Stability of Planar Rarefaction Wave to 3D Full Compressible Navier–Stokes Equations
We prove time-asymptotic stability toward the planar rarefaction wave for the three-dimensional full, compressible Navier–Stokes equations with the heat-conductivities in an infinite long flat nozzle domain R × T 2 . Compared with one-dimensional case, the proof here is based on our new observations...
Saved in:
Published in | Archive for rational mechanics and analysis Vol. 230; no. 3; pp. 911 - 937 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0003-9527 1432-0673 |
DOI | 10.1007/s00205-018-1260-2 |
Cover
Abstract | We prove time-asymptotic stability toward the planar rarefaction wave for the three-dimensional full, compressible Navier–Stokes equations with the heat-conductivities in an infinite long flat nozzle domain
R
×
T
2
. Compared with one-dimensional case, the proof here is based on our new observations on the cancellations on the flux terms and viscous terms due to the underlying wave structures, which are crucial for overcoming the difficulties due to the wave propagation in the transverse directions
x
2
and
x
3
and its interactions with the planar rarefaction wave in
x
1
direction. |
---|---|
AbstractList | We prove time-asymptotic stability toward the planar rarefaction wave for the three-dimensional full, compressible Navier–Stokes equations with the heat-conductivities in an infinite long flat nozzle domain
R
×
T
2
. Compared with one-dimensional case, the proof here is based on our new observations on the cancellations on the flux terms and viscous terms due to the underlying wave structures, which are crucial for overcoming the difficulties due to the wave propagation in the transverse directions
x
2
and
x
3
and its interactions with the planar rarefaction wave in
x
1
direction. We prove time-asymptotic stability toward the planar rarefaction wave for the three-dimensional full, compressible Navier–Stokes equations with the heat-conductivities in an infinite long flat nozzle domain R×T2 . Compared with one-dimensional case, the proof here is based on our new observations on the cancellations on the flux terms and viscous terms due to the underlying wave structures, which are crucial for overcoming the difficulties due to the wave propagation in the transverse directions x2 and x3 and its interactions with the planar rarefaction wave in x1 direction. |
Author | Wang, Yi Li, Lin-an Wang, Teng |
Author_xml | – sequence: 1 givenname: Lin-an surname: Li fullname: Li, Lin-an organization: Institute of Applied Mathematics, AMSS, Chinese Academy of Sciences, School of Mathematical Sciences, University of Chinese Academy of Sciences – sequence: 2 givenname: Teng orcidid: 0000-0001-8624-5567 surname: Wang fullname: Wang, Teng email: tengwang@amss.ac.cn organization: College of Applied Sciences, Beijing University of Technology – sequence: 3 givenname: Yi surname: Wang fullname: Wang, Yi organization: School of Mathematical Sciences, University of Chinese Academy of Sciences, CEMS, HCMS, NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences |
BookMark | eNp9kN9KwzAUxoNMcJs-gHcBr6snSZsulzI3FYaK889lSLtEOrtmS9LB7nwH39AnsbWCIOjV4cD3-875vgHqVbbSCB0TOCUA6ZkHoJBEQEYRoRwiuof6JGY0Ap6yHuoDAItEQtMDNPB-2a6U8T56mgeVFWURdtgafFeqSjl8r5w2Kg-FrfCz2mocLGYXeFqXJR7b1dpp74us1PhGbQvtPt7e58G-ao8nm1q1lD9E-0aVXh99zyF6nE4exlfR7Pbyenw-i3JGeIgEI0YwMyLUpIYLEHoRa05BcJGZDEys44Qp0CDMghHISCYyQkSSGd7IFWFDdNL5rp3d1NoHubS1q5qTsnERgo9GMWtUpFPlznrfZJNrV6yU20kCsq1PdvXJpj7Z1idpw6S_mLwIX-GCU0X5L0k70jdXqhftfn76G_oEXgeF-g |
CitedBy_id | crossref_primary_10_1063_5_0137502 crossref_primary_10_1142_S0218202520500025 crossref_primary_10_1142_S0218202523500653 crossref_primary_10_1007_s10473_020_0512_z crossref_primary_10_1007_s00208_024_02840_w crossref_primary_10_3934_cpaa_2021080 crossref_primary_10_1016_j_jde_2020_02_026 crossref_primary_10_1016_j_jfa_2022_109499 crossref_primary_10_1007_s00220_021_04100_3 crossref_primary_10_1007_s00205_021_01747_z crossref_primary_10_1016_j_jde_2024_12_022 crossref_primary_10_1016_j_jde_2020_01_017 crossref_primary_10_1088_1361_6544_abb544 crossref_primary_10_1016_j_aim_2022_108452 crossref_primary_10_1016_j_jfa_2025_110840 crossref_primary_10_1007_s00033_020_01347_z crossref_primary_10_1016_j_jde_2022_04_025 crossref_primary_10_1016_j_jmaa_2021_125657 crossref_primary_10_1016_j_nonrwa_2023_103950 crossref_primary_10_1016_j_jmaa_2019_123819 crossref_primary_10_3934_math_2025223 crossref_primary_10_1007_s00220_019_03580_8 crossref_primary_10_1016_j_nonrwa_2018_09_003 crossref_primary_10_3934_dcdsb_2022091 crossref_primary_10_1016_j_jde_2022_03_033 crossref_primary_10_1088_1361_6544_adb23a |
Cites_doi | 10.1137/140999827 10.1090/S0002-9947-99-02290-4 10.1002/cpa.21537 10.24033/bsmf.1586 10.1016/j.aim.2008.06.014 10.1007/BF01816555 10.1142/S0218202596000109 10.1090/S0002-9947-1990-0970270-8 10.1142/S0219530514500456 10.1142/S0219891607001070 10.1512/iumj.2016.65.5911 10.1007/s00220-009-0843-z 10.1007/BF03167088 10.1512/iumj.1999.48.1765 10.4007/annals.2009.170.1417 10.1007/BF00276840 10.1002/cpa.3160100406 10.1007/978-1-4612-0873-0 10.1007/BF01466726 10.1090/memo/1105 10.1142/S0219891615500149 10.1007/s00205-005-0380-7 10.1007/s00205-017-1179-z 10.4310/AJM.1997.v1.n1.a3 10.3233/ASY-1997-153-404 10.1007/s00205-009-0267-0 10.1137/S003614100342735X 10.1137/120879919 10.1007/BF03167036 10.1007/BF02101095 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2018 Copyright Springer Science & Business Media 2018 |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018 – notice: Copyright Springer Science & Business Media 2018 |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1007/s00205-018-1260-2 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics Physics |
EISSN | 1432-0673 |
EndPage | 937 |
ExternalDocumentID | 10_1007_s00205_018_1260_2 |
GroupedDBID | --Z -54 -5F -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23M 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6J9 6NX 6TJ 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDYV AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAGR AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GPTSA GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAS LLZTM M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9T PF0 PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UPT UTJUX UZXMN VC2 VFIZW VH1 VXZ W23 W48 WH7 WK8 YLTOR Z45 Z7Y Z7Z Z83 Z8S Z8T Z8W Z92 ZMTXR ZY4 ~8M ~EX AADXB AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c316t-931f93f812f7f6909ed4e620969bfb0f4e453a0e09fd310b1b9b1195bf6f69a13 |
IEDL.DBID | AGYKE |
ISSN | 0003-9527 |
IngestDate | Fri Jul 25 12:29:15 EDT 2025 Wed Oct 01 04:32:38 EDT 2025 Thu Apr 24 22:58:13 EDT 2025 Fri Feb 21 02:37:15 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-931f93f812f7f6909ed4e620969bfb0f4e453a0e09fd310b1b9b1195bf6f69a13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8624-5567 |
PQID | 2099968843 |
PQPubID | 326363 |
PageCount | 27 |
ParticipantIDs | proquest_journals_2099968843 crossref_primary_10_1007_s00205_018_1260_2 crossref_citationtrail_10_1007_s00205_018_1260_2 springer_journals_10_1007_s00205_018_1260_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Archive for rational mechanics and analysis |
PublicationTitleAbbrev | Arch Rational Mech Anal |
PublicationYear | 2018 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | ItoK.Asymptotic decay toward the planar rarefaction waves of solutions for viscous conservation laws in several space dimensionsMath. Models and Methods in Appl. Scis.199663315338138870910.1142/S02182025960001090853.76076 LaxPHyperbolic systems of conservation laws, II.Pure Appl. Math.1957105375669365310.1002/cpa.31601004060081.08803 LiuTPNonlinear stability of shock waves for viscous conservation lawsMem. Amer. Math. Soc.1985561108791863 Liu, T. P., Zeng, Y. N.: Shock waves in conservation laws with physical viscosity. Mem. Amer. Math. Soc., 234(1105):(2015) FeireislEKremlOUniqueness of rarefaction waves in multidimensional compressible Euler systemJ. Hyperbolic Differ. Equ.2015123489499340197410.1142/S02198916155001491327.35230 Chiodaroli, E., Kreml, O.: Non-uniqueness of admissible weak solutions to the Riemann problem for the isentropic Euler equations, preprint, arXiv:1704.01747. XinZPAsymptotic stability of planar rarefaction waves for viscous conservation laws in several dimensionsTrans. Amer. Math. Soc.199031980582097027010.1090/S0002-9947-1990-0970270-80718.35062 JiuQSWangYXinZPVacuum behaviors around rarefaction waves to 1D compressible Navier–Stokes equations with density-dependent viscositySIAM J. Math. Anal.20134531943228311664510.1137/1208799191293.35170 SzepessyAXinZPNonlinear stability of viscous shock wavesArch. Rational Mech. Anal.1993122531031993ArRMA.122...53S120724110.1007/BF018165550803.35097 ChiodaroliEDe LellisCKremlOGlobal ill-posedness of the isentropic system of gas dynamicsComm. Pure Appl. Math.201568711571190335246010.1002/cpa.215371323.35137 MatsumuraANishiharaKAsymptotics toward the rarefaction wave of the solutions of a one-dimensional model system for compressible viscous gasJapan J. Appl. Math.1986311389921010.1007/BF031670880612.76086 Li, L. A., Wang, Y.: Stability of the planar rarefaction wave to the two-dimensional compressible Navier–Stokes equations, Preprint, arXiv:1710.06063 NashJLe problème de Cauchy pour les équations différentielles d'un fluide généralBull. Soc. Math. France19629048749714909410.24033/bsmf.15860113.19405 Xin, Z.P.: On nonlinear stability of contact discontinuities. In: Hyperbolic problems: theory, numerics, applications (Stony Brook, NY, : 249–257, p. 1996. Publishing, River Edge, NJ, World Sci (1994) HuangFMWangTStability of superposition of viscous contact wave and rarefaction waves for compressible Navier–Stokes systemIndiana U. Math. J.20166518331875359548210.1512/iumj.2016.65.59111369.76051 LiMJWangTWangYThe limit to rarefaction wave with vacuum for 1D compressible fluids with temperature-dependent transport coefficientsAnal. Appl. (Singap.)201513555589336154010.1142/S02195305145004561322.35118 MatsumuraANishiharaKGlobal stability of the rarefaction wave of a one-dimensional model system for compressible viscous gasCommun. Math. Phys.199214423253351992CMaPh.144..325M115237510.1007/BF021010950745.76069 HuangFMMatsumuraAXinZPStability of contact discontinuities for the 1-D compressible Navier–Stokes equationsArch. Rational Mech. Anal.200617955772006ArRMA.179...55H220828910.1007/s00205-005-0380-71079.76032 HuangFMMatsumuraAStability of a composite wave of two viscous shock waves for the full compressible Navier–Stokes equationComm. Math. Phys.20092898418612009CMaPh.289..841H251165310.1007/s00220-009-0843-z1172.35054 LiuTPXinZPPointwise decay to contact discontinuities for systems of viscous conservation lawsAsian J. Math.199713484148099010.4310/AJM.1997.v1.n1.a30928.35095 LiuTPYuSHViscous rarefaction wavesBull. Inst. Math. Acad. Sin. (N.S.)20105212317926814051216.35120 HokariHMatsumuraAAsymptotics toward one-dimensional rarefaction wave for the solution of two-dimensional compressible Euler equation with an artificial viscosityAsymptot. Anal.19971528329814877140895.35080 Solonnikov, V. A.: On solvability of an initial-boundary value problem for the equations of motion of a viscous compressible fluid. In: Studies on Linear Operators and Function Theory. 6 [in Russain], Nauka, Leningrad, 128–142, 1976 FeireislEKremlOVasseurAStability of the isentropic Riemann solutions of the full multi-dimensional Euler systemSIAM J. Math. Anal.201547324162425335762910.1137/1409998271325.35148 Klingenberg, C., Markfelder, S.: The Riemann problem for the multi-dimensional isentropic system of gas dynamicsis ill-posed if it contains a shock, to appear in Arch Rational Mech Anal 2017. https://doi.org/10.1007/s00205-017-1179-z NishikawaMNishiharaKAsymptotics toward the planar rarefaction wave for viscous conservation law in two space dimensionsTrans. Amer. Math. Soc.2000352312031215149187210.1090/S0002-9947-99-02290-40933.35130 HuangFMXinZPYangTContact discontinuities with general perturbation for gas motionAdv. Math.200821912461297245061010.1016/j.aim.2008.06.0141155.35068 De LellisCSzékelyhidiLJrThe Euler equations as a differential inclusionAnn. of Math.2009170314171436260087710.4007/annals.2009.170.14171350.35146 ZumbrunKSerreDViscous and Inviscid Stability of Multidimensional Planar Shock FrontsIndiana U. Math. J.1999483937992173697210.1512/iumj.1999.48.17650944.76027 Brezina, J., Chiodaroli, E. and Kreml, O.:On contact discontinuities in multi-dimensional isentropic Euler equations, preprint, arXiv:1707.00473. ChenGQChenJStability of rarefaction waves and vacuum states for the multidimensional Euler equationsJ. Hyperbolic Differ. Equ.200741105122230347710.1142/S02198916070010701168.35312 LiuTPXinZPNonlinear stability of rarefaction waves for compressible Navier-Stokes equationsComm. Math. Phys.19881184514651988CMaPh.118..451L95880610.1007/BF014667260682.35087 SmollerJShock Waves and Reaction-Diffusion Equations1994New YorkSpringer10.1007/978-1-4612-0873-00807.35002 NishiharaKYangTZhaoHJNonlinear stability of strong rarefaction wave for compressible Navier–Stokes equationsSIAM J. Math. Anal.20043515611597208379010.1137/S003614100342735X1065.35057 GoodmanJNonlinear asymptotic stability of viscous shock profiles for conservation lawsArch. Rational. Mech. Anal.1986953253441986ArRMA..95..325G85378210.1007/BF002768400631.35058 MatsumuraANishiharaKOn the stability of traveling wave solutions of a one-dimensional model system for compressible viscous gasJapan J. Appl. Math.19852172583931710.1007/BF031670360602.76080 HuangFMLiJ.MatsumuraA.Asymptotic stability of combination of viscous contact wave with rarefaction waves for one-dimensional compressible Navier–Stokes systemArch. Rational Mech. Anal2010197891162010ArRMA.197...89H264681510.1007/s00205-009-0267-01273.76259 MJ Li (1260_CR20) 2015; 13 1260_CR4 J Goodman (1260_CR8) 1986; 95 TP Liu (1260_CR24) 2010; 5 TP Liu (1260_CR21) 1985; 56 K Nishihara (1260_CR30) 2004; 35 E Chiodaroli (1260_CR3) 2015; 68 1260_CR36 K. Ito (1260_CR15) 1996; 6 1260_CR34 FM Huang (1260_CR10) 2010; 197 QS Jiu (1260_CR16) 2013; 45 J Nash (1260_CR29) 1962; 90 1260_CR19 J Smoller (1260_CR32) 1994 K Zumbrun (1260_CR37) 1999; 48 1260_CR17 TP Liu (1260_CR22) 1988; 118 FM Huang (1260_CR11) 2009; 289 A Matsumura (1260_CR27) 1986; 3 FM Huang (1260_CR14) 2008; 219 A Matsumura (1260_CR28) 1992; 144 A Szepessy (1260_CR33) 1993; 122 A Matsumura (1260_CR26) 1985; 2 M Nishikawa (1260_CR31) 2000; 352 FM Huang (1260_CR13) 2016; 65 P Lax (1260_CR18) 1957; 10 ZP Xin (1260_CR35) 1990; 319 GQ Chen (1260_CR2) 2007; 4 1260_CR25 H Hokari (1260_CR9) 1997; 15 E Feireisl (1260_CR7) 2015; 47 FM Huang (1260_CR12) 2006; 179 1260_CR1 E Feireisl (1260_CR6) 2015; 12 C Lellis De (1260_CR5) 2009; 170 TP Liu (1260_CR23) 1997; 1 |
References_xml | – reference: GoodmanJNonlinear asymptotic stability of viscous shock profiles for conservation lawsArch. Rational. Mech. Anal.1986953253441986ArRMA..95..325G85378210.1007/BF002768400631.35058 – reference: LiuTPYuSHViscous rarefaction wavesBull. Inst. Math. Acad. Sin. (N.S.)20105212317926814051216.35120 – reference: MatsumuraANishiharaKOn the stability of traveling wave solutions of a one-dimensional model system for compressible viscous gasJapan J. Appl. Math.19852172583931710.1007/BF031670360602.76080 – reference: SzepessyAXinZPNonlinear stability of viscous shock wavesArch. Rational Mech. Anal.1993122531031993ArRMA.122...53S120724110.1007/BF018165550803.35097 – reference: Solonnikov, V. A.: On solvability of an initial-boundary value problem for the equations of motion of a viscous compressible fluid. In: Studies on Linear Operators and Function Theory. 6 [in Russain], Nauka, Leningrad, 128–142, 1976 – reference: Chiodaroli, E., Kreml, O.: Non-uniqueness of admissible weak solutions to the Riemann problem for the isentropic Euler equations, preprint, arXiv:1704.01747. – reference: LiuTPXinZPNonlinear stability of rarefaction waves for compressible Navier-Stokes equationsComm. Math. Phys.19881184514651988CMaPh.118..451L95880610.1007/BF014667260682.35087 – reference: LiuTPNonlinear stability of shock waves for viscous conservation lawsMem. Amer. Math. Soc.1985561108791863 – reference: Klingenberg, C., Markfelder, S.: The Riemann problem for the multi-dimensional isentropic system of gas dynamicsis ill-posed if it contains a shock, to appear in Arch Rational Mech Anal 2017. https://doi.org/10.1007/s00205-017-1179-z – reference: MatsumuraANishiharaKAsymptotics toward the rarefaction wave of the solutions of a one-dimensional model system for compressible viscous gasJapan J. Appl. Math.1986311389921010.1007/BF031670880612.76086 – reference: FeireislEKremlOVasseurAStability of the isentropic Riemann solutions of the full multi-dimensional Euler systemSIAM J. Math. Anal.201547324162425335762910.1137/1409998271325.35148 – reference: LiuTPXinZPPointwise decay to contact discontinuities for systems of viscous conservation lawsAsian J. Math.199713484148099010.4310/AJM.1997.v1.n1.a30928.35095 – reference: HuangFMMatsumuraAXinZPStability of contact discontinuities for the 1-D compressible Navier–Stokes equationsArch. Rational Mech. Anal.200617955772006ArRMA.179...55H220828910.1007/s00205-005-0380-71079.76032 – reference: JiuQSWangYXinZPVacuum behaviors around rarefaction waves to 1D compressible Navier–Stokes equations with density-dependent viscositySIAM J. Math. Anal.20134531943228311664510.1137/1208799191293.35170 – reference: Li, L. A., Wang, Y.: Stability of the planar rarefaction wave to the two-dimensional compressible Navier–Stokes equations, Preprint, arXiv:1710.06063 – reference: LiMJWangTWangYThe limit to rarefaction wave with vacuum for 1D compressible fluids with temperature-dependent transport coefficientsAnal. Appl. (Singap.)201513555589336154010.1142/S02195305145004561322.35118 – reference: NishikawaMNishiharaKAsymptotics toward the planar rarefaction wave for viscous conservation law in two space dimensionsTrans. Amer. Math. Soc.2000352312031215149187210.1090/S0002-9947-99-02290-40933.35130 – reference: Brezina, J., Chiodaroli, E. and Kreml, O.:On contact discontinuities in multi-dimensional isentropic Euler equations, preprint, arXiv:1707.00473. – reference: FeireislEKremlOUniqueness of rarefaction waves in multidimensional compressible Euler systemJ. Hyperbolic Differ. Equ.2015123489499340197410.1142/S02198916155001491327.35230 – reference: HokariHMatsumuraAAsymptotics toward one-dimensional rarefaction wave for the solution of two-dimensional compressible Euler equation with an artificial viscosityAsymptot. Anal.19971528329814877140895.35080 – reference: NishiharaKYangTZhaoHJNonlinear stability of strong rarefaction wave for compressible Navier–Stokes equationsSIAM J. Math. Anal.20043515611597208379010.1137/S003614100342735X1065.35057 – reference: LaxPHyperbolic systems of conservation laws, II.Pure Appl. Math.1957105375669365310.1002/cpa.31601004060081.08803 – reference: Liu, T. P., Zeng, Y. N.: Shock waves in conservation laws with physical viscosity. Mem. Amer. Math. Soc., 234(1105):(2015) – reference: ZumbrunKSerreDViscous and Inviscid Stability of Multidimensional Planar Shock FrontsIndiana U. Math. J.1999483937992173697210.1512/iumj.1999.48.17650944.76027 – reference: ChenGQChenJStability of rarefaction waves and vacuum states for the multidimensional Euler equationsJ. Hyperbolic Differ. Equ.200741105122230347710.1142/S02198916070010701168.35312 – reference: HuangFMXinZPYangTContact discontinuities with general perturbation for gas motionAdv. Math.200821912461297245061010.1016/j.aim.2008.06.0141155.35068 – reference: HuangFMMatsumuraAStability of a composite wave of two viscous shock waves for the full compressible Navier–Stokes equationComm. Math. Phys.20092898418612009CMaPh.289..841H251165310.1007/s00220-009-0843-z1172.35054 – reference: HuangFMLiJ.MatsumuraA.Asymptotic stability of combination of viscous contact wave with rarefaction waves for one-dimensional compressible Navier–Stokes systemArch. Rational Mech. Anal2010197891162010ArRMA.197...89H264681510.1007/s00205-009-0267-01273.76259 – reference: MatsumuraANishiharaKGlobal stability of the rarefaction wave of a one-dimensional model system for compressible viscous gasCommun. Math. Phys.199214423253351992CMaPh.144..325M115237510.1007/BF021010950745.76069 – reference: De LellisCSzékelyhidiLJrThe Euler equations as a differential inclusionAnn. of Math.2009170314171436260087710.4007/annals.2009.170.14171350.35146 – reference: Xin, Z.P.: On nonlinear stability of contact discontinuities. In: Hyperbolic problems: theory, numerics, applications (Stony Brook, NY, : 249–257, p. 1996. Publishing, River Edge, NJ, World Sci (1994) – reference: SmollerJShock Waves and Reaction-Diffusion Equations1994New YorkSpringer10.1007/978-1-4612-0873-00807.35002 – reference: ItoK.Asymptotic decay toward the planar rarefaction waves of solutions for viscous conservation laws in several space dimensionsMath. Models and Methods in Appl. Scis.199663315338138870910.1142/S02182025960001090853.76076 – reference: NashJLe problème de Cauchy pour les équations différentielles d'un fluide généralBull. Soc. Math. France19629048749714909410.24033/bsmf.15860113.19405 – reference: XinZPAsymptotic stability of planar rarefaction waves for viscous conservation laws in several dimensionsTrans. Amer. Math. Soc.199031980582097027010.1090/S0002-9947-1990-0970270-80718.35062 – reference: HuangFMWangTStability of superposition of viscous contact wave and rarefaction waves for compressible Navier–Stokes systemIndiana U. Math. J.20166518331875359548210.1512/iumj.2016.65.59111369.76051 – reference: ChiodaroliEDe LellisCKremlOGlobal ill-posedness of the isentropic system of gas dynamicsComm. Pure Appl. Math.201568711571190335246010.1002/cpa.215371323.35137 – ident: 1260_CR1 – volume: 47 start-page: 2416 issue: 3 year: 2015 ident: 1260_CR7 publication-title: SIAM J. Math. Anal. doi: 10.1137/140999827 – volume: 352 start-page: 1203 issue: 3 year: 2000 ident: 1260_CR31 publication-title: Trans. Amer. Math. Soc. doi: 10.1090/S0002-9947-99-02290-4 – volume: 68 start-page: 1157 issue: 7 year: 2015 ident: 1260_CR3 publication-title: Comm. Pure Appl. Math. doi: 10.1002/cpa.21537 – volume: 90 start-page: 487 year: 1962 ident: 1260_CR29 publication-title: Bull. Soc. Math. France doi: 10.24033/bsmf.1586 – volume: 219 start-page: 1246 year: 2008 ident: 1260_CR14 publication-title: Adv. Math. doi: 10.1016/j.aim.2008.06.014 – volume: 122 start-page: 53 year: 1993 ident: 1260_CR33 publication-title: Arch. Rational Mech. Anal. doi: 10.1007/BF01816555 – volume: 6 start-page: 315 issue: 3 year: 1996 ident: 1260_CR15 publication-title: Math. Models and Methods in Appl. Scis. doi: 10.1142/S0218202596000109 – volume: 319 start-page: 805 year: 1990 ident: 1260_CR35 publication-title: Trans. Amer. Math. Soc. doi: 10.1090/S0002-9947-1990-0970270-8 – volume: 13 start-page: 555 year: 2015 ident: 1260_CR20 publication-title: Anal. Appl. (Singap.) doi: 10.1142/S0219530514500456 – volume: 4 start-page: 105 issue: 1 year: 2007 ident: 1260_CR2 publication-title: J. Hyperbolic Differ. Equ. doi: 10.1142/S0219891607001070 – volume: 65 start-page: 1833 year: 2016 ident: 1260_CR13 publication-title: Indiana U. Math. J. doi: 10.1512/iumj.2016.65.5911 – volume: 289 start-page: 841 year: 2009 ident: 1260_CR11 publication-title: Comm. Math. Phys. doi: 10.1007/s00220-009-0843-z – volume: 3 start-page: 1 year: 1986 ident: 1260_CR27 publication-title: Japan J. Appl. Math. doi: 10.1007/BF03167088 – volume: 48 start-page: 937 issue: 3 year: 1999 ident: 1260_CR37 publication-title: Indiana U. Math. J. doi: 10.1512/iumj.1999.48.1765 – ident: 1260_CR19 – ident: 1260_CR36 – volume: 170 start-page: 1417 issue: 3 year: 2009 ident: 1260_CR5 publication-title: Ann. of Math. doi: 10.4007/annals.2009.170.1417 – volume: 95 start-page: 325 year: 1986 ident: 1260_CR8 publication-title: Arch. Rational. Mech. Anal. doi: 10.1007/BF00276840 – volume: 10 start-page: 537 year: 1957 ident: 1260_CR18 publication-title: Pure Appl. Math. doi: 10.1002/cpa.3160100406 – volume: 5 start-page: 123 issue: 2 year: 2010 ident: 1260_CR24 publication-title: Bull. Inst. Math. Acad. Sin. (N.S.) – volume-title: Shock Waves and Reaction-Diffusion Equations year: 1994 ident: 1260_CR32 doi: 10.1007/978-1-4612-0873-0 – volume: 118 start-page: 451 year: 1988 ident: 1260_CR22 publication-title: Comm. Math. Phys. doi: 10.1007/BF01466726 – ident: 1260_CR25 doi: 10.1090/memo/1105 – volume: 12 start-page: 489 issue: 3 year: 2015 ident: 1260_CR6 publication-title: J. Hyperbolic Differ. Equ. doi: 10.1142/S0219891615500149 – volume: 179 start-page: 55 year: 2006 ident: 1260_CR12 publication-title: Arch. Rational Mech. Anal. doi: 10.1007/s00205-005-0380-7 – ident: 1260_CR34 – ident: 1260_CR17 doi: 10.1007/s00205-017-1179-z – volume: 1 start-page: 34 year: 1997 ident: 1260_CR23 publication-title: Asian J. Math. doi: 10.4310/AJM.1997.v1.n1.a3 – volume: 15 start-page: 283 year: 1997 ident: 1260_CR9 publication-title: Asymptot. Anal. doi: 10.3233/ASY-1997-153-404 – volume: 197 start-page: 89 year: 2010 ident: 1260_CR10 publication-title: Arch. Rational Mech. Anal doi: 10.1007/s00205-009-0267-0 – volume: 35 start-page: 1561 year: 2004 ident: 1260_CR30 publication-title: SIAM J. Math. Anal. doi: 10.1137/S003614100342735X – volume: 45 start-page: 3194 year: 2013 ident: 1260_CR16 publication-title: SIAM J. Math. Anal. doi: 10.1137/120879919 – volume: 2 start-page: 17 year: 1985 ident: 1260_CR26 publication-title: Japan J. Appl. Math. doi: 10.1007/BF03167036 – ident: 1260_CR4 – volume: 56 start-page: 1 year: 1985 ident: 1260_CR21 publication-title: Mem. Amer. Math. Soc. – volume: 144 start-page: 325 issue: 2 year: 1992 ident: 1260_CR28 publication-title: Commun. Math. Phys. doi: 10.1007/BF02101095 |
SSID | ssj0003236 |
Score | 2.4465692 |
Snippet | We prove time-asymptotic stability toward the planar rarefaction wave for the three-dimensional full, compressible Navier–Stokes equations with the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 911 |
SubjectTerms | Classical Mechanics Complex Systems Compressibility Dimensional stability Fluid dynamics Fluid flow Fluid- and Aerodynamics Mathematical analysis Mathematical and Computational Physics Navier-Stokes equations Nozzles Physics Physics and Astronomy Rarefaction Theoretical Wave propagation |
Title | Stability of Planar Rarefaction Wave to 3D Full Compressible Navier–Stokes Equations |
URI | https://link.springer.com/article/10.1007/s00205-018-1260-2 https://www.proquest.com/docview/2099968843 |
Volume | 230 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1432-0673 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0003236 issn: 0003-9527 databaseCode: ABDBF dateStart: 20030401 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1432-0673 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003236 issn: 0003-9527 databaseCode: AFBBN dateStart: 19570101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1432-0673 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003236 issn: 0003-9527 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1432-0673 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003236 issn: 0003-9527 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BERIMlKcoFOSBCZQqiZM0HisoIFA7AIUyRbZrL61aIAEJJv4D_5BfwjmvigqQ2BLlYvlxPn8n330HcOBj74StfNxpXFqeFMoKuZRWSG2tEPNzndYG7HSD85530ff7eR53XES7F1eSqaUuk90MsjGBZuj1IAi30O4u-MY_qcBC6-z-sl0aYOqmlQHNk8V8t1lcZv7UyPfjaIoxZ65F09PmtAo3RT-zIJNh4zkRDfk2Q-H4z4GswkqOPkkrU5c1mFPjdajmSJTk-zxeh-VOyeaKb4tpmKiMN-AWsWkaTftKJpqYgkf8iVxxHFaWH0Hu-IsiyYTQE2KcW2LMTRppK0aKdLk5hD_fP66TyVDFpP2Y8YzHm9A7bd8cn1t5ZQZLUidILEYdzahGcKCbGv1rpgaeClx0h5jQwtae8nzKbWUzPUD8KBzBhOGWEzpAce7QLaiMJ2O1DaQpBy4qBxNBiJ4NlZwzX2st-EBx7uigBnaxQJHMactN9YxRVBIup_MZ4XxGZj4jtwaH5S8PGWfHX8L1YtWjfPvGkcknZkEYerQGR8UiTj__2tjOv6R3YcnNtACVoQ6V5OlZ7SHEScR-rtL7MN9zW19HrPMR |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2hIgQc2BFl9YETKCiJkzQ-IigUSnuAsp0i27UvrVpoAhKc-Af-kC9hnK0CARK3RJlYXsbjN_LMG4BdH3snbOXjTuPS8qRQVsiltEJqa4WYn-u0NmCrHTSuvfM7_y7P446LaPfiSjK11GWym0E2JtAMvR4E4Rba3UnPCUOvApOHp_fNemmAqZtWBjRPFvPdWnGZ-VMjX4-jMcb8di2anjYn89Ap-pkFmfQOnhJxIF-_UTj-cyALMJejT3KYqcsiTKjBEsznSJTk-zxegtlWyeaKb1NpmKiMl-EGsWkaTftChpqYgkd8RC45DivLjyC3_FmRZEjoMTHOLTHmJo20FX1F2twcwh9v71fJsKdiUn_MeMbjFbg-qXeOGlZemcGS1AkSi1FHM6oRHOiaRv-aqa6nAhfdISa0sLWnPJ9yW9lMdxE_CkcwYbjlhA5QnDt0FSqD4UCtAanJrovKwUQQomdDJefM11oL3lWcOzqogl0sUCRz2nJTPaMflYTL6XxGOJ-Rmc_IrcJe-ctDxtnxl_BmsepRvn3jyOQTswB1i1Zhv1jE8edfG1v_l_QOTDc6rYvo4qzd3IAZN9MIVIxNqCSjJ7WFcCcR27l6fwImiPUZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7QEAgOPAaIwYAcOIGqtU3bNceJbRqPTQgY7FYlaXJhWsdakLjxH_iH_BKcviYQIHFr1TSt7CT-LNufETp24e-4KV3YaUwYjuDS8JkQhk9MJQHzM5X2BuwPvN7QuRi5o7zPaVxkuxchyaymQbM0TZLGNFSNsvBNoxyddAYeEAByA87gRQdMtfa-hnarPIqJnfYI1FcGde1mEdb8aYqvhmmONr8FSFO7091AazlgxK1Mw5toQU6qaD0HjzjfmnEVrfZLAla4W0ozO0W8he4BTqYJsK84Ulj3KGIzfMPg-1lJA35gLxInESZtrP1RrE-INDmWjyUeMG03P97eb5PoUca485RRg8fbaNjt3J31jLyZgiGI5SUGJZaiRIE9V00FLjGVoSM9GzwYyhU3lSMdlzBTmlSFAPm4xSnXdHBceTCcWWQHVSbRRO4i3BShDfqk3PPBGSGCMeoqpTgLJWOW8mrILCQZiJxpXDe8GAclR3Iq_ACEH2jhB3YNnZSvTDOajb8G1wv1BPmOiwNdAkw933dIDZ0WKps__nWyvX-NPkLL1-1ucHU-uNxHK3a2emAR1VElmT3LAwAoCT9MF-EnmWjcow |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+of+Planar+Rarefaction+Wave+to+3D+Full+Compressible+Navier%E2%80%93Stokes+Equations&rft.jtitle=Archive+for+rational+mechanics+and+analysis&rft.au=Lin-an%2C+Li&rft.au=Wang%2C+Teng&rft.au=Wang%2C+Yi&rft.date=2018-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0003-9527&rft.eissn=1432-0673&rft.volume=230&rft.issue=3&rft.spage=911&rft.epage=937&rft_id=info:doi/10.1007%2Fs00205-018-1260-2&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-9527&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-9527&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-9527&client=summon |