Addressing facial dynamics using k-medoids cohort selection algorithm for face recognition

Face recognition is itself a very challenging task and it becomes more challenging when the input images have intra class variations and inter class similarities in a large scale. Yet the recognition accuracy can be improved in some extent by supporting the system with non-matched templates. Therefo...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 78; no. 13; pp. 18443 - 18474
Main Authors Garain, Jogendra, Kumar, Ravi Kant, Kisku, Dakshina Ranjan, Sanyal, Goutam
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1380-7501
1573-7721
DOI10.1007/s11042-018-7132-9

Cover

Abstract Face recognition is itself a very challenging task and it becomes more challenging when the input images have intra class variations and inter class similarities in a large scale. Yet the recognition accuracy can be improved in some extent by supporting the system with non-matched templates. Therefore a set of cohort images is used in this regard. But all the cohort templates of the initial cohort pool may not be relevant for each and every enrolled subject. So the main focus of this work is to select a subject specific and meaningful cohort subset. This paper proposes a cohort selection method called K-medoids Cohort Selection (KMCS) to select a reference set of non-matched templates which are almost appropriate to the respective subjects. Basically, all cohort scores of a subject are clustered first using K-medoids clustering. Afterward the cluster having more scattered members/scores from its medoid is selected as a cohort subset because this cluster is constituted with the cohorts carrying more discriminative features compared to others. The SIFT points and SURF points are extracted as facial feature. The experiments are conducted on FEI, ORL and Look-alike databases of face images. The matching scores between probe and query images are normalized using T-norm, Max-Min and Aggarwal (Max rule) cohort score normalization techniques before taking the final decision of acceptance or rejection. The results obtained from the experiments show the domination of the proposed system over the non-cohort face recognition system as well as random and Top 10 cohort selection methods. There is another comparative study between k-means and K-medoids clustering for cohort selection.
AbstractList Face recognition is itself a very challenging task and it becomes more challenging when the input images have intra class variations and inter class similarities in a large scale. Yet the recognition accuracy can be improved in some extent by supporting the system with non-matched templates. Therefore a set of cohort images is used in this regard. But all the cohort templates of the initial cohort pool may not be relevant for each and every enrolled subject. So the main focus of this work is to select a subject specific and meaningful cohort subset. This paper proposes a cohort selection method called K-medoids Cohort Selection (KMCS) to select a reference set of non-matched templates which are almost appropriate to the respective subjects. Basically, all cohort scores of a subject are clustered first using K-medoids clustering. Afterward the cluster having more scattered members/scores from its medoid is selected as a cohort subset because this cluster is constituted with the cohorts carrying more discriminative features compared to others. The SIFT points and SURF points are extracted as facial feature. The experiments are conducted on FEI, ORL and Look-alike databases of face images. The matching scores between probe and query images are normalized using T-norm, Max-Min and Aggarwal (Max rule) cohort score normalization techniques before taking the final decision of acceptance or rejection. The results obtained from the experiments show the domination of the proposed system over the non-cohort face recognition system as well as random and Top 10 cohort selection methods. There is another comparative study between k-means and K-medoids clustering for cohort selection.
Author Kumar, Ravi Kant
Garain, Jogendra
Kisku, Dakshina Ranjan
Sanyal, Goutam
Author_xml – sequence: 1
  givenname: Jogendra
  orcidid: 0000-0002-6201-8295
  surname: Garain
  fullname: Garain, Jogendra
  email: jogs.cse@gmail.com
  organization: Department of Computer Science and Engineering, National Institute of Technology Durgapur
– sequence: 2
  givenname: Ravi Kant
  surname: Kumar
  fullname: Kumar, Ravi Kant
  organization: Department of Computer Science and Engineering, National Institute of Technology Durgapur
– sequence: 3
  givenname: Dakshina Ranjan
  surname: Kisku
  fullname: Kisku, Dakshina Ranjan
  organization: Department of Computer Science and Engineering, National Institute of Technology Durgapur
– sequence: 4
  givenname: Goutam
  surname: Sanyal
  fullname: Sanyal, Goutam
  organization: Department of Computer Science and Engineering, National Institute of Technology Durgapur
BookMark eNp9kD9PwzAQxS1UJNrCB2CLxGzwOXYcj1XFPwmJpROL5dhO6pLGxU6HfnsSgoSEBNOd7t7v7ukt0KwLnUPoGsgtECLuEgBhFBMosYCcYnmG5sBFjoWgMBv6vCRYcAIXaJHSjhAoOGVz9LayNrqUfNdktTZet5k9dXrvTcqOX9N3vHc2eJsyE7Yh9llyrTO9D12m2yZE32_3WR3iiLssOhOazo_rS3Re6za5q--6RJuH-836Cb-8Pj6vVy_Y5FD0WHJpBHe0kDWRpZa6ZMAKxyRYyata2qp0nHDGRMWl1VpSIkFXNs_LupA8X6Kb6ewhho-jS73ahWPsho-KgqCsZALIoBKTysSQUnS1Mr7Xo80-at8qIGrMUU05qiFHNeao5EDCL_IQ_V7H078MnZg0aLvGxR9Pf0OfrbaHJg
CitedBy_id crossref_primary_10_1108_K_12_2022_1718
crossref_primary_10_3390_a13030057
crossref_primary_10_1007_s11042_020_09850_1
crossref_primary_10_32628_CSEIT21762
Cites_doi 10.1109/2.53
10.1109/34.689299
10.1016/j.procs.2018.05.021
10.1109/CVPRW.2006.45
10.1109/CVPR.2014.220
10.1109/TIFS.2014.2362007
10.1109/ICCV.2013.91
10.21437/ICSLP.1992-176
10.23919/ECC.1999.7099789
10.1023/B:VISI.0000029664.99615.94
10.1007/BF01299724
10.1016/j.cognition.2017.12.005
10.1109/72.750575
10.1016/j.imavis.2009.11.005
10.1109/BTAS.2013.6712738
10.1109/CVPRW.2008.4563105
10.1006/dspr.1999.0360
10.1109/TPAMI.2012.30
10.14257/ijsia.2015.9.6.25
10.1016/j.image.2017.09.006
10.1109/TIM.2015.2415012
10.1007/s11042-016-4110-y
10.1109/72.554195
10.1007/s00521-015-2089-3
10.1007/11744023_32
10.1007/s11042-017-4805-8
10.1109/TIFS.2012.2198469
10.1109/ICCV.2011.6126535
10.1016/0098-3004(84)90020-7
10.1109/ICCV.2009.5459323
10.1007/BF01324251
10.1007/978-3-642-12304-7_9
10.1007/978-3-319-41501-7_63
10.1016/j.robot.2014.11.010
10.1109/CVPR.2009.5206654
10.1007/s11042-018-5932-6
10.1145/3193025.3193044
10.1109/IJCB.2011.6117520
10.1109/ICMLC.2010.48
10.1109/ICASSP.2008.4518837
10.1109/CVPR.2011.5995494
10.1109/TPAMI.2017.2695183
10.1016/j.eswa.2017.09.038
10.1109/BTAS.2010.5634530
10.1007/s11042-017-4723-9
10.1109/ACCESS.2014.2348018
10.1007/978-3-319-95957-3_91
10.1007/978-3-319-54526-4_28
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Multimedia Tools and Applications is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Multimedia Tools and Applications is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-018-7132-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 18474
ExternalDocumentID 10_1007_s11042_018_7132_9
GroupedDBID -4Z
-59
-5G
-BR
-EM
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
203
29M
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
3EH
5QI
AAOBN
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
ADKFA
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFGCZ
AFHIU
AFOHR
AGGDS
AGJBK
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
H13
KOW
N2Q
NDZJH
O9-
OVD
PHGZM
PHGZT
PQGLB
PUEGO
R4E
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCJ
SCLPG
T16
TEORI
UZXMN
VFIZW
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c316t-959c75e269f098a9a84146e491d95bf9db8e505447b59daa92091abd338f6953
IEDL.DBID BENPR
ISSN 1380-7501
IngestDate Fri Jul 25 23:25:49 EDT 2025
Wed Oct 01 02:50:32 EDT 2025
Thu Apr 24 23:10:54 EDT 2025
Fri Feb 21 02:37:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Face biometric system
Cohort subset
Non-matched templates
Cohort score normalization
K-medoids clustering
Cohort score
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-959c75e269f098a9a84146e491d95bf9db8e505447b59daa92091abd338f6953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6201-8295
PQID 2172484710
PQPubID 54626
PageCount 32
ParticipantIDs proquest_journals_2172484710
crossref_citationtrail_10_1007_s11042_018_7132_9
crossref_primary_10_1007_s11042_018_7132_9
springer_journals_10_1007_s11042_018_7132_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Garain J, Kumar RK, Kisku DR Sanyal G (2016). Selection of user-dependent cohorts using bezier curve for person identification. In: International Conference Image Analysis and Recognition (pp. 566-572). Springer International Publishing
AuckenthalerRCareyMThomasHLScore normalization for text-independent speaker verification systemsDigital Signal Processing200010425410.1006/dspr.1999.0360
Yang M, Van Gool L, Zhang L (2013) Sparse variation dictionary learning for face recognition with a single training sample per person. In Proceedings of the IEEE international conference on computer vision (pp. 689-696)
AhmadWKarnickHHegdeRMClient-wise cohort set selection by combining speaker-and phoneme-specific I-vectors for speaker verificationMultimed Tools Appl20187778273829410.1007/s11042-017-4723-9
Eickeler S, Muller S, Rigoll G (1999) High performance face recognition using pseudo 2-d hidden markov models. In: Control Conference (ECC), 1999 European, pp. 3023-3028. IEEE
SemwalVBRajMNandiGCBiometric gait identification based on a multilayer perceptronRobot Auton Syst201565657510.1016/j.robot.2014.11.010
Lamba H, Sarkar A, Vatsa M, Singh R Noore A (2011) Face recognition for look-alikes: A preliminary study. In Biometrics (IJCB), International Joint Conference on (pp. 1-6). IEEE
LawrenceSLee GilesCTsoiACBackADFace recognition: A convolutional neural-network approachIEEE Trans Neural Netw1997819811310.1109/72.554195
RakshitRDNathSCKiskuDRFace Identification using Some Novel Local Descriptors under the Influence of Facial ComplexitiesExpert Systems with Applications - An International Journal2018922829410.1016/j.eswa.2017.09.038Elsevier
GhineaGKannanRKannaiyanSGradient-orientation-based PCA subspace for novel face recognitionIEEE Access2014291492010.1109/ACCESS.2014.2348018
LiSZJuweiLFace recognition using the nearest feature line methodIEEE Trans Neural Netw199910243944310.1109/72.750575
Dahmouni A, El Moutaouakil K, Satori K (2018). Face description using electric virtual binary pattern (EVBP): application to face recognition. Multimedia Tools and Applications 1-19
Taigman Y, Yang M, Ranzato MA, Wolf L (2014) Deepface: Closing the gap to human-level performance in face verification. In: Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1701-1708)
LiHHuaGProbabilistic elastic part model: a pose-invariant representation for real-world face verificationIEEE Trans Pattern Anal Mach Intell201840491893010.1109/TPAMI.2017.2695183
Wolf L, Hassner T, Taigman Y (2009) The one-shot similarity kernel. In 2009 IEEE 12th International Conference on Computer Vision (pp. 897-902). IEEE
WangWYangJXiaoJLiSZhouDZuQHuBGuNSengSFace Recognition Based on Deep LearningHuman Centered Computing. HCC 2014. Lecture Notes in Computer Science2015ChamSpringer
Bay H, Tuytelaars T, Van Gool L (2006) Surf: Speeded up robust features. In European conference on computer vision (pp. 404-417). Springer Berlin Heidelberg
Wolf L, Hassner T, Taigman Y (2009) Similarity scores based on background samples. In Asian Conference on Computer Vision (pp. 88-97). Springer Berlin Heidelberg
SemwalVBSinghaJSharmaPKChauhanABeheraBAn optimized feature selection technique based on incremental feature analysis for bio-metric gait data classificationMultimed Tools Appl20177622244572447510.1007/s11042-016-4110-y
Rosenberg AE, DeLong J, Lee C-H, Juang B-H, Soong FK (1992) The use of cohort normalized scores for speaker verification. In: Second international conference on spoken language processing
DengWHuJGuoJExtended SRC: Undersampled face recognition via intraclass variant dictionaryIEEE Trans Pattern Anal Mach Intell20123491864187010.1109/TPAMI.2012.30
SirRDCohort studies: History of the method I. prospective cohort studiesInternational Journal of Public Health200146275276924910.1007/BF01299724
Aggarwal G, Ratha NK, Bolle RM, Chellappa R (2008) Multi-biometric cohort analysis for biometric fusion. In 2008 IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 5224-5227). IEEE
Gomathi E, Baskaran K (2010) Recognition of faces using improved principal component analysis. In: Machine Learning and Computing (ICMLC), 2010 Second International Conference on, pp. 198-201. IEEE
TistarelliMSunYPohNOn the use of discriminative cohort score normalization for unconstrained face recognitionIEEE Transactions on Information Forensics and Security20149122063207510.1109/TIFS.2014.2362007
Yin Q, Tang X, Sun J (2011) An associate-predict model for face recognition. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on (pp. 497-504). IEEE
Garain J, Kumar RK, Kumar D, Kisku DR, Sanyal G, (2018) A Bezier curve cohort selection strategy for face pair matching. Second International Conference on Digital Signal Processing, Tokyo, Japan, ACM ICPS, February 25-27, In press
GarainJKumarRKSanyalGKiskuDRCohort selection of specific user using Max-Min-Centroid-Cluster (MMCC) method to enhance the performance of a biometric systemInternational Journal of Security and Its Applications20159626327010.14257/ijsia.2015.9.6.25
FrostWHThe age selection of mortality from tuberculosis in successive decadesAm J Hyg1939309195
BezdekJCEhrlichRFullWFCM: The fuzzy c-means clustering algorithmComput Geosci1984102-319120310.1016/0098-3004(84)90020-7
Samaria FS, Harter AC (1994). Parameterisation of a stochastic model for human face identification. In Applications of Computer Vision, Proceedings of the Second IEEE Workshop on (pp. 138-142). IEEE
SemwalVBMondalKNandiGCRobust and accurate feature selection for humanoid push recovery and classification: deep learning approachNeural Comput & Applic201728356557410.1007/s00521-015-2089-3
Sun Y, Tistarelli M Poh N (2013) Picture-specific cohort score normalization for face pair matching. In Biometrics: Theory, Applications and Systems (BTAS), 2013 IEEE Sixth International Conference on (pp. 1-8). IEEE
Garain J, Shah A, Kumar RK, Sanyal G, Kisku DR (2016) BCP-BCS: best-fit cascaded matching paradigm with cohort selection using bezier curve for individual recognition. In: Asian Conference on Computer Vision, pp. 377-390. Springer, Cham
Merati A, Poh N, Kittler J (2012) User-specific cohort selection and score normalization for biometric systems. IEEE Transactions on Information Forensics and Security 7(4)
Schroff F, Treibitz T, Kriegman D, Belongie S (2011) Pose, illumination and expression invariant pairwise face-similarity measure via doppelgänger list comparison. In 2011 International Conference on Computer Vision (pp. 2494-2501). IEEE
SirRDCohort studies: History of the method II. Retrospective cohort studiesInternational Journal of Public Health200146315210.1007/BF01324251
Merati A, Poh N, Kittler J (2010) Extracting discriminative information from cohort models. In: Proceedings of 4th IEEE International Conference on Biometrics: Theory Applications and Systems (BTAS), 1-6
Sun Y, Chen Y, Wang X, Tang X (2014) Deep learning face representation by joint identification-verification. In: Advances in neural information processing systems (pp. 1988-1996)
LamK-MYanHAn analytic-to-holistic approach for face recognition based on a single frontal viewIEEE Transactions on Pattern Analysis & Machine Intelligence19987673686
SolderaJBehaineCARScharcanskiJCustomized orthogonal locality preserving projections with soft-margin maximization for face recognitionIEEE Trans Instrum Meas20156492417242610.1109/TIM.2015.2415012
GhoshSDubeySKComparative analysis of k-means and fuzzy c-means algorithmsInt J Adv Comput Sci Appl201344
Aggarwal G, Ratha NK, Bolle RM (2006) Biometric verification: Looking beyond raw similarity scores. In Proceedings of Computer Vision and Pattern Recognition Workshop, 31-31
Lucas SM (1997) Face recognition with the continuous n-tuple classi¢ er. In: Proceedings of the British Machine Vision Conference
ZadehLAFuzzy logicComputer1988214839310.1109/2.53
Wagner A, Wright J, Ganesh A, Zhou Z Ma Y (2009) Towards a practical face recognition system: Robust registra tion and illumination by sparse representation. In: IEEE Com puter Society Conference on Computer Vision and Pattern Recognition (Vol. 2, p. 3)
Garain J, Kumar RK, Kumar D, Kisku DR, Sanyal G (2018) Image Specific Cross Cohort Normalization for Face Pair matching. International Conference on Computational Intelligence and Data Science (ICCIDS), Gurugram, India, Procedia Elsevier, (In Press)
KramerRSYoungAWBurtonAMUnderstanding face familiarityCognition2018172465810.1016/j.cognition.2017.12.005
Kumar D, Garain J, Kisku DR, Sing JK, Gupta P (2018) Ensemble face recognition system using dense local graph structure. In: International Conference on Intelligent Computing, pp. 846-852. Springer, Cham
LoweDGDistinctive image features from scale-invariant keypointsInt J Comput Vis20046029111010.1023/B:VISI.0000029664.99615.94
ThomazCEGiraldiGAA new ranking method for Principal Components Analysis and its application to face image analysisImage Vis Comput201028690291310.1016/j.imavis.2009.11.005
YangXLiuFTianLLiHJiangXPseudo-full-space representation based classification for robust face recognitionSignal Process Image Commun201860647810.1016/j.image.2017.09.006
LiuJPengrenAGeQZhaoHGabor tensor based face recognition using the boosted nonparametric maximum margin criterionMultimed Tools Appl20187779055906910.1007/s11042-017-4805-8
Tulyakov S, Zhang Z, Govindaraju V (2008) Comparison of combination methods utilizing T-normalization and second best score model. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshop, 1-5
Nefian AV, Hayes MH (1998) Hidden Markov models for face recognition. In Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE International Conference on, vol. 5, pp. 2721-2724. IEEE
7132_CR35
7132_CR34
7132_CR33
RD Sir (7132_CR40) 2001; 46
7132_CR31
7132_CR30
M Tistarelli (7132_CR46) 2014; 9
WH Frost (7132_CR10) 1939; 30
S Lawrence (7132_CR23) 1997; 8
W Wang (7132_CR49) 2015
LA Zadeh (7132_CR55) 1988; 21
7132_CR44
7132_CR43
7132_CR42
JC Bezdek (7132_CR6) 1984; 10
7132_CR48
7132_CR47
RD Sir (7132_CR39) 2001; 46
J Soldera (7132_CR41) 2015; 64
DG Lowe (7132_CR27) 2004; 60
W Ahmad (7132_CR3) 2018; 77
7132_CR13
7132_CR9
7132_CR12
J Liu (7132_CR26) 2018; 77
VB Semwal (7132_CR38) 2017; 76
7132_CR11
7132_CR54
7132_CR53
7132_CR5
7132_CR51
7132_CR7
J Garain (7132_CR14) 2015; 9
7132_CR50
7132_CR18
7132_CR15
X Yang (7132_CR52) 2018; 60
RS Kramer (7132_CR19) 2018; 172
K-M Lam (7132_CR21) 1998; 7
SZ Li (7132_CR25) 1999; 10
RD Rakshit (7132_CR32) 2018; 92
7132_CR22
7132_CR20
VB Semwal (7132_CR37) 2015; 65
G Ghinea (7132_CR16) 2014; 2
7132_CR29
7132_CR28
H Li (7132_CR24) 2018; 40
R Auckenthaler (7132_CR4) 2000; 10
CE Thomaz (7132_CR45) 2010; 28
VB Semwal (7132_CR36) 2017; 28
7132_CR2
7132_CR1
W Deng (7132_CR8) 2012; 34
S Ghosh (7132_CR17) 2013; 4
References_xml – reference: Gomathi E, Baskaran K (2010) Recognition of faces using improved principal component analysis. In: Machine Learning and Computing (ICMLC), 2010 Second International Conference on, pp. 198-201. IEEE
– reference: Lucas SM (1997) Face recognition with the continuous n-tuple classi¢ er. In: Proceedings of the British Machine Vision Conference
– reference: LawrenceSLee GilesCTsoiACBackADFace recognition: A convolutional neural-network approachIEEE Trans Neural Netw1997819811310.1109/72.554195
– reference: LiuJPengrenAGeQZhaoHGabor tensor based face recognition using the boosted nonparametric maximum margin criterionMultimed Tools Appl20187779055906910.1007/s11042-017-4805-8
– reference: ThomazCEGiraldiGAA new ranking method for Principal Components Analysis and its application to face image analysisImage Vis Comput201028690291310.1016/j.imavis.2009.11.005
– reference: SirRDCohort studies: History of the method II. Retrospective cohort studiesInternational Journal of Public Health200146315210.1007/BF01324251
– reference: LiSZJuweiLFace recognition using the nearest feature line methodIEEE Trans Neural Netw199910243944310.1109/72.750575
– reference: DengWHuJGuoJExtended SRC: Undersampled face recognition via intraclass variant dictionaryIEEE Trans Pattern Anal Mach Intell20123491864187010.1109/TPAMI.2012.30
– reference: Wolf L, Hassner T, Taigman Y (2009) Similarity scores based on background samples. In Asian Conference on Computer Vision (pp. 88-97). Springer Berlin Heidelberg
– reference: Dahmouni A, El Moutaouakil K, Satori K (2018). Face description using electric virtual binary pattern (EVBP): application to face recognition. Multimedia Tools and Applications 1-19
– reference: GarainJKumarRKSanyalGKiskuDRCohort selection of specific user using Max-Min-Centroid-Cluster (MMCC) method to enhance the performance of a biometric systemInternational Journal of Security and Its Applications20159626327010.14257/ijsia.2015.9.6.25
– reference: WangWYangJXiaoJLiSZhouDZuQHuBGuNSengSFace Recognition Based on Deep LearningHuman Centered Computing. HCC 2014. Lecture Notes in Computer Science2015ChamSpringer
– reference: KramerRSYoungAWBurtonAMUnderstanding face familiarityCognition2018172465810.1016/j.cognition.2017.12.005
– reference: SirRDCohort studies: History of the method I. prospective cohort studiesInternational Journal of Public Health200146275276924910.1007/BF01299724
– reference: TistarelliMSunYPohNOn the use of discriminative cohort score normalization for unconstrained face recognitionIEEE Transactions on Information Forensics and Security20149122063207510.1109/TIFS.2014.2362007
– reference: Lamba H, Sarkar A, Vatsa M, Singh R Noore A (2011) Face recognition for look-alikes: A preliminary study. In Biometrics (IJCB), International Joint Conference on (pp. 1-6). IEEE
– reference: Aggarwal G, Ratha NK, Bolle RM, Chellappa R (2008) Multi-biometric cohort analysis for biometric fusion. In 2008 IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 5224-5227). IEEE
– reference: Garain J, Kumar RK, Kumar D, Kisku DR, Sanyal G, (2018) A Bezier curve cohort selection strategy for face pair matching. Second International Conference on Digital Signal Processing, Tokyo, Japan, ACM ICPS, February 25-27, In press
– reference: BezdekJCEhrlichRFullWFCM: The fuzzy c-means clustering algorithmComput Geosci1984102-319120310.1016/0098-3004(84)90020-7
– reference: SemwalVBMondalKNandiGCRobust and accurate feature selection for humanoid push recovery and classification: deep learning approachNeural Comput & Applic201728356557410.1007/s00521-015-2089-3
– reference: AhmadWKarnickHHegdeRMClient-wise cohort set selection by combining speaker-and phoneme-specific I-vectors for speaker verificationMultimed Tools Appl20187778273829410.1007/s11042-017-4723-9
– reference: SemwalVBRajMNandiGCBiometric gait identification based on a multilayer perceptronRobot Auton Syst201565657510.1016/j.robot.2014.11.010
– reference: GhoshSDubeySKComparative analysis of k-means and fuzzy c-means algorithmsInt J Adv Comput Sci Appl201344
– reference: LoweDGDistinctive image features from scale-invariant keypointsInt J Comput Vis20046029111010.1023/B:VISI.0000029664.99615.94
– reference: Yin Q, Tang X, Sun J (2011) An associate-predict model for face recognition. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on (pp. 497-504). IEEE
– reference: SolderaJBehaineCARScharcanskiJCustomized orthogonal locality preserving projections with soft-margin maximization for face recognitionIEEE Trans Instrum Meas20156492417242610.1109/TIM.2015.2415012
– reference: GhineaGKannanRKannaiyanSGradient-orientation-based PCA subspace for novel face recognitionIEEE Access2014291492010.1109/ACCESS.2014.2348018
– reference: Eickeler S, Muller S, Rigoll G (1999) High performance face recognition using pseudo 2-d hidden markov models. In: Control Conference (ECC), 1999 European, pp. 3023-3028. IEEE
– reference: YangXLiuFTianLLiHJiangXPseudo-full-space representation based classification for robust face recognitionSignal Process Image Commun201860647810.1016/j.image.2017.09.006
– reference: Nefian AV, Hayes MH (1998) Hidden Markov models for face recognition. In Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE International Conference on, vol. 5, pp. 2721-2724. IEEE
– reference: Sun Y, Tistarelli M Poh N (2013) Picture-specific cohort score normalization for face pair matching. In Biometrics: Theory, Applications and Systems (BTAS), 2013 IEEE Sixth International Conference on (pp. 1-8). IEEE
– reference: LamK-MYanHAn analytic-to-holistic approach for face recognition based on a single frontal viewIEEE Transactions on Pattern Analysis & Machine Intelligence19987673686
– reference: Garain J, Kumar RK, Kumar D, Kisku DR, Sanyal G (2018) Image Specific Cross Cohort Normalization for Face Pair matching. International Conference on Computational Intelligence and Data Science (ICCIDS), Gurugram, India, Procedia Elsevier, (In Press)
– reference: Tulyakov S, Zhang Z, Govindaraju V (2008) Comparison of combination methods utilizing T-normalization and second best score model. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshop, 1-5
– reference: Bay H, Tuytelaars T, Van Gool L (2006) Surf: Speeded up robust features. In European conference on computer vision (pp. 404-417). Springer Berlin Heidelberg
– reference: Garain J, Shah A, Kumar RK, Sanyal G, Kisku DR (2016) BCP-BCS: best-fit cascaded matching paradigm with cohort selection using bezier curve for individual recognition. In: Asian Conference on Computer Vision, pp. 377-390. Springer, Cham
– reference: Merati A, Poh N, Kittler J (2012) User-specific cohort selection and score normalization for biometric systems. IEEE Transactions on Information Forensics and Security 7(4)
– reference: Wolf L, Hassner T, Taigman Y (2009) The one-shot similarity kernel. In 2009 IEEE 12th International Conference on Computer Vision (pp. 897-902). IEEE
– reference: Merati A, Poh N, Kittler J (2010) Extracting discriminative information from cohort models. In: Proceedings of 4th IEEE International Conference on Biometrics: Theory Applications and Systems (BTAS), 1-6
– reference: Taigman Y, Yang M, Ranzato MA, Wolf L (2014) Deepface: Closing the gap to human-level performance in face verification. In: Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1701-1708)
– reference: FrostWHThe age selection of mortality from tuberculosis in successive decadesAm J Hyg1939309195
– reference: Schroff F, Treibitz T, Kriegman D, Belongie S (2011) Pose, illumination and expression invariant pairwise face-similarity measure via doppelgänger list comparison. In 2011 International Conference on Computer Vision (pp. 2494-2501). IEEE
– reference: ZadehLAFuzzy logicComputer1988214839310.1109/2.53
– reference: Rosenberg AE, DeLong J, Lee C-H, Juang B-H, Soong FK (1992) The use of cohort normalized scores for speaker verification. In: Second international conference on spoken language processing
– reference: Kumar D, Garain J, Kisku DR, Sing JK, Gupta P (2018) Ensemble face recognition system using dense local graph structure. In: International Conference on Intelligent Computing, pp. 846-852. Springer, Cham
– reference: Sun Y, Chen Y, Wang X, Tang X (2014) Deep learning face representation by joint identification-verification. In: Advances in neural information processing systems (pp. 1988-1996)
– reference: Aggarwal G, Ratha NK, Bolle RM (2006) Biometric verification: Looking beyond raw similarity scores. In Proceedings of Computer Vision and Pattern Recognition Workshop, 31-31
– reference: Garain J, Kumar RK, Kisku DR Sanyal G (2016). Selection of user-dependent cohorts using bezier curve for person identification. In: International Conference Image Analysis and Recognition (pp. 566-572). Springer International Publishing
– reference: RakshitRDNathSCKiskuDRFace Identification using Some Novel Local Descriptors under the Influence of Facial ComplexitiesExpert Systems with Applications - An International Journal2018922829410.1016/j.eswa.2017.09.038Elsevier
– reference: Samaria FS, Harter AC (1994). Parameterisation of a stochastic model for human face identification. In Applications of Computer Vision, Proceedings of the Second IEEE Workshop on (pp. 138-142). IEEE
– reference: AuckenthalerRCareyMThomasHLScore normalization for text-independent speaker verification systemsDigital Signal Processing200010425410.1006/dspr.1999.0360
– reference: Wagner A, Wright J, Ganesh A, Zhou Z Ma Y (2009) Towards a practical face recognition system: Robust registra tion and illumination by sparse representation. In: IEEE Com puter Society Conference on Computer Vision and Pattern Recognition (Vol. 2, p. 3)
– reference: SemwalVBSinghaJSharmaPKChauhanABeheraBAn optimized feature selection technique based on incremental feature analysis for bio-metric gait data classificationMultimed Tools Appl20177622244572447510.1007/s11042-016-4110-y
– reference: LiHHuaGProbabilistic elastic part model: a pose-invariant representation for real-world face verificationIEEE Trans Pattern Anal Mach Intell201840491893010.1109/TPAMI.2017.2695183
– reference: Yang M, Van Gool L, Zhang L (2013) Sparse variation dictionary learning for face recognition with a single training sample per person. In Proceedings of the IEEE international conference on computer vision (pp. 689-696)
– volume: 4
  start-page: 4
  year: 2013
  ident: 7132_CR17
  publication-title: Int J Adv Comput Sci Appl
– volume-title: Human Centered Computing. HCC 2014. Lecture Notes in Computer Science
  year: 2015
  ident: 7132_CR49
– volume: 21
  start-page: 83
  issue: 4
  year: 1988
  ident: 7132_CR55
  publication-title: Computer
  doi: 10.1109/2.53
– volume: 7
  start-page: 673
  year: 1998
  ident: 7132_CR21
  publication-title: IEEE Transactions on Pattern Analysis & Machine Intelligence
  doi: 10.1109/34.689299
– ident: 7132_CR42
– ident: 7132_CR13
  doi: 10.1016/j.procs.2018.05.021
– ident: 7132_CR1
  doi: 10.1109/CVPRW.2006.45
– ident: 7132_CR44
  doi: 10.1109/CVPR.2014.220
– volume: 9
  start-page: 2063
  issue: 12
  year: 2014
  ident: 7132_CR46
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2014.2362007
– ident: 7132_CR53
  doi: 10.1109/ICCV.2013.91
– ident: 7132_CR33
  doi: 10.21437/ICSLP.1992-176
– ident: 7132_CR9
  doi: 10.23919/ECC.1999.7099789
– volume: 60
  start-page: 91
  issue: 2
  year: 2004
  ident: 7132_CR27
  publication-title: Int J Comput Vis
  doi: 10.1023/B:VISI.0000029664.99615.94
– volume: 46
  start-page: 75
  issue: 2
  year: 2001
  ident: 7132_CR39
  publication-title: International Journal of Public Health
  doi: 10.1007/BF01299724
– volume: 172
  start-page: 46
  year: 2018
  ident: 7132_CR19
  publication-title: Cognition
  doi: 10.1016/j.cognition.2017.12.005
– volume: 10
  start-page: 439
  issue: 2
  year: 1999
  ident: 7132_CR25
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.750575
– volume: 28
  start-page: 902
  issue: 6
  year: 2010
  ident: 7132_CR45
  publication-title: Image Vis Comput
  doi: 10.1016/j.imavis.2009.11.005
– ident: 7132_CR43
  doi: 10.1109/BTAS.2013.6712738
– ident: 7132_CR47
  doi: 10.1109/CVPRW.2008.4563105
– volume: 10
  start-page: 42
  year: 2000
  ident: 7132_CR4
  publication-title: Digital Signal Processing
  doi: 10.1006/dspr.1999.0360
– volume: 34
  start-page: 1864
  issue: 9
  year: 2012
  ident: 7132_CR8
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2012.30
– volume: 9
  start-page: 263
  issue: 6
  year: 2015
  ident: 7132_CR14
  publication-title: International Journal of Security and Its Applications
  doi: 10.14257/ijsia.2015.9.6.25
– volume: 60
  start-page: 64
  year: 2018
  ident: 7132_CR52
  publication-title: Signal Process Image Commun
  doi: 10.1016/j.image.2017.09.006
– volume: 64
  start-page: 2417
  issue: 9
  year: 2015
  ident: 7132_CR41
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2015.2415012
– volume: 76
  start-page: 24457
  issue: 22
  year: 2017
  ident: 7132_CR38
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-016-4110-y
– volume: 8
  start-page: 98
  issue: 1
  year: 1997
  ident: 7132_CR23
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.554195
– volume: 28
  start-page: 565
  issue: 3
  year: 2017
  ident: 7132_CR36
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-015-2089-3
– ident: 7132_CR5
  doi: 10.1007/11744023_32
– volume: 30
  start-page: 91
  year: 1939
  ident: 7132_CR10
  publication-title: Am J Hyg
– ident: 7132_CR34
– volume: 77
  start-page: 9055
  issue: 7
  year: 2018
  ident: 7132_CR26
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-017-4805-8
– ident: 7132_CR30
  doi: 10.1109/TIFS.2012.2198469
– ident: 7132_CR35
  doi: 10.1109/ICCV.2011.6126535
– volume: 10
  start-page: 191
  issue: 2-3
  year: 1984
  ident: 7132_CR6
  publication-title: Comput Geosci
  doi: 10.1016/0098-3004(84)90020-7
– ident: 7132_CR51
  doi: 10.1109/ICCV.2009.5459323
– volume: 46
  start-page: 152
  issue: 3
  year: 2001
  ident: 7132_CR40
  publication-title: International Journal of Public Health
  doi: 10.1007/BF01324251
– ident: 7132_CR50
  doi: 10.1007/978-3-642-12304-7_9
– ident: 7132_CR11
  doi: 10.1007/978-3-319-41501-7_63
– ident: 7132_CR28
– volume: 65
  start-page: 65
  year: 2015
  ident: 7132_CR37
  publication-title: Robot Auton Syst
  doi: 10.1016/j.robot.2014.11.010
– ident: 7132_CR31
– ident: 7132_CR48
  doi: 10.1109/CVPR.2009.5206654
– ident: 7132_CR7
  doi: 10.1007/s11042-018-5932-6
– ident: 7132_CR12
  doi: 10.1145/3193025.3193044
– ident: 7132_CR22
  doi: 10.1109/IJCB.2011.6117520
– ident: 7132_CR18
  doi: 10.1109/ICMLC.2010.48
– ident: 7132_CR2
  doi: 10.1109/ICASSP.2008.4518837
– ident: 7132_CR54
  doi: 10.1109/CVPR.2011.5995494
– volume: 40
  start-page: 918
  issue: 4
  year: 2018
  ident: 7132_CR24
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2017.2695183
– volume: 92
  start-page: 82
  issue: 2
  year: 2018
  ident: 7132_CR32
  publication-title: Expert Systems with Applications - An International Journal
  doi: 10.1016/j.eswa.2017.09.038
– ident: 7132_CR29
  doi: 10.1109/BTAS.2010.5634530
– volume: 77
  start-page: 8273
  issue: 7
  year: 2018
  ident: 7132_CR3
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-017-4723-9
– volume: 2
  start-page: 914
  year: 2014
  ident: 7132_CR16
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2014.2348018
– ident: 7132_CR20
  doi: 10.1007/978-3-319-95957-3_91
– ident: 7132_CR15
  doi: 10.1007/978-3-319-54526-4_28
SSID ssj0016524
Score 2.2134264
Snippet Face recognition is itself a very challenging task and it becomes more challenging when the input images have intra class variations and inter class...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 18443
SubjectTerms Acceptance
Clustering
Comparative studies
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Face recognition
Facial recognition technology
Feature extraction
Multimedia Information Systems
Special Purpose and Application-Based Systems
Template matching
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWDgUUAUCvLABLKUNLZjjxWiqpBgaqWKJbJjp1SUBDXp_8fOowEESKzxY7jz-T7nHh_AdZAYEiuqMEkSg4n1oc6kAsyYjKVO3LXpipMfn9h4Sh5mdFbXcedNtnsTkixv6rbYzXelJJ7PsX1Y2S23YYe6bl72EE8Hw03ogNGayZZ72LpDvwll_rTFV2fUIsxvQdHS14wOYb8GiWhYafUItkzahYOGgAHV9tiFvU_dBI_heah1mdWazlEi3a9wpCu--Ryty6-v2Pq-bKFz5HhxVwXKSxYcqxokl_NstShe3pBFsW65QZvcoiw9gcnofnI3xjV1Ao4DnxVYUBGH1AyYSDzBpZCc2CvREOFrQVUitOLGYh9CQkWFllIMLG6QStsHa8IEDU6hk2apOQMUujeRJkpTo4lUUuqAEZ9zP5TUI5L3wGtEGMV1W3HHbrGM2obITuqRlXrkpB6JHtxslrxXPTX-mtxv9BLV5pVHjlWLOL_q9eC20VU7_Otm5_-afQG7Fh6JKjm3D51itTaXFoIU6qo8ch8FqNHs
  priority: 102
  providerName: Springer Nature
Title Addressing facial dynamics using k-medoids cohort selection algorithm for face recognition
URI https://link.springer.com/article/10.1007/s11042-018-7132-9
https://www.proquest.com/docview/2172484710
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: ADMLS
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-7721
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFH_odtGDH1NxfowcPCnBdk265CAyZXMoDpEJ6qUkTTpF7dTV_9-8rt1UcNe0CeW95L1f-j5-AAdBYlmsuaYsSSxlzofikQpoGKpYmQTNJhYnX_fD3h27vOf3C9Ava2EwrbK0ibmhNqMY_5EfI5ESQ1Pqnb5_UGSNwuhqSaGhCmoFc5K3GFuEahM7Y1Wgetbp39xO4wohL2huhUedr_TLOGdeTOdjqYrnC-oubu6Tf3uqGfz8EzHNHVF3DVYKBEnaE5Wvw4JNa7BasjOQ4rDWYPlHq8ENeGwbk6e8pkOSKPxPTsyEjH5MvvLRF-oc4-jZjAmS5n5mZJxT5Di9EfU6dKLInt6Ig7g43ZJp4tEo3YRBtzM479GCV4HGgR9mVHIZt7hthjLxpFBSCebspWXSN5LrRBotrANGjLU0l0Yp2XSgQmnjbrNJKHmwBZV0lNptIC28MBmmDbeGKa2UCULmC-G3FPeYEnXwShFGcdFzHKkvXqNZt2SUeuSkHqHUI1mHw-mU90nDjXkv75V6iYqzN45mO6UOR6WuZo__XWxn_mK7sOTAkpyk6u5BJfv8svsOkGS6AYuie9GAavvi4arTKPacG71rtr8Bh7DfTQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2t2gNwaKGAWFrAB7iALJKNnY0PFdqWVlvarhBapIqLZcdOqdpmS5Oq2h_X_8ZM1tkFJPbWaxL7MB7Pm8l8PIC3SeFFbqXloig8F4ihdKUSnqYmN64gs0nNycejdPhdfDmRJx24a3thqKyytYmNoXaTnP6RfyQiJUGmNPp09YsTaxRlV1sKDROoFdx2M2IsNHYc-ukthnDV9sFnPO93vd7-3nh3yAPLAM-TOK25kirvS99LVRGpzCiTCbQeXqjYKWkL5Wzm0U0Qom-lcsaoHkKssQ5juyJVRBqBCLAqEqEw9lvd2Rt9_TZPY6QysOpmEUdojtu0atO7F1NnTBRnHONElNDfwLjwdv9J0Da4t_8Y1oLDygYzDXsCHV9uwHpLBsGCbdiAR39MNnwKPwbONRW25SkrDP2WZ25amsuzvGI3zdNzjjg8OXMVI47e65pVDSMPqgkzF6co-frnJUOPmpZ7Nq9zmpTPYHwfAn4OK-Wk9C-A9Sk-c8I66Z0w1hiXpCLOsrhvZCRM1oWoFaHOw4hzYtq40IvhzCR1jVLXJHWtuvB-vuRqNt9j2cdb7bnocNUrvVDMLnxoz2rx-r-bvVy-2Rt4MBwfH-mjg9HhJjxEP03NqoS3YKW-vvGv0Beq7eugcQz0Pev4b_8NFyk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hkKr2AC1txQKlPpQLlUWyayfxoUII2EJ5qAcqoV4sO7YBAVkgQYif1n_HTB67tFK5cU1iH8af55F5fABfBsGL3ErLRQieC7ShdKUGPElMblwgtUnNyYdHye4v8eNEnkzBn64XhsoqO51YK2o3yukf-ToRKQlSpdF6aMsifm4PN65vODFIUaa1o9NoILLvH-4xfCu_7W3jWa_2-8Od461d3jIM8HwQJxVXUuWp9P1EhUhlRplMoObwQsVOSRuUs5lHF0GI1ErljFF9NK_GOozrQqKIMAK1_0xKQ9ypSX34fZzASGTLp5tFHI1y3CVU6669mHpiojjjGCGibP42iRM_95_UbG3xhm9htnVV2WaDrXcw5Yt5mOtoIFirFebhzZOZhu_h96ZzdW1tccqCoR_yzDWs9yW7q59ecLTAo3NXMmLnva1YWXPxIECYuTxFOVdnVwx9aVru2bjCaVR8gOOXEO9HmC5GhV8AllJk5oR10jthrDFukIg4y-LUyEiYrAdRJ0Kdt8PNiWPjUk_GMpPUNUpdk9S16sHaeMl1M9njuY-Xu3PR7SUv9QSSPfjandXk9X83W3x-s8_wCpGtD_aO9pfgNTpoqikPXobp6vbOf0InqLIrNdwY6BeG9yNJQhTD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Addressing+facial+dynamics+using+k-medoids+cohort+selection+algorithm+for+face+recognition&rft.jtitle=Multimedia+tools+and+applications&rft.au=Garain%2C+Jogendra&rft.au=Kumar%2C+Ravi+Kant&rft.au=Kisku%2C+Dakshina+Ranjan&rft.au=Sanyal%2C+Goutam&rft.date=2019-07-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=78&rft.issue=13&rft.spage=18443&rft.epage=18474&rft_id=info:doi/10.1007%2Fs11042-018-7132-9&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon