Addressing facial dynamics using k-medoids cohort selection algorithm for face recognition
Face recognition is itself a very challenging task and it becomes more challenging when the input images have intra class variations and inter class similarities in a large scale. Yet the recognition accuracy can be improved in some extent by supporting the system with non-matched templates. Therefo...
        Saved in:
      
    
          | Published in | Multimedia tools and applications Vol. 78; no. 13; pp. 18443 - 18474 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.07.2019
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1380-7501 1573-7721  | 
| DOI | 10.1007/s11042-018-7132-9 | 
Cover
| Abstract | Face recognition is itself a very challenging task and it becomes more challenging when the input images have intra class variations and inter class similarities in a large scale. Yet the recognition accuracy can be improved in some extent by supporting the system with non-matched templates. Therefore a set of cohort images is used in this regard. But all the cohort templates of the initial cohort pool may not be relevant for each and every enrolled subject. So the main focus of this work is to select a subject specific and meaningful cohort subset. This paper proposes a cohort selection method called K-medoids Cohort Selection (KMCS) to select a reference set of non-matched templates which are almost appropriate to the respective subjects. Basically, all cohort scores of a subject are clustered first using K-medoids clustering. Afterward the cluster having more scattered members/scores from its medoid is selected as a cohort subset because this cluster is constituted with the cohorts carrying more discriminative features compared to others. The SIFT points and SURF points are extracted as facial feature. The experiments are conducted on FEI, ORL and Look-alike databases of face images. The matching scores between probe and query images are normalized using T-norm, Max-Min and Aggarwal (Max rule) cohort score normalization techniques before taking the final decision of acceptance or rejection. The results obtained from the experiments show the domination of the proposed system over the non-cohort face recognition system as well as random and Top 10 cohort selection methods. There is another comparative study between k-means and K-medoids clustering for cohort selection. | 
    
|---|---|
| AbstractList | Face recognition is itself a very challenging task and it becomes more challenging when the input images have intra class variations and inter class similarities in a large scale. Yet the recognition accuracy can be improved in some extent by supporting the system with non-matched templates. Therefore a set of cohort images is used in this regard. But all the cohort templates of the initial cohort pool may not be relevant for each and every enrolled subject. So the main focus of this work is to select a subject specific and meaningful cohort subset. This paper proposes a cohort selection method called K-medoids Cohort Selection (KMCS) to select a reference set of non-matched templates which are almost appropriate to the respective subjects. Basically, all cohort scores of a subject are clustered first using K-medoids clustering. Afterward the cluster having more scattered members/scores from its medoid is selected as a cohort subset because this cluster is constituted with the cohorts carrying more discriminative features compared to others. The SIFT points and SURF points are extracted as facial feature. The experiments are conducted on FEI, ORL and Look-alike databases of face images. The matching scores between probe and query images are normalized using T-norm, Max-Min and Aggarwal (Max rule) cohort score normalization techniques before taking the final decision of acceptance or rejection. The results obtained from the experiments show the domination of the proposed system over the non-cohort face recognition system as well as random and Top 10 cohort selection methods. There is another comparative study between k-means and K-medoids clustering for cohort selection. | 
    
| Author | Kumar, Ravi Kant Garain, Jogendra Kisku, Dakshina Ranjan Sanyal, Goutam  | 
    
| Author_xml | – sequence: 1 givenname: Jogendra orcidid: 0000-0002-6201-8295 surname: Garain fullname: Garain, Jogendra email: jogs.cse@gmail.com organization: Department of Computer Science and Engineering, National Institute of Technology Durgapur – sequence: 2 givenname: Ravi Kant surname: Kumar fullname: Kumar, Ravi Kant organization: Department of Computer Science and Engineering, National Institute of Technology Durgapur – sequence: 3 givenname: Dakshina Ranjan surname: Kisku fullname: Kisku, Dakshina Ranjan organization: Department of Computer Science and Engineering, National Institute of Technology Durgapur – sequence: 4 givenname: Goutam surname: Sanyal fullname: Sanyal, Goutam organization: Department of Computer Science and Engineering, National Institute of Technology Durgapur  | 
    
| BookMark | eNp9kD9PwzAQxS1UJNrCB2CLxGzwOXYcj1XFPwmJpROL5dhO6pLGxU6HfnsSgoSEBNOd7t7v7ukt0KwLnUPoGsgtECLuEgBhFBMosYCcYnmG5sBFjoWgMBv6vCRYcAIXaJHSjhAoOGVz9LayNrqUfNdktTZet5k9dXrvTcqOX9N3vHc2eJsyE7Yh9llyrTO9D12m2yZE32_3WR3iiLssOhOazo_rS3Re6za5q--6RJuH-836Cb-8Pj6vVy_Y5FD0WHJpBHe0kDWRpZa6ZMAKxyRYyata2qp0nHDGRMWl1VpSIkFXNs_LupA8X6Kb6ewhho-jS73ahWPsho-KgqCsZALIoBKTysSQUnS1Mr7Xo80-at8qIGrMUU05qiFHNeao5EDCL_IQ_V7H078MnZg0aLvGxR9Pf0OfrbaHJg | 
    
| CitedBy_id | crossref_primary_10_1108_K_12_2022_1718 crossref_primary_10_3390_a13030057 crossref_primary_10_1007_s11042_020_09850_1 crossref_primary_10_32628_CSEIT21762  | 
    
| Cites_doi | 10.1109/2.53 10.1109/34.689299 10.1016/j.procs.2018.05.021 10.1109/CVPRW.2006.45 10.1109/CVPR.2014.220 10.1109/TIFS.2014.2362007 10.1109/ICCV.2013.91 10.21437/ICSLP.1992-176 10.23919/ECC.1999.7099789 10.1023/B:VISI.0000029664.99615.94 10.1007/BF01299724 10.1016/j.cognition.2017.12.005 10.1109/72.750575 10.1016/j.imavis.2009.11.005 10.1109/BTAS.2013.6712738 10.1109/CVPRW.2008.4563105 10.1006/dspr.1999.0360 10.1109/TPAMI.2012.30 10.14257/ijsia.2015.9.6.25 10.1016/j.image.2017.09.006 10.1109/TIM.2015.2415012 10.1007/s11042-016-4110-y 10.1109/72.554195 10.1007/s00521-015-2089-3 10.1007/11744023_32 10.1007/s11042-017-4805-8 10.1109/TIFS.2012.2198469 10.1109/ICCV.2011.6126535 10.1016/0098-3004(84)90020-7 10.1109/ICCV.2009.5459323 10.1007/BF01324251 10.1007/978-3-642-12304-7_9 10.1007/978-3-319-41501-7_63 10.1016/j.robot.2014.11.010 10.1109/CVPR.2009.5206654 10.1007/s11042-018-5932-6 10.1145/3193025.3193044 10.1109/IJCB.2011.6117520 10.1109/ICMLC.2010.48 10.1109/ICASSP.2008.4518837 10.1109/CVPR.2011.5995494 10.1109/TPAMI.2017.2695183 10.1016/j.eswa.2017.09.038 10.1109/BTAS.2010.5634530 10.1007/s11042-017-4723-9 10.1109/ACCESS.2014.2348018 10.1007/978-3-319-95957-3_91 10.1007/978-3-319-54526-4_28  | 
    
| ContentType | Journal Article | 
    
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Multimedia Tools and Applications is a copyright of Springer, (2019). All Rights Reserved.  | 
    
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Multimedia Tools and Applications is a copyright of Springer, (2019). All Rights Reserved.  | 
    
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U  | 
    
| DOI | 10.1007/s11042-018-7132-9 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic  | 
    
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni)  | 
    
| DatabaseTitleList | ABI/INFORM Global (Corporate) | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| EISSN | 1573-7721 | 
    
| EndPage | 18474 | 
    
| ExternalDocumentID | 10_1007_s11042_018_7132_9 | 
    
| GroupedDBID | -4Z -59 -5G -BR -EM -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 203 29M 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CCPQU CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M2O M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX VC2 W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX -Y2 1SB 2.D 28- 2P1 2VQ 3EH 5QI AAOBN AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABRTQ ABULA ACBXY ACSTC ADHKG ADKFA AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFGCZ AFHIU AFOHR AGGDS AGJBK AGQPQ AHPBZ AHWEU AIXLP AJBLW ATHPR AYFIA BBWZM CAG CITATION COF H13 KOW N2Q NDZJH O9- OVD PHGZM PHGZT PQGLB PUEGO R4E RNI RZC RZE RZK S1Z S26 S28 SCJ SCLPG T16 TEORI UZXMN VFIZW 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI Q9U  | 
    
| ID | FETCH-LOGICAL-c316t-959c75e269f098a9a84146e491d95bf9db8e505447b59daa92091abd338f6953 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1380-7501 | 
    
| IngestDate | Fri Jul 25 23:25:49 EDT 2025 Wed Oct 01 02:50:32 EDT 2025 Thu Apr 24 23:10:54 EDT 2025 Fri Feb 21 02:37:27 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 13 | 
    
| Keywords | Face biometric system Cohort subset Non-matched templates Cohort score normalization K-medoids clustering Cohort score  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c316t-959c75e269f098a9a84146e491d95bf9db8e505447b59daa92091abd338f6953 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-6201-8295 | 
    
| PQID | 2172484710 | 
    
| PQPubID | 54626 | 
    
| PageCount | 32 | 
    
| ParticipantIDs | proquest_journals_2172484710 crossref_citationtrail_10_1007_s11042_018_7132_9 crossref_primary_10_1007_s11042_018_7132_9 springer_journals_10_1007_s11042_018_7132_9  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019-07-01 | 
    
| PublicationDateYYYYMMDD | 2019-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York – name: Dordrecht  | 
    
| PublicationSubtitle | An International Journal | 
    
| PublicationTitle | Multimedia tools and applications | 
    
| PublicationTitleAbbrev | Multimed Tools Appl | 
    
| PublicationYear | 2019 | 
    
| Publisher | Springer US Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V  | 
    
| References | Garain J, Kumar RK, Kisku DR Sanyal G (2016). Selection of user-dependent cohorts using bezier curve for person identification. In: International Conference Image Analysis and Recognition (pp. 566-572). Springer International Publishing AuckenthalerRCareyMThomasHLScore normalization for text-independent speaker verification systemsDigital Signal Processing200010425410.1006/dspr.1999.0360 Yang M, Van Gool L, Zhang L (2013) Sparse variation dictionary learning for face recognition with a single training sample per person. In Proceedings of the IEEE international conference on computer vision (pp. 689-696) AhmadWKarnickHHegdeRMClient-wise cohort set selection by combining speaker-and phoneme-specific I-vectors for speaker verificationMultimed Tools Appl20187778273829410.1007/s11042-017-4723-9 Eickeler S, Muller S, Rigoll G (1999) High performance face recognition using pseudo 2-d hidden markov models. In: Control Conference (ECC), 1999 European, pp. 3023-3028. IEEE SemwalVBRajMNandiGCBiometric gait identification based on a multilayer perceptronRobot Auton Syst201565657510.1016/j.robot.2014.11.010 Lamba H, Sarkar A, Vatsa M, Singh R Noore A (2011) Face recognition for look-alikes: A preliminary study. In Biometrics (IJCB), International Joint Conference on (pp. 1-6). IEEE LawrenceSLee GilesCTsoiACBackADFace recognition: A convolutional neural-network approachIEEE Trans Neural Netw1997819811310.1109/72.554195 RakshitRDNathSCKiskuDRFace Identification using Some Novel Local Descriptors under the Influence of Facial ComplexitiesExpert Systems with Applications - An International Journal2018922829410.1016/j.eswa.2017.09.038Elsevier GhineaGKannanRKannaiyanSGradient-orientation-based PCA subspace for novel face recognitionIEEE Access2014291492010.1109/ACCESS.2014.2348018 LiSZJuweiLFace recognition using the nearest feature line methodIEEE Trans Neural Netw199910243944310.1109/72.750575 Dahmouni A, El Moutaouakil K, Satori K (2018). Face description using electric virtual binary pattern (EVBP): application to face recognition. Multimedia Tools and Applications 1-19 Taigman Y, Yang M, Ranzato MA, Wolf L (2014) Deepface: Closing the gap to human-level performance in face verification. In: Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1701-1708) LiHHuaGProbabilistic elastic part model: a pose-invariant representation for real-world face verificationIEEE Trans Pattern Anal Mach Intell201840491893010.1109/TPAMI.2017.2695183 Wolf L, Hassner T, Taigman Y (2009) The one-shot similarity kernel. In 2009 IEEE 12th International Conference on Computer Vision (pp. 897-902). IEEE WangWYangJXiaoJLiSZhouDZuQHuBGuNSengSFace Recognition Based on Deep LearningHuman Centered Computing. HCC 2014. Lecture Notes in Computer Science2015ChamSpringer Bay H, Tuytelaars T, Van Gool L (2006) Surf: Speeded up robust features. In European conference on computer vision (pp. 404-417). Springer Berlin Heidelberg Wolf L, Hassner T, Taigman Y (2009) Similarity scores based on background samples. In Asian Conference on Computer Vision (pp. 88-97). Springer Berlin Heidelberg SemwalVBSinghaJSharmaPKChauhanABeheraBAn optimized feature selection technique based on incremental feature analysis for bio-metric gait data classificationMultimed Tools Appl20177622244572447510.1007/s11042-016-4110-y Rosenberg AE, DeLong J, Lee C-H, Juang B-H, Soong FK (1992) The use of cohort normalized scores for speaker verification. In: Second international conference on spoken language processing DengWHuJGuoJExtended SRC: Undersampled face recognition via intraclass variant dictionaryIEEE Trans Pattern Anal Mach Intell20123491864187010.1109/TPAMI.2012.30 SirRDCohort studies: History of the method I. prospective cohort studiesInternational Journal of Public Health200146275276924910.1007/BF01299724 Aggarwal G, Ratha NK, Bolle RM, Chellappa R (2008) Multi-biometric cohort analysis for biometric fusion. In 2008 IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 5224-5227). IEEE Gomathi E, Baskaran K (2010) Recognition of faces using improved principal component analysis. In: Machine Learning and Computing (ICMLC), 2010 Second International Conference on, pp. 198-201. IEEE TistarelliMSunYPohNOn the use of discriminative cohort score normalization for unconstrained face recognitionIEEE Transactions on Information Forensics and Security20149122063207510.1109/TIFS.2014.2362007 Yin Q, Tang X, Sun J (2011) An associate-predict model for face recognition. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on (pp. 497-504). IEEE Garain J, Kumar RK, Kumar D, Kisku DR, Sanyal G, (2018) A Bezier curve cohort selection strategy for face pair matching. Second International Conference on Digital Signal Processing, Tokyo, Japan, ACM ICPS, February 25-27, In press GarainJKumarRKSanyalGKiskuDRCohort selection of specific user using Max-Min-Centroid-Cluster (MMCC) method to enhance the performance of a biometric systemInternational Journal of Security and Its Applications20159626327010.14257/ijsia.2015.9.6.25 FrostWHThe age selection of mortality from tuberculosis in successive decadesAm J Hyg1939309195 BezdekJCEhrlichRFullWFCM: The fuzzy c-means clustering algorithmComput Geosci1984102-319120310.1016/0098-3004(84)90020-7 Samaria FS, Harter AC (1994). Parameterisation of a stochastic model for human face identification. In Applications of Computer Vision, Proceedings of the Second IEEE Workshop on (pp. 138-142). IEEE SemwalVBMondalKNandiGCRobust and accurate feature selection for humanoid push recovery and classification: deep learning approachNeural Comput & Applic201728356557410.1007/s00521-015-2089-3 Sun Y, Tistarelli M Poh N (2013) Picture-specific cohort score normalization for face pair matching. In Biometrics: Theory, Applications and Systems (BTAS), 2013 IEEE Sixth International Conference on (pp. 1-8). IEEE Garain J, Shah A, Kumar RK, Sanyal G, Kisku DR (2016) BCP-BCS: best-fit cascaded matching paradigm with cohort selection using bezier curve for individual recognition. In: Asian Conference on Computer Vision, pp. 377-390. Springer, Cham Merati A, Poh N, Kittler J (2012) User-specific cohort selection and score normalization for biometric systems. IEEE Transactions on Information Forensics and Security 7(4) Schroff F, Treibitz T, Kriegman D, Belongie S (2011) Pose, illumination and expression invariant pairwise face-similarity measure via doppelgänger list comparison. In 2011 International Conference on Computer Vision (pp. 2494-2501). IEEE SirRDCohort studies: History of the method II. Retrospective cohort studiesInternational Journal of Public Health200146315210.1007/BF01324251 Merati A, Poh N, Kittler J (2010) Extracting discriminative information from cohort models. In: Proceedings of 4th IEEE International Conference on Biometrics: Theory Applications and Systems (BTAS), 1-6 Sun Y, Chen Y, Wang X, Tang X (2014) Deep learning face representation by joint identification-verification. In: Advances in neural information processing systems (pp. 1988-1996) LamK-MYanHAn analytic-to-holistic approach for face recognition based on a single frontal viewIEEE Transactions on Pattern Analysis & Machine Intelligence19987673686 SolderaJBehaineCARScharcanskiJCustomized orthogonal locality preserving projections with soft-margin maximization for face recognitionIEEE Trans Instrum Meas20156492417242610.1109/TIM.2015.2415012 GhoshSDubeySKComparative analysis of k-means and fuzzy c-means algorithmsInt J Adv Comput Sci Appl201344 Aggarwal G, Ratha NK, Bolle RM (2006) Biometric verification: Looking beyond raw similarity scores. In Proceedings of Computer Vision and Pattern Recognition Workshop, 31-31 Lucas SM (1997) Face recognition with the continuous n-tuple classi¢ er. In: Proceedings of the British Machine Vision Conference ZadehLAFuzzy logicComputer1988214839310.1109/2.53 Wagner A, Wright J, Ganesh A, Zhou Z Ma Y (2009) Towards a practical face recognition system: Robust registra tion and illumination by sparse representation. In: IEEE Com puter Society Conference on Computer Vision and Pattern Recognition (Vol. 2, p. 3) Garain J, Kumar RK, Kumar D, Kisku DR, Sanyal G (2018) Image Specific Cross Cohort Normalization for Face Pair matching. International Conference on Computational Intelligence and Data Science (ICCIDS), Gurugram, India, Procedia Elsevier, (In Press) KramerRSYoungAWBurtonAMUnderstanding face familiarityCognition2018172465810.1016/j.cognition.2017.12.005 Kumar D, Garain J, Kisku DR, Sing JK, Gupta P (2018) Ensemble face recognition system using dense local graph structure. In: International Conference on Intelligent Computing, pp. 846-852. Springer, Cham LoweDGDistinctive image features from scale-invariant keypointsInt J Comput Vis20046029111010.1023/B:VISI.0000029664.99615.94 ThomazCEGiraldiGAA new ranking method for Principal Components Analysis and its application to face image analysisImage Vis Comput201028690291310.1016/j.imavis.2009.11.005 YangXLiuFTianLLiHJiangXPseudo-full-space representation based classification for robust face recognitionSignal Process Image Commun201860647810.1016/j.image.2017.09.006 LiuJPengrenAGeQZhaoHGabor tensor based face recognition using the boosted nonparametric maximum margin criterionMultimed Tools Appl20187779055906910.1007/s11042-017-4805-8 Tulyakov S, Zhang Z, Govindaraju V (2008) Comparison of combination methods utilizing T-normalization and second best score model. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshop, 1-5 Nefian AV, Hayes MH (1998) Hidden Markov models for face recognition. In Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE International Conference on, vol. 5, pp. 2721-2724. IEEE 7132_CR35 7132_CR34 7132_CR33 RD Sir (7132_CR40) 2001; 46 7132_CR31 7132_CR30 M Tistarelli (7132_CR46) 2014; 9 WH Frost (7132_CR10) 1939; 30 S Lawrence (7132_CR23) 1997; 8 W Wang (7132_CR49) 2015 LA Zadeh (7132_CR55) 1988; 21 7132_CR44 7132_CR43 7132_CR42 JC Bezdek (7132_CR6) 1984; 10 7132_CR48 7132_CR47 RD Sir (7132_CR39) 2001; 46 J Soldera (7132_CR41) 2015; 64 DG Lowe (7132_CR27) 2004; 60 W Ahmad (7132_CR3) 2018; 77 7132_CR13 7132_CR9 7132_CR12 J Liu (7132_CR26) 2018; 77 VB Semwal (7132_CR38) 2017; 76 7132_CR11 7132_CR54 7132_CR53 7132_CR5 7132_CR51 7132_CR7 J Garain (7132_CR14) 2015; 9 7132_CR50 7132_CR18 7132_CR15 X Yang (7132_CR52) 2018; 60 RS Kramer (7132_CR19) 2018; 172 K-M Lam (7132_CR21) 1998; 7 SZ Li (7132_CR25) 1999; 10 RD Rakshit (7132_CR32) 2018; 92 7132_CR22 7132_CR20 VB Semwal (7132_CR37) 2015; 65 G Ghinea (7132_CR16) 2014; 2 7132_CR29 7132_CR28 H Li (7132_CR24) 2018; 40 R Auckenthaler (7132_CR4) 2000; 10 CE Thomaz (7132_CR45) 2010; 28 VB Semwal (7132_CR36) 2017; 28 7132_CR2 7132_CR1 W Deng (7132_CR8) 2012; 34 S Ghosh (7132_CR17) 2013; 4  | 
    
| References_xml | – reference: Gomathi E, Baskaran K (2010) Recognition of faces using improved principal component analysis. In: Machine Learning and Computing (ICMLC), 2010 Second International Conference on, pp. 198-201. IEEE – reference: Lucas SM (1997) Face recognition with the continuous n-tuple classi¢ er. In: Proceedings of the British Machine Vision Conference – reference: LawrenceSLee GilesCTsoiACBackADFace recognition: A convolutional neural-network approachIEEE Trans Neural Netw1997819811310.1109/72.554195 – reference: LiuJPengrenAGeQZhaoHGabor tensor based face recognition using the boosted nonparametric maximum margin criterionMultimed Tools Appl20187779055906910.1007/s11042-017-4805-8 – reference: ThomazCEGiraldiGAA new ranking method for Principal Components Analysis and its application to face image analysisImage Vis Comput201028690291310.1016/j.imavis.2009.11.005 – reference: SirRDCohort studies: History of the method II. Retrospective cohort studiesInternational Journal of Public Health200146315210.1007/BF01324251 – reference: LiSZJuweiLFace recognition using the nearest feature line methodIEEE Trans Neural Netw199910243944310.1109/72.750575 – reference: DengWHuJGuoJExtended SRC: Undersampled face recognition via intraclass variant dictionaryIEEE Trans Pattern Anal Mach Intell20123491864187010.1109/TPAMI.2012.30 – reference: Wolf L, Hassner T, Taigman Y (2009) Similarity scores based on background samples. In Asian Conference on Computer Vision (pp. 88-97). Springer Berlin Heidelberg – reference: Dahmouni A, El Moutaouakil K, Satori K (2018). Face description using electric virtual binary pattern (EVBP): application to face recognition. Multimedia Tools and Applications 1-19 – reference: GarainJKumarRKSanyalGKiskuDRCohort selection of specific user using Max-Min-Centroid-Cluster (MMCC) method to enhance the performance of a biometric systemInternational Journal of Security and Its Applications20159626327010.14257/ijsia.2015.9.6.25 – reference: WangWYangJXiaoJLiSZhouDZuQHuBGuNSengSFace Recognition Based on Deep LearningHuman Centered Computing. HCC 2014. Lecture Notes in Computer Science2015ChamSpringer – reference: KramerRSYoungAWBurtonAMUnderstanding face familiarityCognition2018172465810.1016/j.cognition.2017.12.005 – reference: SirRDCohort studies: History of the method I. prospective cohort studiesInternational Journal of Public Health200146275276924910.1007/BF01299724 – reference: TistarelliMSunYPohNOn the use of discriminative cohort score normalization for unconstrained face recognitionIEEE Transactions on Information Forensics and Security20149122063207510.1109/TIFS.2014.2362007 – reference: Lamba H, Sarkar A, Vatsa M, Singh R Noore A (2011) Face recognition for look-alikes: A preliminary study. In Biometrics (IJCB), International Joint Conference on (pp. 1-6). IEEE – reference: Aggarwal G, Ratha NK, Bolle RM, Chellappa R (2008) Multi-biometric cohort analysis for biometric fusion. In 2008 IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 5224-5227). IEEE – reference: Garain J, Kumar RK, Kumar D, Kisku DR, Sanyal G, (2018) A Bezier curve cohort selection strategy for face pair matching. Second International Conference on Digital Signal Processing, Tokyo, Japan, ACM ICPS, February 25-27, In press – reference: BezdekJCEhrlichRFullWFCM: The fuzzy c-means clustering algorithmComput Geosci1984102-319120310.1016/0098-3004(84)90020-7 – reference: SemwalVBMondalKNandiGCRobust and accurate feature selection for humanoid push recovery and classification: deep learning approachNeural Comput & Applic201728356557410.1007/s00521-015-2089-3 – reference: AhmadWKarnickHHegdeRMClient-wise cohort set selection by combining speaker-and phoneme-specific I-vectors for speaker verificationMultimed Tools Appl20187778273829410.1007/s11042-017-4723-9 – reference: SemwalVBRajMNandiGCBiometric gait identification based on a multilayer perceptronRobot Auton Syst201565657510.1016/j.robot.2014.11.010 – reference: GhoshSDubeySKComparative analysis of k-means and fuzzy c-means algorithmsInt J Adv Comput Sci Appl201344 – reference: LoweDGDistinctive image features from scale-invariant keypointsInt J Comput Vis20046029111010.1023/B:VISI.0000029664.99615.94 – reference: Yin Q, Tang X, Sun J (2011) An associate-predict model for face recognition. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on (pp. 497-504). IEEE – reference: SolderaJBehaineCARScharcanskiJCustomized orthogonal locality preserving projections with soft-margin maximization for face recognitionIEEE Trans Instrum Meas20156492417242610.1109/TIM.2015.2415012 – reference: GhineaGKannanRKannaiyanSGradient-orientation-based PCA subspace for novel face recognitionIEEE Access2014291492010.1109/ACCESS.2014.2348018 – reference: Eickeler S, Muller S, Rigoll G (1999) High performance face recognition using pseudo 2-d hidden markov models. In: Control Conference (ECC), 1999 European, pp. 3023-3028. IEEE – reference: YangXLiuFTianLLiHJiangXPseudo-full-space representation based classification for robust face recognitionSignal Process Image Commun201860647810.1016/j.image.2017.09.006 – reference: Nefian AV, Hayes MH (1998) Hidden Markov models for face recognition. In Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE International Conference on, vol. 5, pp. 2721-2724. IEEE – reference: Sun Y, Tistarelli M Poh N (2013) Picture-specific cohort score normalization for face pair matching. In Biometrics: Theory, Applications and Systems (BTAS), 2013 IEEE Sixth International Conference on (pp. 1-8). IEEE – reference: LamK-MYanHAn analytic-to-holistic approach for face recognition based on a single frontal viewIEEE Transactions on Pattern Analysis & Machine Intelligence19987673686 – reference: Garain J, Kumar RK, Kumar D, Kisku DR, Sanyal G (2018) Image Specific Cross Cohort Normalization for Face Pair matching. International Conference on Computational Intelligence and Data Science (ICCIDS), Gurugram, India, Procedia Elsevier, (In Press) – reference: Tulyakov S, Zhang Z, Govindaraju V (2008) Comparison of combination methods utilizing T-normalization and second best score model. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshop, 1-5 – reference: Bay H, Tuytelaars T, Van Gool L (2006) Surf: Speeded up robust features. In European conference on computer vision (pp. 404-417). Springer Berlin Heidelberg – reference: Garain J, Shah A, Kumar RK, Sanyal G, Kisku DR (2016) BCP-BCS: best-fit cascaded matching paradigm with cohort selection using bezier curve for individual recognition. In: Asian Conference on Computer Vision, pp. 377-390. Springer, Cham – reference: Merati A, Poh N, Kittler J (2012) User-specific cohort selection and score normalization for biometric systems. IEEE Transactions on Information Forensics and Security 7(4) – reference: Wolf L, Hassner T, Taigman Y (2009) The one-shot similarity kernel. In 2009 IEEE 12th International Conference on Computer Vision (pp. 897-902). IEEE – reference: Merati A, Poh N, Kittler J (2010) Extracting discriminative information from cohort models. In: Proceedings of 4th IEEE International Conference on Biometrics: Theory Applications and Systems (BTAS), 1-6 – reference: Taigman Y, Yang M, Ranzato MA, Wolf L (2014) Deepface: Closing the gap to human-level performance in face verification. In: Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1701-1708) – reference: FrostWHThe age selection of mortality from tuberculosis in successive decadesAm J Hyg1939309195 – reference: Schroff F, Treibitz T, Kriegman D, Belongie S (2011) Pose, illumination and expression invariant pairwise face-similarity measure via doppelgänger list comparison. In 2011 International Conference on Computer Vision (pp. 2494-2501). IEEE – reference: ZadehLAFuzzy logicComputer1988214839310.1109/2.53 – reference: Rosenberg AE, DeLong J, Lee C-H, Juang B-H, Soong FK (1992) The use of cohort normalized scores for speaker verification. In: Second international conference on spoken language processing – reference: Kumar D, Garain J, Kisku DR, Sing JK, Gupta P (2018) Ensemble face recognition system using dense local graph structure. In: International Conference on Intelligent Computing, pp. 846-852. Springer, Cham – reference: Sun Y, Chen Y, Wang X, Tang X (2014) Deep learning face representation by joint identification-verification. In: Advances in neural information processing systems (pp. 1988-1996) – reference: Aggarwal G, Ratha NK, Bolle RM (2006) Biometric verification: Looking beyond raw similarity scores. In Proceedings of Computer Vision and Pattern Recognition Workshop, 31-31 – reference: Garain J, Kumar RK, Kisku DR Sanyal G (2016). Selection of user-dependent cohorts using bezier curve for person identification. In: International Conference Image Analysis and Recognition (pp. 566-572). Springer International Publishing – reference: RakshitRDNathSCKiskuDRFace Identification using Some Novel Local Descriptors under the Influence of Facial ComplexitiesExpert Systems with Applications - An International Journal2018922829410.1016/j.eswa.2017.09.038Elsevier – reference: Samaria FS, Harter AC (1994). Parameterisation of a stochastic model for human face identification. In Applications of Computer Vision, Proceedings of the Second IEEE Workshop on (pp. 138-142). IEEE – reference: AuckenthalerRCareyMThomasHLScore normalization for text-independent speaker verification systemsDigital Signal Processing200010425410.1006/dspr.1999.0360 – reference: Wagner A, Wright J, Ganesh A, Zhou Z Ma Y (2009) Towards a practical face recognition system: Robust registra tion and illumination by sparse representation. In: IEEE Com puter Society Conference on Computer Vision and Pattern Recognition (Vol. 2, p. 3) – reference: SemwalVBSinghaJSharmaPKChauhanABeheraBAn optimized feature selection technique based on incremental feature analysis for bio-metric gait data classificationMultimed Tools Appl20177622244572447510.1007/s11042-016-4110-y – reference: LiHHuaGProbabilistic elastic part model: a pose-invariant representation for real-world face verificationIEEE Trans Pattern Anal Mach Intell201840491893010.1109/TPAMI.2017.2695183 – reference: Yang M, Van Gool L, Zhang L (2013) Sparse variation dictionary learning for face recognition with a single training sample per person. In Proceedings of the IEEE international conference on computer vision (pp. 689-696) – volume: 4 start-page: 4 year: 2013 ident: 7132_CR17 publication-title: Int J Adv Comput Sci Appl – volume-title: Human Centered Computing. HCC 2014. Lecture Notes in Computer Science year: 2015 ident: 7132_CR49 – volume: 21 start-page: 83 issue: 4 year: 1988 ident: 7132_CR55 publication-title: Computer doi: 10.1109/2.53 – volume: 7 start-page: 673 year: 1998 ident: 7132_CR21 publication-title: IEEE Transactions on Pattern Analysis & Machine Intelligence doi: 10.1109/34.689299 – ident: 7132_CR42 – ident: 7132_CR13 doi: 10.1016/j.procs.2018.05.021 – ident: 7132_CR1 doi: 10.1109/CVPRW.2006.45 – ident: 7132_CR44 doi: 10.1109/CVPR.2014.220 – volume: 9 start-page: 2063 issue: 12 year: 2014 ident: 7132_CR46 publication-title: IEEE Transactions on Information Forensics and Security doi: 10.1109/TIFS.2014.2362007 – ident: 7132_CR53 doi: 10.1109/ICCV.2013.91 – ident: 7132_CR33 doi: 10.21437/ICSLP.1992-176 – ident: 7132_CR9 doi: 10.23919/ECC.1999.7099789 – volume: 60 start-page: 91 issue: 2 year: 2004 ident: 7132_CR27 publication-title: Int J Comput Vis doi: 10.1023/B:VISI.0000029664.99615.94 – volume: 46 start-page: 75 issue: 2 year: 2001 ident: 7132_CR39 publication-title: International Journal of Public Health doi: 10.1007/BF01299724 – volume: 172 start-page: 46 year: 2018 ident: 7132_CR19 publication-title: Cognition doi: 10.1016/j.cognition.2017.12.005 – volume: 10 start-page: 439 issue: 2 year: 1999 ident: 7132_CR25 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.750575 – volume: 28 start-page: 902 issue: 6 year: 2010 ident: 7132_CR45 publication-title: Image Vis Comput doi: 10.1016/j.imavis.2009.11.005 – ident: 7132_CR43 doi: 10.1109/BTAS.2013.6712738 – ident: 7132_CR47 doi: 10.1109/CVPRW.2008.4563105 – volume: 10 start-page: 42 year: 2000 ident: 7132_CR4 publication-title: Digital Signal Processing doi: 10.1006/dspr.1999.0360 – volume: 34 start-page: 1864 issue: 9 year: 2012 ident: 7132_CR8 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2012.30 – volume: 9 start-page: 263 issue: 6 year: 2015 ident: 7132_CR14 publication-title: International Journal of Security and Its Applications doi: 10.14257/ijsia.2015.9.6.25 – volume: 60 start-page: 64 year: 2018 ident: 7132_CR52 publication-title: Signal Process Image Commun doi: 10.1016/j.image.2017.09.006 – volume: 64 start-page: 2417 issue: 9 year: 2015 ident: 7132_CR41 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2015.2415012 – volume: 76 start-page: 24457 issue: 22 year: 2017 ident: 7132_CR38 publication-title: Multimed Tools Appl doi: 10.1007/s11042-016-4110-y – volume: 8 start-page: 98 issue: 1 year: 1997 ident: 7132_CR23 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.554195 – volume: 28 start-page: 565 issue: 3 year: 2017 ident: 7132_CR36 publication-title: Neural Comput & Applic doi: 10.1007/s00521-015-2089-3 – ident: 7132_CR5 doi: 10.1007/11744023_32 – volume: 30 start-page: 91 year: 1939 ident: 7132_CR10 publication-title: Am J Hyg – ident: 7132_CR34 – volume: 77 start-page: 9055 issue: 7 year: 2018 ident: 7132_CR26 publication-title: Multimed Tools Appl doi: 10.1007/s11042-017-4805-8 – ident: 7132_CR30 doi: 10.1109/TIFS.2012.2198469 – ident: 7132_CR35 doi: 10.1109/ICCV.2011.6126535 – volume: 10 start-page: 191 issue: 2-3 year: 1984 ident: 7132_CR6 publication-title: Comput Geosci doi: 10.1016/0098-3004(84)90020-7 – ident: 7132_CR51 doi: 10.1109/ICCV.2009.5459323 – volume: 46 start-page: 152 issue: 3 year: 2001 ident: 7132_CR40 publication-title: International Journal of Public Health doi: 10.1007/BF01324251 – ident: 7132_CR50 doi: 10.1007/978-3-642-12304-7_9 – ident: 7132_CR11 doi: 10.1007/978-3-319-41501-7_63 – ident: 7132_CR28 – volume: 65 start-page: 65 year: 2015 ident: 7132_CR37 publication-title: Robot Auton Syst doi: 10.1016/j.robot.2014.11.010 – ident: 7132_CR31 – ident: 7132_CR48 doi: 10.1109/CVPR.2009.5206654 – ident: 7132_CR7 doi: 10.1007/s11042-018-5932-6 – ident: 7132_CR12 doi: 10.1145/3193025.3193044 – ident: 7132_CR22 doi: 10.1109/IJCB.2011.6117520 – ident: 7132_CR18 doi: 10.1109/ICMLC.2010.48 – ident: 7132_CR2 doi: 10.1109/ICASSP.2008.4518837 – ident: 7132_CR54 doi: 10.1109/CVPR.2011.5995494 – volume: 40 start-page: 918 issue: 4 year: 2018 ident: 7132_CR24 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2017.2695183 – volume: 92 start-page: 82 issue: 2 year: 2018 ident: 7132_CR32 publication-title: Expert Systems with Applications - An International Journal doi: 10.1016/j.eswa.2017.09.038 – ident: 7132_CR29 doi: 10.1109/BTAS.2010.5634530 – volume: 77 start-page: 8273 issue: 7 year: 2018 ident: 7132_CR3 publication-title: Multimed Tools Appl doi: 10.1007/s11042-017-4723-9 – volume: 2 start-page: 914 year: 2014 ident: 7132_CR16 publication-title: IEEE Access doi: 10.1109/ACCESS.2014.2348018 – ident: 7132_CR20 doi: 10.1007/978-3-319-95957-3_91 – ident: 7132_CR15 doi: 10.1007/978-3-319-54526-4_28  | 
    
| SSID | ssj0016524 | 
    
| Score | 2.2134264 | 
    
| Snippet | Face recognition is itself a very challenging task and it becomes more challenging when the input images have intra class variations and inter class... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 18443 | 
    
| SubjectTerms | Acceptance Clustering Comparative studies Computer Communication Networks Computer Science Data Structures and Information Theory Face recognition Facial recognition technology Feature extraction Multimedia Information Systems Special Purpose and Application-Based Systems Template matching  | 
    
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWDgUUAUCvLABLKUNLZjjxWiqpBgaqWKJbJjp1SUBDXp_8fOowEESKzxY7jz-T7nHh_AdZAYEiuqMEkSg4n1oc6kAsyYjKVO3LXpipMfn9h4Sh5mdFbXcedNtnsTkixv6rbYzXelJJ7PsX1Y2S23YYe6bl72EE8Hw03ogNGayZZ72LpDvwll_rTFV2fUIsxvQdHS14wOYb8GiWhYafUItkzahYOGgAHV9tiFvU_dBI_heah1mdWazlEi3a9wpCu--Ryty6-v2Pq-bKFz5HhxVwXKSxYcqxokl_NstShe3pBFsW65QZvcoiw9gcnofnI3xjV1Ao4DnxVYUBGH1AyYSDzBpZCc2CvREOFrQVUitOLGYh9CQkWFllIMLG6QStsHa8IEDU6hk2apOQMUujeRJkpTo4lUUuqAEZ9zP5TUI5L3wGtEGMV1W3HHbrGM2obITuqRlXrkpB6JHtxslrxXPTX-mtxv9BLV5pVHjlWLOL_q9eC20VU7_Otm5_-afQG7Fh6JKjm3D51itTaXFoIU6qo8ch8FqNHs priority: 102 providerName: Springer Nature  | 
    
| Title | Addressing facial dynamics using k-medoids cohort selection algorithm for face recognition | 
    
| URI | https://link.springer.com/article/10.1007/s11042-018-7132-9 https://www.proquest.com/docview/2172484710  | 
    
| Volume | 78 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-7721 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: ADMLS dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-7721 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-7721 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFH_odtGDH1NxfowcPCnBdk265CAyZXMoDpEJ6qUkTTpF7dTV_9-8rt1UcNe0CeW95L1f-j5-AAdBYlmsuaYsSSxlzofikQpoGKpYmQTNJhYnX_fD3h27vOf3C9Ava2EwrbK0ibmhNqMY_5EfI5ESQ1Pqnb5_UGSNwuhqSaGhCmoFc5K3GFuEahM7Y1Wgetbp39xO4wohL2huhUedr_TLOGdeTOdjqYrnC-oubu6Tf3uqGfz8EzHNHVF3DVYKBEnaE5Wvw4JNa7BasjOQ4rDWYPlHq8ENeGwbk6e8pkOSKPxPTsyEjH5MvvLRF-oc4-jZjAmS5n5mZJxT5Di9EfU6dKLInt6Ig7g43ZJp4tEo3YRBtzM479GCV4HGgR9mVHIZt7hthjLxpFBSCebspWXSN5LrRBotrANGjLU0l0Yp2XSgQmnjbrNJKHmwBZV0lNptIC28MBmmDbeGKa2UCULmC-G3FPeYEnXwShFGcdFzHKkvXqNZt2SUeuSkHqHUI1mHw-mU90nDjXkv75V6iYqzN45mO6UOR6WuZo__XWxn_mK7sOTAkpyk6u5BJfv8svsOkGS6AYuie9GAavvi4arTKPacG71rtr8Bh7DfTQ | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2t2gNwaKGAWFrAB7iALJKNnY0PFdqWVlvarhBapIqLZcdOqdpmS5Oq2h_X_8ZM1tkFJPbWaxL7MB7Pm8l8PIC3SeFFbqXloig8F4ihdKUSnqYmN64gs0nNycejdPhdfDmRJx24a3thqKyytYmNoXaTnP6RfyQiJUGmNPp09YsTaxRlV1sKDROoFdx2M2IsNHYc-ukthnDV9sFnPO93vd7-3nh3yAPLAM-TOK25kirvS99LVRGpzCiTCbQeXqjYKWkL5Wzm0U0Qom-lcsaoHkKssQ5juyJVRBqBCLAqEqEw9lvd2Rt9_TZPY6QysOpmEUdojtu0atO7F1NnTBRnHONElNDfwLjwdv9J0Da4t_8Y1oLDygYzDXsCHV9uwHpLBsGCbdiAR39MNnwKPwbONRW25SkrDP2WZ25amsuzvGI3zdNzjjg8OXMVI47e65pVDSMPqgkzF6co-frnJUOPmpZ7Nq9zmpTPYHwfAn4OK-Wk9C-A9Sk-c8I66Z0w1hiXpCLOsrhvZCRM1oWoFaHOw4hzYtq40IvhzCR1jVLXJHWtuvB-vuRqNt9j2cdb7bnocNUrvVDMLnxoz2rx-r-bvVy-2Rt4MBwfH-mjg9HhJjxEP03NqoS3YKW-vvGv0Beq7eugcQz0Pev4b_8NFyk | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hkKr2AC1txQKlPpQLlUWyayfxoUII2EJ5qAcqoV4sO7YBAVkgQYif1n_HTB67tFK5cU1iH8af55F5fABfBsGL3ErLRQieC7ShdKUGPElMblwgtUnNyYdHye4v8eNEnkzBn64XhsoqO51YK2o3yukf-ToRKQlSpdF6aMsifm4PN65vODFIUaa1o9NoILLvH-4xfCu_7W3jWa_2-8Od461d3jIM8HwQJxVXUuWp9P1EhUhlRplMoObwQsVOSRuUs5lHF0GI1ErljFF9NK_GOozrQqKIMAK1_0xKQ9ypSX34fZzASGTLp5tFHI1y3CVU6669mHpiojjjGCGibP42iRM_95_UbG3xhm9htnVV2WaDrXcw5Yt5mOtoIFirFebhzZOZhu_h96ZzdW1tccqCoR_yzDWs9yW7q59ecLTAo3NXMmLnva1YWXPxIECYuTxFOVdnVwx9aVru2bjCaVR8gOOXEO9HmC5GhV8AllJk5oR10jthrDFukIg4y-LUyEiYrAdRJ0Kdt8PNiWPjUk_GMpPUNUpdk9S16sHaeMl1M9njuY-Xu3PR7SUv9QSSPfjandXk9X83W3x-s8_wCpGtD_aO9pfgNTpoqikPXobp6vbOf0InqLIrNdwY6BeG9yNJQhTD | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Addressing+facial+dynamics+using+k-medoids+cohort+selection+algorithm+for+face+recognition&rft.jtitle=Multimedia+tools+and+applications&rft.au=Garain%2C+Jogendra&rft.au=Kumar%2C+Ravi+Kant&rft.au=Kisku%2C+Dakshina+Ranjan&rft.au=Sanyal%2C+Goutam&rft.date=2019-07-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=78&rft.issue=13&rft.spage=18443&rft.epage=18474&rft_id=info:doi/10.1007%2Fs11042-018-7132-9&rft.externalDBID=HAS_PDF_LINK | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |