Stability of Planar Rarefaction Wave to 3D Full Compressible Navier–Stokes Equations

We prove time-asymptotic stability toward the planar rarefaction wave for the three-dimensional full, compressible Navier–Stokes equations with the heat-conductivities in an infinite long flat nozzle domain R × T 2 . Compared with one-dimensional case, the proof here is based on our new observations...

Full description

Saved in:
Bibliographic Details
Published inArchive for rational mechanics and analysis Vol. 230; no. 3; pp. 911 - 937
Main Authors Li, Lin-an, Wang, Teng, Wang, Yi
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0003-9527
1432-0673
DOI10.1007/s00205-018-1260-2

Cover

Abstract We prove time-asymptotic stability toward the planar rarefaction wave for the three-dimensional full, compressible Navier–Stokes equations with the heat-conductivities in an infinite long flat nozzle domain R × T 2 . Compared with one-dimensional case, the proof here is based on our new observations on the cancellations on the flux terms and viscous terms due to the underlying wave structures, which are crucial for overcoming the difficulties due to the wave propagation in the transverse directions x 2 and x 3 and its interactions with the planar rarefaction wave in x 1 direction.
AbstractList We prove time-asymptotic stability toward the planar rarefaction wave for the three-dimensional full, compressible Navier–Stokes equations with the heat-conductivities in an infinite long flat nozzle domain R × T 2 . Compared with one-dimensional case, the proof here is based on our new observations on the cancellations on the flux terms and viscous terms due to the underlying wave structures, which are crucial for overcoming the difficulties due to the wave propagation in the transverse directions x 2 and x 3 and its interactions with the planar rarefaction wave in x 1 direction.
We prove time-asymptotic stability toward the planar rarefaction wave for the three-dimensional full, compressible Navier–Stokes equations with the heat-conductivities in an infinite long flat nozzle domain R×T2 . Compared with one-dimensional case, the proof here is based on our new observations on the cancellations on the flux terms and viscous terms due to the underlying wave structures, which are crucial for overcoming the difficulties due to the wave propagation in the transverse directions x2 and x3 and its interactions with the planar rarefaction wave in x1 direction.
Author Wang, Yi
Li, Lin-an
Wang, Teng
Author_xml – sequence: 1
  givenname: Lin-an
  surname: Li
  fullname: Li, Lin-an
  organization: Institute of Applied Mathematics, AMSS, Chinese Academy of Sciences, School of Mathematical Sciences, University of Chinese Academy of Sciences
– sequence: 2
  givenname: Teng
  orcidid: 0000-0001-8624-5567
  surname: Wang
  fullname: Wang, Teng
  email: tengwang@amss.ac.cn
  organization: College of Applied Sciences, Beijing University of Technology
– sequence: 3
  givenname: Yi
  surname: Wang
  fullname: Wang, Yi
  organization: School of Mathematical Sciences, University of Chinese Academy of Sciences, CEMS, HCMS, NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences
BookMark eNp9kN9KwzAUxoNMcJs-gHcBr6snSZsulzI3FYaK889lSLtEOrtmS9LB7nwH39AnsbWCIOjV4cD3-875vgHqVbbSCB0TOCUA6ZkHoJBEQEYRoRwiuof6JGY0Ap6yHuoDAItEQtMDNPB-2a6U8T56mgeVFWURdtgafFeqSjl8r5w2Kg-FrfCz2mocLGYXeFqXJR7b1dpp74us1PhGbQvtPt7e58G-ao8nm1q1lD9E-0aVXh99zyF6nE4exlfR7Pbyenw-i3JGeIgEI0YwMyLUpIYLEHoRa05BcJGZDEys44Qp0CDMghHISCYyQkSSGd7IFWFDdNL5rp3d1NoHubS1q5qTsnERgo9GMWtUpFPlznrfZJNrV6yU20kCsq1PdvXJpj7Z1idpw6S_mLwIX-GCU0X5L0k70jdXqhftfn76G_oEXgeF-g
CitedBy_id crossref_primary_10_1063_5_0137502
crossref_primary_10_1142_S0218202520500025
crossref_primary_10_1142_S0218202523500653
crossref_primary_10_1007_s10473_020_0512_z
crossref_primary_10_1007_s00208_024_02840_w
crossref_primary_10_3934_cpaa_2021080
crossref_primary_10_1016_j_jde_2020_02_026
crossref_primary_10_1016_j_jfa_2022_109499
crossref_primary_10_1007_s00220_021_04100_3
crossref_primary_10_1007_s00205_021_01747_z
crossref_primary_10_1016_j_jde_2024_12_022
crossref_primary_10_1016_j_jde_2020_01_017
crossref_primary_10_1088_1361_6544_abb544
crossref_primary_10_1016_j_aim_2022_108452
crossref_primary_10_1016_j_jfa_2025_110840
crossref_primary_10_1007_s00033_020_01347_z
crossref_primary_10_1016_j_jde_2022_04_025
crossref_primary_10_1016_j_jmaa_2021_125657
crossref_primary_10_1016_j_nonrwa_2023_103950
crossref_primary_10_1016_j_jmaa_2019_123819
crossref_primary_10_3934_math_2025223
crossref_primary_10_1007_s00220_019_03580_8
crossref_primary_10_1016_j_nonrwa_2018_09_003
crossref_primary_10_3934_dcdsb_2022091
crossref_primary_10_1016_j_jde_2022_03_033
crossref_primary_10_1088_1361_6544_adb23a
Cites_doi 10.1137/140999827
10.1090/S0002-9947-99-02290-4
10.1002/cpa.21537
10.24033/bsmf.1586
10.1016/j.aim.2008.06.014
10.1007/BF01816555
10.1142/S0218202596000109
10.1090/S0002-9947-1990-0970270-8
10.1142/S0219530514500456
10.1142/S0219891607001070
10.1512/iumj.2016.65.5911
10.1007/s00220-009-0843-z
10.1007/BF03167088
10.1512/iumj.1999.48.1765
10.4007/annals.2009.170.1417
10.1007/BF00276840
10.1002/cpa.3160100406
10.1007/978-1-4612-0873-0
10.1007/BF01466726
10.1090/memo/1105
10.1142/S0219891615500149
10.1007/s00205-005-0380-7
10.1007/s00205-017-1179-z
10.4310/AJM.1997.v1.n1.a3
10.3233/ASY-1997-153-404
10.1007/s00205-009-0267-0
10.1137/S003614100342735X
10.1137/120879919
10.1007/BF03167036
10.1007/BF02101095
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2018
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1007/s00205-018-1260-2
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Physics
EISSN 1432-0673
EndPage 937
ExternalDocumentID 10_1007_s00205_018_1260_2
GroupedDBID --Z
-54
-5F
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6J9
6NX
6TJ
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDYV
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAGR
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9T
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UPT
UTJUX
UZXMN
VC2
VFIZW
VH1
VXZ
W23
W48
WH7
WK8
YLTOR
Z45
Z7Y
Z7Z
Z83
Z8S
Z8T
Z8W
Z92
ZMTXR
ZY4
~8M
~EX
AADXB
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c316t-931f93f812f7f6909ed4e620969bfb0f4e453a0e09fd310b1b9b1195bf6f69a13
IEDL.DBID AGYKE
ISSN 0003-9527
IngestDate Fri Jul 25 12:29:15 EDT 2025
Wed Oct 01 04:32:38 EDT 2025
Thu Apr 24 22:58:13 EDT 2025
Fri Feb 21 02:37:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-931f93f812f7f6909ed4e620969bfb0f4e453a0e09fd310b1b9b1195bf6f69a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8624-5567
PQID 2099968843
PQPubID 326363
PageCount 27
ParticipantIDs proquest_journals_2099968843
crossref_primary_10_1007_s00205_018_1260_2
crossref_citationtrail_10_1007_s00205_018_1260_2
springer_journals_10_1007_s00205_018_1260_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Archive for rational mechanics and analysis
PublicationTitleAbbrev Arch Rational Mech Anal
PublicationYear 2018
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References ItoK.Asymptotic decay toward the planar rarefaction waves of solutions for viscous conservation laws in several space dimensionsMath. Models and Methods in Appl. Scis.199663315338138870910.1142/S02182025960001090853.76076
LaxPHyperbolic systems of conservation laws, II.Pure Appl. Math.1957105375669365310.1002/cpa.31601004060081.08803
LiuTPNonlinear stability of shock waves for viscous conservation lawsMem. Amer. Math. Soc.1985561108791863
Liu, T. P., Zeng, Y. N.: Shock waves in conservation laws with physical viscosity. Mem. Amer. Math. Soc., 234(1105):(2015)
FeireislEKremlOUniqueness of rarefaction waves in multidimensional compressible Euler systemJ. Hyperbolic Differ. Equ.2015123489499340197410.1142/S02198916155001491327.35230
Chiodaroli, E., Kreml, O.: Non-uniqueness of admissible weak solutions to the Riemann problem for the isentropic Euler equations, preprint, arXiv:1704.01747.
XinZPAsymptotic stability of planar rarefaction waves for viscous conservation laws in several dimensionsTrans. Amer. Math. Soc.199031980582097027010.1090/S0002-9947-1990-0970270-80718.35062
JiuQSWangYXinZPVacuum behaviors around rarefaction waves to 1D compressible Navier–Stokes equations with density-dependent viscositySIAM J. Math. Anal.20134531943228311664510.1137/1208799191293.35170
SzepessyAXinZPNonlinear stability of viscous shock wavesArch. Rational Mech. Anal.1993122531031993ArRMA.122...53S120724110.1007/BF018165550803.35097
ChiodaroliEDe LellisCKremlOGlobal ill-posedness of the isentropic system of gas dynamicsComm. Pure Appl. Math.201568711571190335246010.1002/cpa.215371323.35137
MatsumuraANishiharaKAsymptotics toward the rarefaction wave of the solutions of a one-dimensional model system for compressible viscous gasJapan J. Appl. Math.1986311389921010.1007/BF031670880612.76086
Li, L. A., Wang, Y.: Stability of the planar rarefaction wave to the two-dimensional compressible Navier–Stokes equations, Preprint, arXiv:1710.06063
NashJLe problème de Cauchy pour les équations différentielles d'un fluide généralBull. Soc. Math. France19629048749714909410.24033/bsmf.15860113.19405
Xin, Z.P.: On nonlinear stability of contact discontinuities. In: Hyperbolic problems: theory, numerics, applications (Stony Brook, NY, : 249–257, p. 1996. Publishing, River Edge, NJ, World Sci (1994)
HuangFMWangTStability of superposition of viscous contact wave and rarefaction waves for compressible Navier–Stokes systemIndiana U. Math. J.20166518331875359548210.1512/iumj.2016.65.59111369.76051
LiMJWangTWangYThe limit to rarefaction wave with vacuum for 1D compressible fluids with temperature-dependent transport coefficientsAnal. Appl. (Singap.)201513555589336154010.1142/S02195305145004561322.35118
MatsumuraANishiharaKGlobal stability of the rarefaction wave of a one-dimensional model system for compressible viscous gasCommun. Math. Phys.199214423253351992CMaPh.144..325M115237510.1007/BF021010950745.76069
HuangFMMatsumuraAXinZPStability of contact discontinuities for the 1-D compressible Navier–Stokes equationsArch. Rational Mech. Anal.200617955772006ArRMA.179...55H220828910.1007/s00205-005-0380-71079.76032
HuangFMMatsumuraAStability of a composite wave of two viscous shock waves for the full compressible Navier–Stokes equationComm. Math. Phys.20092898418612009CMaPh.289..841H251165310.1007/s00220-009-0843-z1172.35054
LiuTPXinZPPointwise decay to contact discontinuities for systems of viscous conservation lawsAsian J. Math.199713484148099010.4310/AJM.1997.v1.n1.a30928.35095
LiuTPYuSHViscous rarefaction wavesBull. Inst. Math. Acad. Sin. (N.S.)20105212317926814051216.35120
HokariHMatsumuraAAsymptotics toward one-dimensional rarefaction wave for the solution of two-dimensional compressible Euler equation with an artificial viscosityAsymptot. Anal.19971528329814877140895.35080
Solonnikov, V. A.: On solvability of an initial-boundary value problem for the equations of motion of a viscous compressible fluid. In: Studies on Linear Operators and Function Theory. 6 [in Russain], Nauka, Leningrad, 128–142, 1976
FeireislEKremlOVasseurAStability of the isentropic Riemann solutions of the full multi-dimensional Euler systemSIAM J. Math. Anal.201547324162425335762910.1137/1409998271325.35148
Klingenberg, C., Markfelder, S.: The Riemann problem for the multi-dimensional isentropic system of gas dynamicsis ill-posed if it contains a shock, to appear in Arch Rational Mech Anal 2017. https://doi.org/10.1007/s00205-017-1179-z
NishikawaMNishiharaKAsymptotics toward the planar rarefaction wave for viscous conservation law in two space dimensionsTrans. Amer. Math. Soc.2000352312031215149187210.1090/S0002-9947-99-02290-40933.35130
HuangFMXinZPYangTContact discontinuities with general perturbation for gas motionAdv. Math.200821912461297245061010.1016/j.aim.2008.06.0141155.35068
De LellisCSzékelyhidiLJrThe Euler equations as a differential inclusionAnn. of Math.2009170314171436260087710.4007/annals.2009.170.14171350.35146
ZumbrunKSerreDViscous and Inviscid Stability of Multidimensional Planar Shock FrontsIndiana U. Math. J.1999483937992173697210.1512/iumj.1999.48.17650944.76027
Brezina, J., Chiodaroli, E. and Kreml, O.:On contact discontinuities in multi-dimensional isentropic Euler equations, preprint, arXiv:1707.00473.
ChenGQChenJStability of rarefaction waves and vacuum states for the multidimensional Euler equationsJ. Hyperbolic Differ. Equ.200741105122230347710.1142/S02198916070010701168.35312
LiuTPXinZPNonlinear stability of rarefaction waves for compressible Navier-Stokes equationsComm. Math. Phys.19881184514651988CMaPh.118..451L95880610.1007/BF014667260682.35087
SmollerJShock Waves and Reaction-Diffusion Equations1994New YorkSpringer10.1007/978-1-4612-0873-00807.35002
NishiharaKYangTZhaoHJNonlinear stability of strong rarefaction wave for compressible Navier–Stokes equationsSIAM J. Math. Anal.20043515611597208379010.1137/S003614100342735X1065.35057
GoodmanJNonlinear asymptotic stability of viscous shock profiles for conservation lawsArch. Rational. Mech. Anal.1986953253441986ArRMA..95..325G85378210.1007/BF002768400631.35058
MatsumuraANishiharaKOn the stability of traveling wave solutions of a one-dimensional model system for compressible viscous gasJapan J. Appl. Math.19852172583931710.1007/BF031670360602.76080
HuangFMLiJ.MatsumuraA.Asymptotic stability of combination of viscous contact wave with rarefaction waves for one-dimensional compressible Navier–Stokes systemArch. Rational Mech. Anal2010197891162010ArRMA.197...89H264681510.1007/s00205-009-0267-01273.76259
MJ Li (1260_CR20) 2015; 13
1260_CR4
J Goodman (1260_CR8) 1986; 95
TP Liu (1260_CR24) 2010; 5
TP Liu (1260_CR21) 1985; 56
K Nishihara (1260_CR30) 2004; 35
E Chiodaroli (1260_CR3) 2015; 68
1260_CR36
K. Ito (1260_CR15) 1996; 6
1260_CR34
FM Huang (1260_CR10) 2010; 197
QS Jiu (1260_CR16) 2013; 45
J Nash (1260_CR29) 1962; 90
1260_CR19
J Smoller (1260_CR32) 1994
K Zumbrun (1260_CR37) 1999; 48
1260_CR17
TP Liu (1260_CR22) 1988; 118
FM Huang (1260_CR11) 2009; 289
A Matsumura (1260_CR27) 1986; 3
FM Huang (1260_CR14) 2008; 219
A Matsumura (1260_CR28) 1992; 144
A Szepessy (1260_CR33) 1993; 122
A Matsumura (1260_CR26) 1985; 2
M Nishikawa (1260_CR31) 2000; 352
FM Huang (1260_CR13) 2016; 65
P Lax (1260_CR18) 1957; 10
ZP Xin (1260_CR35) 1990; 319
GQ Chen (1260_CR2) 2007; 4
1260_CR25
H Hokari (1260_CR9) 1997; 15
E Feireisl (1260_CR7) 2015; 47
FM Huang (1260_CR12) 2006; 179
1260_CR1
E Feireisl (1260_CR6) 2015; 12
C Lellis De (1260_CR5) 2009; 170
TP Liu (1260_CR23) 1997; 1
References_xml – reference: GoodmanJNonlinear asymptotic stability of viscous shock profiles for conservation lawsArch. Rational. Mech. Anal.1986953253441986ArRMA..95..325G85378210.1007/BF002768400631.35058
– reference: LiuTPYuSHViscous rarefaction wavesBull. Inst. Math. Acad. Sin. (N.S.)20105212317926814051216.35120
– reference: MatsumuraANishiharaKOn the stability of traveling wave solutions of a one-dimensional model system for compressible viscous gasJapan J. Appl. Math.19852172583931710.1007/BF031670360602.76080
– reference: SzepessyAXinZPNonlinear stability of viscous shock wavesArch. Rational Mech. Anal.1993122531031993ArRMA.122...53S120724110.1007/BF018165550803.35097
– reference: Solonnikov, V. A.: On solvability of an initial-boundary value problem for the equations of motion of a viscous compressible fluid. In: Studies on Linear Operators and Function Theory. 6 [in Russain], Nauka, Leningrad, 128–142, 1976
– reference: Chiodaroli, E., Kreml, O.: Non-uniqueness of admissible weak solutions to the Riemann problem for the isentropic Euler equations, preprint, arXiv:1704.01747.
– reference: LiuTPXinZPNonlinear stability of rarefaction waves for compressible Navier-Stokes equationsComm. Math. Phys.19881184514651988CMaPh.118..451L95880610.1007/BF014667260682.35087
– reference: LiuTPNonlinear stability of shock waves for viscous conservation lawsMem. Amer. Math. Soc.1985561108791863
– reference: Klingenberg, C., Markfelder, S.: The Riemann problem for the multi-dimensional isentropic system of gas dynamicsis ill-posed if it contains a shock, to appear in Arch Rational Mech Anal 2017. https://doi.org/10.1007/s00205-017-1179-z
– reference: MatsumuraANishiharaKAsymptotics toward the rarefaction wave of the solutions of a one-dimensional model system for compressible viscous gasJapan J. Appl. Math.1986311389921010.1007/BF031670880612.76086
– reference: FeireislEKremlOVasseurAStability of the isentropic Riemann solutions of the full multi-dimensional Euler systemSIAM J. Math. Anal.201547324162425335762910.1137/1409998271325.35148
– reference: LiuTPXinZPPointwise decay to contact discontinuities for systems of viscous conservation lawsAsian J. Math.199713484148099010.4310/AJM.1997.v1.n1.a30928.35095
– reference: HuangFMMatsumuraAXinZPStability of contact discontinuities for the 1-D compressible Navier–Stokes equationsArch. Rational Mech. Anal.200617955772006ArRMA.179...55H220828910.1007/s00205-005-0380-71079.76032
– reference: JiuQSWangYXinZPVacuum behaviors around rarefaction waves to 1D compressible Navier–Stokes equations with density-dependent viscositySIAM J. Math. Anal.20134531943228311664510.1137/1208799191293.35170
– reference: Li, L. A., Wang, Y.: Stability of the planar rarefaction wave to the two-dimensional compressible Navier–Stokes equations, Preprint, arXiv:1710.06063
– reference: LiMJWangTWangYThe limit to rarefaction wave with vacuum for 1D compressible fluids with temperature-dependent transport coefficientsAnal. Appl. (Singap.)201513555589336154010.1142/S02195305145004561322.35118
– reference: NishikawaMNishiharaKAsymptotics toward the planar rarefaction wave for viscous conservation law in two space dimensionsTrans. Amer. Math. Soc.2000352312031215149187210.1090/S0002-9947-99-02290-40933.35130
– reference: Brezina, J., Chiodaroli, E. and Kreml, O.:On contact discontinuities in multi-dimensional isentropic Euler equations, preprint, arXiv:1707.00473.
– reference: FeireislEKremlOUniqueness of rarefaction waves in multidimensional compressible Euler systemJ. Hyperbolic Differ. Equ.2015123489499340197410.1142/S02198916155001491327.35230
– reference: HokariHMatsumuraAAsymptotics toward one-dimensional rarefaction wave for the solution of two-dimensional compressible Euler equation with an artificial viscosityAsymptot. Anal.19971528329814877140895.35080
– reference: NishiharaKYangTZhaoHJNonlinear stability of strong rarefaction wave for compressible Navier–Stokes equationsSIAM J. Math. Anal.20043515611597208379010.1137/S003614100342735X1065.35057
– reference: LaxPHyperbolic systems of conservation laws, II.Pure Appl. Math.1957105375669365310.1002/cpa.31601004060081.08803
– reference: Liu, T. P., Zeng, Y. N.: Shock waves in conservation laws with physical viscosity. Mem. Amer. Math. Soc., 234(1105):(2015)
– reference: ZumbrunKSerreDViscous and Inviscid Stability of Multidimensional Planar Shock FrontsIndiana U. Math. J.1999483937992173697210.1512/iumj.1999.48.17650944.76027
– reference: ChenGQChenJStability of rarefaction waves and vacuum states for the multidimensional Euler equationsJ. Hyperbolic Differ. Equ.200741105122230347710.1142/S02198916070010701168.35312
– reference: HuangFMXinZPYangTContact discontinuities with general perturbation for gas motionAdv. Math.200821912461297245061010.1016/j.aim.2008.06.0141155.35068
– reference: HuangFMMatsumuraAStability of a composite wave of two viscous shock waves for the full compressible Navier–Stokes equationComm. Math. Phys.20092898418612009CMaPh.289..841H251165310.1007/s00220-009-0843-z1172.35054
– reference: HuangFMLiJ.MatsumuraA.Asymptotic stability of combination of viscous contact wave with rarefaction waves for one-dimensional compressible Navier–Stokes systemArch. Rational Mech. Anal2010197891162010ArRMA.197...89H264681510.1007/s00205-009-0267-01273.76259
– reference: MatsumuraANishiharaKGlobal stability of the rarefaction wave of a one-dimensional model system for compressible viscous gasCommun. Math. Phys.199214423253351992CMaPh.144..325M115237510.1007/BF021010950745.76069
– reference: De LellisCSzékelyhidiLJrThe Euler equations as a differential inclusionAnn. of Math.2009170314171436260087710.4007/annals.2009.170.14171350.35146
– reference: Xin, Z.P.: On nonlinear stability of contact discontinuities. In: Hyperbolic problems: theory, numerics, applications (Stony Brook, NY, : 249–257, p. 1996. Publishing, River Edge, NJ, World Sci (1994)
– reference: SmollerJShock Waves and Reaction-Diffusion Equations1994New YorkSpringer10.1007/978-1-4612-0873-00807.35002
– reference: ItoK.Asymptotic decay toward the planar rarefaction waves of solutions for viscous conservation laws in several space dimensionsMath. Models and Methods in Appl. Scis.199663315338138870910.1142/S02182025960001090853.76076
– reference: NashJLe problème de Cauchy pour les équations différentielles d'un fluide généralBull. Soc. Math. France19629048749714909410.24033/bsmf.15860113.19405
– reference: XinZPAsymptotic stability of planar rarefaction waves for viscous conservation laws in several dimensionsTrans. Amer. Math. Soc.199031980582097027010.1090/S0002-9947-1990-0970270-80718.35062
– reference: HuangFMWangTStability of superposition of viscous contact wave and rarefaction waves for compressible Navier–Stokes systemIndiana U. Math. J.20166518331875359548210.1512/iumj.2016.65.59111369.76051
– reference: ChiodaroliEDe LellisCKremlOGlobal ill-posedness of the isentropic system of gas dynamicsComm. Pure Appl. Math.201568711571190335246010.1002/cpa.215371323.35137
– ident: 1260_CR1
– volume: 47
  start-page: 2416
  issue: 3
  year: 2015
  ident: 1260_CR7
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/140999827
– volume: 352
  start-page: 1203
  issue: 3
  year: 2000
  ident: 1260_CR31
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/S0002-9947-99-02290-4
– volume: 68
  start-page: 1157
  issue: 7
  year: 2015
  ident: 1260_CR3
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.21537
– volume: 90
  start-page: 487
  year: 1962
  ident: 1260_CR29
  publication-title: Bull. Soc. Math. France
  doi: 10.24033/bsmf.1586
– volume: 219
  start-page: 1246
  year: 2008
  ident: 1260_CR14
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2008.06.014
– volume: 122
  start-page: 53
  year: 1993
  ident: 1260_CR33
  publication-title: Arch. Rational Mech. Anal.
  doi: 10.1007/BF01816555
– volume: 6
  start-page: 315
  issue: 3
  year: 1996
  ident: 1260_CR15
  publication-title: Math. Models and Methods in Appl. Scis.
  doi: 10.1142/S0218202596000109
– volume: 319
  start-page: 805
  year: 1990
  ident: 1260_CR35
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/S0002-9947-1990-0970270-8
– volume: 13
  start-page: 555
  year: 2015
  ident: 1260_CR20
  publication-title: Anal. Appl. (Singap.)
  doi: 10.1142/S0219530514500456
– volume: 4
  start-page: 105
  issue: 1
  year: 2007
  ident: 1260_CR2
  publication-title: J. Hyperbolic Differ. Equ.
  doi: 10.1142/S0219891607001070
– volume: 65
  start-page: 1833
  year: 2016
  ident: 1260_CR13
  publication-title: Indiana U. Math. J.
  doi: 10.1512/iumj.2016.65.5911
– volume: 289
  start-page: 841
  year: 2009
  ident: 1260_CR11
  publication-title: Comm. Math. Phys.
  doi: 10.1007/s00220-009-0843-z
– volume: 3
  start-page: 1
  year: 1986
  ident: 1260_CR27
  publication-title: Japan J. Appl. Math.
  doi: 10.1007/BF03167088
– volume: 48
  start-page: 937
  issue: 3
  year: 1999
  ident: 1260_CR37
  publication-title: Indiana U. Math. J.
  doi: 10.1512/iumj.1999.48.1765
– ident: 1260_CR19
– ident: 1260_CR36
– volume: 170
  start-page: 1417
  issue: 3
  year: 2009
  ident: 1260_CR5
  publication-title: Ann. of Math.
  doi: 10.4007/annals.2009.170.1417
– volume: 95
  start-page: 325
  year: 1986
  ident: 1260_CR8
  publication-title: Arch. Rational. Mech. Anal.
  doi: 10.1007/BF00276840
– volume: 10
  start-page: 537
  year: 1957
  ident: 1260_CR18
  publication-title: Pure Appl. Math.
  doi: 10.1002/cpa.3160100406
– volume: 5
  start-page: 123
  issue: 2
  year: 2010
  ident: 1260_CR24
  publication-title: Bull. Inst. Math. Acad. Sin. (N.S.)
– volume-title: Shock Waves and Reaction-Diffusion Equations
  year: 1994
  ident: 1260_CR32
  doi: 10.1007/978-1-4612-0873-0
– volume: 118
  start-page: 451
  year: 1988
  ident: 1260_CR22
  publication-title: Comm. Math. Phys.
  doi: 10.1007/BF01466726
– ident: 1260_CR25
  doi: 10.1090/memo/1105
– volume: 12
  start-page: 489
  issue: 3
  year: 2015
  ident: 1260_CR6
  publication-title: J. Hyperbolic Differ. Equ.
  doi: 10.1142/S0219891615500149
– volume: 179
  start-page: 55
  year: 2006
  ident: 1260_CR12
  publication-title: Arch. Rational Mech. Anal.
  doi: 10.1007/s00205-005-0380-7
– ident: 1260_CR34
– ident: 1260_CR17
  doi: 10.1007/s00205-017-1179-z
– volume: 1
  start-page: 34
  year: 1997
  ident: 1260_CR23
  publication-title: Asian J. Math.
  doi: 10.4310/AJM.1997.v1.n1.a3
– volume: 15
  start-page: 283
  year: 1997
  ident: 1260_CR9
  publication-title: Asymptot. Anal.
  doi: 10.3233/ASY-1997-153-404
– volume: 197
  start-page: 89
  year: 2010
  ident: 1260_CR10
  publication-title: Arch. Rational Mech. Anal
  doi: 10.1007/s00205-009-0267-0
– volume: 35
  start-page: 1561
  year: 2004
  ident: 1260_CR30
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/S003614100342735X
– volume: 45
  start-page: 3194
  year: 2013
  ident: 1260_CR16
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/120879919
– volume: 2
  start-page: 17
  year: 1985
  ident: 1260_CR26
  publication-title: Japan J. Appl. Math.
  doi: 10.1007/BF03167036
– ident: 1260_CR4
– volume: 56
  start-page: 1
  year: 1985
  ident: 1260_CR21
  publication-title: Mem. Amer. Math. Soc.
– volume: 144
  start-page: 325
  issue: 2
  year: 1992
  ident: 1260_CR28
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF02101095
SSID ssj0003236
Score 2.4465692
Snippet We prove time-asymptotic stability toward the planar rarefaction wave for the three-dimensional full, compressible Navier–Stokes equations with the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 911
SubjectTerms Classical Mechanics
Complex Systems
Compressibility
Dimensional stability
Fluid dynamics
Fluid flow
Fluid- and Aerodynamics
Mathematical analysis
Mathematical and Computational Physics
Navier-Stokes equations
Nozzles
Physics
Physics and Astronomy
Rarefaction
Theoretical
Wave propagation
Title Stability of Planar Rarefaction Wave to 3D Full Compressible Navier–Stokes Equations
URI https://link.springer.com/article/10.1007/s00205-018-1260-2
https://www.proquest.com/docview/2099968843
Volume 230
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1432-0673
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0003236
  issn: 0003-9527
  databaseCode: ABDBF
  dateStart: 20030401
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-0673
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003236
  issn: 0003-9527
  databaseCode: AFBBN
  dateStart: 19570101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-0673
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003236
  issn: 0003-9527
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-0673
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003236
  issn: 0003-9527
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BERIMlKcoFOSBCZQqiZM0HisoIFA7AIUyRbZrL61aIAEJJv4D_5BfwjmvigqQ2BLlYvlxPn8n330HcOBj74StfNxpXFqeFMoKuZRWSG2tEPNzndYG7HSD85530ff7eR53XES7F1eSqaUuk90MsjGBZuj1IAi30O4u-MY_qcBC6-z-sl0aYOqmlQHNk8V8t1lcZv7UyPfjaIoxZ65F09PmtAo3RT-zIJNh4zkRDfk2Q-H4z4GswkqOPkkrU5c1mFPjdajmSJTk-zxeh-VOyeaKb4tpmKiMN-AWsWkaTftKJpqYgkf8iVxxHFaWH0Hu-IsiyYTQE2KcW2LMTRppK0aKdLk5hD_fP66TyVDFpP2Y8YzHm9A7bd8cn1t5ZQZLUidILEYdzahGcKCbGv1rpgaeClx0h5jQwtae8nzKbWUzPUD8KBzBhOGWEzpAce7QLaiMJ2O1DaQpBy4qBxNBiJ4NlZwzX2st-EBx7uigBnaxQJHMactN9YxRVBIup_MZ4XxGZj4jtwaH5S8PGWfHX8L1YtWjfPvGkcknZkEYerQGR8UiTj__2tjOv6R3YcnNtACVoQ6V5OlZ7SHEScR-rtL7MN9zW19HrPMR
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2hIgQc2BFl9YETKCiJkzQ-IigUSnuAsp0i27UvrVpoAhKc-Af-kC9hnK0CARK3RJlYXsbjN_LMG4BdH3snbOXjTuPS8qRQVsiltEJqa4WYn-u0NmCrHTSuvfM7_y7P446LaPfiSjK11GWym0E2JtAMvR4E4Rba3UnPCUOvApOHp_fNemmAqZtWBjRPFvPdWnGZ-VMjX4-jMcb8di2anjYn89Ap-pkFmfQOnhJxIF-_UTj-cyALMJejT3KYqcsiTKjBEsznSJTk-zxegtlWyeaKb1NpmKiMl-EGsWkaTftChpqYgkd8RC45DivLjyC3_FmRZEjoMTHOLTHmJo20FX1F2twcwh9v71fJsKdiUn_MeMbjFbg-qXeOGlZemcGS1AkSi1FHM6oRHOiaRv-aqa6nAhfdISa0sLWnPJ9yW9lMdxE_CkcwYbjlhA5QnDt0FSqD4UCtAanJrovKwUQQomdDJefM11oL3lWcOzqogl0sUCRz2nJTPaMflYTL6XxGOJ-Rmc_IrcJe-ctDxtnxl_BmsepRvn3jyOQTswB1i1Zhv1jE8edfG1v_l_QOTDc6rYvo4qzd3IAZN9MIVIxNqCSjJ7WFcCcR27l6fwImiPUZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7QEAgOPAaIwYAcOIGqtU3bNceJbRqPTQgY7FYlaXJhWsdakLjxH_iH_BKcviYQIHFr1TSt7CT-LNufETp24e-4KV3YaUwYjuDS8JkQhk9MJQHzM5X2BuwPvN7QuRi5o7zPaVxkuxchyaymQbM0TZLGNFSNsvBNoxyddAYeEAByA87gRQdMtfa-hnarPIqJnfYI1FcGde1mEdb8aYqvhmmONr8FSFO7091AazlgxK1Mw5toQU6qaD0HjzjfmnEVrfZLAla4W0ozO0W8he4BTqYJsK84Ulj3KGIzfMPg-1lJA35gLxInESZtrP1RrE-INDmWjyUeMG03P97eb5PoUca485RRg8fbaNjt3J31jLyZgiGI5SUGJZaiRIE9V00FLjGVoSM9GzwYyhU3lSMdlzBTmlSFAPm4xSnXdHBceTCcWWQHVSbRRO4i3BShDfqk3PPBGSGCMeoqpTgLJWOW8mrILCQZiJxpXDe8GAclR3Iq_ACEH2jhB3YNnZSvTDOajb8G1wv1BPmOiwNdAkw933dIDZ0WKps__nWyvX-NPkLL1-1ucHU-uNxHK3a2emAR1VElmT3LAwAoCT9MF-EnmWjcow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+of+Planar+Rarefaction+Wave+to+3D+Full+Compressible+Navier%E2%80%93Stokes+Equations&rft.jtitle=Archive+for+rational+mechanics+and+analysis&rft.au=Lin-an%2C+Li&rft.au=Wang%2C+Teng&rft.au=Wang%2C+Yi&rft.date=2018-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0003-9527&rft.eissn=1432-0673&rft.volume=230&rft.issue=3&rft.spage=911&rft.epage=937&rft_id=info:doi/10.1007%2Fs00205-018-1260-2&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-9527&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-9527&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-9527&client=summon