Inverse discounted-based LQR algorithm for learning human movement behaviors

Recently, there has been an increasing interest towards understanding human movement behaviors. In this regard, one of the approaches is to retrieve the unknown underlying objective function that the human has to optimize while achieving a certain movement behavior. Existing research of behavioral u...

Full description

Saved in:
Bibliographic Details
Published inApplied intelligence (Dordrecht, Netherlands) Vol. 49; no. 4; pp. 1489 - 1501
Main Authors El-Hussieny, Haitham, Ryu, Jee-Hwan
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0924-669X
1573-7497
DOI10.1007/s10489-018-1331-y

Cover

Abstract Recently, there has been an increasing interest towards understanding human movement behaviors. In this regard, one of the approaches is to retrieve the unknown underlying objective function that the human has to optimize while achieving a certain movement behavior. Existing research of behavioral understanding merely depends on predefined optimality criteria, where the minimum time, minimum variance or/and minimum effort are mainly adopted. These criteria are assumed to be constant, where the human is assumed to have the same preferences during the movement duration. However, in this paper, the optimality criteria underlying the kinematic characteristics of a certain human behavior are assumed to be exponentially discounted to account for the change in the human preferences that could happen while achieving this behavior. A new Inverse Discounted-based Linear Quadratic Regulator (ID-LQR) algorithm is developed in the light of Inverse Optimal Control (IOC) framework to find out the discounted cost function that could reproduce the measured human behavior perfectly. Meanwhile, an Incremental version of the ID-LQR algorithm is proposed to continuously refine the so far learned cost function in the case of sequentially presented demonstrations. The saccadic eye gaze movement is studied as an example to quantify both the proposed ID-LQR and Inverse ID-LQR approaches. Simulation results are encouraging and show that the saccadic trajectories generated by ID-LQR approach match the experimental data in many aspects, including position and velocity profiles of saccades. Moreover, when it is assessed by a subsequent set of scenarios, the incremental ID-LQR algorithm confirms its capability to generalize the so far retrieved cost function for the unseen saccadic demonstrations.
AbstractList Recently, there has been an increasing interest towards understanding human movement behaviors. In this regard, one of the approaches is to retrieve the unknown underlying objective function that the human has to optimize while achieving a certain movement behavior. Existing research of behavioral understanding merely depends on predefined optimality criteria, where the minimum time, minimum variance or/and minimum effort are mainly adopted. These criteria are assumed to be constant, where the human is assumed to have the same preferences during the movement duration. However, in this paper, the optimality criteria underlying the kinematic characteristics of a certain human behavior are assumed to be exponentially discounted to account for the change in the human preferences that could happen while achieving this behavior. A new Inverse Discounted-based Linear Quadratic Regulator (ID-LQR) algorithm is developed in the light of Inverse Optimal Control (IOC) framework to find out the discounted cost function that could reproduce the measured human behavior perfectly. Meanwhile, an Incremental version of the ID-LQR algorithm is proposed to continuously refine the so far learned cost function in the case of sequentially presented demonstrations. The saccadic eye gaze movement is studied as an example to quantify both the proposed ID-LQR and Inverse ID-LQR approaches. Simulation results are encouraging and show that the saccadic trajectories generated by ID-LQR approach match the experimental data in many aspects, including position and velocity profiles of saccades. Moreover, when it is assessed by a subsequent set of scenarios, the incremental ID-LQR algorithm confirms its capability to generalize the so far retrieved cost function for the unseen saccadic demonstrations.
Author Ryu, Jee-Hwan
El-Hussieny, Haitham
Author_xml – sequence: 1
  givenname: Haitham
  orcidid: 0000-0002-2296-616X
  surname: El-Hussieny
  fullname: El-Hussieny, Haitham
  email: haitham.elhussieny@feng.bu.edu.eg
  organization: Electrical Engineering Department, Faculty of Engineering (Shoubra), Benha University
– sequence: 2
  givenname: Jee-Hwan
  surname: Ryu
  fullname: Ryu, Jee-Hwan
  organization: School of Mechanical Engineering, Korea University of Technology and Education (KOREATECH)
BookMark eNp9kE1LxDAQhoOs4Lr6A7wVPEczTds0R1n8WCiIouAtpOl0t0ubrEm7sP_eLhUEQU9zeZ95Z55zMrPOIiFXwG6AMXEbgCW5pAxyCpwDPZyQOaSCU5FIMSNzJuOEZpn8OCPnIWwZY5wzmJNiZffoA0ZVE4wbbI8VLXXAKipeXiPdrp1v-k0X1c5HLWpvG7uONkOnbdS5PXZo-6jEjd43zocLclrrNuDl91yQ94f7t-UTLZ4fV8u7ghoOWU9lmiW8qnOAPK0g5WUmsNSANZPCxJjECZfGJLmQCSIzOi_LDGsR12WuIa9iviDX096dd58Dhl5t3eDtWKni8Xs2_jw2LIiYUsa7EDzWyjS97htne6-bVgFTR3VqUqdGdeqoTh1GEn6RO9902h_-ZeKJCWPWrtH_3PQ39AXJq4QT
CitedBy_id crossref_primary_10_1016_j_ins_2023_118977
crossref_primary_10_1109_LCSYS_2021_3087556
crossref_primary_10_1109_THMS_2022_3216789
crossref_primary_10_1016_j_neucom_2022_03_036
crossref_primary_10_1007_s40314_024_02861_w
crossref_primary_10_1155_2021_6400658
crossref_primary_10_1016_j_arcontrol_2021_04_003
crossref_primary_10_1109_TCYB_2024_3489967
crossref_primary_10_1016_j_ins_2023_02_079
crossref_primary_10_1109_TNNLS_2023_3333551
crossref_primary_10_3390_s22145462
Cites_doi 10.18637/jss.v031.i07
10.1108/17563781211255862
10.1038/nn1309
10.1109/4235.996017
10.1177/0278364913495721
10.1109/TCST.2014.2343935
10.1007/PL00007989
10.1523/JNEUROSCI.5518-08.2009
10.1016/j.engappai.2016.01.024
10.1109/TCYB.2015.2417053
10.1016/S0165-0270(98)00063-6
10.1038/29528
10.1371/journal.pcbi.1002253
10.1177/0278364913490324
10.1007/s10514-009-9170-7
10.1111/j.1749-6632.1992.tb25228.x
10.1007/s10514-009-9121-3
10.1371/journal.pone.0073152
10.1007/s10846-016-0410-8
10.1177/0278364917745980
10.1016/j.conb.2011.05.030
10.1523/JNEUROSCI.01-07-00710.1981
10.1109/ICORR.2013.6650443
10.1145/1833349.1778859
10.1109/ROBOT.2008.4543619
10.1109/ACC.2016.7526577
10.1109/ROMAN.2016.7745093
10.1007/978-3-319-30160-0_3
10.1115/DSCC2014-6100
10.1145/1015330.1015430
10.1109/ICENCO.2017.8289773
10.1007/978-0-387-79948-3_1247
10.1109/CEC.2012.6256507
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Applied Intelligence is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Applied Intelligence is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
DOI 10.1007/s10489-018-1331-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database (ProQuest)
Advanced Technologies & Aerospace Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
EndPage 1501
ExternalDocumentID 10_1007_s10489_018_1331_y
GroupedDBID -4Z
-59
-5G
-BR
-EM
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
203
23M
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
~A9
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
77I
AAAVM
AAOBN
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
ADKFA
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFGCZ
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
H13
KOW
N2Q
NDZJH
O9-
OVD
PHGZM
PHGZT
PQGLB
PUEGO
R4E
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCJ
SCLPG
T16
TEORI
ZY4
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c316t-95643df81185d153b67eba1ef097c2e42439cc48794ee0ca8bb6ef72fb8a18d23
IEDL.DBID BENPR
ISSN 0924-669X
IngestDate Fri Jul 25 10:39:35 EDT 2025
Thu Apr 24 22:56:24 EDT 2025
Wed Oct 01 04:09:44 EDT 2025
Fri Feb 21 02:26:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Learning by demonstrations
Inverse optimal control
Behavior modeling
Imitation learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-95643df81185d153b67eba1ef097c2e42439cc48794ee0ca8bb6ef72fb8a18d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2296-616X
PQID 2133074964
PQPubID 326365
PageCount 13
ParticipantIDs proquest_journals_2133074964
crossref_citationtrail_10_1007_s10489_018_1331_y
crossref_primary_10_1007_s10489_018_1331_y
springer_journals_10_1007_s10489_018_1331_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Boston
PublicationSubtitle The International Journal of Research on Intelligent Systems for Real Life Complex Problems
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Kardamakis, Moschovakis (CR21) 2009; 29
Soechting, Lacquaniti (CR40) 1981; 1
Freedman (CR15) 2001; 84
Galiana, Guitton (CR16) 1992; 656
Deb, Pratap, Agarwal, Meyarivan (CR8) 2002; 6
Watkins (CR44) 1989
CR38
Zhifei, Meng Joo (CR46) 2012; 5
El-Hussieny, Abouelsoud, Assal, Megahed (CR10) 2016; 50
CR14
CR36
CR12
Powell (CR32) 2009
CR11
CR33
CR31
CR30
Ramachandran, Amir (CR35) 2007; 51
Ratliff, Silver, Bagnell (CR37) 2009; 27
Giorgino (CR17) 2009; 31
Muhammad, Spratling (CR28) 2017; 85
Englert, Vien, Toussaint (CR13) 2017; 36
CR2
CR4
CR6
Harris (CR18) 1998; 83
CR5
CR7
Kwakernaak, Sivan (CR25) 1972
CR29
Todorov (CR43) 2004; 7
Ahmad, Murphy, Langdon, Godsill, Hardy, Skrypchuk (CR3) 2016; 46
Dragan, Srinivasa (CR9) 2013; 32
CR26
Mombaur, Truong, Laumond (CR27) 2010; 28
CR47
CR23
CR45
Abaid, Cappa, Palermo, Petrarca, Porfiri (CR1) 2012; 8
CR22
Kober, Bagnell, Peters (CR24) 2013; 32
CR42
CR41
Priess, Conway, Choi, Popovich, Radcliffe (CR34) 2015; 23
Huston, Jayaraman (CR20) 2011; 21
Saeb, Weber, Triesch (CR39) 2011; 7
Harris, Wolpert (CR19) 1998; 394
BI Ahmad (1331_CR3) 2016; 46
H Galiana (1331_CR16) 1992; 656
J Kober (1331_CR24) 2013; 32
1331_CR41
CM Harris (1331_CR19) 1998; 394
1331_CR22
1331_CR23
1331_CR45
H Kwakernaak (1331_CR25) 1972
K Mombaur (1331_CR27) 2010; 28
1331_CR42
P Englert (1331_CR13) 2017; 36
ND Ratliff (1331_CR37) 2009; 27
SJ Huston (1331_CR20) 2011; 21
AD Dragan (1331_CR9) 2013; 32
1331_CR26
E Todorov (1331_CR43) 2004; 7
H El-Hussieny (1331_CR10) 2016; 50
1331_CR47
1331_CR29
CJCH Watkins (1331_CR44) 1989
D Ramachandran (1331_CR35) 2007; 51
1331_CR30
N Abaid (1331_CR1) 2012; 8
1331_CR11
EG Freedman (1331_CR15) 2001; 84
1331_CR33
1331_CR12
1331_CR31
J Soechting (1331_CR40) 1981; 1
K Deb (1331_CR8) 2002; 6
T Giorgino (1331_CR17) 2009; 31
MC Priess (1331_CR34) 2015; 23
MJ Powell (1331_CR32) 2009
AA Kardamakis (1331_CR21) 2009; 29
1331_CR7
1331_CR6
1331_CR2
1331_CR38
S Zhifei (1331_CR46) 2012; 5
1331_CR5
1331_CR4
1331_CR14
1331_CR36
CM Harris (1331_CR18) 1998; 83
S Saeb (1331_CR39) 2011; 7
W Muhammad (1331_CR28) 2017; 85
References_xml – ident: CR45
– ident: CR22
– ident: CR47
– volume: 31
  start-page: 1
  issue: 7
  year: 2009
  end-page: 24
  ident: CR17
  article-title: Computing and visualizing dynamic time warping alignments in R: the dtw package
  publication-title: J Stat Softw
  doi: 10.18637/jss.v031.i07
– volume: 5
  start-page: 293
  issue: 3
  year: 2012
  end-page: 311
  ident: CR46
  article-title: A survey of inverse reinforcement learning techniques
  publication-title: Int J Intell Comput Cybern
  doi: 10.1108/17563781211255862
– ident: CR4
– ident: CR14
– ident: CR2
– volume: 7
  start-page: 907
  issue: 9
  year: 2004
  end-page: 915
  ident: CR43
  article-title: Optimality principles in sensorimotor control
  publication-title: Nat Neurosci
  doi: 10.1038/nn1309
– ident: CR12
– ident: CR30
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  end-page: 197
  ident: CR8
  article-title: A fast and elitist multiobjective genetic algorithm: Nsga-ii
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.996017
– ident: CR33
– volume: 32
  start-page: 1238
  issue: 11
  year: 2013
  end-page: 1274
  ident: CR24
  article-title: Reinforcement learning in robotics: a survey
  publication-title: Int J Robot Res
  doi: 10.1177/0278364913495721
– ident: CR6
– ident: CR29
– volume: 23
  start-page: 770
  issue: 2
  year: 2015
  end-page: 777
  ident: CR34
  article-title: Solutions to the inverse lqr problem with application to biological systems analysis
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2014.2343935
– volume: 84
  start-page: 453
  issue: 6
  year: 2001
  end-page: 462
  ident: CR15
  article-title: Interactions between eye and head control signals can account for movement kinematics
  publication-title: Biol Cybern
  doi: 10.1007/PL00007989
– volume: 29
  start-page: 7723
  issue: 24
  year: 2009
  end-page: 7730
  ident: CR21
  article-title: Optimal control of gaze shifts
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5518-08.2009
– volume: 50
  start-page: 115
  year: 2016
  end-page: 124
  ident: CR10
  article-title: Adaptive learning of human motor behaviors: an evolving inverse optimal control approach
  publication-title: Eng Appl Artif Intel
  doi: 10.1016/j.engappai.2016.01.024
– ident: CR42
– ident: CR23
– year: 1989
  ident: CR44
  publication-title: Learning from delayed rewards. Ph.D. thesis
– year: 1972
  ident: CR25
  publication-title: Linear optimal control systems, vol 1
– volume: 46
  start-page: 878
  issue: 4
  year: 2016
  end-page: 889
  ident: CR3
  article-title: Intent inference for hand pointing gesture-based interactions in vehicles
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2015.2417053
– volume: 83
  start-page: 73
  issue: 1
  year: 1998
  end-page: 88
  ident: CR18
  article-title: On the optimal control of behaviour: a stochastic perspective
  publication-title: J Neurosci Methods
  doi: 10.1016/S0165-0270(98)00063-6
– volume: 394
  start-page: 780
  issue: 6695
  year: 1998
  ident: CR19
  article-title: Signal-dependent noise determines motor planning
  publication-title: Nature
  doi: 10.1038/29528
– ident: CR38
– volume: 7
  start-page: e1002,253
  issue: 11
  year: 2011
  ident: CR39
  article-title: Learning the optimal control of coordinated eye and head movements
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002253
– ident: CR31
– start-page: 26
  year: 2009
  end-page: 46
  ident: CR32
  publication-title: The bobyqa algorithm for bound constrained optimization without derivatives. Cambridge NA Report NA2009/06
– volume: 32
  start-page: 790
  issue: 7
  year: 2013
  end-page: 805
  ident: CR9
  article-title: A policy-blending formalism for shared control
  publication-title: Int J Robot Res
  doi: 10.1177/0278364913490324
– ident: CR11
– volume: 28
  start-page: 369
  issue: 3
  year: 2010
  end-page: 383
  ident: CR27
  article-title: From human to humanoid locomotion—an inverse optimal control approach
  publication-title: Autonom Robots
  doi: 10.1007/s10514-009-9170-7
– volume: 656
  start-page: 452
  issue: 1
  year: 1992
  end-page: 471
  ident: CR16
  article-title: Central organization and modeling of eye-head coordination during orienting gaze shifts
  publication-title: Ann N Y Acad Sci
  doi: 10.1111/j.1749-6632.1992.tb25228.x
– volume: 27
  start-page: 25
  issue: 1
  year: 2009
  end-page: 53
  ident: CR37
  article-title: Learning to search: functional gradient techniques for imitation learning
  publication-title: Auton Robot
  doi: 10.1007/s10514-009-9121-3
– ident: CR36
– volume: 8
  start-page: e73,152
  issue: 9
  year: 2012
  end-page: e73,152
  ident: CR1
  article-title: Gait detection in children with and without hemiplegia using single-axis wearable gyroscopes
  publication-title: PloS One
  doi: 10.1371/journal.pone.0073152
– volume: 85
  start-page: 107
  issue: 1
  year: 2017
  end-page: 126
  ident: CR28
  article-title: A neural model of coordinated head and eye movement control
  publication-title: J Intell Robot Syst
  doi: 10.1007/s10846-016-0410-8
– ident: CR5
– volume: 36
  start-page: 1474
  issue: 13–14
  year: 2017
  end-page: 1488
  ident: CR13
  article-title: Inverse kkt: learning cost functions of manipulation tasks from demonstrations
  publication-title: Int J Robot Res
  doi: 10.1177/0278364917745980
– ident: CR7
– volume: 21
  start-page: 527
  issue: 4
  year: 2011
  end-page: 534
  ident: CR20
  article-title: Studying sensorimotor integration in insects
  publication-title: Curr Opinion Neurobiol
  doi: 10.1016/j.conb.2011.05.030
– ident: CR41
– ident: CR26
– volume: 51
  start-page: 1
  issue: 61801
  year: 2007
  end-page: 4
  ident: CR35
  article-title: Bayesian inverse reinforcement learning
  publication-title: Urbana
– volume: 1
  start-page: 710
  issue: 7
  year: 1981
  end-page: 720
  ident: CR40
  article-title: Invariant characteristics of a pointing movement in man
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.01-07-00710.1981
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 1331_CR8
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.996017
– ident: 1331_CR22
  doi: 10.1109/ICORR.2013.6650443
– ident: 1331_CR26
  doi: 10.1145/1833349.1778859
– ident: 1331_CR42
  doi: 10.1109/ROBOT.2008.4543619
– volume: 83
  start-page: 73
  issue: 1
  year: 1998
  ident: 1331_CR18
  publication-title: J Neurosci Methods
  doi: 10.1016/S0165-0270(98)00063-6
– volume: 32
  start-page: 1238
  issue: 11
  year: 2013
  ident: 1331_CR24
  publication-title: Int J Robot Res
  doi: 10.1177/0278364913495721
– volume: 51
  start-page: 1
  issue: 61801
  year: 2007
  ident: 1331_CR35
  publication-title: Urbana
– volume: 7
  start-page: e1002,253
  issue: 11
  year: 2011
  ident: 1331_CR39
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002253
– volume: 85
  start-page: 107
  issue: 1
  year: 2017
  ident: 1331_CR28
  publication-title: J Intell Robot Syst
  doi: 10.1007/s10846-016-0410-8
– volume: 656
  start-page: 452
  issue: 1
  year: 1992
  ident: 1331_CR16
  publication-title: Ann N Y Acad Sci
  doi: 10.1111/j.1749-6632.1992.tb25228.x
– volume: 84
  start-page: 453
  issue: 6
  year: 2001
  ident: 1331_CR15
  publication-title: Biol Cybern
  doi: 10.1007/PL00007989
– ident: 1331_CR4
– ident: 1331_CR6
– volume: 1
  start-page: 710
  issue: 7
  year: 1981
  ident: 1331_CR40
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.01-07-00710.1981
– volume: 8
  start-page: e73,152
  issue: 9
  year: 2012
  ident: 1331_CR1
  publication-title: PloS One
  doi: 10.1371/journal.pone.0073152
– ident: 1331_CR36
  doi: 10.1109/ACC.2016.7526577
– ident: 1331_CR30
  doi: 10.1109/ROMAN.2016.7745093
– start-page: 26
  volume-title: The bobyqa algorithm for bound constrained optimization without derivatives. Cambridge NA Report NA2009/06
  year: 2009
  ident: 1331_CR32
– ident: 1331_CR38
– volume-title: Linear optimal control systems, vol 1
  year: 1972
  ident: 1331_CR25
– volume: 29
  start-page: 7723
  issue: 24
  year: 2009
  ident: 1331_CR21
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5518-08.2009
– volume: 32
  start-page: 790
  issue: 7
  year: 2013
  ident: 1331_CR9
  publication-title: Int J Robot Res
  doi: 10.1177/0278364913490324
– ident: 1331_CR41
  doi: 10.1007/978-3-319-30160-0_3
– volume: 7
  start-page: 907
  issue: 9
  year: 2004
  ident: 1331_CR43
  publication-title: Nat Neurosci
  doi: 10.1038/nn1309
– volume: 27
  start-page: 25
  issue: 1
  year: 2009
  ident: 1331_CR37
  publication-title: Auton Robot
  doi: 10.1007/s10514-009-9121-3
– ident: 1331_CR23
– ident: 1331_CR33
  doi: 10.1115/DSCC2014-6100
– ident: 1331_CR2
  doi: 10.1145/1015330.1015430
– volume: 31
  start-page: 1
  issue: 7
  year: 2009
  ident: 1331_CR17
  publication-title: J Stat Softw
  doi: 10.18637/jss.v031.i07
– ident: 1331_CR5
– ident: 1331_CR29
– volume-title: Learning from delayed rewards. Ph.D. thesis
  year: 1989
  ident: 1331_CR44
– volume: 50
  start-page: 115
  year: 2016
  ident: 1331_CR10
  publication-title: Eng Appl Artif Intel
  doi: 10.1016/j.engappai.2016.01.024
– ident: 1331_CR7
– volume: 28
  start-page: 369
  issue: 3
  year: 2010
  ident: 1331_CR27
  publication-title: Autonom Robots
  doi: 10.1007/s10514-009-9170-7
– ident: 1331_CR11
  doi: 10.1109/ICENCO.2017.8289773
– volume: 36
  start-page: 1474
  issue: 13–14
  year: 2017
  ident: 1331_CR13
  publication-title: Int J Robot Res
  doi: 10.1177/0278364917745980
– ident: 1331_CR47
  doi: 10.1007/978-0-387-79948-3_1247
– volume: 23
  start-page: 770
  issue: 2
  year: 2015
  ident: 1331_CR34
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2014.2343935
– volume: 21
  start-page: 527
  issue: 4
  year: 2011
  ident: 1331_CR20
  publication-title: Curr Opinion Neurobiol
  doi: 10.1016/j.conb.2011.05.030
– volume: 46
  start-page: 878
  issue: 4
  year: 2016
  ident: 1331_CR3
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2015.2417053
– volume: 394
  start-page: 780
  issue: 6695
  year: 1998
  ident: 1331_CR19
  publication-title: Nature
  doi: 10.1038/29528
– ident: 1331_CR45
  doi: 10.1109/CEC.2012.6256507
– volume: 5
  start-page: 293
  issue: 3
  year: 2012
  ident: 1331_CR46
  publication-title: Int J Intell Comput Cybern
  doi: 10.1108/17563781211255862
– ident: 1331_CR14
– ident: 1331_CR31
– ident: 1331_CR12
SSID ssj0003301
Score 2.2740188
Snippet Recently, there has been an increasing interest towards understanding human movement behaviors. In this regard, one of the approaches is to retrieve the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1489
SubjectTerms Algorithms
Artificial Intelligence
Behavior
Computer Science
Computer simulation
Cost function
Eye movements
Human behavior
Human motion
Linear quadratic regulator
Machine learning
Machines
Manufacturing
Mechanical Engineering
Optimal control
Optimality criteria
Optimization
Processes
Velocity distribution
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1Be-FCWUWhIB84gYyyOE5yrBCLoCCBilROke04gOiCmvRQvp5xGlOoAImzFyXjZd7IM-8BHIboxbzICahSilGWSUmjLNMUoYQSnogwgjbFyTe3_PKBXfWCXlXHndtsd_skWd7UX4rdmEnvcTHq8X2XTpehXtJt1aDevni8Pvu8gDFEL4XyMLSgnMc9-5j50yTf3dEcYy48i5be5rwBXfudsyST15NJIU_U-wKF4z9_ZA1WK_RJ2rPtsg5LergBDavsQKqDvgkdQ78xzjUxRbtGTUKn1Pi7lHTu7onoP43GL8XzgCDiJZXuxBMp5f7IYFQykBfEEgDkW_BwftY9vaSV7gJVvssLiiET89MswtgjSPFGlDzUUrg6c-JQeZp5CGJwZSM8ylo7SkRScp2FXiYj4Uap529DbTga6h0gXAsRcKVwXMoyJxQ6DFyfpSxkTMe-2wTHmj9RFSm50cboJ3M6ZWOtBK2VGGsl0yYcfQ55mzFy_NW5Zdc0qQ5nnnjYhsgp5qwJx3aJ5s2_Trb7r957sILgKp5l-bSgVowneh8BTCEPqg37Aekd58A
  priority: 102
  providerName: Springer Nature
Title Inverse discounted-based LQR algorithm for learning human movement behaviors
URI https://link.springer.com/article/10.1007/s10489-018-1331-y
https://www.proquest.com/docview/2133074964
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PT9swFH6C9sIF2MZEB1Q-7LTJWuI4jnNAqEUtiHXVqKjUnSLHdrpDf9GGA_89z2lMtUlwysGxlTzH730v9vs-gK8JRjEmg5hqrTnlRZ5TWRSWIpTQiimJGbQrTv41FLdjfjeJJ3sw9LUw7lil94mVozZL7f6R_2CYTGG4SwW_Wj1Spxrldle9hIaqpRXMZUUxtg9N5pixGtDs9oa_R6--GceoNPQw66BCpBO_z7ktpuPu-FCIWVUUhfT530i1g5__7ZhWgah_DIc1giSd7ZR_gD27-AhHXp2B1Iv1EwwchcZ6Y4krvHWPbQ11McuQwf2IqNkU3678OyeIWkmtHTEllWQfmS8rFvGS-CL-zQmM-72H61taaydQHYWipJj28MgUEvOH2KBXy0VicxXaIkgTzSxnCERwdiQuR2sDrWSeC1skrMilCqVh0WdoLJYLewpEWKVioTX2M7wIEmWTOIy44QnnNo3CFgTeTpmuicWdvsUs21EiO9NmaNrMmTZ7bsG31y6rLavGezefe-Nn9QLbZLvPoQXf_YTsmt8c7Mv7g53BASKidHs05xwa5frJXiDqKPM27Mv-TRuanX63O3TXmz8_e-36A8PWMeu8APzv2P0
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB0hOMCFHVEo4ANcQBZZHCc5IMSqAqUCBFJvwbEdOEALbRDqz_FtjFObCiS4cc6i5HniNxN73gPYjJHFgsSLqJSSUVbkOU2KQlNMJaQIRIIVtGlOvmzxxh07b0ftMfhwvTBmW6WbE6uJWnWl-Ue-G2AxhXSXcrb_8kqNa5RZXXUWGsJaK6i9SmLMNnZc6ME7lnD9vbNjHO-tIDg9uT1qUOsyQGXo85JigcBCVSSYaUcKv_-cxzoXvi68NJaBZgFSNr5HgoGrtSdFkudcF3FQ5InwE2WED5ACJljIUiz-Jg5PWlc3X1yAz1x59mGVQzlP225dddi8x8x2JR-ruDD06eA7M47S3R8rtBXxnc7CtM1YycEwxOZgTHfmYca5QRA7OSxA00h29PqamEZfA5NW1HCkIs3rGyKeHhDN8vGZYJZMrFfFA6ksAslzt1ItL4kTDegvwt2_oLgE451uRy8D4VqIiEuJ1ylWeLHQceSHTLGYMZ2Gfg08h1MmrZC58dN4ykYSzAbaDKHNDLTZoAbbX5e8DFU8_jq57sDP7Afdz0bhV4MdNyCjw7_ebOXvm23AZOP2spk1z1oXqzCF2Vg63BZUh_Gy96bXMOMp83UbVgTu_zuSPwHloBFp
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1VICEu7Iiy-gAXkNUsjpMcEEJA2UoFCKTeguPY5QAt0CDUX-PrGCcxFUj0xjmx5YzHs8Qz7wFsh-jFvMgJqJSSUabTlEZaK4qhhBSeiDCDNs3JV21-ds8uOkGnBp-2F8aUVVqbWBjqrC_NP_KGh8kUuruYs4auyiKuj5sHL6_UMEiZm1ZLp1GqyKUafmD6Ntg_P8a93vG85snd0RmtGAao9F2eU0wOmJ_pCKPsIMOzn_JQpcJV2olD6SnmobvGb4hQaZVypIjSlCsdejqNhBtlBvQAzf9kaFDcTZd68_TbC-BqC7Y-zG8o53HH3qiWbXvMFCq5mL_5vkuHP33iKND9dTdbuLzmHMxUsSo5LJVrHmqqtwCzlgeCVGZhEVoGrONtoIhp8TXcEyqjxjtmpHVzS8RTF2WXPz4TjI9JxVLRJQU5IHnuF3jlObFwAYMluP8XGS7DRK_fUytAuBIi4FLiuIxpJxQqDFyfZSxkTMW-WwfHyimRFYS5YdJ4Skbgy0a0CYo2MaJNhnXY_R7yUuJ3jHt53Qo_qY7yIBkpXh327IaMHv852er4ybZgCvU3aZ23L9dgGsOwuKwHWoeJ_O1dbWCok6ebhU4RePhvJf4CZBIPAw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inverse+discounted-based+LQR+algorithm+for+learning+human+movement+behaviors&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=El-Hussieny%2C+Haitham&rft.au=Jee-Hwan+Ryu&rft.date=2019-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=49&rft.issue=4&rft.spage=1489&rft.epage=1501&rft_id=info:doi/10.1007%2Fs10489-018-1331-y&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon