Inverse discounted-based LQR algorithm for learning human movement behaviors
Recently, there has been an increasing interest towards understanding human movement behaviors. In this regard, one of the approaches is to retrieve the unknown underlying objective function that the human has to optimize while achieving a certain movement behavior. Existing research of behavioral u...
Saved in:
| Published in | Applied intelligence (Dordrecht, Netherlands) Vol. 49; no. 4; pp. 1489 - 1501 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.04.2019
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0924-669X 1573-7497 |
| DOI | 10.1007/s10489-018-1331-y |
Cover
| Abstract | Recently, there has been an increasing interest towards understanding human movement behaviors. In this regard, one of the approaches is to retrieve the unknown underlying objective function that the human has to optimize while achieving a certain movement behavior. Existing research of behavioral understanding merely depends on predefined optimality criteria, where the minimum time, minimum variance or/and minimum effort are mainly adopted. These criteria are assumed to be constant, where the human is assumed to have the same preferences during the movement duration. However, in this paper, the optimality criteria underlying the kinematic characteristics of a certain human behavior are assumed to be exponentially discounted to account for the change in the human preferences that could happen while achieving this behavior. A new Inverse Discounted-based Linear Quadratic Regulator (ID-LQR) algorithm is developed in the light of Inverse Optimal Control (IOC) framework to find out the discounted cost function that could reproduce the measured human behavior perfectly. Meanwhile, an Incremental version of the ID-LQR algorithm is proposed to continuously refine the so far learned cost function in the case of sequentially presented demonstrations. The saccadic eye gaze movement is studied as an example to quantify both the proposed ID-LQR and Inverse ID-LQR approaches. Simulation results are encouraging and show that the saccadic trajectories generated by ID-LQR approach match the experimental data in many aspects, including position and velocity profiles of saccades. Moreover, when it is assessed by a subsequent set of scenarios, the incremental ID-LQR algorithm confirms its capability to generalize the so far retrieved cost function for the unseen saccadic demonstrations. |
|---|---|
| AbstractList | Recently, there has been an increasing interest towards understanding human movement behaviors. In this regard, one of the approaches is to retrieve the unknown underlying objective function that the human has to optimize while achieving a certain movement behavior. Existing research of behavioral understanding merely depends on predefined optimality criteria, where the minimum time, minimum variance or/and minimum effort are mainly adopted. These criteria are assumed to be constant, where the human is assumed to have the same preferences during the movement duration. However, in this paper, the optimality criteria underlying the kinematic characteristics of a certain human behavior are assumed to be exponentially discounted to account for the change in the human preferences that could happen while achieving this behavior. A new Inverse Discounted-based Linear Quadratic Regulator (ID-LQR) algorithm is developed in the light of Inverse Optimal Control (IOC) framework to find out the discounted cost function that could reproduce the measured human behavior perfectly. Meanwhile, an Incremental version of the ID-LQR algorithm is proposed to continuously refine the so far learned cost function in the case of sequentially presented demonstrations. The saccadic eye gaze movement is studied as an example to quantify both the proposed ID-LQR and Inverse ID-LQR approaches. Simulation results are encouraging and show that the saccadic trajectories generated by ID-LQR approach match the experimental data in many aspects, including position and velocity profiles of saccades. Moreover, when it is assessed by a subsequent set of scenarios, the incremental ID-LQR algorithm confirms its capability to generalize the so far retrieved cost function for the unseen saccadic demonstrations. |
| Author | Ryu, Jee-Hwan El-Hussieny, Haitham |
| Author_xml | – sequence: 1 givenname: Haitham orcidid: 0000-0002-2296-616X surname: El-Hussieny fullname: El-Hussieny, Haitham email: haitham.elhussieny@feng.bu.edu.eg organization: Electrical Engineering Department, Faculty of Engineering (Shoubra), Benha University – sequence: 2 givenname: Jee-Hwan surname: Ryu fullname: Ryu, Jee-Hwan organization: School of Mechanical Engineering, Korea University of Technology and Education (KOREATECH) |
| BookMark | eNp9kE1LxDAQhoOs4Lr6A7wVPEczTds0R1n8WCiIouAtpOl0t0ubrEm7sP_eLhUEQU9zeZ95Z55zMrPOIiFXwG6AMXEbgCW5pAxyCpwDPZyQOaSCU5FIMSNzJuOEZpn8OCPnIWwZY5wzmJNiZffoA0ZVE4wbbI8VLXXAKipeXiPdrp1v-k0X1c5HLWpvG7uONkOnbdS5PXZo-6jEjd43zocLclrrNuDl91yQ94f7t-UTLZ4fV8u7ghoOWU9lmiW8qnOAPK0g5WUmsNSANZPCxJjECZfGJLmQCSIzOi_LDGsR12WuIa9iviDX096dd58Dhl5t3eDtWKni8Xs2_jw2LIiYUsa7EDzWyjS97htne6-bVgFTR3VqUqdGdeqoTh1GEn6RO9902h_-ZeKJCWPWrtH_3PQ39AXJq4QT |
| CitedBy_id | crossref_primary_10_1016_j_ins_2023_118977 crossref_primary_10_1109_LCSYS_2021_3087556 crossref_primary_10_1109_THMS_2022_3216789 crossref_primary_10_1016_j_neucom_2022_03_036 crossref_primary_10_1007_s40314_024_02861_w crossref_primary_10_1155_2021_6400658 crossref_primary_10_1016_j_arcontrol_2021_04_003 crossref_primary_10_1109_TCYB_2024_3489967 crossref_primary_10_1016_j_ins_2023_02_079 crossref_primary_10_1109_TNNLS_2023_3333551 crossref_primary_10_3390_s22145462 |
| Cites_doi | 10.18637/jss.v031.i07 10.1108/17563781211255862 10.1038/nn1309 10.1109/4235.996017 10.1177/0278364913495721 10.1109/TCST.2014.2343935 10.1007/PL00007989 10.1523/JNEUROSCI.5518-08.2009 10.1016/j.engappai.2016.01.024 10.1109/TCYB.2015.2417053 10.1016/S0165-0270(98)00063-6 10.1038/29528 10.1371/journal.pcbi.1002253 10.1177/0278364913490324 10.1007/s10514-009-9170-7 10.1111/j.1749-6632.1992.tb25228.x 10.1007/s10514-009-9121-3 10.1371/journal.pone.0073152 10.1007/s10846-016-0410-8 10.1177/0278364917745980 10.1016/j.conb.2011.05.030 10.1523/JNEUROSCI.01-07-00710.1981 10.1109/ICORR.2013.6650443 10.1145/1833349.1778859 10.1109/ROBOT.2008.4543619 10.1109/ACC.2016.7526577 10.1109/ROMAN.2016.7745093 10.1007/978-3-319-30160-0_3 10.1115/DSCC2014-6100 10.1145/1015330.1015430 10.1109/ICENCO.2017.8289773 10.1007/978-0-387-79948-3_1247 10.1109/CEC.2012.6256507 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2018 Applied Intelligence is a copyright of Springer, (2018). All Rights Reserved. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018 – notice: Applied Intelligence is a copyright of Springer, (2018). All Rights Reserved. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS Q9U |
| DOI | 10.1007/s10489-018-1331-y |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Engineering Database (ProQuest) Advanced Technologies & Aerospace Database (ProQuest) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest One Psychology Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7497 |
| EndPage | 1501 |
| ExternalDocumentID | 10_1007_s10489_018_1331_y |
| GroupedDBID | -4Z -59 -5G -BR -EM -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 203 23M 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 77K 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CCPQU CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV L6V LAK LLZTM M0C M0N M4Y M7S MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PSYQQ PT4 PT5 PTHSS Q2X QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8N Z8R Z8T Z8U Z8W Z92 ZMTXR ~A9 ~EX -Y2 1SB 2.D 28- 2P1 2VQ 5QI 77I AAAVM AAOBN AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABRTQ ABULA ACBXY ACSTC ADHKG ADKFA AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFGCZ AFHIU AFOHR AGGDS AGQPQ AHPBZ AHWEU AIXLP AJBLW ATHPR AYFIA BBWZM CAG CITATION COF H13 KOW N2Q NDZJH O9- OVD PHGZM PHGZT PQGLB PUEGO R4E RNI RZC RZE RZK S1Z S26 S28 SCJ SCLPG T16 TEORI ZY4 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c316t-95643df81185d153b67eba1ef097c2e42439cc48794ee0ca8bb6ef72fb8a18d23 |
| IEDL.DBID | BENPR |
| ISSN | 0924-669X |
| IngestDate | Fri Jul 25 10:39:35 EDT 2025 Thu Apr 24 22:56:24 EDT 2025 Wed Oct 01 04:09:44 EDT 2025 Fri Feb 21 02:26:51 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Learning by demonstrations Inverse optimal control Behavior modeling Imitation learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-95643df81185d153b67eba1ef097c2e42439cc48794ee0ca8bb6ef72fb8a18d23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2296-616X |
| PQID | 2133074964 |
| PQPubID | 326365 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2133074964 crossref_citationtrail_10_1007_s10489_018_1331_y crossref_primary_10_1007_s10489_018_1331_y springer_journals_10_1007_s10489_018_1331_y |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-04-01 |
| PublicationDateYYYYMMDD | 2019-04-01 |
| PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Boston |
| PublicationSubtitle | The International Journal of Research on Intelligent Systems for Real Life Complex Problems |
| PublicationTitle | Applied intelligence (Dordrecht, Netherlands) |
| PublicationTitleAbbrev | Appl Intell |
| PublicationYear | 2019 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Kardamakis, Moschovakis (CR21) 2009; 29 Soechting, Lacquaniti (CR40) 1981; 1 Freedman (CR15) 2001; 84 Galiana, Guitton (CR16) 1992; 656 Deb, Pratap, Agarwal, Meyarivan (CR8) 2002; 6 Watkins (CR44) 1989 CR38 Zhifei, Meng Joo (CR46) 2012; 5 El-Hussieny, Abouelsoud, Assal, Megahed (CR10) 2016; 50 CR14 CR36 CR12 Powell (CR32) 2009 CR11 CR33 CR31 CR30 Ramachandran, Amir (CR35) 2007; 51 Ratliff, Silver, Bagnell (CR37) 2009; 27 Giorgino (CR17) 2009; 31 Muhammad, Spratling (CR28) 2017; 85 Englert, Vien, Toussaint (CR13) 2017; 36 CR2 CR4 CR6 Harris (CR18) 1998; 83 CR5 CR7 Kwakernaak, Sivan (CR25) 1972 CR29 Todorov (CR43) 2004; 7 Ahmad, Murphy, Langdon, Godsill, Hardy, Skrypchuk (CR3) 2016; 46 Dragan, Srinivasa (CR9) 2013; 32 CR26 Mombaur, Truong, Laumond (CR27) 2010; 28 CR47 CR23 CR45 Abaid, Cappa, Palermo, Petrarca, Porfiri (CR1) 2012; 8 CR22 Kober, Bagnell, Peters (CR24) 2013; 32 CR42 CR41 Priess, Conway, Choi, Popovich, Radcliffe (CR34) 2015; 23 Huston, Jayaraman (CR20) 2011; 21 Saeb, Weber, Triesch (CR39) 2011; 7 Harris, Wolpert (CR19) 1998; 394 BI Ahmad (1331_CR3) 2016; 46 H Galiana (1331_CR16) 1992; 656 J Kober (1331_CR24) 2013; 32 1331_CR41 CM Harris (1331_CR19) 1998; 394 1331_CR22 1331_CR23 1331_CR45 H Kwakernaak (1331_CR25) 1972 K Mombaur (1331_CR27) 2010; 28 1331_CR42 P Englert (1331_CR13) 2017; 36 ND Ratliff (1331_CR37) 2009; 27 SJ Huston (1331_CR20) 2011; 21 AD Dragan (1331_CR9) 2013; 32 1331_CR26 E Todorov (1331_CR43) 2004; 7 H El-Hussieny (1331_CR10) 2016; 50 1331_CR47 1331_CR29 CJCH Watkins (1331_CR44) 1989 D Ramachandran (1331_CR35) 2007; 51 1331_CR30 N Abaid (1331_CR1) 2012; 8 1331_CR11 EG Freedman (1331_CR15) 2001; 84 1331_CR33 1331_CR12 1331_CR31 J Soechting (1331_CR40) 1981; 1 K Deb (1331_CR8) 2002; 6 T Giorgino (1331_CR17) 2009; 31 MC Priess (1331_CR34) 2015; 23 MJ Powell (1331_CR32) 2009 AA Kardamakis (1331_CR21) 2009; 29 1331_CR7 1331_CR6 1331_CR2 1331_CR38 S Zhifei (1331_CR46) 2012; 5 1331_CR5 1331_CR4 1331_CR14 1331_CR36 CM Harris (1331_CR18) 1998; 83 S Saeb (1331_CR39) 2011; 7 W Muhammad (1331_CR28) 2017; 85 |
| References_xml | – ident: CR45 – ident: CR22 – ident: CR47 – volume: 31 start-page: 1 issue: 7 year: 2009 end-page: 24 ident: CR17 article-title: Computing and visualizing dynamic time warping alignments in R: the dtw package publication-title: J Stat Softw doi: 10.18637/jss.v031.i07 – volume: 5 start-page: 293 issue: 3 year: 2012 end-page: 311 ident: CR46 article-title: A survey of inverse reinforcement learning techniques publication-title: Int J Intell Comput Cybern doi: 10.1108/17563781211255862 – ident: CR4 – ident: CR14 – ident: CR2 – volume: 7 start-page: 907 issue: 9 year: 2004 end-page: 915 ident: CR43 article-title: Optimality principles in sensorimotor control publication-title: Nat Neurosci doi: 10.1038/nn1309 – ident: CR12 – ident: CR30 – volume: 6 start-page: 182 issue: 2 year: 2002 end-page: 197 ident: CR8 article-title: A fast and elitist multiobjective genetic algorithm: Nsga-ii publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.996017 – ident: CR33 – volume: 32 start-page: 1238 issue: 11 year: 2013 end-page: 1274 ident: CR24 article-title: Reinforcement learning in robotics: a survey publication-title: Int J Robot Res doi: 10.1177/0278364913495721 – ident: CR6 – ident: CR29 – volume: 23 start-page: 770 issue: 2 year: 2015 end-page: 777 ident: CR34 article-title: Solutions to the inverse lqr problem with application to biological systems analysis publication-title: IEEE Trans Control Syst Technol doi: 10.1109/TCST.2014.2343935 – volume: 84 start-page: 453 issue: 6 year: 2001 end-page: 462 ident: CR15 article-title: Interactions between eye and head control signals can account for movement kinematics publication-title: Biol Cybern doi: 10.1007/PL00007989 – volume: 29 start-page: 7723 issue: 24 year: 2009 end-page: 7730 ident: CR21 article-title: Optimal control of gaze shifts publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5518-08.2009 – volume: 50 start-page: 115 year: 2016 end-page: 124 ident: CR10 article-title: Adaptive learning of human motor behaviors: an evolving inverse optimal control approach publication-title: Eng Appl Artif Intel doi: 10.1016/j.engappai.2016.01.024 – ident: CR42 – ident: CR23 – year: 1989 ident: CR44 publication-title: Learning from delayed rewards. Ph.D. thesis – year: 1972 ident: CR25 publication-title: Linear optimal control systems, vol 1 – volume: 46 start-page: 878 issue: 4 year: 2016 end-page: 889 ident: CR3 article-title: Intent inference for hand pointing gesture-based interactions in vehicles publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2015.2417053 – volume: 83 start-page: 73 issue: 1 year: 1998 end-page: 88 ident: CR18 article-title: On the optimal control of behaviour: a stochastic perspective publication-title: J Neurosci Methods doi: 10.1016/S0165-0270(98)00063-6 – volume: 394 start-page: 780 issue: 6695 year: 1998 ident: CR19 article-title: Signal-dependent noise determines motor planning publication-title: Nature doi: 10.1038/29528 – ident: CR38 – volume: 7 start-page: e1002,253 issue: 11 year: 2011 ident: CR39 article-title: Learning the optimal control of coordinated eye and head movements publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002253 – ident: CR31 – start-page: 26 year: 2009 end-page: 46 ident: CR32 publication-title: The bobyqa algorithm for bound constrained optimization without derivatives. Cambridge NA Report NA2009/06 – volume: 32 start-page: 790 issue: 7 year: 2013 end-page: 805 ident: CR9 article-title: A policy-blending formalism for shared control publication-title: Int J Robot Res doi: 10.1177/0278364913490324 – ident: CR11 – volume: 28 start-page: 369 issue: 3 year: 2010 end-page: 383 ident: CR27 article-title: From human to humanoid locomotion—an inverse optimal control approach publication-title: Autonom Robots doi: 10.1007/s10514-009-9170-7 – volume: 656 start-page: 452 issue: 1 year: 1992 end-page: 471 ident: CR16 article-title: Central organization and modeling of eye-head coordination during orienting gaze shifts publication-title: Ann N Y Acad Sci doi: 10.1111/j.1749-6632.1992.tb25228.x – volume: 27 start-page: 25 issue: 1 year: 2009 end-page: 53 ident: CR37 article-title: Learning to search: functional gradient techniques for imitation learning publication-title: Auton Robot doi: 10.1007/s10514-009-9121-3 – ident: CR36 – volume: 8 start-page: e73,152 issue: 9 year: 2012 end-page: e73,152 ident: CR1 article-title: Gait detection in children with and without hemiplegia using single-axis wearable gyroscopes publication-title: PloS One doi: 10.1371/journal.pone.0073152 – volume: 85 start-page: 107 issue: 1 year: 2017 end-page: 126 ident: CR28 article-title: A neural model of coordinated head and eye movement control publication-title: J Intell Robot Syst doi: 10.1007/s10846-016-0410-8 – ident: CR5 – volume: 36 start-page: 1474 issue: 13–14 year: 2017 end-page: 1488 ident: CR13 article-title: Inverse kkt: learning cost functions of manipulation tasks from demonstrations publication-title: Int J Robot Res doi: 10.1177/0278364917745980 – ident: CR7 – volume: 21 start-page: 527 issue: 4 year: 2011 end-page: 534 ident: CR20 article-title: Studying sensorimotor integration in insects publication-title: Curr Opinion Neurobiol doi: 10.1016/j.conb.2011.05.030 – ident: CR41 – ident: CR26 – volume: 51 start-page: 1 issue: 61801 year: 2007 end-page: 4 ident: CR35 article-title: Bayesian inverse reinforcement learning publication-title: Urbana – volume: 1 start-page: 710 issue: 7 year: 1981 end-page: 720 ident: CR40 article-title: Invariant characteristics of a pointing movement in man publication-title: J Neurosci doi: 10.1523/JNEUROSCI.01-07-00710.1981 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 1331_CR8 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.996017 – ident: 1331_CR22 doi: 10.1109/ICORR.2013.6650443 – ident: 1331_CR26 doi: 10.1145/1833349.1778859 – ident: 1331_CR42 doi: 10.1109/ROBOT.2008.4543619 – volume: 83 start-page: 73 issue: 1 year: 1998 ident: 1331_CR18 publication-title: J Neurosci Methods doi: 10.1016/S0165-0270(98)00063-6 – volume: 32 start-page: 1238 issue: 11 year: 2013 ident: 1331_CR24 publication-title: Int J Robot Res doi: 10.1177/0278364913495721 – volume: 51 start-page: 1 issue: 61801 year: 2007 ident: 1331_CR35 publication-title: Urbana – volume: 7 start-page: e1002,253 issue: 11 year: 2011 ident: 1331_CR39 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002253 – volume: 85 start-page: 107 issue: 1 year: 2017 ident: 1331_CR28 publication-title: J Intell Robot Syst doi: 10.1007/s10846-016-0410-8 – volume: 656 start-page: 452 issue: 1 year: 1992 ident: 1331_CR16 publication-title: Ann N Y Acad Sci doi: 10.1111/j.1749-6632.1992.tb25228.x – volume: 84 start-page: 453 issue: 6 year: 2001 ident: 1331_CR15 publication-title: Biol Cybern doi: 10.1007/PL00007989 – ident: 1331_CR4 – ident: 1331_CR6 – volume: 1 start-page: 710 issue: 7 year: 1981 ident: 1331_CR40 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.01-07-00710.1981 – volume: 8 start-page: e73,152 issue: 9 year: 2012 ident: 1331_CR1 publication-title: PloS One doi: 10.1371/journal.pone.0073152 – ident: 1331_CR36 doi: 10.1109/ACC.2016.7526577 – ident: 1331_CR30 doi: 10.1109/ROMAN.2016.7745093 – start-page: 26 volume-title: The bobyqa algorithm for bound constrained optimization without derivatives. Cambridge NA Report NA2009/06 year: 2009 ident: 1331_CR32 – ident: 1331_CR38 – volume-title: Linear optimal control systems, vol 1 year: 1972 ident: 1331_CR25 – volume: 29 start-page: 7723 issue: 24 year: 2009 ident: 1331_CR21 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5518-08.2009 – volume: 32 start-page: 790 issue: 7 year: 2013 ident: 1331_CR9 publication-title: Int J Robot Res doi: 10.1177/0278364913490324 – ident: 1331_CR41 doi: 10.1007/978-3-319-30160-0_3 – volume: 7 start-page: 907 issue: 9 year: 2004 ident: 1331_CR43 publication-title: Nat Neurosci doi: 10.1038/nn1309 – volume: 27 start-page: 25 issue: 1 year: 2009 ident: 1331_CR37 publication-title: Auton Robot doi: 10.1007/s10514-009-9121-3 – ident: 1331_CR23 – ident: 1331_CR33 doi: 10.1115/DSCC2014-6100 – ident: 1331_CR2 doi: 10.1145/1015330.1015430 – volume: 31 start-page: 1 issue: 7 year: 2009 ident: 1331_CR17 publication-title: J Stat Softw doi: 10.18637/jss.v031.i07 – ident: 1331_CR5 – ident: 1331_CR29 – volume-title: Learning from delayed rewards. Ph.D. thesis year: 1989 ident: 1331_CR44 – volume: 50 start-page: 115 year: 2016 ident: 1331_CR10 publication-title: Eng Appl Artif Intel doi: 10.1016/j.engappai.2016.01.024 – ident: 1331_CR7 – volume: 28 start-page: 369 issue: 3 year: 2010 ident: 1331_CR27 publication-title: Autonom Robots doi: 10.1007/s10514-009-9170-7 – ident: 1331_CR11 doi: 10.1109/ICENCO.2017.8289773 – volume: 36 start-page: 1474 issue: 13–14 year: 2017 ident: 1331_CR13 publication-title: Int J Robot Res doi: 10.1177/0278364917745980 – ident: 1331_CR47 doi: 10.1007/978-0-387-79948-3_1247 – volume: 23 start-page: 770 issue: 2 year: 2015 ident: 1331_CR34 publication-title: IEEE Trans Control Syst Technol doi: 10.1109/TCST.2014.2343935 – volume: 21 start-page: 527 issue: 4 year: 2011 ident: 1331_CR20 publication-title: Curr Opinion Neurobiol doi: 10.1016/j.conb.2011.05.030 – volume: 46 start-page: 878 issue: 4 year: 2016 ident: 1331_CR3 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2015.2417053 – volume: 394 start-page: 780 issue: 6695 year: 1998 ident: 1331_CR19 publication-title: Nature doi: 10.1038/29528 – ident: 1331_CR45 doi: 10.1109/CEC.2012.6256507 – volume: 5 start-page: 293 issue: 3 year: 2012 ident: 1331_CR46 publication-title: Int J Intell Comput Cybern doi: 10.1108/17563781211255862 – ident: 1331_CR14 – ident: 1331_CR31 – ident: 1331_CR12 |
| SSID | ssj0003301 |
| Score | 2.2740188 |
| Snippet | Recently, there has been an increasing interest towards understanding human movement behaviors. In this regard, one of the approaches is to retrieve the... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1489 |
| SubjectTerms | Algorithms Artificial Intelligence Behavior Computer Science Computer simulation Cost function Eye movements Human behavior Human motion Linear quadratic regulator Machine learning Machines Manufacturing Mechanical Engineering Optimal control Optimality criteria Optimization Processes Velocity distribution |
| SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1Be-FCWUWhIB84gYyyOE5yrBCLoCCBilROke04gOiCmvRQvp5xGlOoAImzFyXjZd7IM-8BHIboxbzICahSilGWSUmjLNMUoYQSnogwgjbFyTe3_PKBXfWCXlXHndtsd_skWd7UX4rdmEnvcTHq8X2XTpehXtJt1aDevni8Pvu8gDFEL4XyMLSgnMc9-5j50yTf3dEcYy48i5be5rwBXfudsyST15NJIU_U-wKF4z9_ZA1WK_RJ2rPtsg5LergBDavsQKqDvgkdQ78xzjUxRbtGTUKn1Pi7lHTu7onoP43GL8XzgCDiJZXuxBMp5f7IYFQykBfEEgDkW_BwftY9vaSV7gJVvssLiiET89MswtgjSPFGlDzUUrg6c-JQeZp5CGJwZSM8ylo7SkRScp2FXiYj4Uap529DbTga6h0gXAsRcKVwXMoyJxQ6DFyfpSxkTMe-2wTHmj9RFSm50cboJ3M6ZWOtBK2VGGsl0yYcfQ55mzFy_NW5Zdc0qQ5nnnjYhsgp5qwJx3aJ5s2_Trb7r957sILgKp5l-bSgVowneh8BTCEPqg37Aekd58A priority: 102 providerName: Springer Nature |
| Title | Inverse discounted-based LQR algorithm for learning human movement behaviors |
| URI | https://link.springer.com/article/10.1007/s10489-018-1331-y https://www.proquest.com/docview/2133074964 |
| Volume | 49 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-7497 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PT9swFH6C9sIF2MZEB1Q-7LTJWuI4jnNAqEUtiHXVqKjUnSLHdrpDf9GGA_89z2lMtUlwysGxlTzH730v9vs-gK8JRjEmg5hqrTnlRZ5TWRSWIpTQiimJGbQrTv41FLdjfjeJJ3sw9LUw7lil94mVozZL7f6R_2CYTGG4SwW_Wj1Spxrldle9hIaqpRXMZUUxtg9N5pixGtDs9oa_R6--GceoNPQw66BCpBO_z7ktpuPu-FCIWVUUhfT530i1g5__7ZhWgah_DIc1giSd7ZR_gD27-AhHXp2B1Iv1EwwchcZ6Y4krvHWPbQ11McuQwf2IqNkU3678OyeIWkmtHTEllWQfmS8rFvGS-CL-zQmM-72H61taaydQHYWipJj28MgUEvOH2KBXy0VicxXaIkgTzSxnCERwdiQuR2sDrWSeC1skrMilCqVh0WdoLJYLewpEWKVioTX2M7wIEmWTOIy44QnnNo3CFgTeTpmuicWdvsUs21EiO9NmaNrMmTZ7bsG31y6rLavGezefe-Nn9QLbZLvPoQXf_YTsmt8c7Mv7g53BASKidHs05xwa5frJXiDqKPM27Mv-TRuanX63O3TXmz8_e-36A8PWMeu8APzv2P0 |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB0hOMCFHVEo4ANcQBZZHCc5IMSqAqUCBFJvwbEdOEALbRDqz_FtjFObCiS4cc6i5HniNxN73gPYjJHFgsSLqJSSUVbkOU2KQlNMJaQIRIIVtGlOvmzxxh07b0ftMfhwvTBmW6WbE6uJWnWl-Ue-G2AxhXSXcrb_8kqNa5RZXXUWGsJaK6i9SmLMNnZc6ME7lnD9vbNjHO-tIDg9uT1qUOsyQGXo85JigcBCVSSYaUcKv_-cxzoXvi68NJaBZgFSNr5HgoGrtSdFkudcF3FQ5InwE2WED5ACJljIUiz-Jg5PWlc3X1yAz1x59mGVQzlP225dddi8x8x2JR-ruDD06eA7M47S3R8rtBXxnc7CtM1YycEwxOZgTHfmYca5QRA7OSxA00h29PqamEZfA5NW1HCkIs3rGyKeHhDN8vGZYJZMrFfFA6ksAslzt1ItL4kTDegvwt2_oLgE451uRy8D4VqIiEuJ1ylWeLHQceSHTLGYMZ2Gfg08h1MmrZC58dN4ykYSzAbaDKHNDLTZoAbbX5e8DFU8_jq57sDP7Afdz0bhV4MdNyCjw7_ebOXvm23AZOP2spk1z1oXqzCF2Vg63BZUh_Gy96bXMOMp83UbVgTu_zuSPwHloBFp |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1VICEu7Iiy-gAXkNUsjpMcEEJA2UoFCKTeguPY5QAt0CDUX-PrGCcxFUj0xjmx5YzHs8Qz7wFsh-jFvMgJqJSSUabTlEZaK4qhhBSeiDCDNs3JV21-ds8uOkGnBp-2F8aUVVqbWBjqrC_NP_KGh8kUuruYs4auyiKuj5sHL6_UMEiZm1ZLp1GqyKUafmD6Ntg_P8a93vG85snd0RmtGAao9F2eU0wOmJ_pCKPsIMOzn_JQpcJV2olD6SnmobvGb4hQaZVypIjSlCsdejqNhBtlBvQAzf9kaFDcTZd68_TbC-BqC7Y-zG8o53HH3qiWbXvMFCq5mL_5vkuHP33iKND9dTdbuLzmHMxUsSo5LJVrHmqqtwCzlgeCVGZhEVoGrONtoIhp8TXcEyqjxjtmpHVzS8RTF2WXPz4TjI9JxVLRJQU5IHnuF3jlObFwAYMluP8XGS7DRK_fUytAuBIi4FLiuIxpJxQqDFyfZSxkTMW-WwfHyimRFYS5YdJ4Skbgy0a0CYo2MaJNhnXY_R7yUuJ3jHt53Qo_qY7yIBkpXh327IaMHv852er4ybZgCvU3aZ23L9dgGsOwuKwHWoeJ_O1dbWCok6ebhU4RePhvJf4CZBIPAw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inverse+discounted-based+LQR+algorithm+for+learning+human+movement+behaviors&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=El-Hussieny%2C+Haitham&rft.au=Jee-Hwan+Ryu&rft.date=2019-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=49&rft.issue=4&rft.spage=1489&rft.epage=1501&rft_id=info:doi/10.1007%2Fs10489-018-1331-y&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon |