChetaevN.G.Stability of Motion1964MoscowGITTL
– reference: DemidovaA.DruzhininaO.JacimovicM.Computer and Information Science2020ChamSpringer1471.92248
– reference: BezansonJ.EdelmanA.KarpinskiS.ShahV.B.Julia: A fresh approach to numerical computingSIAM Rev.2017596598360582610.1137/1410006711356.68030
– reference: PykhYu.A.Equilibrium and Stability in Models of Population Dynamics1983MoscowNauka0522.92009
– reference: Demidova, A.V., Equations of population dynamics in the form of stochastic differential equations, Vestn. RUDN, Ser. Mat. Inform. Fiz., 2013, no. 1, pp. 67–76. https://journals.rudn.ru/miph/article/ view/8319.
– reference: DilaoR.Mathematical models in population dynamics and ecology, Biomathematics: Modelling and Simulation2006SingaporeWorld Sci
– reference: Malashonok, G.I. and Rybakov, M.A., Solving systems of linear differential equations and calculation of dynamic characteristics of control systems in the web service mathpartner, Vestn. Ross. Univ.,Ser. Mat., 2014, no. 2, pp. 517–529.
– reference: GolubyatnikovV.P.PodkolodnayaO.A.PodkolodnyiN.L.AyupovaN.B.KirillovaN.E.YunoshevaE.V.On conditions for the existence of cycles in two models of a circadian oscillator of mammalsJ. Appl. Industr. Math.20211559760810.1134/S199047892104003707668755
– reference: Demidova, A.V., Druzhinina, O.V., Masina, O.N., and Petrov, A.A., Synthesis and computer study of population dynamics controlled models using methods of numerical optimization, stochastization and machine learning, Mathematics, 2021, vol. 9, no. 24. www.mdpi.com/2227-7390/9/24/3303.
– reference: Gevorkyan, M.N., Demidova, A.V., Korolkova, A.V., and Kulyabov, D.S., Issues in the software implementation of stochastic numerical Runge–Kutta, Distributed Computer and Communication Networks, V. M., Vishnevskiy and D. V. Kozyrev, Eds., Cham: Springer, 2018, Vol. 919 of Communications in Computer and Information Science, pp. 532–546. arXiv: 1811.01719.
– reference: Jacimovic, M. and Masina, O.N., Synthesis and analysis of multidimensional mathematical models of population dynamics, Proc. of the Selected Papers of the of the 10th Int. Congress on Ultra Modern Telecommunications and Control Systems ICUMT (Moscow, Russia, November 5–9, 2018). New York: IEEE Xplore Digital Library, 2018. https://doi.org/10.1109/ICUMT.2018.8631252.
– reference: PlatenE.An introduction to numerical methods for stochastic differential equationsActa Numerica19998197246181964610.1017/S09624929000029200942.65004
– reference: Altunin, K.Yu. and Senichenkov, Yu.B., On the possibility of symbolic computations in packages of visual modeling of complex dynamic systems, Inf., Telekommun. upravl., 2009, no. 3(80), pp. 153–158.
– reference: Banshchikov, A.V., Burlakova, L.A., Irtegov, V.D., and Titorenko, T.N., symbolic computations in modeling nd qualitative analysis of dynamic systems, Vych. Tekhnol., 2014, no. 6, pp. 3–18.
– reference: FirsovA.N.InovenkovI.N.NefedovV.V.TikhomirovV.V.Numerical study of the effect of stochastic disturbances on the behavior of solutions of some differential equationsModern Information Technologies and IT-Education2021173743
– reference: OliphantT.E.Guide to NumPy2015North Charlston, SCCreateSpace Independent Publishing Platform
– reference: MaoX.Stochastic Differential Equations and Applications2008CambridgeWoodhead10.1533/9780857099402
– reference: LamyR.Instant SymPy Starter2013
– reference: BazykinA.D.Nonlinear Dynamics of Interconnected Populations2003MoscowInst. Komput. Issled
– reference: GardinerC.W.Handbook of Stochastic Methods: For Physics, Chemistry and the Natural Sciences1985HeidelbergSpringer10.1007/978-3-662-02452-2
– reference: Van KampenN.Stochastic Processes in Physics and Chemistry1992AmsterdamElsevier0511.60038
– reference: Meurer, A., Smith, C.P., Paprocki, M., et al., Sympy: Symbolic computing in Python, PeerJ Comput. Sci., 2017, vol. 3, p. e103. https://doi.org/10.7717/peerjcs-cs.103
– reference: FuhrerC.SolemJ.VerdierO.Scientific Computing with Python2016
– reference: VirtanenP.GommersR.OliphantT.E.Scipy 1.0: Fundamental algorithms for scientific computing in PythonNature Methods20201726127210.1038/s41592-019-0686-2
– reference: FaleichikB.V.One-Step Methods for the numerical Solution of the Cauchy Problem2010MinskBel. Gos. Univ.
– reference: DemidovaA.V.DruzhininaO.V.JacimovicM.The generalized algorithms of global parametric optimization and stochastization for dynamical models of interconnected populations, Optim. Appl. OPTIMA2020ChamSpringer07645976
– volume-title: Handbook of Stochastic Methods: For Physics, Chemistry and the Natural Sciences
  year: 1985
  ident: 3727_CR16
  doi: 10.1007/978-3-662-02452-2
– volume: 15
  start-page: 597
  year: 2021
  ident: 3727_CR19
  publication-title: J. Appl. Industr. Math.
  doi: 10.1134/S1990478921040037
– volume-title: Computer and Information Science
  year: 2020
  ident: 3727_CR30
– volume-title: One-Step Methods for the numerical Solution of the Cauchy Problem
  year: 2010
  ident: 3727_CR5
– volume-title: Generalized Direct Lyapunov’s Method for Systems with Distributed Parameters
  year: 1990
  ident: 3727_CR26
– volume: 17
  start-page: 261
  year: 2020
  ident: 3727_CR36
  publication-title: Nature Methods
  doi: 10.1038/s41592-019-0686-2
– volume-title: Leçons sur la théorie mathématique de la lutte pour la vie
  year: 1931
  ident: 3727_CR20
– volume-title: The generalized algorithms of global parametric optimization and stochastization for dynamical models of interconnected populations, Optim. Appl. OPTIMA
  year: 2020
  ident: 3727_CR27
– volume-title: Nonlinear Dynamics of Interconnected Populations
  year: 2003
  ident: 3727_CR22
– ident: 3727_CR28
  doi: 10.3390/math9243303
– volume-title: Stochastic Runge–Kutta software package for stochastic differential equations, Dependability Engineering and Complex Systems
  year: 2016
  ident: 3727_CR8
– volume: 59
  start-page: 65
  year: 2017
  ident: 3727_CR37
  publication-title: SIAM Rev.
  doi: 10.1137/141000671
– volume-title: Stochastic Processes in Physics and Chemistry
  year: 1992
  ident: 3727_CR17
– ident: 3727_CR29
  doi: 10.1109/ICUMT.2018.8631252
– volume-title: Mathematical models in population dynamics and ecology, Biomathematics: Modelling and Simulation
  year: 2006
  ident: 3727_CR23
– volume: 44
  start-page: 86
  year: 2018
  ident: 3727_CR10
  publication-title: Program. Comput. Software
  doi: 10.1134/S0361768818020044
– volume-title: Stochastic Differential Equations and Applications
  year: 2008
  ident: 3727_CR14
  doi: 10.1533/9780857099402
– volume-title: Stability of Motion
  year: 1964
  ident: 3727_CR24
– volume-title: Modern Search Optimization Algorithms: Algorithms Inspired by Nature
  year: 2016
  ident: 3727_CR12
– volume: 7
  start-page: 12285
  year: 2016
  ident: 3727_CR18
  publication-title: Nature Commun.
  doi: 10.1038/ncomms12285
– volume-title: Scientific Computing with Python
  year: 2016
  ident: 3727_CR33
– ident: 3727_CR1
– ident: 3727_CR3
– volume-title: Guide to NumPy
  year: 2015
  ident: 3727_CR35
– volume-title: Stability of Biological Communities
  year: 1978
  ident: 3727_CR21
– volume: 2639
  start-page: 117
  year: 2020
  ident: 3727_CR31
  publication-title: CEUR Workshop Proc.
– volume: 17
  start-page: 37
  year: 2021
  ident: 3727_CR13
  publication-title: Modern Information Technologies and IT-Education
– volume: 585
  start-page: 357
  year: 2020
  ident: 3727_CR32
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– ident: 3727_CR9
  doi: 10.1007/978-3-319-99447-5_46
– ident: 3727_CR11
– ident: 3727_CR15
  doi: 10.1051/epjconf/202022602014
– ident: 3727_CR38
  doi: 10.7717/peerjcs-cs.103
– volume-title: Equilibrium and Stability in Models of Population Dynamics
  year: 1983
  ident: 3727_CR25
– volume: 31
  start-page: 47
  year: 1999
  ident: 3727_CR7
  publication-title: J. Autom. Inf. Sci.
  doi: 10.1615/JAutomatInfScien.v31.i1-3.70
– volume-title: Instant SymPy Starter
  year: 2013
  ident: 3727_CR34
– volume: 8
  start-page: 197
  year: 1999
  ident: 3727_CR6
  publication-title: Acta Numerica
  doi: 10.1017/S0962492900002920
– ident: 3727_CR4
– ident: 3727_CR2
SSID ssj0010044
Score 2.274162
Snippet The development of software for synthesizing and analyzing models of controlled systems taking into account their deterministic and stochastic description is...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108
SubjectTerms Algorithms
Artificial Intelligence
Comparative analysis
Computer algebra
Computer Science
Control stability
Control theory
Differential equations
Dynamical systems
Equilibrium
Evolution
Global optimization
High level languages
Libraries
Mathematical analysis
Matrix algebra
Methods
Operating Systems
Optimization algorithms
Ordinary differential equations
Population
Programming languages
Python
Runge-Kutta method
Software
Software Engineering
Software Engineering/Programming and Operating Systems
Software packages
Software utilities
Stochastic models
Synthesis
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLCy8EYWCPDCBIuLEeXisClWFVJZSqVtkOzYd2hQ1Qcz8c86x0_KWGKM4Fylnn7_Ld74PoUulYSYADvByGXKPhj73OOw0XsxDyDd06qfcHBQePsSDMb2fRBN3jrtsqt0bSrKO1FZ3hN6MINYSAMeGGTI_2CabaCsy3bxgEo-D7oo6MBSlJSiJZ4Y7KvNHE583ozXC_EKK1ntNfw_tOJCIu9ar-2hDFQdotxFgwG49HqK3DyU_eKFxd_a0gGR_Oi8xL3I8ghD7ypcKAzDFRvTMHD3HPVucPlM5vrVy9Ni1Lcd1_QBczYXpFoztC-0vPWuwWsgpN52d8bBWni6P0Lh_99gbeE5TwZMhiSuPpVRxHoVJBCtPsCBhMhdaER5RRaUOaMqIiAxZqFIiNZOcBb4MpC9oTHLmh8eoVSwKdYKwjDQEJxnmLNeUqlQEKlFapokQYCdmbeQ3HzeTruG40b2YZXXiEdLsmz_a6Gr1yLPttvHX4E7jscwtvDILGEkBpEHW2EbXjRfXt381dvqv0Wdo28jO2wqeDmpVyxd1DuCkEhf1ZHwHrR3a_w
  priority: 102
  providerName: Springer Nature
Title Development of Algorithms and Software for Modeling Controlled Dynamic Systems Using Symbolic Computations and Stochastic Methods
URI https://link.springer.com/article/10.1134/S036176882302007X
https://www.proquest.com/docview/2918615401
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1608-3261
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010044
  issn: 0361-7688
  databaseCode: AFBBN
  dateStart: 20000101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1608-3261
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0010044
  issn: 0361-7688
  databaseCode: BENPR
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1608-3261
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010044
  issn: 0361-7688
  databaseCode: AGYKE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1608-3261
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0010044
  issn: 0361-7688
  databaseCode: U2A
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFH_a2gsXGF-iMCofOIGsJbGT2gc0ldFuAq1CjErlFPlzO3TtWIM485_zHDsrG2LHOMmLnGe_97Pf8_sBvHEeRwLiAGoNU5SzTFGFnoZWiuF6w4tMqHBQ-HRWncz5p0W52IFZdxYmpFV2NrE11HZtwh75QSFzgd4XlwOHVz9oYI0K0dWOQkMlagX7vi0xtgv9IlTG6kH_w2T25etNXCHEL2P0MqcItEWKc-aMH5yFxtCGoDxs4C1ue6ot_LwTMW0d0XQPHiYEScZR5Y9hx62ewKOOnYGkyfoUfv-VD0TWnoyX59if5uJyQ9TKkjO0v7_UtSOIWklgRAvn0slRzFxfOks-Rq56kmqakza5AK8udSglTOIH435fFNiszYUKZZ_JaUtLvXkG8-nk29EJTYQL1LC8aqgU3ClVslGJ01LLYiSN1d7lquSOG19wIXNdhkiiE7nx0ihZZKYwmeZVbmXGnkNvtV65F0BM6dFyGWal9Zw7oQs3ct6IkdYop5IDyLqfW5tUjTyQYizrdlXCeP2PPgbw9uaVq1iK476H9zuN1WlWburtGBrAu06L29v_FfbyfmGv4EEgoY_5PPvQa65_utcIVRo9hF0xPR5Cf3z8_fNkmEYjts6L8R99COi4
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAX3qgLpfgAF1DUxHay9qFCfWpLuytEW2lvwU-KtJst3aCqR_4Yv41x4nR5iN56jONMJM9oHp7HB_DaeZQE9AMSa5hKOEtVotDSJIViGG94kQoVGoWHo2Jwyj-M8_ES_Ox6YUJZZacTG0VtZybckW9QmQm0vhgOvD__lgTUqJBd7SA0VIRWsJvNiLHY2HHori4xhJtvHuwiv99Qur93sjNIIspAYlhW1IkU3CmVs36Osqgl7UtjtXeZyrnjxlMuZKbzkD5zIjNeGiVpaqhJNS8yK1OGdO_ACmdcYvC3sr03-vjpOo8R8qVttjRL0LEXMa-aMb5xHBbDGgYB4cJw_KdlXLi7f2VoG8O3_xDuR4-VbLUi9giWXPUYHnRoECQqhyfw47f6IzLzZGvyBc-vPpvOiaosOUZ9f6kuHEEvmQQEttAHT3baSvmJs2T3qlLTr4bEGeqkKWbAp6kOo4tJ-8P2frElWM_MmQpjpsmwgcGeP4XTWzn6Z7BczSq3CsTkHjWlYVZaz7kTmrq-80b0tUY6hexB2h1uaeL08wDCMSmbKIjx8h9-9ODt9Sfn7eiPmzavdRwroxaYlwuZ7cG7jouL1_8l9vxmYq_g7uBkeFQeHYwOX8A9im5XW0u0Bsv1xXf3Et2kWq9HWSTw-bbF_xfBFSHo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYJMSFHVFWHziBomZx0vhYUaqytEIqlXqLbMemhzapaBBn_pxx7LTsEsco9kTKeJnxG7-H0LlUMBIgDnBSETCHBC5zGOw0TsQCyDdU7MZMXxTu9qLOgNwOw6HVOZ1V1e4VJGnuNGiWpqyoT1NlNUhIvQ_rrgeBskaJ9GHbcBmtEs2TAAN64DfnMIKGKw1Y6Tm6uYU1fzTxeWNaRJtfANJy32lvoQ0bMOKm8fA2WpLZDtqsxBiwnZu76O1D-Q_OFW6On3JI_EeTGWZZivuw3L6yZ4khSMVaAE1fQ8dXplB9LFPcMtL02FKY47KWAJ4mXDMHY_NBc7xnDBa5GDHN8oy7pQr1bA8N2tePVx3H6is4IvCiwqExkYyFQSOEWcip36Ai5Up6LCSSCOWTmHo81MChjD2hqGDUd4UvXE4iL6VusI9WsjyTBwiLUMFCJYKUpooQGXNfNqQScYNzsBPRGnKrn5sISz6uNTDGSZmEBCT55o8auph3mRrmjb8aH1ceS-wknCU-9WII2CCDrKHLyouL178aO_xX6zO09tBqJ_c3vbsjtK7V6E1hzzFaKZ5f5AnELAU_LcflO_584ic
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+Algorithms+and+Software+for+Modeling+Controlled+Dynamic+Systems+Using+Symbolic+Computations+and+Stochastic+Methods&rft.jtitle=Programming+and+computer+software&rft.au=Demidova%2C+A.+V&rft.au=Druzhinina%2C+O.+V&rft.au=Masina%2C+O.+N&rft.au=Petrov%2C+A.+A&rft.date=2023-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0361-7688&rft.eissn=1608-3261&rft.volume=49&rft.issue=2&rft.spage=108&rft.epage=121&rft_id=info:doi/10.1134%2FS036176882302007X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-7688&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-7688&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-7688&client=summon