Development of Algorithms and Software for Modeling Controlled Dynamic Systems Using Symbolic Computations and Stochastic Methods
The development of software for synthesizing and analyzing models of controlled systems taking into account their deterministic and stochastic description is an important direction of research. Results of the development of software for modeling dynamic systems the behavior of which can be described...
Saved in:
| Published in | Programming and computer software Vol. 49; no. 2; pp. 108 - 121 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Moscow
Pleiades Publishing
01.04.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0361-7688 1608-3261 |
| DOI | 10.1134/S036176882302007X |
Cover
| Abstract | The development of software for synthesizing and analyzing models of controlled systems taking into account their deterministic and stochastic description is an important direction of research. Results of the development of software for modeling dynamic systems the behavior of which can be described by one-step processes are presented. Models of population dynamics are considered as an example. The software uses a deterministic description of the model at its input to obtain a corresponding stochastic model in symbolic form and also analyze the model in detail (calculate trajectories in the deterministic and stochastic cases, find control functions, and visualize the results). An important aspect of the development is the use of computer algebra for analyzing the model and synthesizing controls. Methods and algorithms based on deterministic and stochastic Runge–Kutta methods, stability and control theory, methods for designing self-consistent stochastic models, numerical optimization algorithms, and artificial intelligence are implemented. The software was developed using high-level programming languages Python and Julia. As the basic tools, high-performance libraries for vector–matrix computations, symbolic computation libraries, libraries for the numerical solution of ordinary differential equations, and libraries of global optimization algorithms are used. |
|---|---|
| AbstractList | The development of software for synthesizing and analyzing models of controlled systems taking into account their deterministic and stochastic description is an important direction of research. Results of the development of software for modeling dynamic systems the behavior of which can be described by one-step processes are presented. Models of population dynamics are considered as an example. The software uses a deterministic description of the model at its input to obtain a corresponding stochastic model in symbolic form and also analyze the model in detail (calculate trajectories in the deterministic and stochastic cases, find control functions, and visualize the results). An important aspect of the development is the use of computer algebra for analyzing the model and synthesizing controls. Methods and algorithms based on deterministic and stochastic Runge–Kutta methods, stability and control theory, methods for designing self-consistent stochastic models, numerical optimization algorithms, and artificial intelligence are implemented. The software was developed using high-level programming languages Python and Julia. As the basic tools, high-performance libraries for vector–matrix computations, symbolic computation libraries, libraries for the numerical solution of ordinary differential equations, and libraries of global optimization algorithms are used. |
| Author | Masina, O. N. Petrov, A. A. Demidova, A. V. Druzhinina, O. V. |
| Author_xml | – sequence: 1 givenname: A. V. surname: Demidova fullname: Demidova, A. V. email: demidova-av@rudn.ru organization: Peoples’ Friendship University of Russia (RUDN University) – sequence: 2 givenname: O. V. surname: Druzhinina fullname: Druzhinina, O. V. email: ovdruzh@mail.ru organization: Federal Research Center “Computer Science and Control” of Russian Academy of Sciences – sequence: 3 givenname: O. N. surname: Masina fullname: Masina, O. N. email: olga121@inbox.ru organization: Bunin Yelets State University – sequence: 4 givenname: A. A. surname: Petrov fullname: Petrov, A. A. email: xeal91@yandex.ru organization: Bunin Yelets State University |
| BookMark | eNp9kEtLLDEQhYMoOD5-gLuA69ZUOv3IUsYnKC5GwV2TTlfPtHSn5iYZZZb-c3sYQfCi1KKgzvmqDnXAdh05ZOwExBlAqs5nIs2hyMtSpkIKUbzssAnkokxSmcMum2zkZKPvs4MQXoUAIZSasI9LfMOelgO6yKnlF_2cfBcXQ-DGNXxGbXw3HnlLnj9Qg33n5nxKLnrqe2z45dqZobN8tg4RR-g5bAyz9VBTP46nNCxX0cSO3NfCSHZhQhy1B4wLasIR22tNH_D4qx-y5-urp-ltcv94cze9uE9sCnlMdKnQmCwtMp2ntZaFtk3dIphMobKtVKWGOivHwhJsq63RUlhpRa1yaLRID9npdu_S078Vhli90sq78WQlNZQ5ZErA6Cq2LuspBI9tZbtt_uhN11cgqs2_q__-PZLwg1z6bjB-_Scjt0wYvW6O_jvT79AnGuyVBg |
| CitedBy_id | crossref_primary_10_31857_S0132347424020051 crossref_primary_10_1134_S0361768824700580 crossref_primary_10_1134_S0361768824020051 crossref_primary_10_1016_j_rinp_2024_107550 |
| Cites_doi | 10.1007/978-3-662-02452-2 10.1134/S1990478921040037 10.1038/s41592-019-0686-2 10.3390/math9243303 10.1137/141000671 10.1109/ICUMT.2018.8631252 10.1134/S0361768818020044 10.1533/9780857099402 10.1038/ncomms12285 10.1038/s41586-020-2649-2 10.1007/978-3-319-99447-5_46 10.1051/epjconf/202022602014 10.7717/peerjcs-cs.103 10.1615/JAutomatInfScien.v31.i1-3.70 10.1017/S0962492900002920 |
| ContentType | Journal Article |
| Copyright | Pleiades Publishing, Ltd. 2023. ISSN 0361-7688, Programming and Computer Software, 2023, Vol. 49, No. 2, pp. 108–121. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Programmirovanie, 2023, Vol. 49, No. 2. |
| Copyright_xml | – notice: Pleiades Publishing, Ltd. 2023. ISSN 0361-7688, Programming and Computer Software, 2023, Vol. 49, No. 2, pp. 108–121. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Programmirovanie, 2023, Vol. 49, No. 2. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1134/S036176882302007X |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1608-3261 |
| EndPage | 121 |
| ExternalDocumentID | 10_1134_S036176882302007X |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 29P 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ K7- KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P9O PF0 PT4 QOS R89 R9I RIG RNI RNS ROL RPX RSV RZC RZE S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XU3 YLTOR Z7R Z7X Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c316t-984eaa5375963b9279cdbfe1a54e4cf24891b58585e81cf9ca920c2c0b461d903 |
| IEDL.DBID | BENPR |
| ISSN | 0361-7688 |
| IngestDate | Sat Aug 23 13:13:23 EDT 2025 Wed Oct 01 03:54:40 EDT 2025 Thu Apr 24 22:59:20 EDT 2025 Fri Feb 21 02:44:10 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-984eaa5375963b9279cdbfe1a54e4cf24891b58585e81cf9ca920c2c0b461d903 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2918615401 |
| PQPubID | 2043762 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2918615401 crossref_citationtrail_10_1134_S036176882302007X crossref_primary_10_1134_S036176882302007X springer_journals_10_1134_S036176882302007X |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20230400 2023-04-00 20230401 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 4 year: 2023 text: 20230400 |
| PublicationDecade | 2020 |
| PublicationPlace | Moscow |
| PublicationPlace_xml | – name: Moscow – name: New York |
| PublicationTitle | Programming and computer software |
| PublicationTitleAbbrev | Program Comput Soft |
| PublicationYear | 2023 |
| Publisher | Pleiades Publishing Springer Nature B.V |
| Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
| References | Malashonok, G.I. and Rybakov, M.A., Solving systems of linear differential equations and calculation of dynamic characteristics of control systems in the web service mathpartner, Vestn. Ross. Univ.,Ser. Mat., 2014, no. 2, pp. 517–529. Gevorkyan, M.N., Demidova, A.V., Korolkova, A.V., and Kulyabov, D.S., Issues in the software implementation of stochastic numerical Runge–Kutta, Distributed Computer and Communication Networks, V. M., Vishnevskiy and D. V. Kozyrev, Eds., Cham: Springer, 2018, Vol. 919 of Communications in Computer and Information Science, pp. 532–546. arXiv: 1811.01719. DemidovaA.V.DruzhininaO.V.JacimovicM.The generalized algorithms of global parametric optimization and stochastization for dynamical models of interconnected populations, Optim. Appl. OPTIMA2020ChamSpringer07645976 Demidova, A.V., Equations of population dynamics in the form of stochastic differential equations, Vestn. RUDN, Ser. Mat. Inform. Fiz., 2013, no. 1, pp. 67–76. https://journals.rudn.ru/miph/article/ view/8319. Demidova, A.V., Druzhinina, O.V., Masina, O.N., and Petrov, A.A., Synthesis and computer study of population dynamics controlled models using methods of numerical optimization, stochastization and machine learning, Mathematics, 2021, vol. 9, no. 24. www.mdpi.com/2227-7390/9/24/3303. Van KampenN.Stochastic Processes in Physics and Chemistry1992AmsterdamElsevier0511.60038 KarpenkoA.P.Modern Search Optimization Algorithms: Algorithms Inspired by Nature2016MoscowBauman Mosk. Gos. Tekh. Univ. GardinerC.W.Handbook of Stochastic Methods: For Physics, Chemistry and the Natural Sciences1985HeidelbergSpringer10.1007/978-3-662-02452-2 ChetaevN.G.Stability of Motion1964MoscowGITTL DemidovaA.DruzhininaO.JacimovicM.Computer and Information Science2020ChamSpringer1471.92248 KulchitskiyO.KuznetsovD.Numerical methods of modeling control systems described by stochastic differential equationsJ. Autom. Inf. Sci.199931476110.1615/JAutomatInfScien.v31.i1-3.70 LamyR.Instant SymPy Starter2013 Altunin, K.Yu. and Senichenkov, Yu.B., On the possibility of symbolic computations in packages of visual modeling of complex dynamic systems, Inf., Telekommun. upravl., 2009, no. 3(80), pp. 153–158. VolterraV.Leçons sur la théorie mathématique de la lutte pour la vie1931ParisGauthier-Villars57.0466.02 BezansonJ.EdelmanA.KarpinskiS.ShahV.B.Julia: A fresh approach to numerical computingSIAM Rev.2017596598360582610.1137/1410006711356.68030 Korolkova, A. and Kulyabov, D., Onestep stochastization methods for open systems, EPJ Web of Conferences, 2020, vol. 226, p. 02014. https://doi.org/10.1051/epjconf/202022602014. VirtanenP.GommersR.OliphantT.E.Scipy 1.0: Fundamental algorithms for scientific computing in PythonNature Methods20201726127210.1038/s41592-019-0686-2 OliphantT.E.Guide to NumPy2015North Charlston, SCCreateSpace Independent Publishing Platform Banshchikov, A.V., Burlakova, L.A., Irtegov, V.D., and Titorenko, T.N., symbolic computations in modeling nd qualitative analysis of dynamic systems, Vych. Tekhnol., 2014, no. 6, pp. 3–18. DemidovaA.V.DruzhininaO.V.MasinaO.N.PetrovA.A.Computer research of the controlled models with migration rows, Proc. of the Selected Papers of the 10th Int. Conf. on Information and Telecommunication Technologies and Mathematical Modeling of High-Tech Systems (ITTMM-2020)CEUR Workshop Proc.20202639117129 PlatenE.An introduction to numerical methods for stochastic differential equationsActa Numerica19998197246181964610.1017/S09624929000029200942.65004 GevorkyanM.N.DemidovaA.V.VelievaT.R.Implementing a Method for Stochastization of One-Step Processes in a Computer Algebra SystemProgram. Comput. Software2018448693378332310.1134/S03617688180200441455.68282 ShestakovA.A.Generalized Direct Lyapunov’s Method for Systems with Distributed Parameters1990MoscowNauka FaleichikB.V.One-Step Methods for the numerical Solution of the Cauchy Problem2010MinskBel. Gos. Univ. Meurer, A., Smith, C.P., Paprocki, M., et al., Sympy: Symbolic computing in Python, PeerJ Comput. Sci., 2017, vol. 3, p. e103. https://doi.org/10.7717/peerjcs-cs.103 GevorkyanM.N.VelievaT.R.KorolkovaA.V.Stochastic Runge–Kutta software package for stochastic differential equations, Dependability Engineering and Complex Systems2016ChamSpringer GolubyatnikovV.P.PodkolodnayaO.A.PodkolodnyiN.L.AyupovaN.B.KirillovaN.E.YunoshevaE.V.On conditions for the existence of cycles in two models of a circadian oscillator of mammalsJ. Appl. Industr. Math.20211559760810.1134/S199047892104003707668755 DilaoR.Mathematical models in population dynamics and ecology, Biomathematics: Modelling and Simulation2006SingaporeWorld Sci Jacimovic, M. and Masina, O.N., Synthesis and analysis of multidimensional mathematical models of population dynamics, Proc. of the Selected Papers of the of the 10th Int. Congress on Ultra Modern Telecommunications and Control Systems ICUMT (Moscow, Russia, November 5–9, 2018). New York: IEEE Xplore Digital Library, 2018. https://doi.org/10.1109/ICUMT.2018.8631252. Kulyabov, D.S. and Kokotchikova, M.G., Analytical eview of symbolic computation systems, Vestn. RUDN,Ser. Mat. Inform. Fiz., 2007, no. 1–2, pp. 38–45. BaireyE.KelsicE.D.KishonyR.High-order species interactions shape ecosystem diversityNature Commun.201671228510.1038/ncomms12285 PykhYu.A.Equilibrium and Stability in Models of Population Dynamics1983MoscowNauka0522.92009 MaoX.Stochastic Differential Equations and Applications2008CambridgeWoodhead10.1533/9780857099402 FirsovA.N.InovenkovI.N.NefedovV.V.TikhomirovV.V.Numerical study of the effect of stochastic disturbances on the behavior of solutions of some differential equationsModern Information Technologies and IT-Education2021173743 SvirezhevYu.M.LogofetD.O.Stability of Biological Communities1978MoscowNauka FuhrerC.SolemJ.VerdierO.Scientific Computing with Python2016 BazykinA.D.Nonlinear Dynamics of Interconnected Populations2003MoscowInst. Komput. Issled HarrisC.R.MillmanK.J.van der WaltS.J.Array programming with numpyNature202058535736210.1038/s41586-020-2649-2 R. Lamy (3727_CR34) 2013 3727_CR38 3727_CR15 A.V. Demidova (3727_CR31) 2020; 2639 M.N. Gevorkyan (3727_CR8) 2016 3727_CR11 Yu.A. Pykh (3727_CR25) 1983 3727_CR9 V.P. Golubyatnikov (3727_CR19) 2021; 15 C.R. Harris (3727_CR32) 2020; 585 O. Kulchitskiy (3727_CR7) 1999; 31 3727_CR1 3727_CR2 3727_CR3 M.N. Gevorkyan (3727_CR10) 2018; 44 3727_CR4 E. Bairey (3727_CR18) 2016; 7 C. Fuhrer (3727_CR33) 2016 T.E. Oliphant (3727_CR35) 2015 A.N. Firsov (3727_CR13) 2021; 17 P. Virtanen (3727_CR36) 2020; 17 3727_CR29 3727_CR28 E. Platen (3727_CR6) 1999; 8 X. Mao (3727_CR14) 2008 N. Van Kampen (3727_CR17) 1992 B.V. Faleichik (3727_CR5) 2010 N.G. Chetaev (3727_CR24) 1964 J. Bezanson (3727_CR37) 2017; 59 Yu.M. Svirezhev (3727_CR21) 1978 A.A. Shestakov (3727_CR26) 1990 A.V. Demidova (3727_CR27) 2020 R. Dilao (3727_CR23) 2006 A. Demidova (3727_CR30) 2020 A.P. Karpenko (3727_CR12) 2016 C.W. Gardiner (3727_CR16) 1985 A.D. Bazykin (3727_CR22) 2003 V. Volterra (3727_CR20) 1931 |
| References_xml | – reference: BaireyE.KelsicE.D.KishonyR.High-order species interactions shape ecosystem diversityNature Commun.201671228510.1038/ncomms12285 – reference: GevorkyanM.N.DemidovaA.V.VelievaT.R.Implementing a Method for Stochastization of One-Step Processes in a Computer Algebra SystemProgram. Comput. Software2018448693378332310.1134/S03617688180200441455.68282 – reference: KulchitskiyO.KuznetsovD.Numerical methods of modeling control systems described by stochastic differential equationsJ. Autom. Inf. Sci.199931476110.1615/JAutomatInfScien.v31.i1-3.70 – reference: Korolkova, A. and Kulyabov, D., Onestep stochastization methods for open systems, EPJ Web of Conferences, 2020, vol. 226, p. 02014. https://doi.org/10.1051/epjconf/202022602014. – reference: Kulyabov, D.S. and Kokotchikova, M.G., Analytical eview of symbolic computation systems, Vestn. RUDN,Ser. Mat. Inform. Fiz., 2007, no. 1–2, pp. 38–45. – reference: VolterraV.Leçons sur la théorie mathématique de la lutte pour la vie1931ParisGauthier-Villars57.0466.02 – reference: ShestakovA.A.Generalized Direct Lyapunov’s Method for Systems with Distributed Parameters1990MoscowNauka – reference: GevorkyanM.N.VelievaT.R.KorolkovaA.V.Stochastic Runge–Kutta software package for stochastic differential equations, Dependability Engineering and Complex Systems2016ChamSpringer – reference: DemidovaA.V.DruzhininaO.V.MasinaO.N.PetrovA.A.Computer research of the controlled models with migration rows, Proc. of the Selected Papers of the 10th Int. Conf. on Information and Telecommunication Technologies and Mathematical Modeling of High-Tech Systems (ITTMM-2020)CEUR Workshop Proc.20202639117129 – reference: SvirezhevYu.M.LogofetD.O.Stability of Biological Communities1978MoscowNauka – reference: KarpenkoA.P.Modern Search Optimization Algorithms: Algorithms Inspired by Nature2016MoscowBauman Mosk. Gos. Tekh. Univ. – reference: HarrisC.R.MillmanK.J.van der WaltS.J.Array programming with numpyNature202058535736210.1038/s41586-020-2649-2 – reference: ChetaevN.G.Stability of Motion1964MoscowGITTL – reference: DemidovaA.DruzhininaO.JacimovicM.Computer and Information Science2020ChamSpringer1471.92248 – reference: BezansonJ.EdelmanA.KarpinskiS.ShahV.B.Julia: A fresh approach to numerical computingSIAM Rev.2017596598360582610.1137/1410006711356.68030 – reference: PykhYu.A.Equilibrium and Stability in Models of Population Dynamics1983MoscowNauka0522.92009 – reference: Demidova, A.V., Equations of population dynamics in the form of stochastic differential equations, Vestn. RUDN, Ser. Mat. Inform. Fiz., 2013, no. 1, pp. 67–76. https://journals.rudn.ru/miph/article/ view/8319. – reference: DilaoR.Mathematical models in population dynamics and ecology, Biomathematics: Modelling and Simulation2006SingaporeWorld Sci – reference: Malashonok, G.I. and Rybakov, M.A., Solving systems of linear differential equations and calculation of dynamic characteristics of control systems in the web service mathpartner, Vestn. Ross. Univ.,Ser. Mat., 2014, no. 2, pp. 517–529. – reference: GolubyatnikovV.P.PodkolodnayaO.A.PodkolodnyiN.L.AyupovaN.B.KirillovaN.E.YunoshevaE.V.On conditions for the existence of cycles in two models of a circadian oscillator of mammalsJ. Appl. Industr. Math.20211559760810.1134/S199047892104003707668755 – reference: Demidova, A.V., Druzhinina, O.V., Masina, O.N., and Petrov, A.A., Synthesis and computer study of population dynamics controlled models using methods of numerical optimization, stochastization and machine learning, Mathematics, 2021, vol. 9, no. 24. www.mdpi.com/2227-7390/9/24/3303. – reference: Gevorkyan, M.N., Demidova, A.V., Korolkova, A.V., and Kulyabov, D.S., Issues in the software implementation of stochastic numerical Runge–Kutta, Distributed Computer and Communication Networks, V. M., Vishnevskiy and D. V. Kozyrev, Eds., Cham: Springer, 2018, Vol. 919 of Communications in Computer and Information Science, pp. 532–546. arXiv: 1811.01719. – reference: Jacimovic, M. and Masina, O.N., Synthesis and analysis of multidimensional mathematical models of population dynamics, Proc. of the Selected Papers of the of the 10th Int. Congress on Ultra Modern Telecommunications and Control Systems ICUMT (Moscow, Russia, November 5–9, 2018). New York: IEEE Xplore Digital Library, 2018. https://doi.org/10.1109/ICUMT.2018.8631252. – reference: PlatenE.An introduction to numerical methods for stochastic differential equationsActa Numerica19998197246181964610.1017/S09624929000029200942.65004 – reference: Altunin, K.Yu. and Senichenkov, Yu.B., On the possibility of symbolic computations in packages of visual modeling of complex dynamic systems, Inf., Telekommun. upravl., 2009, no. 3(80), pp. 153–158. – reference: Banshchikov, A.V., Burlakova, L.A., Irtegov, V.D., and Titorenko, T.N., symbolic computations in modeling nd qualitative analysis of dynamic systems, Vych. Tekhnol., 2014, no. 6, pp. 3–18. – reference: FirsovA.N.InovenkovI.N.NefedovV.V.TikhomirovV.V.Numerical study of the effect of stochastic disturbances on the behavior of solutions of some differential equationsModern Information Technologies and IT-Education2021173743 – reference: OliphantT.E.Guide to NumPy2015North Charlston, SCCreateSpace Independent Publishing Platform – reference: MaoX.Stochastic Differential Equations and Applications2008CambridgeWoodhead10.1533/9780857099402 – reference: LamyR.Instant SymPy Starter2013 – reference: BazykinA.D.Nonlinear Dynamics of Interconnected Populations2003MoscowInst. Komput. Issled – reference: GardinerC.W.Handbook of Stochastic Methods: For Physics, Chemistry and the Natural Sciences1985HeidelbergSpringer10.1007/978-3-662-02452-2 – reference: Van KampenN.Stochastic Processes in Physics and Chemistry1992AmsterdamElsevier0511.60038 – reference: Meurer, A., Smith, C.P., Paprocki, M., et al., Sympy: Symbolic computing in Python, PeerJ Comput. Sci., 2017, vol. 3, p. e103. https://doi.org/10.7717/peerjcs-cs.103 – reference: FuhrerC.SolemJ.VerdierO.Scientific Computing with Python2016 – reference: VirtanenP.GommersR.OliphantT.E.Scipy 1.0: Fundamental algorithms for scientific computing in PythonNature Methods20201726127210.1038/s41592-019-0686-2 – reference: FaleichikB.V.One-Step Methods for the numerical Solution of the Cauchy Problem2010MinskBel. Gos. Univ. – reference: DemidovaA.V.DruzhininaO.V.JacimovicM.The generalized algorithms of global parametric optimization and stochastization for dynamical models of interconnected populations, Optim. Appl. OPTIMA2020ChamSpringer07645976 – volume-title: Handbook of Stochastic Methods: For Physics, Chemistry and the Natural Sciences year: 1985 ident: 3727_CR16 doi: 10.1007/978-3-662-02452-2 – volume: 15 start-page: 597 year: 2021 ident: 3727_CR19 publication-title: J. Appl. Industr. Math. doi: 10.1134/S1990478921040037 – volume-title: Computer and Information Science year: 2020 ident: 3727_CR30 – volume-title: One-Step Methods for the numerical Solution of the Cauchy Problem year: 2010 ident: 3727_CR5 – volume-title: Generalized Direct Lyapunov’s Method for Systems with Distributed Parameters year: 1990 ident: 3727_CR26 – volume: 17 start-page: 261 year: 2020 ident: 3727_CR36 publication-title: Nature Methods doi: 10.1038/s41592-019-0686-2 – volume-title: Leçons sur la théorie mathématique de la lutte pour la vie year: 1931 ident: 3727_CR20 – volume-title: The generalized algorithms of global parametric optimization and stochastization for dynamical models of interconnected populations, Optim. Appl. OPTIMA year: 2020 ident: 3727_CR27 – volume-title: Nonlinear Dynamics of Interconnected Populations year: 2003 ident: 3727_CR22 – ident: 3727_CR28 doi: 10.3390/math9243303 – volume-title: Stochastic Runge–Kutta software package for stochastic differential equations, Dependability Engineering and Complex Systems year: 2016 ident: 3727_CR8 – volume: 59 start-page: 65 year: 2017 ident: 3727_CR37 publication-title: SIAM Rev. doi: 10.1137/141000671 – volume-title: Stochastic Processes in Physics and Chemistry year: 1992 ident: 3727_CR17 – ident: 3727_CR29 doi: 10.1109/ICUMT.2018.8631252 – volume-title: Mathematical models in population dynamics and ecology, Biomathematics: Modelling and Simulation year: 2006 ident: 3727_CR23 – volume: 44 start-page: 86 year: 2018 ident: 3727_CR10 publication-title: Program. Comput. Software doi: 10.1134/S0361768818020044 – volume-title: Stochastic Differential Equations and Applications year: 2008 ident: 3727_CR14 doi: 10.1533/9780857099402 – volume-title: Stability of Motion year: 1964 ident: 3727_CR24 – volume-title: Modern Search Optimization Algorithms: Algorithms Inspired by Nature year: 2016 ident: 3727_CR12 – volume: 7 start-page: 12285 year: 2016 ident: 3727_CR18 publication-title: Nature Commun. doi: 10.1038/ncomms12285 – volume-title: Scientific Computing with Python year: 2016 ident: 3727_CR33 – ident: 3727_CR1 – ident: 3727_CR3 – volume-title: Guide to NumPy year: 2015 ident: 3727_CR35 – volume-title: Stability of Biological Communities year: 1978 ident: 3727_CR21 – volume: 2639 start-page: 117 year: 2020 ident: 3727_CR31 publication-title: CEUR Workshop Proc. – volume: 17 start-page: 37 year: 2021 ident: 3727_CR13 publication-title: Modern Information Technologies and IT-Education – volume: 585 start-page: 357 year: 2020 ident: 3727_CR32 publication-title: Nature doi: 10.1038/s41586-020-2649-2 – ident: 3727_CR9 doi: 10.1007/978-3-319-99447-5_46 – ident: 3727_CR11 – ident: 3727_CR15 doi: 10.1051/epjconf/202022602014 – ident: 3727_CR38 doi: 10.7717/peerjcs-cs.103 – volume-title: Equilibrium and Stability in Models of Population Dynamics year: 1983 ident: 3727_CR25 – volume: 31 start-page: 47 year: 1999 ident: 3727_CR7 publication-title: J. Autom. Inf. Sci. doi: 10.1615/JAutomatInfScien.v31.i1-3.70 – volume-title: Instant SymPy Starter year: 2013 ident: 3727_CR34 – volume: 8 start-page: 197 year: 1999 ident: 3727_CR6 publication-title: Acta Numerica doi: 10.1017/S0962492900002920 – ident: 3727_CR4 – ident: 3727_CR2 |
| SSID | ssj0010044 |
| Score | 2.274162 |
| Snippet | The development of software for synthesizing and analyzing models of controlled systems taking into account their deterministic and stochastic description is... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 108 |
| SubjectTerms | Algorithms Artificial Intelligence Comparative analysis Computer algebra Computer Science Control stability Control theory Differential equations Dynamical systems Equilibrium Evolution Global optimization High level languages Libraries Mathematical analysis Matrix algebra Methods Operating Systems Optimization algorithms Ordinary differential equations Population Programming languages Python Runge-Kutta method Software Software Engineering Software Engineering/Programming and Operating Systems Software packages Software utilities Stochastic models Synthesis |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLCy8EYWCPDCBIuLEeXisClWFVJZSqVtkOzYd2hQ1Qcz8c86x0_KWGKM4Fylnn7_Ld74PoUulYSYADvByGXKPhj73OOw0XsxDyDd06qfcHBQePsSDMb2fRBN3jrtsqt0bSrKO1FZ3hN6MINYSAMeGGTI_2CabaCsy3bxgEo-D7oo6MBSlJSiJZ4Y7KvNHE583ozXC_EKK1ntNfw_tOJCIu9ar-2hDFQdotxFgwG49HqK3DyU_eKFxd_a0gGR_Oi8xL3I8ghD7ypcKAzDFRvTMHD3HPVucPlM5vrVy9Ni1Lcd1_QBczYXpFoztC-0vPWuwWsgpN52d8bBWni6P0Lh_99gbeE5TwZMhiSuPpVRxHoVJBCtPsCBhMhdaER5RRaUOaMqIiAxZqFIiNZOcBb4MpC9oTHLmh8eoVSwKdYKwjDQEJxnmLNeUqlQEKlFapokQYCdmbeQ3HzeTruG40b2YZXXiEdLsmz_a6Gr1yLPttvHX4E7jscwtvDILGEkBpEHW2EbXjRfXt381dvqv0Wdo28jO2wqeDmpVyxd1DuCkEhf1ZHwHrR3a_w priority: 102 providerName: Springer Nature |
| Title | Development of Algorithms and Software for Modeling Controlled Dynamic Systems Using Symbolic Computations and Stochastic Methods |
| URI | https://link.springer.com/article/10.1134/S036176882302007X https://www.proquest.com/docview/2918615401 |
| Volume | 49 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1608-3261 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010044 issn: 0361-7688 databaseCode: AFBBN dateStart: 20000101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1608-3261 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0010044 issn: 0361-7688 databaseCode: BENPR dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1608-3261 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010044 issn: 0361-7688 databaseCode: AGYKE dateStart: 20000101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1608-3261 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0010044 issn: 0361-7688 databaseCode: U2A dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFH_a2gsXGF-iMCofOIGsJbGT2gc0ldFuAq1CjErlFPlzO3TtWIM485_zHDsrG2LHOMmLnGe_97Pf8_sBvHEeRwLiAGoNU5SzTFGFnoZWiuF6w4tMqHBQ-HRWncz5p0W52IFZdxYmpFV2NrE11HZtwh75QSFzgd4XlwOHVz9oYI0K0dWOQkMlagX7vi0xtgv9IlTG6kH_w2T25etNXCHEL2P0MqcItEWKc-aMH5yFxtCGoDxs4C1ue6ot_LwTMW0d0XQPHiYEScZR5Y9hx62ewKOOnYGkyfoUfv-VD0TWnoyX59if5uJyQ9TKkjO0v7_UtSOIWklgRAvn0slRzFxfOks-Rq56kmqakza5AK8udSglTOIH435fFNiszYUKZZ_JaUtLvXkG8-nk29EJTYQL1LC8aqgU3ClVslGJ01LLYiSN1d7lquSOG19wIXNdhkiiE7nx0ihZZKYwmeZVbmXGnkNvtV65F0BM6dFyGWal9Zw7oQs3ct6IkdYop5IDyLqfW5tUjTyQYizrdlXCeP2PPgbw9uaVq1iK476H9zuN1WlWburtGBrAu06L29v_FfbyfmGv4EEgoY_5PPvQa65_utcIVRo9hF0xPR5Cf3z8_fNkmEYjts6L8R99COi4 |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAX3qgLpfgAF1DUxHay9qFCfWpLuytEW2lvwU-KtJst3aCqR_4Yv41x4nR5iN56jONMJM9oHp7HB_DaeZQE9AMSa5hKOEtVotDSJIViGG94kQoVGoWHo2Jwyj-M8_ES_Ox6YUJZZacTG0VtZybckW9QmQm0vhgOvD__lgTUqJBd7SA0VIRWsJvNiLHY2HHori4xhJtvHuwiv99Qur93sjNIIspAYlhW1IkU3CmVs36Osqgl7UtjtXeZyrnjxlMuZKbzkD5zIjNeGiVpaqhJNS8yK1OGdO_ACmdcYvC3sr03-vjpOo8R8qVttjRL0LEXMa-aMb5xHBbDGgYB4cJw_KdlXLi7f2VoG8O3_xDuR4-VbLUi9giWXPUYHnRoECQqhyfw47f6IzLzZGvyBc-vPpvOiaosOUZ9f6kuHEEvmQQEttAHT3baSvmJs2T3qlLTr4bEGeqkKWbAp6kOo4tJ-8P2frElWM_MmQpjpsmwgcGeP4XTWzn6Z7BczSq3CsTkHjWlYVZaz7kTmrq-80b0tUY6hexB2h1uaeL08wDCMSmbKIjx8h9-9ODt9Sfn7eiPmzavdRwroxaYlwuZ7cG7jouL1_8l9vxmYq_g7uBkeFQeHYwOX8A9im5XW0u0Bsv1xXf3Et2kWq9HWSTw-bbF_xfBFSHo |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYJMSFHVFWHziBomZx0vhYUaqytEIqlXqLbMemhzapaBBn_pxx7LTsEsco9kTKeJnxG7-H0LlUMBIgDnBSETCHBC5zGOw0TsQCyDdU7MZMXxTu9qLOgNwOw6HVOZ1V1e4VJGnuNGiWpqyoT1NlNUhIvQ_rrgeBskaJ9GHbcBmtEs2TAAN64DfnMIKGKw1Y6Tm6uYU1fzTxeWNaRJtfANJy32lvoQ0bMOKm8fA2WpLZDtqsxBiwnZu76O1D-Q_OFW6On3JI_EeTGWZZivuw3L6yZ4khSMVaAE1fQ8dXplB9LFPcMtL02FKY47KWAJ4mXDMHY_NBc7xnDBa5GDHN8oy7pQr1bA8N2tePVx3H6is4IvCiwqExkYyFQSOEWcip36Ai5Up6LCSSCOWTmHo81MChjD2hqGDUd4UvXE4iL6VusI9WsjyTBwiLUMFCJYKUpooQGXNfNqQScYNzsBPRGnKrn5sISz6uNTDGSZmEBCT55o8auph3mRrmjb8aH1ceS-wknCU-9WII2CCDrKHLyouL178aO_xX6zO09tBqJ_c3vbsjtK7V6E1hzzFaKZ5f5AnELAU_LcflO_584ic |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+Algorithms+and+Software+for+Modeling+Controlled+Dynamic+Systems+Using+Symbolic+Computations+and+Stochastic+Methods&rft.jtitle=Programming+and+computer+software&rft.au=Demidova%2C+A.+V&rft.au=Druzhinina%2C+O.+V&rft.au=Masina%2C+O.+N&rft.au=Petrov%2C+A.+A&rft.date=2023-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0361-7688&rft.eissn=1608-3261&rft.volume=49&rft.issue=2&rft.spage=108&rft.epage=121&rft_id=info:doi/10.1134%2FS036176882302007X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-7688&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-7688&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-7688&client=summon |